
Neural Group Recommendation Based on a

Probabilistic Semantic Aggregation

Jorge Dueñas-Leŕın1,3, Raúl Lara-Cabrera2,3, Fernando Ortega2,3,
and Jesús Bobadilla2,3

1Universidad Politecnica de Madrid, Madrid, Spain
2Departamento de Sistemas Informaticos, Universidad Politecnica

de Madrid, Madrid, Spain
3KNODIS Research Group, Universidad Politecnica de Madrid,

Madrid, Spain

Abstract

Recommendation to groups of users is a challenging subfield of rec-
ommendation systems. Its key concept is how and where to make the
aggregation of each set of user information into an individual entity, such
as a ranked recommendation list, a virtual user, or a multi-hot input
vector encoding. This paper proposes an innovative strategy where ag-
gregation is made in the multi-hot vector that feeds the neural network
model. The aggregation provides a probabilistic semantic, and the re-
sulting input vectors feed a model that is able to conveniently generalize
the group recommendation from the individual predictions. Furthermore,
using the proposed architecture, group recommendations can be obtained
by simply feedforwarding the pre-trained model with individual ratings;
that is, without the need to obtain datasets containing group of user
information, and without the need of running two separate trainings (in-
dividual and group). This approach also avoids maintaining two different
models to support both individual and group learning. Experiments have
tested the proposed architecture using three representative collaborative
filtering datasets and a series of baselines; results show suitable accuracy
improvements compared to the state-of-the-art.

1 Introduction

Personalization is one of the fields of Artificial Intelligence (AI) that has
a greater impact on the lives of individuals. We can find a multitude
of services that provide us with a personalized choice of news, videos,
songs, restaurants, clothes, travels, etc. The most relevant tech com-
panies make extensive use of personalization services: Amazon, Netflix,
Spotify, TripAdvisor, Google, TikTok, etc. These companies generate

1

ar
X

iv
:2

30
3.

07
00

1v
1

 [
cs

.I
R

]
 1

3
M

ar
 2

02
3

their personalized recommendations using Recommender System (RS) [4]
applications. RS provide to their users personalized products or services
(items) by filtering the most relevant information regarding the logs of
items consumed by the users, the time and place that took place, as well
as the existing information about users, their social networks, and the
content of items (texts, pictures, videos, etc.). We can classify RSs at-
tending to their filtering strategy as demographic [5], content-based [10],
context-aware [20], social [25], Collaborative Filtering (CF) [6, 9] and fil-
tering ensembles [12, 8]. Currently, the Matrix Factorization (MF) [24]
machine learning model is used to obtain accurate and fast recommenda-
tions between input data (votes). MF translates the very sparse and huge
matrix of discrete votes (from users to items) into two dense and relatively
small matrices of real values. One of the matrices contains the set of short
and dense vectors representing users, whereas the second matrix vectors
represent items. Each vector element (real value) is called the ‘hidden
factor value’, since it represents some complex and unknown relationship
between the input data (votes).

Whereas MF machine learning models are fast and accurate, they also
present a remarkable drawback: they cannot detect, in their hidden fac-
tors, the complex non-linear relationships between the input data. Neural
Network (NN) can solve this problem through their non-linear activation
functions. NN based RS [7, 5] make a compression of information by cod-
ing the patterns of the rating matrix in their embeddings and hidden lay-
ers [18]. These embeddings play the role of the MF hidden factors, enrich-
ing the result by incorporating non-linear relations. The most well-known
NN base RS approaches are Generalized Matrix Factorization (GMF) and
Multi-Layer Perceptron (MLP) [16].

Group Recommendation (GR) [21, 9] is a subfield of the RS area where
recommendations are made to sets of users instead of to individual users
(e.g.: to recommend a movie to a group of three friends). As in the regular
RS, the goal is to make accurate recommendations to the group. In this
case, several policies can be followed; the most popular are: a) to mini-
mize the mean accuracy error: to recommend the items that, on average,
most like to all the group members, and b) to minimize the maximum
accuracy error: to recommend the items that does not excessively dislike
to any of the group members. It is important to state that there are not
open datasets containing group information to be used by group recom-
mendation models; for this reason, generally randomly generated groups
are used for training and testing research models.

Regardless of the machine learning approach used to implement GR
RS, the most notable design concept is to establish where to locate the
aggregation stage to convert individual information to group information.
The general rule is: the sooner the aggregation stage, the better the per-
formance of GR [21]. There are three different locations where group
information can be aggregated into a unified group entity: a) before the
model, b) in the model, and c) after the model. The most intuitive ap-
proach is to combine individual recommendations into a unified group
recommendation (option c) [2]. This approach is known as Individual
Preference Aggregation (IPA) and requires processing several individual
recommendations followed by rank aggregation. However, the process

2

is slow and not particularly accurate. On the other hand, to consider
the entire group for the recommendation, we should work before or in-
side the model (options a or b). These approaches are known as Group
Preference Aggregation (GPA). Aggregating group information before
the model requires working with the user-item interaction matrix in a
higher-dimensional space, which can lead to misinformation problems. To
aggregate group information in the model, we need to work with the user‘s
hidden vector in the low-dimensional space.

Aggregating several hidden vectors from individual users into a uni-
fied virtual user hidden vector [22] avoids compute the model predictions
several times and makes the rank aggregation stage unnecessary. In addi-
tion, it takes advantage of operating with condensed information coming
from the MF compression of information: the virtual user can be ob-
tained simply by averaging the representative short and dense vectors of
the users group; this is efficient and accurate. An interesting question is:
Can NN operate the same way that MF does to obtain virtual users and
generate recommendations? First, note that many NN based RS models
compress the user embedding in a different latent space than the item
embedding, and it can be a problem; then, the NN non-linear ensemble
representations are more complex than the MF hidden factor represen-
tations; consequently, simply averaging the ensembles of the users in the
group does not automatically ensure a representative virtual user embed-
ding. Furthermore, model-based aggregations (option ‘b’ in the previous
paragraph) are model dependent, and then it is necessary to design and
test different solutions for different NN based RS models. Whereas the NN
latent spaces are the state-of-the-art to catch users and items relations,
some other machine learning approaches have been designed, such as the
use of the random walk with restart method [11] providing a framework
to relate users, items, and groups, and to exploit the item content and the
profiles of the users. A three-stage method [1] is proposed to increase the
precision and fairness of GR, where binary MF, graphs and the dynamic
consensus model are processed sequentially. Some relevant and current
GR research aims to make use of the concept of member preference (influ-
ence or expertise) concept, based on similarity and trust. The key idea is
to detect the group leaders as group members that are trusted more than
others and have more influence than others. In [3], fuzzy clustering and
an implicit trust metric are combined to find neighborhoods. GR based
on an average strategy applied to user preference differences [26] has been
combined with trusted social networks to correct recommendations. An
aggregation approach for GR mimics crowd-sourcing concepts to estimate
the level of expertise of group members [19]; it is implemented using pa-
rameters of sensitivity and specificity. The impact of social factors on
a GR computational model is evaluated in [14], using the expertise fac-
tor, the influences of personality, preference similarities, and interpersonal
relationships.

In this paper, we present how we can generate GR using NN based RS
by training the model using raw CF data (i.e., the ratings of individual
users to the items without any additional information). The GR have
been tested using the two most popular implementations of NN based
RS: GMF and MLP. As stated previously, to make recommendations to

3

groups using NN based RS, information of the individual users must be
aggregated. The chosen information aggregation design is to merge the
users of the group in the input vector that feeds the user embedding of the
NN. This aggregation design is not novel, since it has been used by [23]
applied to a MLP architecture. However, our approach combines several
innovative aspects in comparison to the state of the art. On the one hand,
the aggregation of the users in the group is a probabilistic function rather
than a simple multi-hot encoding [23]; this better captures the relative
importance of users in the input vector that feeds the NN, moreover: this
aggregation approach serves as front-end for any NN GR model. On the
other hand, we propose the use of a simple RS NN model (GMF) instead
of the deepest MLP one [23]; the hypothesis is that complex models over-
fit GR scenarios, since they are designed to accurately predict individual
predictions, whereas GR must satisfy an average of the tastes in the group
of users, that is, GR should be designed to generalize the set of individual
tastes in the group. Furthermore, the proposed architecture just needs
a single training to provide both individual recommendations and group
recommendations; particularly, the model is trained by only using indi-
vidual recommendations (as in regular RS). Once the model is trained to
return individual predictions, we can fill the input vector by aggregating
all the users in the group, then feed-forward the trained model and finally
obtain the recommendation for the group of users. Anyway, the impact of
these innovative aspects can be evaluated in section 3, where we empiri-
cally compare the proposed aggregation designs with respect to the main
baseline [23]

In summary, the GR state-of-art presents the following drawbacks:
a) Some research relies on additional data to the CF ratings, such as
trust or reputation information that is not available on the majority of
datasets, b) different proposals make the aggregation of individual users
before (IPA) or after (Ranking) the model, making it impossible to benefit
from the machine learning model inner representations (GPA), and c) The
proposed GR neural model solutions tend to apply architectures designed
to make individual recommendations, rather than group ones; this leads
to the model overfitting and to a low scalability referred to the number of
users in a group. To fill the gap, our proposed model: a) Acts exclusively
on CF ratings, b) Makes user aggregation in the model, and c) Its model
depth and design enables adequate learning generalizations. Additionally,
the provided experiments test the proposed model according to different
aggregation strategies to set the group labels used in the learning stage.
In contrast, a notable limitation of our architecture and the experiments
is the lack of testing on particularly demanding scenarios such as cold
start in groups users, extremely sparse data sets, impact of popular item
bias, and fear GR.

The rest of the paper is structured as follows: Section 2 introduces the
tested models and aggregation functions; Section 3 describes the experi-
ment design, the selected quality measures, the chosen datasets and shows
the results obtained; Section 4 provides their explanations; and Section 5
highlights the main conclusions of the article and the suggested future
work.

4

Figure 1: Embedding layer schema.
Figure 2: Collaborative Filtering based
Neural Network Model.

2 Proposed model

In CF interactions (purchase, viewing, rating, etc.) between users and
items are stored in a sparse matrix since it is common for users to interact
only with a small proportion of the available items and, in the same way,
only a small percentage of existing users interact with the items. The
sparsity levels of this matrix is around 95-98% as shown in table 2. To
handle this sparsity, current CF models based on NN [16] work with a
projection of users and items into a low-dimensional latent space using
Embedding layers. Embedding layers are a very popular type of layer
used in NN that receive as input any entity and return a vector with a
low-dimensional representantion of the entity in a latent space. These
vectors are commonly named latent factors. In order to transform the
entity into its low-dimensional representation, the embedding layer first
transforms the entity into a one hot encoding representation (typically
using a hash function). Figure 1 sumarizes this process.

In the context of CF, two Embedding layers are required: one for
the users and the other for the items. Later, both Embedding layers
are combined using a NN architecture (see Figure 2). For example, the
aphormented models GMF and MLP uses a Dot layer and a Concate-
nate layer followed by some fully connected dense layers as architectures,
respectively.

Formally, we define a NN model Φ that predicts the rating that a user
u will give to an item i (r̂u,i) combining the latent factors provided by the

Embedding layer (EmbL) of the user u (~lu) and the the item i (~li):

EmbL(u) = ~lu

EmbL(i) = ~li,

Φ(~lu,~li) = r̂u,i

(1)

As stated in section 1, when working with GR, a straightforward strat-
egy is IPA [17]. This strategy makes a prediction for each member of the
group and then performs an aggregation. This strategy does not treat the
group as a whole. If we have a group of users G = {u1, u2, ..., un}, the
prediction of the rating of this group G to an item i (r̂G,i) is computed as
the average value of the individual predictions:

5

r̂G,i =
1

‖G‖
∑
u∈G

r̂u,i =
1

‖G‖
∑
u∈G

Φ(~lu, ~li) (2)

On the other hand, the GPA strategies take into account the group as
a whole. It should be noted that the order of users within the group and
the length of it should not affect the aggregation; thus, the aggregations
should meet the constraints of: permutation invariant and fixed result
length [23]. Our goal with the GPA strategy is to be able to obtain a
prediction r̂G,i with a single forward propagation and to treat the group
as a whole entity. We can achieve this by aggregating the latent factors
of each user that belongs to the group to obtain the latent factor of the
group ~lG. Once the latent factors of the group are aggregated, the model
Φ can be used to compute the predictions:

EmbL(G) = ~lG

r̂Gi = Φ(~lG,~li)
(3)

The aggregation of group latent factors in embedding layers can be
achieved by modifying the input of the NN. As mentioned previously,
Embedding layers have as input a one hot representation of the entities.
This approach is adequate when performing individual predictions, how-
ever, for group recommendations, we need to apply a multi-hot represen-
tation to the users Embedding layer, i.e., we encode the group by setting
multiple inputs of the user Embedding layer (the inputs related with the
users that belong to the group) to a value higher than 0. This encoding
allows us to take into account all group users at the same time for the
extraction of latent factors of the group ~lG.

The simplest aggregation, which is used by the DeepGroup model [23],
is to use as input for embedding a constant value proportional to the size
of the group. We define the input of the user’s Embedding layer for the
user u as

EmbeddingInputAverage(u) =

{
1

‖G‖ ifu ∈ G

0 ifu /∈ G
(4)

We call this aggregation ‘Average’ since the embedding layer will gen-
erate the group latent factor equal to the average of the latent factors of
all users in the group.

RS can give better predictions the more information they have about
users, so to take advantage of this fact, we have tested the ‘Expertise’
aggregation in which we give a weight to the users proportional to the
number of votes they have entered into the system. Let ‖Ru‖ the number
of ratings of the user u, the input of the users’ Embedding layer for the
user u is defined as

EmbeddingInputExpertise(u) =

{ ‖Ru‖∑
g∈G ‖Rg‖ ifu ∈ G

0 ifu /∈ G
(5)

In addition to the ‘Expertise’ aggregation, we also proposed the ‘Soft-
max aggregation as a smooth version of the ‘Expertise’ aggregation. In

6

this case, the input of the users’ Embedding layer for the user u is defined
as

EmbeddingInputSoftmax(u) =


e‖Ru‖∑

g∈G e‖Rg‖ ifu ∈ G

0 ifu /∈ G
(6)

In Figure 3 we can see where the equations fit in the group recom-
mendation process. The first step is to generate the multi-hot vector with
some of the described aggregation (eqs. (4) to (6)). This vector (multi-hot
representation of the group) is fed into the embedding layer to obtain a

vector of the latent factors of the groups ~lG (eq. (3)). Once the latent
factors of the group and the item are obtained, they are used to feed the
model Φ (GMF or MLP) and produce the rating prediction for the group
G on the item i (eq. (2)).

Figure 3: Graphical representation of the proposed model.

In Table 1 we can find an example with some users (13, 24, 30 and 42)
with different rating counts (Table 1a), their input values to the users’
Embedding layer in a multi-hot fashion (Table 1b), their individual la-
tent factors (Table 1c), and the final group latent factors with different
aggregations (Table 1d).

7

User ... u13 ... u24 ... u30 ... u42 ...
#Rating 2 5 6 3

(a) Rating count.

Strategy\User ... u13 ... u24 ... u30 ... u42 ...
Average 0,25 0,25 0,25 0,25
Expertise 0,13 0,31 0,38 0,19
Softmax 0,01 0,26 0,70 0,03

(b) Input values to the users’ Embedding layer.

User\factor l1 l2 l3
u13 0,1 0,6 0,3
u24 0,7 0,2 0,9
u30 0,8 0,4 0,1
u42 0,5 0,7 0,8

(c) Users’ latent factors assuming a latent space of size 3.

Agg\factor lG1
lG2

lG3

Average 0,525 0,475 0,525
Expertise 0,629 0,425 0,508
Softmax 0,758 0,359 0,331

(d) Group latent factors using different aggregations.

Table 1: Complete aggregation example.

3 Experimental evaluation

In this section, we show the experiments carried out to validate the aggre-
gation proposed in this manuscript. As previously stated, the experiments
have been performed using the most popular NN based RS architectures:
GMF and MLP. We have chosen these two architectures because they
are the best known and offer the best results for individual predictions.
However, the aggregation strategies proposed can be applied to any NN
architecture based on Embedding layers.

The choice of datasets has been made considering that: a) there are no
open datasets containing information on group voting; and b) GMF and
MLP models should be trained using individual voting, since the proposed
aggregations allow computing predictions for groups on already trained
models. For these reasons, we have chosen the following gold standard
datasets in the field of RS: MovieLens1M [15], the most popular dataset in
the research of RS; FilmTrust [13], a dataset smaller than MovieLens1M

to measure the performance of the aggregation in datasets with a lower
number of users, items, and ratings; and MyAnimeList, a dataset with a
range of votes higher than the MovieLens1M. Other popular datasets such
as Netflix Prize or MovieLens10M have not been selected due to the
high computational time required to train and test the models. The main
parameters of the selected datasets can be found in Table 2.

8

Dataset #users #items #ratings Scores Sparsity
MovieLens1M 6,040 3,706 911,031 1 to 5 95.94
FilmTrust 1,508 2,071 35,497 0 to 5 87.98

MyAnimeList 19,179 2,692 548,967 1 to 10 98.94

Table 2: Main parameters of the datasets used in the experiments.

The generation of synthetic groups has been carried out in such a way
that all groups have voted at least 5 items in test. In this way, it is
possible to evaluate both the quality of the predictions and the quality of
the recommendations to the groups as detailed below. Groups of different
sizes (from 2 to 10 users) have been generated. For each group size, 10000
synthetic groups have been generated. The generation of a group has been
carried out following the following algorithm:

1. Define the size of the group S.

2. Random select 5 items rated in test by at least S users.

3. Find all users who have rated the 5 items selected in 2.

4. If we found fewer than S users, go back to 2. Otherwise, random
select S users and create a group.

To measure the quality of the predictions for the group, we have cal-
culated the mean absolute error

MAE =
1

#groups

∑
G

1

‖G‖ · ‖IG‖
∑
u∈G

∑
i∈IG

| r̂G,i − ru,i |, (7)

the mean squared error

MSE =
1

#groups

∑
G

1

‖G‖
1

‖G‖ · ‖IG‖
∑
u∈G

∑
i∈IG

(r̂G,i − ru,i)
2 , (8)

and mean maximum group error

MAX =
1

#groups

∑
G

max
u∈G

max
i∈IG

| r̂G,i − ru,i |, (9)

where IG denotes the items rated by the group G
To measure the quality of the recommendations for the group, we have

calculated the Normalizaed Discounted Cumulative Gain (NDCG) score

NDCG@N =
1

#groups

∑
G

DCGG@N

IDCGG@N
, (10)

DCGG@N =
∑

i∈XN
G

r̄G,i

log2(posG(i) + 1)
, (11)

IDCGG@N =
∑

i∈TN
G

r̄G,i

log2(iposG(i) + 1)
, (12)

9

where N is the number of items recommended to the group (in our
experiments N = 5 according to the generation of synthetic groups), XN

G

is the set of N items recommended to the group G, posG(i) is the position
of the item i in the group’s G recommendation list, TN

G is the set of the
top N items for the group G, iposG(i) is the ideal rank of the item i for
the group G, and r̄G,i is the average rating of the users belonging to the
group G for the item i.

We can see the results of the experiment executed with these scores
in table 3 (MAE), table 4 (MSE), table 5 (Max), and table 6 (NDCG).
The cells with the best results have been highlighted, while the standard
deviation of each metric is in parentheses. All results are analyzed in sec-
tion 4.

All experiments have been run using an NVIDIA Quadro RTX 8000
GPU with 48 GB GDDR6 of memory, 4,608 NVIDIA Tensor Cores and a
performance of 16.3 TFLOPS. We are committed to reproducible science,
so the source code of all experiments with the values of the parameters
used and their random seeds have been shared on GitHub1.

1https://github.com/KNODIS-Research-Group/neural-cf-for-groups

10

https://github.com/KNODIS-Research-Group/neural-cf-for-groups

Table 3: Mean Absolute Error

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.74205
(0.409)

0.76075
(0.341)

0.76893
(0.299)

0.77009
(0.271)

0.77745
(0.249)

0.77659
(0.234)

0.77681
(0.221)

0.77599
(0.212)

0.77558
(0.201)

GMF Expertise
0.74393
(0.41)

0.76207
(0.341)

0.77018
(0.299)

0.77155
(0.27)

0.779
(0.249)

0.77782
(0.234)

0.77834
(0.221)

0.77729
(0.211)

0.77685
(0.201)

GMF Softmax
0.74246
(0.409)

0.7608
(0.341)

0.76891
(0.299)

0.77012
(0.27)

0.77751
(0.249)

0.7766
(0.234)

0.77687
(0.221)

0.77602
(0.212)

0.77562
(0.201)

MLP IPA
0.74956
(0.444)

0.77342
(0.361)

0.78055
(0.313)

0.78211
(0.28)

0.78853
(0.258)

0.78633
(0.241)

0.78678
(0.228)

0.78591
(0.219)

0.78509
(0.207)

MLP Avg
DeepGroup

0.7236
(0.486)

0.74289
(0.404)

0.74916
(0.355)

0.75018
(0.32)

0.75656
(0.295)

0.75537
(0.275)

0.75551
(0.261)

0.75388
(0.25)

0.75355
(0.238)

MLP Expertise
0.72596
(0.486)

0.74432
(0.405)

0.75031
(0.355)

0.75132
(0.32)

0.75787
(0.295)

0.75607
(0.276)

0.75709
(0.261)

0.75481
(0.25)

0.755
(0.238)

MLP Softmax
0.72407
(0.485)

0.74297
(0.404)

0.74925
(0.355)

0.75019
(0.32)

0.75669
(0.295)

0.75531
(0.275)

0.7556
(0.261)

0.75389
(0.25)

0.75361
(0.238)

(a) MovieLens1M

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.61552
(0.451)

0.71033
(0.32)

0.73011
(0.28)

0.73419
(0.252)

0.73606
(0.232)

0.73832
(0.217)

0.74045
(0.203)

0.74298
(0.193)

0.74212
(0.185)

GMF Expertise
0.6149
(0.444)

0.71239
(0.319)

0.73144
(0.281)

0.73583
(0.252)

0.73742
(0.232)

0.7396
(0.217)

0.74166
(0.203)

0.74418
(0.193)

0.74336
(0.184)

GMF Softmax
0.61512
(0.448)

0.71088
(0.319)

0.73035
(0.28)

0.73445
(0.252)

0.73624
(0.232)

0.73847
(0.217)

0.74057
(0.203)

0.74309
(0.193)

0.74222
(0.185)

MLP IPA
0.58165
(0.442)

0.70368
(0.325)

0.72062
(0.281)

0.7252
(0.252)

0.72788
(0.232)

0.73073
(0.217)

0.73353
(0.203)

0.73623
(0.193)

0.73525
(0.185)

MLP Avg
DeepGroup

0.58199
(0.447)

0.70129
(0.319)

0.71693
(0.275)

0.7212
(0.247)

0.72421
(0.228)

0.727
(0.214)

0.72976
(0.2)

0.7328
(0.191)

0.73188
(0.183)

MLP Expertise
0.57903
(0.453)

0.70449
(0.321)

0.71891
(0.276)

0.72315
(0.247)

0.72581
(0.228)

0.72865
(0.213)

0.73127
(0.2)

0.73429
(0.191)

0.73336
(0.183)

MLP Softmax
0.58063
(0.45)

0.70226
(0.319)

0.71734
(0.275)

0.72153
(0.247)

0.72443
(0.228)

0.7272
(0.214)

0.72993
(0.2)

0.73295
(0.191)

0.73202
(0.183)

(b) FilmTrust

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.93068
(0.567)

0.95819
(0.477)

0.97595
(0.417)

0.99149
(0.38)

1.0017
(0.346)

1.01404
(0.329)

1.01942
(0.312)

1.022
(0.297)

1.02445
(0.282)

GMF Expertise
0.93675
(0.572)

0.96424
(0.48)

0.98092
(0.419)

0.99603
(0.382)

1.00649
(0.349)

1.01805
(0.331)

1.02352
(0.314)

1.0258
(0.3)

1.0284
(0.284)

GMF Softmax
0.93219
(0.568)

0.95848
(0.477)

0.97559
(0.417)

0.99104
(0.38)

1.00133
(0.346)

1.01363
(0.329)

1.0191
(0.312)

1.02173
(0.297)

1.02422
(0.282)

MLP IPA
0.95479
(0.585)

0.98155
(0.484)

0.99709
(0.42)

1.00977
(0.381)

1.01745
(0.347)

1.02794
(0.329)

1.03188
(0.311)

1.03335
(0.298)

1.03451
(0.282)

MLP Avg
DeepGroup

0.93161
(0.618)

0.95609
(0.515)

0.96961
(0.45)

0.98456
(0.408)

0.99331
(0.371)

1.0052
(0.351)

1.00857
(0.332)

1.01039
(0.317)

1.01233
(0.3)

MLP Expertise
0.93803
(0.622)

0.96132
(0.517)

0.97587
(0.453)

0.98923
(0.409)

0.99851
(0.373)

1.00879
(0.353)

1.01258
(0.334)

1.01493
(0.319)

1.01599
(0.302)

MLP Softmax
0.93351
(0.619)

0.95594
(0.515)

0.97007
(0.451)

0.9843
(0.408)

0.99329
(0.371)

1.00486
(0.351)

1.00844
(0.332)

1.0101
(0.317)

1.01211
(0.3)

(c) MyAnimeList

11

Table 4: Mean Squared Error

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.87504
(0.914)

0.90947
(0.767)

0.92437
(0.676)

0.92648
(0.609)

0.94191
(0.567)

0.93896
(0.53)

0.9376
(0.5)

0.93832
(0.48)

0.93571
(0.454)

GMF Expertise
0.88044
(0.918)

0.91329
(0.77)

0.92754
(0.678)

0.92979
(0.61)

0.94504
(0.568)

0.94135
(0.531)

0.93994
(0.501)

0.94037
(0.481)

0.93737
(0.454)

GMF Softmax
0.87614
(0.914)

0.90952
(0.767)

0.92424
(0.676)

0.92645
(0.609)

0.94188
(0.567)

0.93885
(0.53)

0.93752
(0.5)

0.93823
(0.48)

0.93561
(0.454)

MLP IPA
0.94301
(0.982)

0.96557
(0.814)

0.96809
(0.712)

0.96499
(0.635)

0.97727
(0.591)

0.96889
(0.55)

0.96634
(0.518)

0.96648
(0.498)

0.96187
(0.47)

MLP Avg
DeepGroup

0.99415
(1.037)

1.03182
(0.875)

1.04278
(0.779)

1.04242
(0.695)

1.05597
(0.651)

1.05056
(0.605)

1.04927
(0.574)

1.04836
(0.552)

1.04669
(0.524)

MLP Expertise
0.9986
(1.038)

1.03522
(0.88)

1.04511
(0.78)

1.04435
(0.696)

1.05806
(0.651)

1.05121
(0.604)

1.05084
(0.575)

1.0491
(0.553)

1.04787
(0.523)

MLP Softmax
0.99487
(1.035)

1.03145
(0.874)

1.04258
(0.779)

1.04235
(0.694)

1.05605
(0.651)

1.05034
(0.604)

1.04925
(0.574)

1.04822
(0.552)

1.04659
(0.524)

(a) MovieLens1M

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.67941
(1.077)

0.7889
(0.688)

0.82014
(0.608)

0.82302
(0.544)

0.82574
(0.502)

0.83038
(0.469)

0.8324
(0.44)

0.8375
(0.42)

0.83544
(0.401)

GMF Expertise
0.67314
(1.05)

0.79105
(0.686)

0.82229
(0.608)

0.82546
(0.543)

0.82758
(0.501)

0.83205
(0.468)

0.83382
(0.439)

0.83875
(0.418)

0.83673
(0.399)

GMF Softmax
0.67596
(1.063)

0.7892
(0.687)

0.82043
(0.608)

0.82333
(0.544)

0.82592
(0.502)

0.83053
(0.469)

0.83251
(0.44)

0.83758
(0.42)

0.83552
(0.401)

MLP IPA
0.61169
(1.002)

0.77197
(0.683)

0.79514
(0.592)

0.7988
(0.528)

0.80315
(0.487)

0.80807
(0.454)

0.81084
(0.427)

0.81611
(0.406)

0.81408
(0.388)

MLP Avg
DeepGroup

0.61859
(1.009)

0.7636
(0.674)

0.78665
(0.585)

0.79085
(0.523)

0.79606
(0.484)

0.80126
(0.452)

0.80444
(0.425)

0.81023
(0.405)

0.80841
(0.387)

MLP Expertise
0.62484
(0.979)

0.7691
(0.68)

0.78956
(0.586)

0.79332
(0.522)

0.79799
(0.483)

0.80305
(0.45)

0.80595
(0.423)

0.81166
(0.403)

0.80977
(0.385)

MLP Softmax
0.62106
(0.992)

0.7649
(0.675)

0.78709
(0.585)

0.79116
(0.523)

0.79625
(0.484)

0.80142
(0.452)

0.80456
(0.424)

0.81033
(0.404)

0.8085
(0.387)

(b) FilmTrust

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

1.47037
(1.922)

1.53981
(1.648)

1.58373
(1.43)

1.63441
(1.324)

1.66233
(1.213)

1.70615
(1.178)

1.72188
(1.111)

1.73177
(1.065)

1.74048
(1.015)

GMF Expertise
1.49874
(1.963)

1.57277
(1.689)

1.61625
(1.463)

1.66444
(1.351)

1.69199
(1.239)

1.73293
(1.202)

1.74812
(1.133)

1.75649
(1.087)

1.76487
(1.035)

GMF Softmax
1.47707
(1.932)

1.54383
(1.654)

1.58617
(1.433)

1.63575
(1.326)

1.66342
(1.214)

1.70677
(1.179)

1.72239
(1.112)

1.73223
(1.066)

1.74092
(1.016)

MLP IPA
1.56623
(1.959)

1.61737
(1.655)

1.64909
(1.431)

1.69132
(1.32)

1.71029
(1.209)

1.74683
(1.169)

1.75711
(1.105)

1.76368
(1.058)

1.76877
(1.008)

MLP Avg
DeepGroup

1.61669
(2.032)

1.68103
(1.718)

1.71103
(1.492)

1.75681
(1.368)

1.77828
(1.254)

1.81759
(1.217)

1.82764
(1.148)

1.83403
(1.098)

1.84177
(1.049)

MLP Expertise
1.64412
(2.059)

1.70965
(1.747)

1.74467
(1.517)

1.78446
(1.386)

1.80671
(1.276)

1.84221
(1.232)

1.85095
(1.163)

1.85803
(1.116)

1.86351
(1.063)

MLP Softmax
1.62458
(2.038)

1.68445
(1.723)

1.7153
(1.496)

1.75838
(1.368)

1.78024
(1.256)

1.81848
(1.218)

1.82855
(1.149)

1.83446
(1.099)

1.84249
(1.049)

(c) MyAnimeList

12

Table 5: Mean Max Error

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

1.02112
(0.6)

1.2213
(0.598)

1.35658
(0.588)

1.45195
(0.583)

1.54115
(0.578)

1.59908
(0.577)

1.64979
(0.573)

1.69807
(0.576)

1.73598
(0.571)

GMF Expertise
1.02474
(0.602)

1.22441
(0.599)

1.35928
(0.59)

1.4551
(0.584)

1.54414
(0.579)

1.60112
(0.577)

1.65118
(0.574)

1.69926
(0.576)

1.7366
(0.571)

GMF Softmax
1.02191
(0.6)

1.22143
(0.598)

1.35653
(0.588)

1.45202
(0.583)

1.54118
(0.578)

1.59897
(0.577)

1.64965
(0.573)

1.69792
(0.576)

1.7358
(0.571)

MLP IPA
1.04098
(0.642)

1.25715
(0.614)

1.38214
(0.602)

1.47972
(0.591)

1.56516
(0.586)

1.62067
(0.581)

1.66905
(0.576)

1.71687
(0.58)

1.7528
(0.573)

MLP Avg
DeepGroup

1.07144
(0.666)

1.28743
(0.643)

1.41937
(0.635)

1.51234
(0.633)

1.59812
(0.638)

1.65421
(0.642)

1.70673
(0.641)

1.75552
(0.647)

1.79703
(0.645)

MLP Expertise
1.07476
(0.667)

1.28932
(0.644)

1.42078
(0.635)

1.51325
(0.634)

1.59883
(0.638)

1.65371
(0.64)

1.70637
(0.64)

1.75428
(0.645)

1.79566
(0.643)

MLP Softmax
1.07226
(0.666)

1.28716
(0.643)

1.41906
(0.635)

1.51227
(0.633)

1.59788
(0.638)

1.65391
(0.641)

1.7066
(0.641)

1.75515
(0.646)

1.79669
(0.645)

(a) MovieLens1M

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.85192
(0.555)

1.13757
(0.573)

1.27696
(0.573)

1.36783
(0.57)

1.44244
(0.571)

1.51262
(0.575)

1.56818
(0.573)

1.62204
(0.571)

1.6636
(0.567)

GMF Expertise
0.85171
(0.549)

1.13845
(0.571)

1.27815
(0.571)

1.36895
(0.567)

1.4425
(0.569)

1.51199
(0.573)

1.56717
(0.57)

1.62058
(0.569)

1.66146
(0.565)

GMF Softmax
0.85147
(0.552)

1.13761
(0.572)

1.27708
(0.572)

1.3679
(0.569)

1.44234
(0.571)

1.51245
(0.575)

1.56799
(0.572)

1.62184
(0.571)

1.66335
(0.567)

MLP IPA
0.78405
(0.555)

1.11519
(0.564)

1.24935
(0.56)

1.33899
(0.555)

1.41348
(0.556)

1.48001
(0.557)

1.5341
(0.554)

1.58622
(0.552)

1.62791
(0.549)

MLP Avg
DeepGroup

0.79205
(0.553)

1.11222
(0.557)

1.24695
(0.557)

1.33662
(0.555)

1.4118
(0.557)

1.47902
(0.559)

1.53438
(0.556)

1.58697
(0.555)

1.62916
(0.55)

MLP Expertise
0.79191
(0.56)

1.11441
(0.556)

1.24814
(0.555)

1.33715
(0.551)

1.41142
(0.554)

1.47765
(0.556)

1.53235
(0.553)

1.58432
(0.551)

1.62581
(0.547)

MLP Softmax
0.79235
(0.555)

1.11261
(0.556)

1.24698
(0.556)

1.33654
(0.554)

1.41161
(0.556)

1.47872
(0.558)

1.53406
(0.555)

1.58662
(0.554)

1.62879
(0.55)

(b) FilmTrust

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

1.30264
(0.845)

1.58715
(0.866)

1.79755
(0.864)

1.9702
(0.877)

2.10648
(0.876)

2.22836
(0.896)

2.31758
(0.895)

2.39541
(0.91)

2.47078
(0.919)

GMF Expertise
1.31784
(0.858)

1.60964
(0.883)

1.8266
(0.882)

1.99902
(0.894)

2.13631
(0.891)

2.25748
(0.91)

2.34706
(0.908)

2.42357
(0.922)

2.49875
(0.932)

GMF Softmax
1.30626
(0.847)

1.59061
(0.869)

1.80139
(0.867)

1.97309
(0.879)

2.10896
(0.878)

2.23046
(0.898)

2.31946
(0.896)

2.39701
(0.911)

2.47222
(0.92)

MLP IPA
1.34151
(0.874)

1.63805
(0.873)

1.84317
(0.862)

2.01188
(0.868)

2.1406
(0.863)

2.25649
(0.876)

2.33763
(0.875)

2.4112
(0.889)

2.4836
(0.896)

MLP Avg
DeepGroup

1.36617
(0.893)

1.66385
(0.902)

1.8675
(0.896)

2.03818
(0.907)

2.17095
(0.906)

2.28936
(0.924)

2.37588
(0.921)

2.4495
(0.934)

2.52558
(0.943)

MLP Expertise
1.38038
(0.9)

1.68165
(0.913)

1.89237
(0.908)

2.0611
(0.918)

2.1951
(0.914)

2.31311
(0.929)

2.39796
(0.923)

2.47081
(0.935)

2.54585
(0.943)

MLP Softmax
1.37076
(0.894)

1.66676
(0.904)

1.87147
(0.898)

2.04076
(0.908)

2.17377
(0.907)

2.29111
(0.924)

2.37734
(0.921)

2.45073
(0.934)

2.52696
(0.943)

(c) MyAnimeList

13

Table 6: Discounted cumulative gain

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.98021
(0.024)

0.98543
(0.018)

0.9886
(0.015)

0.99067
(0.012)

0.99178
(0.011)

0.99286
(0.01)

0.99358
(0.009)

0.99415
(0.008)

0.99457
(0.008)

GMF Expertise
0.97995
(0.024)

0.98528
(0.019)

0.98853
(0.015)

0.99058
(0.012)

0.99171
(0.011)

0.99282
(0.01)

0.99351
(0.009)

0.99411
(0.008)

0.99454
(0.008)

GMF Softmax
0.98006
(0.024)

0.98536
(0.019)

0.9886
(0.015)

0.99064
(0.012)

0.99178
(0.011)

0.99288
(0.01)

0.9936
(0.009)

0.99415
(0.008)

0.99456
(0.008)

MLP IPA
0.97854
(0.026)

0.98342
(0.02)

0.98689
(0.016)

0.98906
(0.014)

0.99046
(0.012)

0.99178
(0.011)

0.99251
(0.01)

0.99303
(0.009)

0.99358
(0.009)

MLP Avg
DeepGroup

0.97778
(0.026)

0.98247
(0.021)

0.98556
(0.017)

0.98762
(0.015)

0.98894
(0.014)

0.98999
(0.013)

0.99064
(0.012)

0.99109
(0.011)

0.99152
(0.011)

MLP Expertise
0.97777
(0.026)

0.98251
(0.021)

0.9855
(0.017)

0.98763
(0.015)

0.98894
(0.014)

0.99004
(0.013)

0.99071
(0.012)

0.99116
(0.011)

0.9916
(0.011)

MLP Softmax
0.97784
(0.026)

0.98248
(0.021)

0.98554
(0.017)

0.98762
(0.015)

0.98895
(0.014)

0.98998
(0.013)

0.99069
(0.012)

0.9911
(0.011)

0.99153
(0.011)

(a) MovieLens1M

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.96788
(0.028)

0.97795
(0.022)

0.9815
(0.019)

0.98393
(0.016)

0.98596
(0.014)

0.9876
(0.013)

0.98869
(0.011)

0.98967
(0.011)

0.99038
(0.01)

GMF Expertise
0.96795
(0.028)

0.97794
(0.022)

0.9815
(0.019)

0.98392
(0.016)

0.98593
(0.014)

0.9876
(0.013)

0.98868
(0.012)

0.98965
(0.011)

0.99038
(0.01)

GMF Softmax
0.96795
(0.028)

0.97796
(0.022)

0.9815
(0.019)

0.98394
(0.016)

0.98596
(0.014)

0.9876
(0.013)

0.98868
(0.012)

0.98967
(0.011)

0.99038
(0.01)

MLP IPA
0.97057
(0.027)

0.9788
(0.023)

0.98249
(0.019)

0.98523
(0.016)

0.98704
(0.015)

0.98896
(0.012)

0.98994
(0.011)

0.9911
(0.01)

0.99165
(0.01)

MLP Avg
DeepGroup

0.96897
(0.027)

0.9789
(0.022)

0.98275
(0.018)

0.98527
(0.016)

0.98729
(0.014)

0.98895
(0.012)

0.98998
(0.011)

0.99104
(0.01)

0.99166
(0.009)

MLP Expertise
0.9694
(0.027)

0.97897
(0.022)

0.98276
(0.018)

0.98532
(0.016)

0.98724
(0.014)

0.98893
(0.012)

0.98993
(0.011)

0.99106
(0.01)

0.99166
(0.009)

MLP Softmax
0.9693
(0.027)

0.97891
(0.022)

0.98278
(0.018)

0.98527
(0.016)

0.98728
(0.014)

0.98895
(0.012)

0.98998
(0.011)

0.99106
(0.01)

0.99167
(0.009)

(b) FilmTrust

Model \Group Size 2 3 4 5 6 7 8 9 10

GMF IPA
GMF Avg

0.98898
(0.014)

0.99218
(0.01)

0.99401
(0.008)

0.9949
(0.007)

0.99571
(0.006)

0.99615
(0.005)

0.99662
(0.005)

0.99679
(0.005)

0.99714
(0.004)

GMF Expertise
0.98893
(0.014)

0.99209
(0.01)

0.99383
(0.008)

0.99479
(0.007)

0.99566
(0.006)

0.99609
(0.005)

0.99658
(0.005)

0.99674
(0.005)

0.99708
(0.004)

GMF Softmax
0.98898
(0.014)

0.99217
(0.01)

0.99399
(0.008)

0.99492
(0.007)

0.99572
(0.006)

0.99615
(0.005)

0.99664
(0.005)

0.99679
(0.005)

0.99715
(0.004)

MLP IPA
0.98723
(0.015)

0.99062
(0.011)

0.99255
(0.009)

0.9936
(0.008)

0.99458
(0.007)

0.99507
(0.006)

0.99573
(0.006)

0.99591
(0.005)

0.99632
(0.005)

MLP Avg
DeepGroup

0.9868
(0.016)

0.99023
(0.012)

0.99212
(0.01)

0.99307
(0.008)

0.99415
(0.007)

0.99459
(0.007)

0.99519
(0.006)

0.99537
(0.006)

0.99565
(0.005)

MLP Expertise
0.9867
(0.016)

0.99021
(0.012)

0.9921
(0.01)

0.99312
(0.008)

0.99414
(0.007)

0.99458
(0.007)

0.99521
(0.006)

0.99542
(0.006)

0.9957
(0.005)

MLP Softmax
0.98684
(0.016)

0.99028
(0.012)

0.99211
(0.01)

0.99308
(0.008)

0.99416
(0.007)

0.9946
(0.007)

0.99521
(0.006)

0.99539
(0.006)

0.99566
(0.005)

(c) MyAnimeList

14

4 Discussion

The main goal of this research is to evaluate different aggregation tech-
niques to make recommendations to groups. As shown in Section 3, we
can see different trends according to: a) the models used; b) the way
group information is aggregated; c) the datasets on which they act; and
d) the size of the groups.

Focusing on the models, we can see how MLP, which has several hidden
layers, obtains a lower MAE; however, GMF, a simpler model, obtains a
lower MSE. Although the MLP model has great power in these types of
problem, it seems to overfit, generating very good recommendations for
some users in the group but bad ones for the rest, hence achieving higher
MSE values. On the other hand, the GMF model can obtain smaller
maximum errors in each group, which means that no user in the group is
badly affected by the recommendation. In the results, we can also observe
how the models with higher maximum errors lead to a poorer order of
items according to user preferences and obtain worse performance in the
NDCG metric.

Looking at the aggregation of users, we can see that the best perform-
ing user aggregation is the average, followed by a very similar performance
by the Softmax. However, the use of expert user weighting without soft-
max produces worse results. Based on the results, we can observe that
in models that do not use a deep architecture, with several hidden layers,
the IPA and GPA strategies produce similar results when the aggregation
function is a linear transformation of latent factors (GMF). However, we
can see how the non-linearity of MLP produces different results between
both two strategies.

Regarding the different datasets, we can see that there is a clear trend
in the models that achieve the best results in complex datasets with a
large number of users, items, and votes, such as Movilens or MyAnimeList,
while in the FilmTrust dataset, with a smaller number of votes, there is
no clear trend.

In terms of group size, as more users have the group, the probability
of finding discrepancies between user preferences increases. Therefore, we
can see how a larger group size leads to higher values in all error metrics.

5 Conclusions and future work

With the irruption of NN in the world of CF, the possibilities of their abil-
ity to find non-linear patterns within user preferences to generate better
predictions are opening up. To use these systems to generate a recom-
mendation for a group of users, we need to aggregate their preferences.
As we have seen in this research, there are several key points at which
aggregation can be performed. GPA strategies do the aggregation before
or inside the model, so they have the advantage of taking into account
the preferences of the entire group and that a single feedforward step gen-
erates the prediction. Unlike the IPA strategy, which requires multiple
predictions for each user and performs the aggregations after the model.
In this study, we have tested how different approaches to perform GPA

15

work in different datasets comparing different metrics.
As future work, there are two key factors to consider. First, in this

research, the researchers have designed user aggregation techniques pre-
sented to the models; in future work, these functions will be explored
by different machine learning models. The second key point is that in
this work models perform a knowledge transfer from the model trained
for individuals to make group predictions; it is shown that although the
models have high performance (MAE improvement), they tend to over-
fit when working in groups (larger errors in group prediction leading to
worse MSE). To solve this problem, future work will try to perform a
specialization training stage for groups after individual training.

Declarations

The authors of this paper declare that they have no conflict of interest.
This work has been co-funded by the Ministerio de Ciencia e Inno-

vación of Spain and the European Regional Development Fund (FEDER)
under grants PID2019-106493RB-I00 (DL-CEMG) and the Comunidad de
Madrid under Convenio Plurianual with the Universidad Politécnica de
Madrid in the actuation line of Programa de Excelencia para el Profeso-
rado Universitario.

Data availability statement

The MovieLens1M, FilmTrust and MyAnimeList dataset along with the
source code of the experiments that support the findings of this study
are available in neural-cf-for-groups GitHub’s repository [https://
github.com/KNODIS-Research-Group/neural-cf-for-groups].

References

[1] Roza Abolghasemi, Paal Engelstad, Enrique Herrera-Viedma, and
Anis Yazidi. A personality-aware group recommendation system
based on pairwise preferences. Information Sciences, 595:1–17, 2022.

[2] Linas Baltrunas, Tadas Makcinskas, and Francesco Ricci. Group rec-
ommendations with rank aggregation and collaborative filtering. In
Proceedings of the Fourth ACM Conference on Recommender Sys-
tems, RecSys ’10, page 119–126, New York, NY, USA, 2010. Associ-
ation for Computing Machinery.

[3] Reza Barzegar Nozari and Hamidreza Koohi. A novel group rec-
ommender system based on members’ influence and leader impact.
Knowledge-Based Systems, 205:106296, 2020.

[4] Zeynep Batmaz, Ali Yurekli, Alper Bilge, and Cihan Kaleli. A review
on deep learning for recommender systems: challenges and remedies.
Artificial Intelligence Review, 52(1):1–37, Jun 2019.

16

https://github.com/KNODIS-Research-Group/neural-cf-for-groups
https://github.com/KNODIS-Research-Group/neural-cf-for-groups

[5] J. Bobadilla, Á González-Prieto, F. Ortega, and R. Lara-Cabrera.
Deep learning feature selection to unhide demographic recommender
systems factors. Neural Computing and Applications, 33(12):7291–
7308, Jun 2021.

[6] Jesus Bobadilla, Santiago Alonso, and Antonio Hernando. Deep
learning architecture for collaborative filtering recommender systems.
Applied Sciences, 10(7), 2020.

[7] Jesús Bobadilla, Ángel González-Prieto, Fernando Ortega, and Raúl
Lara-Cabrera. Deep learning approach to obtain collaborative filter-
ing neighborhoods. Neural Computing and Applications, 34(4):2939–
2951, Feb 2022.

[8] Erion Çano and Maurizio Morisio. Hybrid recommender systems: A
systematic literature review. Intell. Data Anal., 21(6):1487–1524, jan
2017.

[9] Sriharsha Dara, C. Ravindranath Chowdary, and Chintoo Kumar. A
survey on group recommender systems. Journal of Intelligent Infor-
mation Systems, 54(2):271–295, Apr 2020.

[10] Yashar Deldjoo, Markus Schedl, Paolo Cremonesi, and Gabriella
Pasi. Recommender systems leveraging multimedia content. ACM
Comput. Surv., 53(5), sep 2020.

[11] Shanshan Feng, Huaxiang Zhang, Lei Wang, Li Liu, and Yuchang Xu.
Detecting the latent associations hidden in multi-source information
for better group recommendation. Know.-Based Syst., 171(C):56–68,
may 2019.

[12] Saman Forouzandeh, Kamal Berahmand, and Mehrdad Rostami.
Presentation of a recommender system with ensemble learning and
graph embedding: a case on movielens. Multimedia Tools and Appli-
cations, 80(5):7805–7832, Feb 2021.

[13] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. A novel bayesian
similarity measure for recommender systems. In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelli-
gence, IJCAI ’13, page 2619–2625, Menlo Park, California, 2013.
AAAI Press.

[14] Junpeng Guo, Yanlin Zhu, Aiai Li, Qipeng Wang, and Weiguo Han.
A social influence approach for group user modeling in group recom-
mendation systems. IEEE Intelligent Systems, 31(5):40–48, 2016.

[15] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5(4), dec
2015.

[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and
Tat-Seng Chua. Neural collaborative filtering. In Proceedings of the
26th International Conference on World Wide Web, WWW ’17, page
173–182, Republic and Canton of Geneva, CHE, 2017. International
World Wide Web Conferences Steering Committee.

[17] Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, and
Wei Cao. Deep modeling of group preferences for group-based recom-
mendation. In Proceedings of the Twenty-Eighth AAAI Conference

17

on Artificial Intelligence, AAAI’14, page 1861–1867, Palo Alto, Cal-
ifornia, 2014. AAAI Press.

[18] Tianlin Huang, De fu Zhang, and Lvqing Bi. Neural embedding
collaborative filtering for recommender systems. Neural Computing
and Applications, pages 1–15, 2020.

[19] Firat Ismailoglu. Aggregating user preferences in group recommender
systems: A crowdsourcing approach. Decision Support Systems,
152:113663, 2022.

[20] Saurabh Kulkarni and Sunil F. Rodd. Context aware recommenda-
tion systems: A review of the state of the art techniques. Computer
Science Review, 37:100255, 2020.

[21] F. Ortega, J. Bobadilla, A. Hernando, and A. GutiéRrez. Incorporat-
ing group recommendations to recommender systems: Alternatives
and performance. Inf. Process. Manage., 49(4):895–901, jul 2013.

[22] Fernando Ortega, Antonio Hernando, Jesus Bobadilla, and
Jeon Hyung Kang. Recommending items to group of users using
matrix factorization based collaborative filtering. Information Sci-
ences, 345:313–324, 2016.

[23] Sarina Sajjadi Ghaemmaghami and Amirali Salehi-Abari. Deep-
Group: Group Recommendation with Implicit Feedback, page
3408–3412. Association for Computing Machinery, New York, NY,
USA, 2021.

[24] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix fac-
torization. In Proceedings of the 20th International Conference on
Neural Information Processing Systems, NIPS’07, page 1257–1264,
Red Hook, NY, USA, 2007. Curran Associates Inc.

[25] Jyoti Shokeen and Chhavi Rana. A study on features of social rec-
ommender systems. Artificial Intelligence Review, 53(2):965–988, Feb
2020.

[26] Xiangshi Wang, Lei Su, Qihang Zhou, Liping Wu, and Yin Zhang.
Group recommender systems based on members’ preference for
trusted social networks. Sec. and Commun. Netw., 2020, jan 2020.

18

	1 Introduction
	2 Proposed model
	3 Experimental evaluation
	4 Discussion
	5 Conclusions and future work

