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Abstract
Researchers have adapted the conventional deep learning classification networks to generate Fully Conventional Networks

(FCN) for carrying out accurate semantic segmentation. However, such models are expensive both in terms of storage and

inference time and not readily employable on edge devices. In this paper, a compressed version of VGG16-based Fully

Convolution Network (FCN) has been developed using Particle Swarm Optimization. It has been shown that the developed

model can offer tremendous saving in storage space and also faster inference time, and can be implemented on edge

devices. The efficacy of the proposed approach has been tested using potato late blight leaf images from publicly available

PlantVillage dataset, street scene image dataset and lungs X-Ray dataset and it has been shown that it approaches the

accuracies offered by standard FCN even after 8519 compression.

Keywords FCN architecture � Semantic segmentation � Particle Swarm Optimization � Optimization � Compression and

acceleration � Disease segmentation

1 Introduction

Semantic segmentation of images has wide range of

applications in diverse fields such as road scene segmen-

tation to identify traffic for self-driven cars, CCTV footage

segmentation to count the number of people at any instant

of time, medical images segmentation to figure out the

diseased portion in the presented samples. Recently several

convolution networks have been proposed which can seg-

ment the different parts of images after training the net-

work using original images and their corresponding

segmented ground truth images. Badrinarayan et al. [7]

have proposed an encoder decoder architecture which helps

in semantic segmentation with high mean IoU accuracy.

Ronneberger et al. [44] have also evolved an architecture

called U-Net which has a contracting path and

corresponding expanding path which are made of pooling

and upsampling layers, respectively. This gives the net-

work a U shape. Long et al. [34] have proposed Fully

Convolutional Network architectures (FCN) based on

AlexNet, VGG16 and GoogleNet for pixel-wise segmen-

tation of the images. Kaymak et al. [29] have used FCN-

AlexNet, FCN-8, FCN-16 and FCN-32 in medical domain

to segment regions of skin lesion to detect skin cancer.

They demonstrated that it achieved better accuracy than

other state-of-the-art methods such as UNet and SegNet. It

has been shown [9, 21, 42, 45] that these models have high

mean Intersection over Union (mIoU) accuracies for seg-

menting street scenes, medical images, etc.

Generally these models replace the dense layers at the

end of the network by convolution layers resulting in huge

network sizes. Although they carry out efficient semantic

segmentation, due to the huge size their deployment on

edge devices having very less memory, such as mobile

phones and raspberry pi becomes extremely difficult.

Hence in this research a study has been carried out if these

models can be compressed without loosing their perfor-

mance evaluation metric.

Several research works in past few years have tried to

utilize various ways to compress CNN models such
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singular value decomposition, knowledge transfer, matrix

factorization, pruning, etc. [6, 23, 24, 31, 33, 54]. In very

recent years evolutionary approaches using genetic algo-

rithm, etc., have also been experimented to compress these

CNN models [46, 51, 52]. Beheshti and Johnsson [8] have

demonstrated creation of a squeezed version of UNet

which needed 12.08 times less memory and also acceler-

ated the inference time by 1.48 times without loosing the

performance metric.

Holliday et al. [25] have used an ensemble of FCN8,

FCN16, FCN32, FCN-ResNets, FCN-GoogLeNet for

semantic segmentation and found that it gives better results

than any of the individual models but since its size is very

huge, the authors have used it as a teacher model and

trained a student model such FCN-ResNet152 or FCN8

using knowledge transfer and found that this helped in

compressing the ensemble model with similar accuracy

which was more than individual model. Nguyen et al. [41]

have used Genetic Algorithm to evolve the best architec-

ture of FCN by adding or dropping convolution layers,

pooling layers, and Conditional Random Field-Gated

Recurrent Unit (CRF-GRU) layers. This helped the authors

to increase the accuracy of semantic segmentation, tested

on PASCAL VOC 2012 dataset, by around 9-10%. Calisto

and Lai-Yuen [11] have demonstrated that multi-objective

evolutionary-based algorithms (MEA) can be used to work

out the best ensemble of 2-D and 3-D FCNs for semantic

segmentation of 3-D medical images in prostrate segmen-

tation. 2-D FCNs were used for extracting intraslice

information and 3-D FCN for interslice information. The

multi-objective evolutionary algorithm helps to find best

model which maximizes accuracy and minimizes number

of parameters in the network.

Chen et al. [13] have proposed the compression of 3D

UNet by converting time dimensionality of 3D UNet to

frequency domain and reduce the number of parameters.

Therefore, 3D Unet needs the lower computational cost as

parameters are comparatively less after compression.

Authors have tested the compressed model on Brain

Tumour Segmentation (BRATS) dataset and demonstrated

that compressed 3D UNet has dice score 0.7832, whereas

uncompressed 3D UNet has dice score of 0.7974. More-

over, compressed model achieved the speedup ratio of 2x.

Mohan et al. [38] have used quantization techniques to

compress SqueezeNet for face mask detection due to the

COVID-19 outbreak. Authors found that using quantization

SqueezeNet can be compressed from 3.84 to 386 KB and

accuracy improved from 98.93 to 98.99%. Skandha

et al. [48] have shown compression of CNN models with

the help of Genetic algorithm for lung disease classifica-

tion. Authors have demonstrated that on LIDC-IDRI lung

dataset, proposed CNN can be reduced by 90.3% in size

while maintaining the performance. Yar et al. [53] have

also used Differential Evolution for compression of atten-

tion based InceptionV3 for Fire images classification.

2 Aim and novelty of the study

In the proposed study, our objective is to compress the

FCN architecture so that it can be easily deployed on

resource constrained devices such as raspberry-pi, jetson

nano, and mobile phones. Such kind of compressed models

are extremely required in present times as such devices are

very commonly employed in diverse areas such as agri-

culture, security surveillance, health care, and IoT devices.

Although lots of papers are available in the area of CNN

compression, so far no work has been reported regarding

compression of FCN architecture. The novelty of proposed

work is to employ meta-heuristic-based approach for FCN

compression. Among various methods available such as

Genetic Algorithm, Differential Evolution, Particle Swarm

Fig. 1 Architecture of FCN [34]
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Optimization (PSO) and Whale Optimization, the PSO

method is reported to be better in terms of high calculation

accuracy as well as it carries out global and local search

simultaneously.

The novelty of the proposed approach is that compres-

sion of the FCN model is carried out without compromis-

ing the mean Intersection over Union metric.

The other sections of this paper are organized as fol-

lows: The proposed model is explained in Sect. 3. In

Sect. 4, there is a discussion on experimental setup and

obtained results followed by discussion on real-time

deployment of compressed model on mobile device in

Sect. 5. The conclusion and future scope is discussed in

Sect. 6.

3 Proposed model

VGG16-based FCN is a popular fully convolution layers

type deep learning network (refer Fig. 1) which consist of

15 convolution layers. The first two layers are same as first

two layers of VGG16 having 64 filters each. This is fol-

lowed by set of two convolution layers with 128 filters

each, set of three convolution layers each having 256 fil-

ters, and finally a set of two convolution layers each having

512 filters. Each of these sets have a max-pooling layer in

the end. These convolution layers are followed by two fully

connected convolution layers with 4096 filters each. At the

end an upsampling layer is present with a final softmax

layer to give pixel-wise segmented output of same size as

input image.

In next subsection a brief introduction to PSO is pro-

vided which is being used for compressing FCN models.

3.1 Introduction to PSO

Particle Swarm Optimization (PSO) algorithm developed

by Eberhart and Kennedy in 1995 [17] is inspired from

natural biology and mimics birds flocking. PSO

flowchart is presented in Fig. 2.

In this algorithm given set of particles are randomly

assigned initial start points and as algorithm progresses the

particles update their position based on their velocity. In

each iteration particles update their velocity based on their

previous iteration velocity and a component of particles

best direction and a component of global best direction. In

each iteration fitness value of particle position is calculated

and its best and global best is updated. The main equations

governing PSO are given in Eqs. (1 and 2).

xikþ1 ¼ xik þ vikþ1 ð1Þ

vikþ1 ¼ wk � vik þ c1 � r1

� bik � xik
� �

þ c2 � r2 � bgk � xik
� � ð2Þ

Here xik is the position of the ith particle in kth iteration. vik
is particles velocity, bik is best individual particle position,

bgk is best swarm position. c1; c2 are cognitive and social

parameters. r1; r2 are random numbers between 0 and 1. wk

is the inertia weight introduced by Shi and Eberhart [47].

Algorithm 1 describes the basic PSO operation.

Fig. 2 Particle Swarm Optimization flowchart
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Fig. 3 Particle position corresponding to filters in each layer of FCN
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3.2 Application of PSO for FCN compression

We propose to use Particle Swarm Optimization

(PSO) [17] for FCN model compression by keeping the

most dominant neurons and discarding the redundant

neurons at each hidden layer.

In our case we assume that a unit vector x represents the

nodes/filters at any particular layer. To start with, this is

converted into a binary vector with some of the elements

being randomly assigned 0 value, suggesting that the cor-

responding nodes/filters are to be dropped from this layer.

A concatenation of particles vector at each layer of FCN

is shown in Fig. 3. The initialization of particles is carried

out in algorithm 2. The formation of new particle velocity

using original particle velocity (inertial component), par-

ticle best and swarm best is shown in Fig. 4. The calcu-

lation for new particle position is shown in Fig. 5. After

adjusting particle velocities the new particle position

results in real values between 0 and 1 for each particle

position. Since the aim is to get binary values to decide

whether a specific node/filter is to be retained, the values

are converted into binary values 0 and 1 by rounding off

the real values. This is shown in algorithm 3.

Fig. 4 Calculation of velocity

for next iteration using original

particle velocity, particle best

and swarm best components

Fig. 5 Calculation of velocity and new particle position based on previous velocity, position, particles best and swarm best positions
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3.3 Selection in PSO for FCN compression

The selection criteria uses a combination of retained neu-

rons fraction cj at layer j and mIoU performance metric f at
any compression step. f is calculated using pixel-wise

accuracy of test dataset after removal of certain neurons

based on the particle vector 0 elements. The fitness func-

tion is created as below:

max w� ð1� cjÞ þ ð1� wÞ � f
� �

subject to cj � 1 ð3Þ

where w is the weight-age given to achieve a trade-off

between dual objective of reducing neurons and main-

taining performance metric of pixel-wise accuracy.

Experiments were performed by varying value of w to

achieve different compression and mIoU values. To

maintain the model performance more weight-age was

given to second term in fitness function by keeping value of

w less than 0.3. The PSO compression steps are repeated

unless performance was reduced by more than a predeter-

mined threshold value.

4 Experimental setup and results

NVIDIA DGX v100 machine was utilized to perform FCN

training and compression experiments with python pro-

gramming language. FCN was compressed using PSO

algorithm and tested on three datasets namely: street scene

images [1], lungs X-Ray dataset [2] and potato late blight

leaf images from PlantVillage dataset [26]. Compression

was done on FCN8 and FCN16 for street scene images and

similarly FCN32 was compressed for leaf and lung images.

The various parameters used in PSO algorithm are given in

Table 1.

4.1 Compression of FCN8 on street scene images

The street scene images dataset is having 13 classes and

after applying FCN8 an accuracy of 80.23% has been

achieved with 524971 KB storage space. Moreover, we

have applied proposed compression method on FCN8 and

achieved compression of 95.52 times by compromising the

mIoU \2%. The stepwise compression statistics for FCN8

Table 1 Parameters used for PSO Algorithm

S. no. Parameter Value

1 Social constant (c1) 1

2 Cognitive constant (c2) 2

3 Inertial component weight (wk) 0.5

4 Number of particles 15

5 Maximum iterations 30
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is presented in Table 3, and predicted outputs are compared

with ground truth images through visual representation in

Fig. 6. Moreover, performance comparison among FCN8,

compressed FCN8, UNet and SegNet is also depicted in

Fig. 6. We have also applied proposed method on FCN16

for compression purpose and compression statistics is

presented in Table 2.

4.2 Compression of FCN32 on leaf images

There has been considerable interest in plant disease clas-

sification using leaf images through deep learning tech-

niques [28, 36, 39]. More recently, researchers have been

trying to segment the leaf images in order to work out

extent of diseases [19, 27, 30, 32, 55].

In our work, compressed version of FCN32 was applied

on images of potato leaves affected by late blight disease,

and performance was compared with various non-com-

pressed Deep learning models. Sample leaf images are

Fig. 6 Sample street scene images, their segmented ground truth images, generated outputs of FCN8, generated output of compressed FCN8,

output of UNet and output of SegNet

Table 2 Performance and size statistics for different compression

steps of FCN16 on street scene images

Compression

step

mIoU

(After compression)

(%)

Compressed

size (KB)

Times

compression

1 70.63 171890 3.059

2 68.90 58869 8.919

3 69.77 22938 22.839

4 70.16 9874 53.149

5 70.12 4538 115.629

Original FCN16 size: 524726 KB
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shown in Fig. 7. Ground truth segmented images were

created by using HSV transform of images and checking

Hue value range for green, yellow and brown colors. The

leaf green part was made in ground truth images, disease

part which was yellow or brown was made brown and

background was made black as shown in second row of

Fig. 7. The third row of Fig. 7 shows the results of

applying original uncompressed FCN32, the predicted

Fig. 7 Sample potato late blight leaf images from PlantVillage dataset, their segmented ground truth images, generated outputs of FCN32,

generated output of compressed FCN32 and comparison with UNet and SegNet outputs

Table 3 Performance and size

statistics for different

compression steps of FCN8 on

street scene images

Compression step mIoU (After compression)(%) Compressed size (KB) Times compression

Initial 80.23 524971 19

1 78.10 173568 3.029

2 77.98 65097 8.069

3 78.30 25275 20.779

4 78.70 11507 45.629

5 78.75 5554 94.529
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Fig. 8 Flowchart of FCN compression process

Table 4 Performance and size

statistics for different

compression steps of FCN32 on

leaves dataset

Compression step mIoU (After compression) (%) Compressed size (KB) Times compression

Initial 89.17 524566 19

1 88.10 149520 3.509

2 87.98 50656 10.359

3 88.30 20286 25.859

4 88.70 8900 58.949

5 88.59 4051 129.499

6 88.32 2043 256.769

7 88.64 1064 493.019

8 88.88 805 651.349

9 88.70 672 780.609

10 88.42 616 851.569
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output of compressed FCN32 is presented in fourth row.

For sake of comparison predicted outputs of UNet and

SegNet are presented in fifth and sixth rows. Visual com-

parison shows that segmentation by compressed FCN32 is

as good as by other architectures.

The original FCN32 model needed 524,566 KB storage

space and resulted in 89.17% mIoU. It was observed that

there was a drastic drop in storage space required as the

model went through various PSO compression steps. Fig-

ure 8 shows stepwise application of PSO algorithm to

compress FCN model iteratively till performance is within

desired range.

Table 4 summarizes the achieved mIoU and required

storage at each compression step. It is also observed from

Table 4 that after 10 steps, size of FCN32 was reduced to

616 KB with hardly any degradation in mIoU. The visual

comparison of ground truth and predicted output is depic-

ted in Fig. 7.

The results of FCN32 and compressed FCN32 are

similar to other segmentation methods such as UNet and

SegNet. As far as comparison of storage space was con-

cerned it was found that UNet needs 121,335 KB and

SegNet needs 115,283 KB whereas compressed FCN32

needs only 616 KB and attain very close mIoU

performance.

A comparison of number of convolution filters during

steps 1, 4, 7, and 10 is provided in Table 5. However, a

condition was added to stop compressing a layer further if

its filter reduces to less than or equal to 32 to keep enough

filters in a layer to pass the features. Moreover, after

compression of FCN32 model the number of neurons

reduces considerably leading to reduction in mathematical

operations needed, which accelerated the inference time by

1.68 times on test dataset.

4.3 Compression of FCN32 on medical dataset
of lungs X-rays

The Lungs X-Ray dataset [2] has two classes. On training

FCN32 on lungs dataset the storage space needed was

524,550 KB and mIoU was 97.12%. After applying pro-

posed compression method, the size and mIoU in each

compression step is presented in Table 6. The predicted

outputs are compared with ground truth images through

visual representation in Fig. 9. As seen from Fig. 9, even

after compressing the model by 808.24 times the seg-

mentation results were similar to original FCN32 model.

The results of FCN32 and compressed FCN32 on this

dataset are similar to other segmentation methods such as

UNet and SegNet.

Table 5 Comparison of FCN filter numbers during various com-

pression iterations for leaves dataset

Layer Filters Step 1 Step 4 Step 7 Step 10

1 64 53 30 30 30

2 64 48 31 31 31

3 128 86 39 27 27

4 128 92 38 29 29

5 256 171 63 31 31

6 256 175 60 32 32

7 256 159 56 29 29

8 512 287 85 38 29

9 512 304 84 42 32

10 512 316 87 33 22

11 512 313 92 36 27

12 512 307 92 39 31

13 512 309 88 33 25

14 4096 2245 455 142 35

15 4096 2205 450 117 46

Size (KB) 524566 149520 8900 1064 616

Table 6 Comparison of

performance and size for

different compression steps of

compressing FCN8 on lungs

X-Ray dataset

Compression step mIoU (After compression) (%) Compressed size (KB) Times compression

Initial 97.12 524550 19

1 96.79 173569 3.029

2 96.89 63434 8.279

3 97.05 25943 20.219

4 97.03 10541 49.769

5 96.97 4978 105.379

6 96.85 2343 223.879

7 96.84 1499 349.939

8 96.78 999 525.079

9 96.70 804 652.429

10 96.85 726 722.529

11 96.95 649 808.249
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5 Actual Implementation

Encouraged by the success of PSO-based model com-

pression of FCN architecture, it was decided to try it out on

an edge computing device such as an iPhone. The

compressed model was ported on an iPhone to see its

performance on the leaf dataset. Figure 10 shows a sample

input image, python code and output image as seen on the

iPhone.

Fig. 9 Sample images of lungs X-Ray dataset, ground truth annotations of same images, predicted outputs of FCN32, predicted output of

compressed FCN32 and comparison with UNet and SegNet outputs
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6 Conclusion

This paper has proposed a methodology for compressing

FCN architecture using Particle Swarm Optimization, so

that it can be deployed on edge devices. The performance

of compressed model has been tested on a number of

publicly available datasets and results compared with

uncompressed models. It has been shown on leaves dataset

that less storage of space of around 851.56 times is required

along with acceleration of model by 1.68 times. Similarly

compression of 94.52 times is achieved on street scene

images without loss in performance metric. Compression

on medical dataset of lungs images, the achieved com-

pression is 808.24 times with minimal change in mIoU.

This research can be further extended by using different

meta-heuristic-based approaches such as Differential Evo-

lution and Whale Optimization to figure out the most

suitable method with higher compression but maintaining

same level of accuracy. This research can be used to

develop IoT-based robotic devices to deploy FCN for

automobiles, agricultural or medical needs for semantic

segmentation of needed image portions at run time. Finally

this research can be extended to other models such as

SegNet, UNet, YOLO, VNet, and WNet.
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