
ORIGINAL ARTICLE

Prediction of PM2.5 time series by seasonal trend decomposition-
based dendritic neuron model

Zijing Yuan1 • Shangce Gao1 • Yirui Wang2 • Jiayi Li1 • Chunzhi Hou1 • Lijun Guo2

Received: 19 October 2022 / Accepted: 21 March 2023 / Published online: 11 April 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
The rapid industrial development in the human society has brought about the air pollution, which seriously affects human

health. PM2.5 concentration is one of the main factors causing the air pollution. To accurately predict PM2.5 microns, we

propose a dendritic neuron model (DNM) trained by an improved state-of-matter heuristic algorithm (DSMS) based on

STL-LOESS, namely DS-DNM. Firstly, DS-DNM adopts STL-LOESS for the data preprocessing to obtain three char-

acteristic quantities from original data: seasonal, trend, and residual components. Then, DNM trained by DSMS predicts

the residual values. Finally, three sets of feature quantities are summed to obtain the predicted values. In the performance

test experiments, five real-world PM2.5 concentration data are used to test DS-DNM. On the other hand, four training

algorithms and seven prediction models were selected for comparison to verify the rationality of the training algorithms

and the accuracy of the prediction models, respectively. The experimental results show that DS-DNM has the more

competitive performance in PM2.5 concentration prediction problem.

Keywords Dendritic neuron model � PM2.5 concentration prediction � Evolutionary algorithms � Preprocessing technology

1 Introduction

Among various pollutants, high concentrations of fine

particulate matter (PM2.5 and fine aerosols with particle

size less than or equal to 2.5 microns) seriously affect the

human health. Previous studies show that the increase of

PM2.5 concentration can reduce the lung function in

humans, damage the respiratory system, and increase the

incidence of cardiovascular disease [1], and it can also

bring about environmental problems such as haze [2].

Monitoring and reducing the air pollution has become a

development strategy for many countries. Many regions

have established observatories to monitor the PM2.5 con-

centration in real time. By monitoring the pollution con-

centration over a period of time and predicting future

concentrations, governments can make timely and appro-

priate countermeasures to protect the health and safety of

the public. Thus, accurate and timely prediction of PM2.5

concentration is crucial. Since there are many factors

affecting PM2.5 concentration and its variation is irregular

and nonlinear, it is very difficult to predict the concentra-

tion accurately. Currently, air quality prediction methods

can be classified into three types: deterministic methods,

statistical methods, and machine learning methods [3].

Deterministic methods have fully functional relation-

ships based on known physical and chemical theories about

the contaminant transfer. For example, the community

multiscale air quality (CMAQ) modeling system [4] based

on the atmospheric physical and chemical processes uses
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meteorological principles and mathematical methods to

simulate the air quality and reproduce the transport, reab-

sorption, and removal processes of pollutants in the

atmosphere for prediction. Similar to CMAQ, many air

quality prediction models based on deterministic methods

have been proposed, such as the CHIMERE model

designed for seasonal simulation and prediction [5], and the

LOTOS model [6] proposed by Dutch scholars. However,

there are many factors affecting PM2.5 concentration, such

as carbon, nitrogen, and sulfur contents. Their relationships

are complex [7]. Deterministic models often require a large

number of computational resources [8].

Statistical methods generally use regression and time

series methods for the prediction. A PM2.5 prediction

model using the land use regression method has been

proposed. It is developed for seasonal, pedestrian flow, and

other factors and gets good results for the air quality pre-

diction in Beijing of China [9]. A statistical model based on

linear multiple regression and a categorical regression tree

analysis method is used for the air quality prediction in

Macau of China. Experimental results show that the col-

umn method is reasonable for the prediction with high

concentrations and low confidence levels [10]. However,

due to the complexity of air quality models, many influ-

encing factors, and the irregular and nonlinear variation of

data, traditional statistical methods often fail to obtain

accurate results. To address this problem, researchers have

proposed various machine learning methods.

Nowadays, machine learning methods such as multi-

layer perceptron (MLP), support vector machine (SVM),

and long short-term memory (LSTM) have obtained good

results in the field of air quality prediction [11–14]. A

decomposition-ensemble broad learning system, which

innovatively proposes a dynamic decomposition time

window based on three decomposition methods, combined

with a broad learning system, achieves excellent perfor-

mance for air quality index forecasting [15]. Considering

the unique changes in population migration in the post-

COVID-19 pandemic age and the correlation between

population migration and air quality index, a migration

attentive graph convolutional network accurately predicted

PM2.5 concentrations in Hubei Province by combining

migration data [16]. A novel predictive neural network

(LSTM-FC) using a temporal simulator based on LSTM

captures the PM2.5 concentration relationship between

neighboring spatial stations through the spatial

combination based on neural networks. The better experi-

mental results are obtained for the PM2.5 concentration

prediction problem in Beijing of China [17]. Three dif-

ferent methods, i.e., multilayer neural networks, linear

regression, and persistence, are used to predict PM2.5

concentrations in downtown Santiago of Chile. This study

selects months with high values of concentrations for the

experiment. Results show that the neural network model

has the more competitive power [18]. In six regions of

China, a WT-SAE-LSTM model is proposed. It shows that

some progress is got in addressing the problem of easy

gradient disappearance of LSTM [19]. Applying deep

learning to predict spatio-temporal sequence problems has

become a hot topic, but the huge model size makes it

difficult for practical applications. At the same time, deep

learning models rely heavily on a large amount of training

data, and results are often unsatisfactory in the face of data-

scarce fields.

In this paper, an artificial neural network called dendritic

neuron model (DNM) is used to predict the PM2.5 con-

centration. The DNM model has a simple structure with

four layers. The dendrite layer and membrane layer make

the model have the ability of automatic pruning. Since its

proposal, DNM has achieved excellent results in various

problems such as photovoltaic power generation forecast-

ing, financial time series forecasting, and tourism number

forecasting [20, 21]. However, the original DNM model is

trained by BP [22]. The gradient descent-based BP algo-

rithm easily falls into local optima; thus, the appropriate

training algorithm is crucial to improve the prediction

ability of DNM model. Evolutionary algorithms are good

choices and have been used in many fields [23, 24]. The

original SMS algorithm is selected to train the DNM

model, which improves the prediction accuracy of the

model [25]. We propose an algorithm based on an inno-

vative population structure selection method (DSMS) for

the DNM model. DSMS deals with the population structure

again based on the state-of-matter heuristic algorithm

(SMS). After sorting, classifying and cross-variation

operations, according to different selection strategies, the

excellent individuals are retained and the poorer ones are

updated, which better balances the exploration and

exploitation of the algorithm.

In addition, due to the chaotic and nonlinear character-

istics of PM2.5 time series, a preprocessing technique STL-

LOESS is used [26]. The seasonal trend decomposition

Table 1 Parameters of DS-

DNM
State State weight (%) b k g Random probability H

Gaseous 50 0.8 0.8 [0.8, 1.0] 0.9

Liquid 40 0.4 0.2 [0.0, 0.6] 0.2

Solid 10 0.1 0 [0.0, 0.1] 0
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technique is widely used in time series problems [27–29],

which divides time series into three parts: seasonal, trend,

and residual components. The regional PM2.5 concentra-

tion variation is cyclical; thus, it is reasonable to adopt this

preprocessing method. Finally, we select the PM2.5 data

from five Chinese cities in the period from January 1, 2010,

to December 31, 2015. To demonstrate the effectiveness of

DSMS, it is compared with four training algorithms. It is

also compared with seven representative prediction mod-

els. The experimental results show that the DSMS algo-

rithm in the prediction model is effective, and the DS-

DNM model has the excellent performance in the PM2.5

concentration prediction problem.

The main contributions of this paper are as follows:

1. A DS-DNM model for PM2.5 time series prediction is

proposed. It is constructed in a hybrid manner.

Experiments prove that it is more competitive than

other models.

2. A new algorithm DSMS is proposed. The prediction

model using it performs better.

3. A data preprocessing technique STL-LOESS is used in

the DS-DNM model, which processes the PM2.5 data

well.

4. This paper shows that DNM has the huge potential for

the prediction problem and provides a future research

direction.

The rest of this paper is organized as follows. Section 2

describes the original DNM model. Section 3 presents the

proposed DS-DNM model. Section 4 shows experimental

results of the proposed algorithm, four training algorithms,

and seven prediction models. Section 5 summarizes this

paper and gives future work.

2 Dendritic neuron model

Neural networks have evolved since their introduction and

have succeeded in different fields such as image recogni-

tion [30], natural language processing [31, 32], and data

prediction [33–35]. DNM is a dendritic neuron model,

which simulates a biological neural network with a four-

layer structure. It contains synaptic layer, dendrite layer,

membrane layer, and soma layer. Figure 1 shows its mor-

phological architecture. The DNM model is simple and

efficient. It has the good performance in solving nonlinear

problems. Its four-layer structure is described below.

2.1 Synaptic layer

The prominent presynapse receives information from the

output of the previous neuron or the outside. The received

information is expressed as fx1; x2; . . .; xi; . . .; xng. Under
the influence of different ions, the receptors at the synapse

will appear in different states of excitation or inhibition,

calculated as follows:

Yij ¼
1

1þ e�k wijxi�qijð Þ ð1Þ

where Yij denotes the potential at the postsynaptic cells of

the jth (j ¼ 1; 2; . . .;M) dendrites from the ith

(i ¼ 1; 2; . . .;N) presynaptic axon terminal. k is a constant.

Weight wij and threshold qij are generated by the training

algorithm.

2.2 Dendrite layer

The dendritic layer performs a cumulative multiplication

operation on the output of the salient layer. It is worth

mentioning that when 0 and 1 are in the output of the

synaptic layer, the computation of the dendrite layer can be

regarded as the logic ‘AND’ operation. The dendrite layer

is expressed as

Zj ¼
YN

i¼1

Yij ð2Þ

2.3 Membrane layer

The resultant dendritic processed data are input to the

membrane layer, which performs the cumulative calcula-

tion. Similar to the logical ‘AND’ operation in the dendrite

Fig. 1 Morphological

architecture of dendritic neuron

model
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layer, the membrane layer has a logical ‘OR’ operation.

The membrane layer is expressed as

V ¼
XM

j¼1

YN

i¼1

Yij ð3Þ

2.4 Soma layer

The data are finally passed through the soma layer to

determine whether the neuron is excited or not. This layer

uses the sigmoid function to calculate the output as

follows:

O ¼ 1

1þ e�kðV�hÞ ð4Þ

where k is a constant and the threshold h varies from 0 to 1.

3 Proposed DS-DNM model

In DNM model, parameters have the great impact. Back

propagation (BP) is used in the original DNM model to

determine weights w and thresholds q. However, the BP

algorithm tends to fall into the local optimum, which pre-

vents the DNM model from performing better. Therefore,

we need an algorithm with powerful search capability to

train the model. SMS has the notable performance for

training the DNM model in classification problems.

Inspired by it, we propose a novel algorithm based on SMS

called DSMS.

3.1 States of matter search algorithm

SMS is a nature-inspired algorithm. It is based on the

mechanism of thermal energy movement, which simulates

individuals as interacting molecules. Its superior perfor-

mance is obtained through different designs of exploration

and exploitation ratios in three states of matter. The evo-

lutionary process transitions from a gaseous state that

exhibits a large number of collisions, to a relatively

stable liquid state, and finally evolves to a completely

stable solid state. The individual obtains the balance

between exploration and exploitation during the evolution

of simulated molecules. The evolutionary process of SMS

is described below.

Direction vector

In the population X, the position of each individual Xi in

the iterative process is controlled by the direction vector di.

As the iterative process progresses, the individuals keep

moving closer to the current optimal individual’s position.

The direction vector di is calculated as follows:

dkþ1
i ¼ 0:5 � dki � 1� nFES

FES

� �
þ Xbest � Xi

Xbest � Xik k ð5Þ

where FES is the maximum number of iterations, nFES is

the current number of iterations, and Xbest is the current

optimal individual’s position. The velocity vector vi is

calculated as

vi ¼ di �
Pn

j¼1 bhj � blj

� �

n
� b ð6Þ

where bhj and blj are the upper and lower bounds of the jth

individual, respectively. b 2 0; 1½ �. Through the updated

direction vector and velocity vector, the new position is

calculated as

Xkþ1
i;j ¼ Xk

i;j þ vi;j � k � bhj � blj

� �
ð7Þ

where k 2 0; 1½ �.

Collisions

Collision behavior occurs during the evolution of mole-

cules. When the distance between two molecules da and db
is less than the collision distance, they exchange direction

vectors, i.e., da ¼ db; db ¼ da. The collision distance is

calculated as follows:

r ¼
Pn

j¼1 bhj � blj

� �

n
� g ð8Þ

where g 2 0; 1½ �.

Random positions

There is a certain probability of random changes in the

molecular evolution. To simulate this mechanism, the

molecular positions are defined as follows:

Xkþ1
i;j ¼

blj þ rand 0; 1ð Þ � bhj � blj

� �
; if s\H

Xkþ1
i;j ; if s�H

8
<

: ð9Þ

where random number s is generated within the range [0,

1].

3.2 DSMS based on population selection
strategy

Based on the population selection strategy, this paper

proposes a novel algorithm DSMS. Inspired by differential

evolution algorithm and its various variants in DNM

model, DSMS divides the population into two sub-popu-

lations according to the individuals’ ranking. During the

iterative process, the worse subpopulation is updated by

two strategies, which obtains the better balance between

exploration and exploitation.

15400 Neural Computing and Applications (2023) 35:15397–15413

123



When the collision step in DSMS is completed, the fit-

ness is calculated; a new population Xr kð Þ is obtained by

sorting the fitness from smallest to largest. The first half of

the population size N
2

� �
and the second half of Xr kð Þ are

defined as Xg kð Þ and Xb kð Þ, respectively.

Xg
i kð Þ ¼ Xr

s kð Þ
Xb
i kð Þ ¼ Xr

q kð Þ

(
ð10Þ

where s ¼ 1; 2; . . .; N
2

� �
, q ¼ N

2

� �
þ 1; N

2

� �
þ 2; . . .; N.

Then, we update some individuals in the poor subpop-

ulation via those in the optimal subpopulation. The first N/

4 individuals are retained in Xg kð Þ, while a new individual

is generated by every four individuals. Thus, a optimal

subpopulation Gg kð Þ is generated with the N/2 population

size.

Gg
i kð Þ ¼

Xg
i kð Þ; 0\i� N

4

0:25 � Xr
l kð Þ þ Xr

lþ1 kð Þ þ Xr
lþ2 kð Þ þ Xr

lþ3 kð Þ
� �

;
N

4
\i� N

2

8
><

>:

ð11Þ

where l 2 N
4
þ 1; N

2

� �
. The probability p is set to ensure that

the optimal subpopulation G kð Þ is randomly selected from

the overall population with the 1� pð Þ probability:

Gi kð Þ ¼
Gg

i kð Þ; r� p

Xr kð Þ; r[ p

�
ð12Þ

p ¼ nFES

FES
ð13Þ

where i ¼ 1; 2; . . .; N
2

� �
, r 2 1; N½ �. At the beginning, the

optimal subpopulation G kð Þ is randomly selected. As the

number of iterations increases, G kð Þ tends to select the

excellent individuals after sorting. It makes the individuals

more random when they are in the gaseous state. The

population tends to search around the excellent individuals

after gradually changing to the solid state.

The mutation operation is performed for the optimal

subpopulation G kð Þ to obtain the subpopulation H kð Þ.
Then, a new subpopulation V kð Þ is generated by subpop-

ulations H kð Þ and Xb kð Þ. The formula is as follows:

Hi kð Þ ¼Gr1 kð Þ þ F � Gr2 kð Þ � Gr3 kð Þð Þ ð14Þ

Vi;j kð Þ ¼
Hi;j kð Þ; rand 0; 1ð Þ�CR or j ¼ jrand

Xb
i;j kð Þ; otherwise

(
ð15Þ

where i ¼ 1; 2; . . .; N
2

� �
, j ¼ 1; 2; . . .; D, r 2 1; N½ �. r1,

r2, r3 are random integers with values ranging from 1 to N/

2, respectively. The greedy selection strategy is used to

select the better individuals compared with the original

subpopulation Xb kð Þ. The formula is as follows:

Xb
i k þ 1ð Þ ¼

Vi kð Þ; if Vi kð Þð Þ\f Xb
i kð Þ

	 


Xb
i kð Þ; if Vi kð Þð Þ� f Xb

i kð Þ
	 


(
ð16Þ

Figure 2 shows the evolutionary process of DSMS.

From it, the population gradually evolves from gaseous to

solid states, and the evolutionary strategy of individuals

gradually shifts from stochastic to convergent. Meanwhile,

during the evolution of population, the poor subpopulation

is updated. Based on the probability parameter p, which

varies with the number of iterations, a majority of updated

target samples are random individuals in the gaseous state.

Then, random and superior individuals coexist in the liquid

state. Finally, when the population becomes solid, the poor

subpopulation is approximately dependent on the superior

subpopulation. Thus, DSMS relies on the overall state

change and the choice of individual variation strategies in

local areas.

3.3 Seasonal-trend decomposition based
on locally weighted scatterplot smoothing

Seasonal-trend decomposition based on locally weighted

scatterplot smoothing (STL-LOESS) is an algorithm for the

temporal decomposition, which has been widely used in

finance, medicine, sociology, oceanography[29], and other

fields [21, 36, 37]. Through STL-LOESS processing, the

raw data are divided into three parts as follows:

Yt ¼ St þ Tt þ Rt ð17Þ

where Yt, St, Tt, Rt correspond to original time series data,

seasonal component, trend component, and residual com-

ponent, respectively. Figure 3 shows the original PM2.5

data in Shenyang from May 1, 2013, to March 13, 2015.

The seasonal component, trend component, and residual

component are processed by STL-LOESS. The STL-

LOESS decomposition process is described below.

3.3.1 Loess

In loess, seasonal and trend components need to be

smoothed. x is the current independent variable (in this

paper represents time), and g xð Þ is the locally weighted

regression curve. To calculate g xð Þ, a positive integer q

(q� n) is selected. The q values closest to x are selected to

assign an adjacency weight W according to their distance

from x. The selected values are (xi, yi), i ¼ 1; 2; . . .; q. xi
are the independent variables (time) and yi are the depen-

dent variables (concentration of PM2.5). W is calculated as

follows:
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W kð Þ ¼ 1� k3ð Þ3; if 0� k \1

0; if k� 1

�
ð18Þ

The neighborhood weights of xi are expressed as:

Uix ¼ W
kxi � xk

kqx
: ð19Þ

where kq xð Þ indicates the farthest distance from x among

the selected q values. It can be seen that the neighborhood

weights are decreasing as the distance from x to xi
increases. Similarly, data with weights Ui need to be fitted

when q[ n. Define the distance kq xð Þ from x to the farthest

xi as follows:

kq xð Þ ¼ kn xð Þ q
n

ð20Þ

where kn xð Þ is the distance from x to the farthest xi. As q

keeps increasing, the locally weighted regression curve

g xð Þ will become smooth. As q tends to infinity, the

weights Ui converge to 1 and g xð Þ converge to a general

least squares polynomial of order d.

3.3.2 Decomposition process

There are two nested loops, i.e., inner and outer loops, in

the STL-LOESS decomposition process. In the inner loop,

seasonal and trend terms are updated. In the outer loop,

Fig. 2 Evolutionary process of

the DSMS algorithm

Fig. 3 Breakdown of PM2.5 data in Shenyang
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robustness weights are generated based on the number of

residuals. The specific steps are as follows:

• Step 1: Detrending. Minus the trend component of the

previous round’s results, i.e., Yu � T kð Þ
u .

• Step 2: Cycle-subseries smoothing. Regress the series

with loess to obtain the temporary seasonal series

C kþ1ð Þ
u .

• Step 3: Low-pass filtering. The sequence C kþ1ð Þ
u is

processed by moving average and loess regression to

obtain the sequence L kþ1ð Þ
u .

• Step 4: Detrending of smoothed cycle-subseries, i.e.,

S kþ1ð Þ
u ¼ C kþ1ð Þ

u � L kþ1ð Þ
u .

• Step 5: Deseasonalizing. Removal of periodic quantities

from a sequence, i.e., Yu � S kþ1ð Þ
u .

• Step 6: Trend smoothing. The obtained series S kþ1ð Þ
u is

processed again using the loess regression to obtain the

trend value T kð Þ
u .

3.3.3 Parameter selection

To obtain satisfactory decomposition results, it is necessary

to choose the appropriate STL-LOESS parameters. From

previous studies, we experimentally validate the obtained

parameters. PM2.5 concentration has the periodic change,

but it is affected by the geography of different regions.

According to the experimental study [38], the period np is

set to 7. The regression data component nf in loess is 0.6.

The number of residuals ni to be re-weighted is 3.

3.4 DS-DNM

This section describes the details of combining STL-

LOESS and DNM in DS-DNM model. It also describes

how the DSMS algorithm is used to train the DNM model.

Figure 4 shows the flow chart of DS-DNM. STL-LOESS

preprocesses the data. It decomposes the original data into

three components: seasonal component, trend component,

and residual component.

3.4.1 Treatment of seasonal, trend, and residual
components

Since PM2.5 concentration change is periodic and the

periodicity is generally stable, the seasonal component

keeps constant. A trend component can be regarded as a

continuous function that changes with time; thus, a cubic

polynomial is used to fit it as follows:

Tt ¼ at3 þ bt2 þ ct þ d ð21Þ

where parameters a, b, c, and d are determined by the least

square estimation method.

The residual component is divided into two parts, i.e.,

training set and test set. It is input to DNM model for

training. For the input, the one-dimensional time series is

put into the high dimension, and the concentration data of

two consecutive days are used to predict the next day. The

input vector T and the target vector V are structured as

follows:

Fig. 4 Scheme of DS-DNM
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Tr ¼
xð1Þ xð2Þ xð3Þ . . . xðN�2Þ

xð2Þ xð3Þ xð4Þ . . . xðN�1Þ

" #
ð22Þ

Vr ¼ xð3Þ xð4Þ xð5Þ . . . xðNÞ
h i

ð23Þ

where N is the sequence length.

3.4.2 DSMS for training DNM model

DSMS randomly generates the initial population X where

the individual is X
ðkÞ
i ¼ fw11;w12; . . .;wMN ; q11; q11; . . .;

qMNg. DSMS iteratively updates the processed residuals as

the training and test sets to find the optimal solution. Fit-

ness of the algorithm during training is expressed as the

error between the target value and the predicted value,

which is calculated as:

E ¼ Tr � Vrð Þ2 ð24Þ

The pseudo-code of DSMS training DNM model is

shown in Algorithm 1. E in the model is used as the fitness.

The smaller E is, the more effective the DSMS is.

3.4.3 Predictive data acquisition

The optimal parameters w and q obtained by DSMS are

used in DS-DNM model. The obtained high-dimensional

data are reduced to a one-dimensional series by an inverse

processing. We obtain the final predicted value Tp via

adding the residual value Tr with the trend value Tt and the

period value Ts:

Tp ¼ Tr þ Tt þ Ts ð25Þ

4 Experimental results

The experimental data are a dataset of daily average PM2.5

concentrations over time for five Chinese cities including

Beijing, Shanghai, Guangzhou, Chengdu, and Shenyang,

which is published by the US Consulate in China.

4.1 Description of dataset

We experimentally select PM2.5 monitoring data from the

US Consulate in China for five Chinese cities over a six-

year period, i.e., from January 1, 2010, to December 31,
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2015. The data are daily average PM2.5 concentrations

with some missing data caused by environmental or tech-

nical reasons and are filled by linear interpolation. For each

data, the first 70% is set as the training set and the last 30%

as the test set. The experimental data are described in

Table 2.

4.2 Evaluation criteria

In order to scientifically and accurately assess the model

prediction, three evaluation indexes consisting of mean

square error (MSE), mean absolute percentage error

(MAPE), and mean absolute error (MAE) are used. Their

formulas are shown as follows:

MSE ¼ 1

n

Xn

i¼1

Oi � Tið Þ2 ð26Þ

MAPE ¼ 1

n

Xn

i¼1

Ti � Oi

Ti

����

���� ð27Þ

MAE ¼ 1

n

Xn

i¼1

kTi � Oik ð28Þ

4.3 Parameter settings

Three parameters need to be determined in the DS-DNM

model. They are the constant k of the sigmoid function in

the synaptic layer, the threshold qs of the soma layer, and

the number of dendrite layers M. Different parameter set-

tings affect the performance of the model. To determine

which values are the most suitable for the model, we test 25

combinations of the three parameters using Genichi

Taguchi’s orthogonal experiment. For the test, each datum

in five cities is run 20 times. The population size and

number of iterations are set to 100 and 30,000, respec-

tively. Table 3 shows 25 groups of parameter settings.

Table 4 shows the ranking of 25 groups of parameter set-

tings in each city according to MSE. The experimental

results show that the DS-DNM model works best when

k ¼ 5, qs ¼ 1, and M ¼ 10.

4.4 Normalization

To reduce the complexity of the data, the original data are

normalized into 0; 1½ �. The normalization formula is as

follows:

x
nð Þ
i ¼ xi � xmin

xmax � xmin
ð29Þ

where xmax and xmin are maximum and minimum values,

respectively. When the predicted data are output, a reverse

normalization operation is required to bring the result back

into the original value.

Table 2 Description of PM2.5

test data in five cities
Dataset Training data Test data Amount of data

Year/month Year/month Days

PM2.5 of Beijing 2010/1/1–2014/3/14 2014/3/15–2015/12/31 2190

PM2.5 of Shenyang 2013/5/1–2015/3/13 2015/3/14–2015/12/31 974

PM2.5 of Chengdu 2012/6/1–2014/12/3 2014/12/4–2015/12/31 1308

PM2.5 of Shanghai 2012/1/1–2014/10/19 2014/10/20–2015/12/31 1460

PM2.5 of Guangzhou 2012/1/1–2014/10/19 2014/10/20–2015/12/31 1460

Table 3 Parameter settings in

the orthogonal experiment
Parameter k qs M Parameter k qs M Parameter k qs M

Group 1 1 0.1 2 Group 10 5 1 10 Group 19 15 0.7 15

Group 2 1 0.3 10 Group 11 10 0.1 15 Group 20 15 1 2

Group 3 1 0.5 20 Group 12 10 0.3 2 Group 21 20 0.1 5

Group 4 1 0.7 5 Group 13 10 0.5 10 Group 22 20 0.3 15

Group 5 1 1 15 Group 14 10 0.7 20 Group 23 20 0.5 2

Group 6 5 0.1 20 Group 15 10 1 2 Group 24 20 0.7 10

Group 7 5 0.3 5 Group 16 15 0.1 10 Group 25 20 1 20

Group 8 5 0.5 15 Group 17 15 0.3 20

Group 9 5 0.7 2 Group 18 15 0.5 5
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Table 4 Ranking results in the

orthogonal experiment
Group index Beijing Shenyang Chengdu Shanghai Guangzhou Overall ranking

Group 1 25 25 25 25 25 25

Group 2 24 24 24 24 24 24

Group 3 22 23 22 23 22 23

Group 4 21 21 21 21 21 21

Group 5 19 20 20 19 19 20

Group 6 23 22 23 22 23 22

Group 7 17 18 17 18 17 18

Group 8 10 13 8 12 8 11

Group 9 7 15 3 7 7 10

Group 10 1 1 2 2 3 1

Group 11 20 19 19 20 20 19

Group 12 12 11 15 14 15 15

Group 13 11 12 11 6 11 9

Group 14 2 8 2 3 6 5

Group 15 15 1 6 13 4 3

Group 16 18 17 18 17 18 17

Group 17 8 10 16 10 13 13

Group 18 1 7 10 8 10 7

Group 19 14 5 4 9 9 6

Group 20 13 14 5 2 1 8

Group 21 16 16 12 15 16 16

Group 22 9 9 14 11 12 12

Group 23 5 6 9 16 14 14

Group 24 4 3 7 5 5 2

Group 25 3 4 13 1 2 4

Table 5 MSE comparison of

training algorithms
MSE

Beijing Shenyang Chengdu Shanghai Guangzhou Total

DSMS 883.38162 818.814185 71.86893 110.13355 27.589105 5

DPDE 1194.331898 2060.767031 78.65910962 200.5661876 69.16750645 0

SCJADE 4843.150555 4930.175435 8476.12182 7392.928476 53.61074971 0

BBO 1333.31963 939.5004343 79.89269988 157.678848 35.49607347 0

BP 1142.611843 920.6199894 83.04899327 175.0730765 48.38879275 0

Table 6 MAPE comparison of

training algorithms
MAPE

Beijing Shenyang Chengdu Shanghai Guangzhou Total

DSMS 0.000279643 0.00042833 0.000120303 0.000211008 0.000116485 4

DPDE 0.0002776 0.000619494 0.000123371 0.000227731 0.000157457 1

SCJADE 0.00040887 0.001021096 0.001595116 0.001459852 0.000257467 0

BBO 0.00029717 0.000561419 0.000129213 0.000229094 0.000087215 0

BP 0.000281931 0.00055626 0.000134764 0.000252546 0.000140428 0
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4.5 Performance comparison of training
algorithms

In this section, we compare the training effect of DSMS

with three optimization algorithms, including directional

permutation differential evolution algorithm (DPDE) [39],

chaotic differential evolution algorithm based on roulette

wheel selection (SCJADE) [40], and biogeography-based

optimization (BBO) [41]. It is also compared with the

training algorithm BP in the original DNM model [42]. The

initial parameters of the comparison algorithms are

obtained from the above-mentioned literatures. For a fair

comparison, the most appropriate parameters need to be

set. Due to the powerful and fast convergence character-

istics of DSMS, the best results are obtained when the

number of iterations is set to 3000. Otherwise, the model is

prone to fall into overfitting. For other algorithms, the best

results are obtained when the number of iterations is set to

10,000. Five algorithms are run 30 times to train the DNM

model and predict PM2.5 concentrations in five cities. The

results are shown in Tables 5, 6, and 7 where the best value

is highlighted in boldface.

According to Tables 5, 6, and 7, DSMS has the least

MSE, MAPE, and MAE values in comparison with the

other algorithms. Two exceptions are that DPDE has the

least MAPE value in Beijing and BBO has the least MAE

Table 7 MAE comparison of

training algorithms
MAE

Beijing Shenyang Chengdu Shanghai Guangzhou Total

DSMS 20.07915 18.605325 5.22165 7.67925 3.906435 4

DPDE 23.98902621 25.7977413 5.830522242 9.194371287 6.022538918 0

SCJADE 56.50916674 45.67571775 59.93775912 57.10974117 6.118918113 0

BBO 25.46471521 17.14728116 5.40840392 8.194505857 4.094493923 1

BP 26.4275625 22.57772662 7.288425303 10.16802185 5.67465137 0

Fig. 5 Prediction and deviation

plots of models using different

training algorithms on Chengdu

data
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Fig. 6 Correlation coefficient graphs based on different training algorithms

Table 8 MSE comparison of

eight prediction models
MSE

Beijing Shenyang Chengdu Shanghai Guangzhou Total

DS-DNM 883.38162 818.814185 71.86893 110.13355 27.589105 5

Elman 1214.49942 991.27306 115.63718 205.85143 54.32243 0

SVMRBF 5547.82376 3639.89525 2028.10819 977.59598 612.23797 0

SVMLF 3565.46440 1951.15810 674.67220 796.06690 294.64700 0

ANFIS 3730.80416 2125.14289 647.14104 732.38333 293.24394 0

MLP 1853.25486 1721.61619 221.19380 262.76335 79.73914 0

LSTM 6106.91294 3101.01687 1327.10840 1512.23015 488.77707 0

SDNN 1105.24809 911.777895 99.85854 192.39068 62.9107 0
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value in Shenyang. Results show that DSMS outperforms

DPDE, SCJADE, BBO, and BP in training the DNM model

for PM2.5 concentrations prediction. Thus, DSMS is an

effective and competitive algorithm.

Figure 5 shows the prediction results of the model with

different training algorithms. Figure 7a shows the pre-

dicted and true values of PM2.5 in Chengdu. Figure 5b is

obtained by subtracting the predicted and true values. The

baseline indicates that the predicted and true values are

same, which is the ideal state. From Fig. 7, around the

average true value, all the algorithms have good results

except for the SCJADE algorithm. Moreover, DSMS tends

to achieve the best result when the true value is larger or

smaller than the average value. Figure 6 shows the

correlation coefficients of different algorithms. The calcu-

lated correlation coefficient R reflects the prediction ability

of model with different algorithms. Except for the SCJADE

algorithm, four prediction results are good. It reflects that

DS-DNM model adopts STL-LOESS to preprocess the data

well and the residual values are effectively handled.

4.6 Performance comparison with other
prediction models

Seven prediction models in this section are used to com-

pare with the DS-DNM model, including Elman network,

two types of SVM models, ANFIS, MLP, LSTM, and

SDNN. We choose a fuzzy c-means clustering as the

Table 9 MAPE comparison of

eight prediction models
MAPE

Beijing Shenyang Chengdu Shanghai Guangzhou Total

DS-DNM 0.000279643 0.00042833 0.000120303 0.000211008 0.000116485 2

Elman 0.000216455 0.000668442 0.000086628 0.000263272 0.000070663 2

SVMRBF 0.00051056 0.001305566 0.000438818 0.000591614 0.000144555 0

SVMLF 0.00041322 0.0010672 0.00010877 0.00057366 0.00028181 0

ANFIS 0.000379478 0.000887179 0.00018009 0.000399773 0.000148908 0

MLP 0.000241004 0.000714427 0.00007629 0.000247314 0.000062398 1

LSTM 0.000303425 0.000865391 0.000245949 0.000310894 0.000167328 0

SDNN 0.000264431 0.000482369 0.000110788 0.000283405 0.000158342 0

Table 10 MAE comparison of

eight prediction models
MAE

Beijing Shenyang Chengdu Shanghai Guangzhou Total

DS-DNM 20.07915 18.605325 5.22165 7.67925 3.906435 4

Elman 27.02807097 18.38115494 8.274835585 10.41369438 5.700727668 1

SVMRBF 56.62420459 37.52533748 35.27241399 22.54283337 19.24984806 0

SVMLF 41.3582 24.6066 18.7175 28.2147 12.0583 0

ANFIS 43.59985604 25.23860845 18.50936716 18.9818359 12.42712893 0

MLP 31.29095547 20.76986178 10.73036377 10.42384863 6.238967666 0

LSTM 52.80783242 32.68543188 24.91178899 25.67223136 15.61724182 0

SDNN 25.75872 22.790445 7.74337 10.99625 6.527765 0

Table 11 Friedman test on all

models
Model Ranking of MSE Model Ranking of MAPE Model Ranking of MAE

DS-DNM 1 DS-DNM 5 DS-DNM 1

Elman 3 Elman 2 Elman 3

SVMRBF 8 SVMRBF 8 SVMRBF 8

SVMLF 6 SVMLF 3 SVMLF 6

ANFIS 5 ANFIS 6 ANFIS 5

MLP 4 MLP 1 MLP 4

LSTM 7 LSTM 7 LSTM 7

SDNN 2 SDNN 4 SDNN 2
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generation method in ANFIS. Radial basis functions and

linear functions are chosen as kernel functions in SVM,

labeled as SVMRBF and SVMLF . The number of hidden

layers in MLP, Elman, and LSTM models is 10, 15, and 60,

respectively.

All eight prediction models run 30 times and the average

value is calculated. Tables 8, 9, and 10 show the prediction

results where the best value is highlighted in boldface. It

can be seen from Tables 8 and 10 that DS-DNM has the

best MSE and MAE values. However, in Table 9, Elman

network has two best MAPE values and MLP has one. This

is because the prediction of DS-DNM decreases when the

actual values are biased towards local or global extremes,

resulting in large MAPE values when the actual values are

very small. To obtain a reliable conclusion, Table 11 shows

the results of the Friedman test where the best model is

highlighted in boldface. DS-DNM performs better than

other models according to MSE and MAE, whereas MLP

has the better performance in terms of MAPE. Figure 7

shows the prediction results of different prediction models.

Figure 8 shows the correlation coefficient graphs based on

different prediction models. From Figs. 7 and 8, all the

prediction models show the good performance except for

SVM and LSTM.

5 Conclusion

For the complexity of PM2.5 concentration time series, we

propose the DS-DNM prediction model. A STL-LOESS

data processing technique is used to decompose the com-

plex time series into three parts: season, trend, and residual.

It better identifies the internal characteristics of time series.

An innovation-based population selection strategy is pro-

posed to train the DS-DNM model. By decomposing the

data and processing the structure in chunks, the model

possesses the ability to accurately predict the air quality

time series. The experiments are carried out on PM2.5

concentration data from five cities. Compared with four

training algorithms and seven prediction models, the

powerful prediction ability of DS-DNM model is verified.

However, the DS-DNM model also has some limita-

tions. Its prediction ability decreases when the actual val-

ues are biased towards extreme values, and it is currently

Fig. 7 Prediction and deviation

plots using different prediction

models on Chengdu data
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Fig. 8 Correlation coefficient graphs based on different prediction models
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stuck on univariate time series problems. In the future, we

will investigate the ability of DS-DNM model on multi-

objective prediction problems and also explore the possi-

bilities of the model in other prediction fields.
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