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Abstract

Shape-writing (aka gesture typing or swiping) is a word-based text
entry method for touchscreen keyboards. It works by landing the
finger on (or close to) the first character of the desired word
and then sliding over all the other character keys without lifting
the finger until the last word character is reached. This generates
a trajectory of swiped characters on the keyboard layout which
can be translated to a meaningful word by a statistical decoder.
We hypothesize that swiping carries rich information about the user,
such as demographic (e.g. age or gender) and behavioral (e.g. swip-
ing familiarity or input finger) information. To test our hypothesis, we
trained several sequence classifiers using different recurrent neural net-
work architectures to predict demographic and behavioral correlates of
users from swipe trajectories. We show that our sequence classifiers are
always performing better than a random classifier, therefore we con-
clude that cognitive and motor control mechanisms are embodied and
reflected in swipe trajectories, validating thus our research hypothesis.
Taken together, our results have implications for user privacy. Cur-
rently swiping is supported by all mobile vendors and has millions
of users, so people may be inadvertently profiled at an unprece-
dented granularity. Future work should consider new ways of address-
ing these issues without impacting the user’s swiping experience.
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1 Introduction

Shape-writing, also known as gesture typing, swype input, swipe to text, or
just swiping (for short), is a prevalent mobile text entry method currently
supported by all mobile vendors. Contrary to regular touch typing, where the
user touches one key at a time and lifts up the finger to enter one character,
swiping is a word-based text entry method: The finger lands on (or close to)
the first key of the desired word and then, without lifting the finger from
the keyboard, it traverses (the vicinity of) all the keys until reaching the last
character of the word, generating a trajectory of touch points as a result. See
Figure 1 for some examples.
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Fig. 1: Examples of swiped word trajectories.

Swiping performance has been researched in small-scale experiments [1],
in large-scale studies as one of many text methods [2], or using proprietary,
undisclosed datasets [3]. Collecting such data is challenging, because most
mobile keyboards are vendor-locked and do not offer an API for collecting such
data [4].

Until now, there was no public swiping dataset where researchers could
access raw movements dynamics such as the gesture path drawn on top of the
keyboard or the time lapsed between consecutive swiped keys. Recently, Leiva
et al. [4] released “How We Swipe”, the largest dataset (over 1,300 participants)
for conducting research on mobile swiping together with first observations of
correlates of typing performance. Large-scale analyses of mobile interaction
are relatively rare and mostly undertaken by commercial organizations and
mobile vendors that ship soft keyboards. There are notable exceptions [2, 5-7]
but they did not investigate swiping behavior.

In this work we analyse the dynamics of swiping trajectories to model and
predict different demographic and behavioral correlates, including age, gender,
nationality, English level, swiping familiarity, swiping hand, swiping finger, and
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dominant hand. In total, we trained 200+ different classifiers with 30 differ-
ent hyperparameter variations for each predicted target. We found that swipe
trajectories actually carry information about demographic and behavioral cor-
relates. To the best of our knowledge, we are the first to perform this analysis
in this kind of data.

The rest of this article is organized as follows. In Section 2, we present a
comprehensive overview of related works in shape writing and user profiling
from demographic and behavioral movement data. In Section 3, we present the
dataset we have analyzed and the methodology we have followed. In Section 4
we discuss the results of our experiments. In Section 5, we present a com-
prehensive summary highlighting limitations and future research directions.
Finally, Section 6 closes this article with a summary of the main findings.

2 Related Work

Invented by Zhai and Kristensson in 2003 [8], swiping has become a widely
adopted text entry method on mobile devices. It well suits touch-based inter-
action, and provides a high typing speed since it relaxes the requirement of
precisely acquiring each (small) key on a soft keyboard. To date, this text entry
method is supported by major commercial soft keyboards including Google’s
Gboard, Microsoft’ SwiftKey, and iOS’s built-in keyboard on iPhones.

The research community has carried out a large amount of research on
swiping techniques. For example, swiping has been extended to support mid-
air text entry [9], eyes-free input [10], ring-based input [11], phone-tilting based
input [12]. In addition to text entry, swiping has also been extended to support
command input [13-15], by gesturing a shortcut related to the command name.
Such a method shows advantages in learnability compared with hotkey-based
command input [15].

There is a large body of work that demonstrates that our digital footprints,
including e.g. the websites we visit or the text we enter in social media, may
help derive personally identifiable information like gender, age, location, or
even political orientation. Existing literature related to online privacy provides
insights around topics such as information leakage while surfing the web using
desktop computers [16] or mobile devices [17]. In the following we discuss
related work aimed at exploiting this information in the context of human
movement data, such as handwriting and gesturing, since they are the closest
work to swiping.

2.1 Biometrics Prediction from Movement Data

Leiva et al. [18] showed that accurate detection of human movements has more
to do with how users write, rather than what they write. They concluded that
it is better to use recurrent models than convolutional models for biometric
classification, as recurrent models capture the inherent movement dynamics.
However, they only explored one shallow architecture, based on Bidirectional
Gated Recurrent Unit (BiGRU) cells, in the context of binary classification
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of human vs. fake handwriting. Therefore, it is unclear what design choices
over the different hyperparameters (e.g. number of hidden layers, type of
recurrent cell, number of hidden units, learning rates, etc.) may affect classi-
fication performance. In this work we perform an exhaustive investigation in
this regard.

Leiva et al. [19] showed that our mouse movements may reveal who we
are. They developed a computational model based on BiGRU cells and were
able to classify the age and gender of the users with reasonable precision (near
70%) using a few lines of code. Recent work by White et al. [20] and Gajos
et al. [21] could detect neurodegenerative disorders from mouse cursor move-
ments, showing how our “digital phenotypes” could be used as adjunctive
screening tools.

Chen et al. [22] were the first to notice a strong relationship between gaze
position and cursor position during web browsing. Mueller and Lockerd [23]
investigated the use of mouse tracking to visualize and (manually) infer the
users’ interests. Since then, researchers have noted the utility of mouse cursor
analysis as a low-cost and scalable proxy of eye gaze [24-26]. Several works
have investigated closely the utility of mouse cursor data in web search [27—
29] and web page usability evaluation [30-32], two of the most prominent use
cases of this technology. Mouse biometrics is another active research area that
has recently shown how to identify an individual by analyzing their mouse
movements in controlled settings [33, 34]. This is the research line we focus on
in this work.

Objective measurements of attentional processes are increasingly being
used to explain or predict user behavior. A mouse click is often preceded by
several interactions such as scrolling, hovers, movements, etc. and thus can
lead to a better overall understanding of the user’s thought process. In what
follows, we review research efforts that have focused on mouse cursor analysis
to infer user interest, visual attention, emotions, and demographic variables
like gender or age, on a desktop setting. We hypothesize that swiped word
trajectories carry the same rich information about the user.

2.2 Inferring User Interest

For a long time, commercial search engines have been interested in how
users interact with Search Engine Result Pages (SERPs), to anticipate bet-
ter placement and allocation of ads in sponsored search or to optimize
the content layout. Early work considered simple, coarse-grained features
derived from mouse cursor data to be surrogate measurements of user inter-
est [35, 36]. Follow-up research transitioned to more fine-grained mouse cursor
features [37, 38] that were shown to be more effective. These approaches have
been directed at predicting open-ended tasks like search success [39] or search
satisfaction [29]. In a similar vein, Huang et al. [24, 40] modeled mouse cursor
interactions and extended click models to compute more accurate relevance
judgements of search results. Mouse cursor position is mostly aligned to eye



Springer Nature 2021 BTEX template

What Can a Swiped Word Tell Us More? 5

gaze, especially on SERPs [41, 42], and that can be used as a good proxy for
predicting good and bad abandonment [43].

2.3 Inferring Visual Attention

Mouse cursor tracking has been also used to survey the visual focus of users in
sponsored search, thus revealing valuable — and at the same time sensitive —
information regarding the distribution of user attention over the various SERP
components. Despite the technical challenges that arise from this analysis,
previous work has shown the utility of mouse movement patterns to measure
within-content engagement [44] and predict reading experiences [45, 46]. Lagun
et al. [47] introduced the concept of motifs, or frequent cursor subsequences, in
the estimation of search result relevance. Similarly, Liu et al. [29] applied the
motifs concept to SERPs and predicted search result utility, searcher effort,
and satisfaction at a search task level. Boi et al. [48] proposed a method for
predicting whether the user is looking at the content pointed by the cursor,
exploiting the mouse cursor data and a segmentation of the contents in a web
page. Lastly, Arapakis et al. [27, 49] investigated user engagement with direct
displays on SERPs and provided further evidence that supports the utility of
mouse cursor data for measuring user attention at a display-level granularity.

2.4 Inferring Emotional State

Although the connection between mouse cursor movements and the underlying
psychological states has been a topic of research since the early 90s [50, 51],
some studies have investigated the utility of mouse cursor data for predicting
the user’s emotional state. For example, Zimmermann et al. [52] investi-
gated the effect of induced affective states on the motor-behavior of online
shoppers and found that the total duration of mouse cursor movements and
the number of velocity changes were associated to the experienced arousal.
Kaklauskas et al. [53] created a system that extracts physiological and motor-
control parameters from mouse cursor interactions and then triangulated those
with psychological data taken from self-reports, to analyse correlations with
users’ emotional state and labour productivity. In a similar line, Azcarraga
et al. [54] combined electroencephalography signals and mouse cursor inter-
actions to predict self-reported emotions like frustration, interest, confidence
and excitement. Yamauchi et al. [55] studied the relationship between mouse
cursor trajectories and generalized anxiety in human subjects. Lastly, Kapoor
et al. [56] predicted whether a user experiences frustration, using an array of
affective-aware sensors.

2.5 Inferring Demographics

Yamauchi et al. [57] examined the extent to which mouse cursor movements
can help identify the gender and the experienced feelings of users who were
watching short film clips. Although this work provides early evidence on the
utility of mouse cursor data for advanced online user profiling, it suffers from
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certain limitations that we address in this work. First, the experimental setting
has limited generalizability, since the adopted perception task is not very well
connected to typical activities that users perform online, such as web search.
Second, the data used in their predictive modeling task include multiple sam-
ples per participant randomly assigned to the training and test data partitions,
hence there may be information leakage that artificially inflated model per-
formance. In our analysis, we limit the training samples to exactly one mouse
cursor trajectory per participant and test our models on unseen individuals.

Kratky et al. [58] recorded mouse cursor movements in an e-commerce
website and engineered a set of meta-features to predict the user gender and
age group. Their classifier was trained on several days of data per participant.
Although the training and test collections had disjoint sets of participants, it
was stated that the reported results were overly optimistic since researchers
could not verify their ground-truth data [58]. In contrast, as discussed later,
our dataset was collected from high-quality crowdworkers so we are confident
that the ground-truth information is correct.

In a similar vein, Pentel et al. [59] used data from six different external
sources, including e.g., keystroke data and feedback questionnaires, and hand-
crafted features proposed in earlier works [35, 36, 43] to train predictive models
that could identify the users’ age and gender. However, because their approach
relies mainly on ad-hoc data, it is less scalable and more difficult to imple-
ment than the approach we propose in this paper, which takes as input raw
mouse cursor data. Moreover, Pentel et al. reported optimistic performance
scores, which may be due to information leakage across data partitions, and
omit important classification metrics such as precision, recall, and AUC. To
account for their modeling approach, as well as that proposed by Kratky et
al. [58], we implement the same classifier and test it in our setting.

2.6 Summary

There is a vast research literature about modeling user behavior using move-
ment data. How we move our mouse provides a surrogate signal for gaze
fixation, and therefore reveals our focus of attention, which can be used to learn
latent interests. However there is no previous work in this regard using swipe
trajectories. This is because of the lack of public datasets, which are difficult
to collect in practice. Fortunately, Leiva et al. [4] have recently released a swip-
ing dataset that enables researchers to create sophisticated Machine Learning
models. To the best of our knowledge, we are the first to tap into this dataset
to create different biometric-related classifiers.

3 Experiments

Based on the research literature, we hypothesize that cognitive and motor
control mechanisms are embodied and reflected, to some extent, in swipe tra-
jectories. If our classification results prove to be better than random, this work
will open a new research avenue for advanced user profiling.
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3.1 Dataset

The swiping dataset we used in this study is publicly available at https://
osf.io/sj67f/. It covers both movement-level and task performance-level data,
and was collected in a crowdsourcing study using a JavaScript-based virtual
QWERTY soft keyboard. The dataset comprises 100K+ English words swiped
by 1,338 users. Each word was swiped in the context of either a memorable
sentence, drawn from the EnronMobile phrase set [60], or a random 4-words
sentence, drawn from Google’s Trillion Word Corpus' and the Forbes 2019
Global 2000 list.2 All words are lowercased with no punctuation symbols.

Swipe logs include the following information: event name (e.g. touchstart,
touchmove), event timestamp, x and y coordinates, touch radius, and rota-
tion angle, where available. The logs also include the keyboard size, the
prompted word, and whether it was swiped correctly or not. We deliberately
ignore the wrongly swiped words, as they were clear outliers, as described
in the dataset [4]. There are 11,295 unique words correctly swiped which we
consider for analysis. Additionally, the dataset provides the following user
metadata: swipe familiarity, age, gender, nationality, browser language, device
pixel ratio, screen size (height and width), English level, dominant hand,
swipe hand, swipe finger, and mobile vendor. In this paper, we predict all the
biometric-related variables: swipe familiarity, age, gender, nationality, English
level, dominant hand, swipe hand, and swipe finger.

For the task of training our classifiers, we performed a light preprocessing
on the dataset. First, we iterated through the 1,338 user logs and gathered
the raw trajectories of mousemove x,y coordinates and associated timestamps
t for each of the individual correctly swiped words. Each raw trajectory has
the following format: (z,y,t)1, ..., (z,y,t), where (z,y,t); = (z;, ¥, t;). Then,
we computed the offsets of the raw points, as it makes our sequence models
scale-invariant and independent of the device’s screen size: (Azx, Ay, At); =
(i — Tit1, Yi — Yit+1, ti — ti+1). Eventually, our final dataset contains a total of
94,841 swiped word trajectories from 1,308 unique participants.

3.2 Predictive Targets

Figure 2 shows the class distributions of the targets we set to predict in this
article. From the figures we can see that some targets are more imbalanced
than others. This can potentially bias to our sequence classifiers, so we created
splits of the data as balanced as possible, as explained next.

The familiarity target describes how well a user is used to swiping and
contains 5 classes in the original dataset: “everyday” (22%), “often” (15%),
“sometimes” (25%), “rarely” (27%) and “never” (11%). By looking at the class
distributions, we can see that the class “often” and “never” are twice as small
as the other classes. Therefore, we merged the “often” class with “everyday”

Lhttps://github.com/first20hours/google- 10000-english
2https://www.forbes.com/global2000/
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Fig. 2: Targets and their class distributions in the original swiping dataset.

and the “never” class with “rarely”. Eventually we ended up with 3 classes for
our experiments: “everyday” (37%), “sometimes” (25%) and “rarely” (38%).

The English level target has 4 classes in the original dataset: “native”
(34%), “advanced” (27%), “intermediate” (24%), and “beginner” (15%). In
this case the class distributions are fairly balanced except “beginner”, how-
ever the class semantics are important to preserve in this case. Leiva et al. [4]
reported that “intermediate” and “beginner” English speakers were signifi-
cantly slower and committed more errors than any of the other users, therefore
we did not modify the original class distributions for the English level target.

The age target has 4 classes in the original dataset: “youth” (18-20 years,
33%), “young” (21-30 years, 42%), “adult” (31-40 years, 18%) and “senior”
(414 years, 7%). Since these class distributions are rather imbalanced, we
redefine the age brackets as follows: “youth” (18-20 years, 33%), “young”
(21-28 years, 37%), “adult” (29+ years, 30%).

The nationality target describes whether a user is a US citizen, given that
US users were over-represented in the original dataset. The class distributions
are: 39% “US” and 61% “non-US” users. Since there are two classes, we did
not modify the original class distributions.

The dominant hand target describes the hand the user uses the most.
The class distributions are: 90% “right-handed” and 10% “left-handed” users.
Since there are two classes, we did not modify the original class distributions.

The swipe hand label describes if the user likes to use the right, left, or
both hands to swipe. The original dataset has 3 classes: 74% “right hand”,
21% “both hands”, and 5% “left hand”. Due to their significant difference in
size compared to the right hand class, we decided to merge the “left hand”
and “both hands” classes. Eventually we ended up with 2 classes for our
experiments: “right hand” (74%), “other hand” (26%).

The swipe finger label describes which finger the user prefers to swipe
with. The original dataset has 3 classes: “index finger” (65%), “thumb” (30%),
and “other finger” (5%). Given that the latter class is substantially smaller
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that the rest, we left it out and consider 2 classes in our experiments: “index
finger” and “thumb”.

The gender target includes “female” (69%), “male” (30%), and “other”
(1%). Given that the latter class is substantially smaller that the rest, we left
it out and consider 2 classes in our experiments: “female” and “male”.

We can see that, even after this careful class redistribution procedure, some
of our targets still have notable imbalanced classes. To address this challenge
we used cost-sensitive models via class weighting, as described in the next
section.

3.3 Model Architectures

Since swipe trajectories are sequences of coordinates, we have chosen to train
sequence models. Sequence models are Machine Learning models to handle
sequential data, where each observation is dependent or contextually related
to the previous one, such as text streams, audio, time-series data, etc. Recur-
rent Neural Networks (RNN) are by far the most popular algorithms used in
sequence models. RNNs consist of standard recurrent cells, shown in Figure 3.

The typical feature of the RNN cell is a cyclic (or loop) connection, which
enables the model to update the current state based on past states and current
input data. Formally, the standard recurrent cell is defined as follows:

hj = ®Wphj—1 +W,z; +b) (1)
Oj = h]’ (2)
where z; = (z,y,t); denotes the jth vector of the input signal z =

(x,y,t)j=1,... z at timestep j (i.e., the index at which a point coordinate has
happened), h; is the hidden state of the cell, and o; denotes the cell output,
respectively; W}, and W, are the weight matrices; b is the bias of the neurons;
and @ is an activation function.

/ Rolled RNN Unrolled RNN \
Output layer °

Hidden layers =

Input layer

- -/

Fig. 3: Standard RNN architecture.

Standard recurrent cells have achieved success in many sequence learning
problems such as natural language processing [61], action recognition [62], or
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image captioning [63]. However, the standard recurrent cells are not capable of
handling long-term dependencies. To solve this issue, the LSTM and GRU cells
were developed [64, 65]. They improve the capacity of the standard recurrent
cell by introducing different gates, which we briefly describe as follows.

On the one hand, the LSTM cell is defined as follows:

Gi = o(Wylhj-1,2;] + b;)

Gy =0o(Wylhj_1, 2] + by)
Go = o(Wolhj—1,2;] + bo)
;=G 0¢+GrOci1
¢; = U (Welhj_1, zj] + be)
hj =G, ® ¥(cj)

S O s W
NI A N N

N AN N N /N /N
~

where ¢; is a hidden state responsible for the long-term memory, ¢; is a
candidate state responsible for controlling the cell-state data, W, are weight
matrices, b, are biases, G, denote cell gates (i: input, f: forget, o: output),
and ¥ and o are activation functions. The ® operator denotes the Hadamard
(element-wise) product.

As noted, the LSTM has two kinds of hidden states [66]: a “slow” state c¢;
that keeps long-term memory, and a “fast” state h; that makes decisions over
short periods of time. The forget gate Gy can decide what information will be
thrown away from the cell state. In practice, the activation functions ¥ and
o are hyperbolic tangent and sigmoid, respectively, however other non-linear
functions have been promoted in the research literature; see the next section
for a brief discussion.

On the other hand, the GRU cell is defined as follows:

Gu = c(Walhj_1, 2] + by) (9
G, = o(Wylhj_1, 2] +b,) (10
& = U(W[Gr ® hy_1, 2] + be) (11
hj=Gu®é +(1—Gy)®hj_y (12

where the forget and input gates of the LSTM cell are now combined into
a single update gate G,. A reset gate G, controls which parts of the state
get used to compute next cell state. The LSTM and GRU architectures are
presented in figure Figure 4. As it can be observed, GRU controls the flow of
information like the LSTM cell, but without having to use memory (the forget
and output gates in LSTM): the full state vector is output at every time step.
Furthermore, performance-wise the GRU cell is on par with the LSTM in many
problems [67, 68] but it is computationally more efficient because of its less
complex structure. Therefore, our classifier uses GRU cells for its RNN layer.

As can be observed, GRU controls the flow of information like the LSTM
cell, but without having to use memory (the forget and output gates in LSTM):
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Forget gate Cell state
Reset gate

Input gate Output gate Update gate

(a) LSTM cell. (b) GRU cell.

Fig. 4: Overview of the LSTM and GRU cells.

the full state vector is output at every time step. Furthermore, performance-
wise the GRU cell has been shown to be on par with the LSTM in many
problems [67, 68] while at the same time being computationally more efficient
because of its less complex structure. It remains unclear, however, what would
be the best RNN-based architecture configuration (e.g. type of cell, number of
layers, number of neurons, etc.) for predicting demographic and behavioral cor-
relates from swipe trajectories. Therefore, we study what is the most suitable
configuration.

The hyperbolic tangent activation function is applied in every recurrent
layer, since recurrent neural networks do not only get gradients from lower
layers but also from previous timesteps. The derivatives of tanh are larger than
the other activation functions such as sigmoid or swish. Thus, the cost function
is minimized faster by using the hyperbolic tangent activation function. It has
a normalized range from -1 to 1 and the output is symmetric around 0 which
leads to faster convergence. Formally:

ef—e’*

tanh(z) = +7
e* +e %

(13)
Finally, the classification rule of all the classifiers we trained is defined by:
z = softmax(W, ©® h; +b,) (14)

where softmax(v) is the softmax function, which normalizes the output of the
last network layer (denoted as v for the sake of simplicity) to a probability
distribution over the predicted output classes K:

evi

ZK evi (15)

softmax(v); =

fori={1,...,K} and v = (v1,...,vK).
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3.4 Methodology

Neural networks require inputs with the same shape and size, at least within
the same batch. However, the trajectories in the swiping dataset have varying
sequence lengths (Mean="72, StDev=64). Thus, we need to apply padding and
truncation to the sequence trajectories in order to ensure equally-sized lengths.
We chose 200 points as our maximum sequence length, based on the data
distribution, thus all sequences were padded or truncated to this maximum
capacity.

For the data split ratio, we randomly used 60% for the training set, 20% for
the validation set and the remaining 20% for the testing set. Each model was
trained and evaluated on the very same data partitions. The testing partition
is held out exclusively for model evaluation, as it represents unseen data and
is therefore a more challenging but also a more realistic scenario. We chose to
work with the Adam optimizer since it is an algorithm for efficient stochastic
optimization that only requires first-order gradients with little memory require-
ment [69]. The loss function to minimize is sparse categorical cross-entropy,
since our task is a multi-class classification problem with C' > 2 classes.

3.4.1 Model Hyperparameters

We conducted a systematic analysis regarding which architecture hyperparam-
eters affect model performance. The architecture choices include the type of
layer (RNN, LSTM or GRU), whether bidirectional or not, number of hidden
neurons, number of hidden layers, and optimizer’s learning rate.

In bidirectional models, the input flows in both directions such that every
component of an input sequence is able to use the information from both
the past and present. The model adds for each recurrent layer another recur-
rent layer with the reversed information flow. The outputs from forward and
backward layers are combined by concatenating them.

The learning rate controls how quickly a neural network model adapts to
a problem. By choosing smaller learning rates, the model might result in a
long training or might get stuck in the process since the changes made to
the weights each update are smaller. On the other hand, the model might
converge too fast to a sub-optimal solution by choosing larger learning rates.
We experimented with learning rate (LR) 107!, 1072, 1073, 10~% and 107>, 5
variations in total. Note that LR higher than 10~ is unlikely to work because
of the Robbins-Monro condition: the more LR approaches 1, the less room for
the model to learn from backpropagation. Further, when LR > 1, stochastic
gradient descent is not guaranteed to converge to a minimum [70].

We tested the performance of the different layer types (RNN, BiRNN,
LSTM, BiLSTM, GRU and BiGRU), 6 variations in total for each target.
The number of hidden layers we tested range from 1 to 4 layers in our model
architectures, 4 variations in total. The number of hidden units range from
10 to 150, with a step size of 10, 15 variations in total. Eventually, we tested
30 different hyperparameter variations for each predicted target, totalling a
number of 240 different trained classifiers.
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3.4.2 Model Regularization

We use two popular regularization techniques to prevent overfitting and make
our classifiers more generalizable: Dropout and Early Stopping. Dropout
removes neurons at random during training, to force different connection paths
between neurons and thus avoid the model to take shortcuts (like creating spu-
rious correlations between inputs and outputs). We used Dropout with 0.15
probability in all RNN layers. Early Stopping stops training when no further
improvements over a given metric (e.g. classification accuracy, validation loss)
are made. We set 40 epochs of patience for Early Stopping while monitoring
the F1 score, i.e. if the model does not improve the F1 score over the valida-
tion data in 40 consecutive epochs, training stops and the best model weights
are retained. The maximum number of training epochs is set to 500 and batch
size is set to 32 trajectories.

As discussed in the previous section, our class distributions are imbalanced
for most of the targets. To address this challenge we used cost-sensitive models
via class weighting. The idea is to give all classes equal importance on gradient
updates, regardless of how many samples we have from each class in the train-
ing data. This prevents models from predicting the more frequent class more
often just because it is more common. Instead, class weighting forces models
to learn a more apt representation of each class.

3.4.3 Evaluation Metrics

To evaluate model performance, we should note that classification accuracy
is not the best metrics to report, since our data is not perfectly balanced.
Therefore, we chose the F1 score as our main evaluation metric, since it very
popular for imbalanced classification problems. The F1 score (Equation 18)
is the harmonic mean of Precision and Recall. Precision (Equation 16) is the
ratio of correctly predicted positive instances (True Positives, TP) divided by
the total number of predicted positive instances both True (TP) and False
Positives (FP). Recall (Equation 17) identifies the number of correct positive
predictions among all positive predictions that were possible, including TP and
False Negatives (FN). We also report the Area Under the ROC curve (AUC),
which determines the discriminatory power of any classifier [71].

.. TP
PreClSlOn = m (16)
TP
1= —— 1
Recall = 7571 (17)
F1 score — 2 - Precision - Recall (18)

Precision + Recall

4 Results and Discussion

In the following we present the results obtained in our experiments. To test
our research hypothesis, we also consider the accuracy of a random classifier
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Fig. 5: Predicting the user’s swiping familiarity from swiped words trajecto-
ries.

as baseline, denoted with a horizontal black dotted line in all plots, for which
we compute the a priori distribution of the number of classes C, i.e.

1
Random Accuracy (%) = % (19)

As explained in previous sections, if the models we train are no better than
a random classifier, then we must reject our research hypothesis and conclude
that swiping data do not reveal demographic or behavioral information about
the user. Otherwise, we must validate our research hypothesis and report the
best model configuration for each predicted target.

In our experiments we have investigated how model performance met-
rics vary by manipulating the different hyperparameters: layer type (RNN,
GRU, LSTM), bidirectionality, number of hidden layers and hidden units, and
optimizer’s learning rate. The best performance results obtained through a
systematic analysis of the chosen hyperparameters are reported from Figure 5
to Figure 12. As can be observed, in all cases, the trained models’ performance
is better than that of a random classifier, which indicates that our models
are able to learn latent representations about the demographic and behavioral
information from swiping trajectories.

Table 1 summarizes the best performing models and their corresponding
hyperparameters. We also provide a random classifier baseline to contextualize
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Fig. 6: Predicting the user’s English level from swiped words trajectories.
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Fig. 7: Predicting the user’s age from swiped words trajectories.
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Fig. 8: Predicting the user’s nationality from swiped words trajectories.
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Fig. 9: Predicting the user’s gender from swiped words trajectories.
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Fig. 10: Predicting the user’s dominant hand from swiped words trajectories.
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Fig. 11: Predicting the user’s swiping hand from swiped words trajectories.
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Fig. 12: Predicting the user’s swiping finger from swiped words trajectories.

the importance of the results. As shown in the table, the classifiers performed
best on most demographic and behavioural correlates by defining the model
to be bidirectional and choosing recurrent layers with LSTM or GRU cells.
All models performed better than a random classifier, with an increase from
4% to 10% for the swiping familiarity, age and swiping hand targets, and with
an increase from 10 to almost 40% for the English level, nationality, gender,
dominant hand and swiping finger targets. Overall, our results show that the
trained classifiers were able to identify latent demographic traits from the
swiping trajectories, hence validating our hypothesis that swiping carries rich
information about the user. This opens interesting research avenues which are
yet to be fully explored. For example, new techniques to prevent advanced user
profiling should be devised in future work.

Finally, we also report the confusion matrices for each of the best per-
forming models in Figure 13. As we can see, in most cases the trained models
were able to successfully discriminate between classes. However, in other cases
the models failed to learn properly to discriminate and degenerated as ZeroR
classifier, i.e. a model that always predicts the majority class. This only hap-
pened to the models that predicted gender, dominant hand, and swiping finger.
In any case, the performance of all models is better than that of a random
classifier, therefore we validate our research hypothesis and conclude that,
overall, demographic and behavioral information can be inferred from swiping
trajectories.
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Target Model Layers Units LR Rand. Acc. Model Acc.
Age BiGRU 2 150 1073 33.33% 40.91%
Gender BiLSTM 2 50 107! 50% 68.51%
Nationality RNN 2 150 107* 50% 63.50%
Familiarity LSTM 2 140 107* 33.33% 37.87T%
English level BiLSTM 4 100 107* 25% 37.32%
Dominant hand BiLSTM 2 150 1072 50% 88.57%
Swiping hand LSTM 2 100 1073 50% 58.74%
Swiping finger =~ GRU 2 100 107! 50% 69.28%

Table 1: Summary of the best model architectures for predicting demographic
(top rows) and behavioral (bottom rows) information from swiping trajecto-
ries.

5 Limitations and Future Work

In this work we have focused on single-word classification, which is the most
challenging scenario since some words might be as short as two characters
and therefore the information a classifier can infer is minimal. It would be
interesting to predict demographic and behavioral attributes at the sentence
level, i.e., by considering all swiped words a user might enter in a row. This
could be done, e.g., by concatenating the feature vectors of each word in the
sentence. In addition, we have not considered word difficulty in our analysis.
This might be an interesting avenue for future work, since it has been shown
that experienced shape-writing users tend to be more loose while entering non-
familiar words [4]. It may be the case, therefore, that other demographic and
behavioral traits are highly correlated with swiping patterns. For example,
ageing is marked by a decline in motor control abilities, which is reflected by
the users’ writing performance. Smith et al. [72] observed that older people
incurred in longer movement times, but also more sub-movements and more
pointing errors than the young. Unfortunately, we cannot study this effect
in the dataset we have analyzed, since most users are aged between 20 and
40 years. More concretely, the dataset is skewed towards young female right-
handed participants.

Our sequence models are relatively costly to train because of their recur-
rent nature and the large amount of swiping data we analyzed. For example,
training the non-bidirectional LSTM models took between 1.5 to 10 hours in
the High-Performance Computing facilities of our university, whereas the same
model with bidirectional layers took between 3 and 20 hours. While these train-
ing times might be small for today’s standards, real-time processing is clear
out of reach at present, which means that we cannot build our models as new
data come in. We also have not experimented with attention mechanisms such
as local [73] and global [74] attention. Attention has been proved to be effec-
tive for recurrent models, but we decided to go for an initial exploration of the
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Fig. 13: Confusion matrices for the best performing models reported in
Table 1.

feasibility of our approach in the first place. Given that our results are promis-
ing, we can even experiment with other architectures such as Transformers in
future work.

Furthermore, we have explored sequential models only, as they are bet-
ter suited to handle the sequential nature of swipe trajectories. Observing the
promising results obtained in our study, we believe that other data represen-
tations should be explored. For example, if we consider images (pixel values)
instead of discrete spatio-temporal time series as input data, then we could
try Convolutional Neural Networks (CNNs) as well as more powerful architec-
tures like Vision Transformers (ViT). This is left as an interesting opportunity
for future work.

Another interesting opportunity for future work is to consider more bal-
anced splits of the data. Given the number of target classes, there are 1152
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possible combinations, not all of which may be well represented, and are cer-
tainly not represented equally. We should point out, however, that our study
is the first to use the original “How we Swipe” dataset for training Machine
Learning models and to get a more realistic estimate of their performance. We
also have not considered any interactions between targets, such as gender and
age. For example, training only for young females (which happens to be the
most represented group of participants) might result in more accurate models.

Finally, we should remark that all mobile vendors provide a swiping service
to millions of users. Although, they ask for consent to track swiping informa-
tion for the purpose of improving the service and enhancing user experience,
our study brings to light that extracting personal information of users from
swiping data is also within reach. The significantly large amount of swip-
ing data mobile vendors can have access to, allows them to build a powerful
demographic and behavioral inference engines. Thus, the users can potentially
give up their privacy, without actually consenting to it, only by sharing their
swiping information with mobile vendors.

6 Conclusion

We have analyzed the dynamics of swiping trajectories from the only pub-
licly available swiping dataset to model and predict different demographic and
behavioural correlates. We explored three popular sequence model architec-
tures (RNN, LSTM, GRU) and conducted a systematic analysis regarding
which model hyperparameters yield better classification performance. Over-
all, the classifiers performed best on most demographic and behavioural traits
by defining the models to be bidirectional and choosing recurrent layers
with LSTM or GRU cells having 100 units each. We noticed that the eight
considered targets are challenging to predict, however the results from our
experimental evaluations demonstrate that all models perform better than a
random classifier, with an increase from 4 to 10% for the swiping familiarity,
age, and swiping hand targets, and with an increase from 10 to 40% for the
English level, nationality, gender, dominant hand, and swiping finger targets.
For the three latter targets (gender, dominant hand, and swiping finger) the
trained models tended to predict the majority class.

Taken together, our results show that the classifiers are able to iden-
tify latent demographic and behavioral information from swiping trajectories,
hence validating our research hypothesis that swiping carries rich informa-
tion about the user. This finding may have unexpected consequences for user’s
privacy, since currently swiping is supported by all mobile vendors and has
millions of users, so people may be inadvertently profiled at an unprecedented
granularity. It is a matter of time for researchers to build more sophisticated
Machine Learning models, therefore future work should consider new ways of
addressing these issues without impacting the user’s swiping experience.

Acknowledgements. The experiments presented in this paper were carried
out using the HPC facilities of the University of Luxembourg: http://hpc.uni.lu


http://hpc.uni.lu

Springer Nature 2021 BTEX template

22 What Can a Swiped Word Tell Us More?
Declarations

Funding

This work was supported by the Horizon 2020 FET program of the European
Union through the ERA-NET Cofund funding grant CHIST-ERA-20-BCI-
001 and the European Innovation Council Pathfinder program (SYMBIOTIK
project, grant 101071147).

Competing interests

The authors have no competing interests to declare that are relevant to the
content of this article.

Availability of data and materials

The swiping dataset we used is publicly available at https://osf.io/sj67f/.

Authors’ contributions

D.C.A. Lemarquis: Software, Writing - Original Draft. B.A. Yilma:
Methodology, Writing - Original Draft. L.A. Leiva: Conceptualization,
Methodology, Writing - Reviewing and Editing.

References

[1] Reyal, S., Zhai, S., Kristensson, P.O.: Performance and user experience
of touchscreen and gesture keyboards in a lab setting and in the wild. In:
Proc. SIGCHI Conf. on Human Factors in Computing Systems (CHI), pp.
679-688 (2015)

[2] Palin, K., Feit, A.M., Kim, S., Kristensson, P.O., Oulasvirta, A.: How
do people type on mobile devices? observations from a study with 37,000
volunteers. In: Proc. Intl. Conf. on Human-computer Interaction with
Mobile Devices and Services (MobileHCI), pp. 1-12 (2019)

[3] Quinn, P., Zhai, S.: Modeling gesture-typing movements. Hum.-Comput.
Interact. 33(3) (2018)

[4] Leiva, L.A., Kim, S., Cui, W., Bi, X., Oulasvirta, A.: How we swipe: A
large-scale shape-writing dataset and empirical findings. In: Proc. Intl.
Conf. on Human-computer Interaction with Mobile Devices and Services
(MobileHCT) (2021)

[5] Buschek, D., Bisinger, B., Alt, F.: ResearchIME: A mobile keyboard appli-
cation for studying free typing behaviour in the wild. In: Proc. SIGCHI
Conf. on Human Factors in Computing Systems (CHI), pp. 1-14 (2018)


https://osf.io/sj67f/

[6]

[12]

[13]

[15]

[16]

Springer Nature 2021 BTEX template

What Can a Swiped Word Tell Us More? 23

Henze, N., Rukzio, E., Boll, S.: Observational and experimental investi-
gation of typing behaviour using virtual keyboards for mobile devices. In:
Proc. SIGCHI Conf. on Human Factors in Computing Systems (CHI), pp.
2659-2668 (2012)

Dhakal, V., Feit, A.M., Kristensson, P.O., Oulasvirta, A.: Observations
on typing from 136 million keystrokes. In: Proc. SIGCHI Conf. on Human
Factors in Computing Systems (CHI), pp. 1-12 (2018)

Zhai, S., Kristensson, P.O.: Shorthand writing on stylus keyboard. In:
Proc. SIGCHI Conf. on Human Factors in Computing Systems (CHI), pp.
97-104 (2003)

Markussen, A., Jakobsen, M.R., Hornbak, K.: Vulture: A mid-air
word-gesture keyboard. In: Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI), pp. 1073-1082 (2014)

Zhu, S., Zheng, J., Zhai, S., Bi, X.: i’sFree: Eyes-free gesture typing via a
touch-enabled remote control. In: Proc. SIGCHI Conf. on Human Factors
in Computing Systems (CHI), pp. 1-12 (2019)

Gupta, A., Ji, C., Yeo, H.-S., Quigley, A., Vogel, D.: RotoSwype: Word-
gesture typing using a ring. In: Proc. SIGCHI Conf. on Human Factors
in Computing Systems (CHI), pp. 1-12 (2019)

Yeo, H.-S., Phang, X.-S., Castellucci, S.J., Kristensson, P.O., Quigley,
A.: Investigating tilt-based gesture keyboard entry for single-handed text
entry on large devices. In: Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI), pp. 4194-4202 (2017)

Kristensson, P.O., Zhai, S.: Command strokes with and without preview:
using pen gestures on keyboard for command selection. In: Proc. SIGCHI
Conf. on Human Factors in Computing Systems (CHI), pp. 1137-1146
(2007)

Alvina, J., Griggio, C.F., Bi, X., Mackay, W.E.: CommandBoard: Creating
a general-purpose command gesture input space for soft keyboard. In:
Proc. ACM Symposium on User Interface Software Technology (UIST),
pp. 17-28 (2017)

Cui, W., Zheng, J., Lewis, B., Vogel, D., Bi, X.: HotStrokes: Word-gesture
shortcuts on a trackpad. In: Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI), pp. 1-13 (2019)

Starov, O., Gill, P., Nikiforakis, N.: Are you sure you want to contact
us? quantifying the leakage of PII via website contact forms. In: Proc.
PoPETs (2016)



24

[17]

[18]

[28]

Springer Nature 2021 BTEX template

What Can a Swiped Word Tell Us More?

Leung, C., Ren, J., Choffnes, D., Wilson, C.: Should you use the app for
that? comparing the privacy implications of app- and web-based online
services. In: Proc. Internet Measurements Conference (IMC) (2016)

Leiva, L.A., Diaz, M., Ferrer, M.A., Plamondon, R.: Human or machine?
it is not what you write, but how you write it. In: Proceedings of the Intl.
Conf. on Pattern Recognition (ICPR) (2020)

Leiva, L.A., Arapakis, 1., Tordanou, C.: My mouse, my rules: Privacy
issues of behavioral user profiling via mouse tracking. In: Proceedings of
ACM SIGIR Conference on Human Information Interaction and Retrieval
(CHIIR) (2021)

White, R.W., Doraiswamy, P.M., Horvitz, E.: Detecting neurodegenera-
tive disorders from web search signals. npj Digital Med. 1(8) (2018)

Gajos, K.Z., Reinecke, K., Donovan, M., Stephen, C.D., Hung, A.Y.,
Schmahmann, J.D., Gupta, A.S.: Computer mouse use captures ataxia
and parkinsonism, enabling accurate measurement and detection. Mov.
Disord. 35(2) (2020)

Chen, M.C., Anderson, J.R., Sohn, M.H.: What can a mouse cursor tell
us more? correlation of eye/mouse movements on web browsing. In: Proc.
Extended Abstracts on Human Factors in Computing Systems (CHI EA)
(2001)

Mueller, F., Lockerd, A.: Cheese: Tracking mouse movement activity
on websites, a tool for user modeling. In: Proc. Extended Abstracts on
Human Factors in Computing Systems (CHI EA) (2001)

Huang, J., White, R.W., Buscher, G., Wang, K.: Improving searcher mod-
els using mouse cursor activity. In: Proc. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR) (2012)

Huang, J., White, R., Buscher, G.: User see, user point: Gaze and cursor
alignment in web search. In: Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI) (2012)

Navalpakkam, V., Jentzsch, L., Sayres, R., Ravi, S., Ahmed, A., Smola,
A.: Measurement and modeling of eye-mouse behavior in the presence of
nonlinear page layouts. In: Proc. The Web Conference (WWW) (2013)

Arapakis, 1., Leiva, L.A.: Predicting user engagement with direct displays
using mouse cursor information. In: Proc. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR) (2016)

Chen, Y., Liu, Y., Zhang, M., Ma, S.: User satisfaction prediction with



[29]

[33]

[34]

(38]

[39]

Springer Nature 2021 BTEX template

What Can a Swiped Word Tell Us More? 25

mouse movement information in heterogeneous search environment. IEEE
Trans. Knowl. Data. Eng. 29(11) (2017)

Liu, Y., Chen, Y., Tang, J., Sun, J., Zhang, M., Ma, S., Zhu, X.: Dif-
ferent users, different opinions: Predicting search satisfaction with mouse
movement information. In: Proc. Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR) (2015)

Arroyo, E., Selker, T., Wei, W.: Usability tool for analysis of web designs
using mouse tracks. In: Proc. Extended Abstracts on Human Factors in
Computing Systems (CHI EA) (2006)

Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move: User
activity tracking for website usability evaluation and implicit interaction.
In: Proc. The Web Conference (WWW) (2006)

Leiva, L.A.: Restyling website design via touch-based interactions. In:
Proc. Intl. Conf. on Human-computer Interaction with Mobile Devices
and Services (MobileHCI) (2011)

Kratky, P., Chudd, D.: Recognition of web users with the aid of biometric
user model. J. Intell. Inf. Syst. 51(3) (2018)

Lu, H., Rose, J., Liu, Y., Awad, A., Hou, L.: Combining mouse and eye
movement biometrics for user authentication. In: Traoré, I., Awad, A.,
Woungang, I. (eds.) Information Security Practices. Springer, 777 (2017)

Claypool, M., Le, P., Wased, M., Brown, D.: Implicit interest indicators.
In: Proc. Intelligent User Interfaces (IUT) (2001)

Shapira, B., Taieb-Maimon, M., Moskowitz, A.: Study of the usefulness
of known and new implicit indicators and their optimal combination for

accurate inference of users interests. In: Proc. Symposium on Applied
Computing (SAC) (2006)

Guo, Q., Agichtein, E.: Exploring mouse movements for inferring query
intent. In: Proc. Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval (SIGIR) (2008)

Guo, Q., Agichtein, E.: Ready to buy or just browsing? detecting web
searcher goals from interaction data. In: Proc. Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR) (2010)

Guo, Q., Lagun, D., Agichtein, E.: Predicting web search success with
fine-grained interaction data. In: Proc. Intl. Conf. on Information and
Knowledge Management (CIKM) (2012)



26

[40]

[41]

[45]

[46]

[47]

(48]

[50]

[51]

Springer Nature 2021 BTEX template

What Can a Swiped Word Tell Us More?

Huang, J., White, R.W., Dumais, S.: No clicks, no problem: Using cursor
movements to understand and improve search. In: Proc. SIGCHI Conf.
on Human Factors in Computing Systems (CHI) (2011)

Guo, Q., Agichtein, E.: Beyond dwell time: Estimating document rele-
vance from cursor movements and other post-click searcher behavior. In:
Proc. The Web Conference (WWW) (2012)

Speicher, M., Both, A., Gaedke, M.: TellMyRelevance! predicting the rel-
evance of web search results from cursor interactions. In: Proc. Intl. Conf.
on Information and Knowledge Management (CIKM) (2013)

Diriye, A., White, R., Buscher, G., Dumais, S.: Leaving so soon? under-
standing and predicting web search abandonment rationales. In: Proc.
Intl. Conf. on Information and Knowledge Management (CIKM) (2012)

Arapakis, 1., Lalmas, M., Cambazoglu, B.B., Marcos, M.-C., Jose, J.M.:
User engagement in online news: Under the scope of sentiment, interest,
affect, and gaze. J. Assoc. Inf. Sci. Technol. 65(10) (2014)

Arapakis, 1., Lalmas, M., Valkanas, G.: Understanding within-content
engagement through pattern analysis of mouse gestures. In: Proc. Intl.
Conf. on Information and Knowledge Management (CIKM) (2014)

Hauger, D., Paramythis, A., Weibelzahl, S.: Using browser interaction
data to determine page reading behavior. In: Proc. UMAP (2011)

Lagun, D., Ageev, M., Guo, Q., Agichtein, E.: Discovering common motifs
in cursor movement data for improving web search. In: Proc. ACM Conf.
on Web Search and Data Mining (WSDM) (2014)

Boi, P., Fenu, G., Spano, L.D., Vargiu, V.: Reconstructing user’s atten-
tion on the web through mouse movements and perception-based content
identification. ACM Trans. Appl. Percept. 13(3) (2016)

Arapakis, 1., Penta, A., Joho, H., Leiva, L.A.: A price-per-attention auc-
tion scheme using mouse cursor information. ACM Trans. Inf. Syst. 38(2)
(2020)

Accot, J., Zhai, S.: Beyond fitts’ law: Models for trajectory-based HCI
tasks. In: Proc. SIGCHI Conf. on Human Factors in Computing Systems
(CHI) (1997)

Card, S.K., English, W.K., Burr, B.J.: Evaluation of mouse, rate-
controlled isometric joystick, step keys, and text keys, for text selection
on a CRT. In: Baecker, R.M., Buxton, W.A.S. (eds.) Human-computer
Interaction. Taylor & Francis, 77?7 (1987)



[52]

[53]

[54]

[55]

[56]

[57]

[58]

Springer Nature 2021 BTEX template

What Can a Swiped Word Tell Us More? 27

Zimmermann, P., Guttormsen, S., Danuser, B., Gomez, P.: Affective com-
puting — a rationale for measuring mood with mouse and keyboard. Int.
J. Occup. Saf. Ergon. 9 (2003)

Kaklauskas, A., Krutinis, M., Seniut, M.: Biometric mouse intelligent sys-
tem for student’s emotional and examination process analysis. In: Proc.

ICALT (2009)

Azcarraga, J., Suarez, M.T.: Predicting academic emotions based on
brainwaves, mouse behaviour and personality profile. In: Proc. PRICAI
(2012)

Yamauchi, T.: Mouse trajectories and state anxiety: Feature selection with
random forest. In: Proc. ACII (2013)

Kapoor, A., Burleson, W., Picard, R.W.: Automatic prediction of frus-
tration. Int. J. Hum.-Comput. Stud. 65(8) (2007)

Yamauchi, T., Bowman, C.: Mining cursor motions to find the gender,
experience, and feelings of computer users. In: Proc. ICDMW (2014)

Kratky, P., Chuda, D.: Estimating gender and age of web page visitors
from the way they use their mouse. In: Proc. WWW Companion (2016)

Pentel, A.: Predicting age and gender by keystroke dynamics and mouse
patterns. In: Adj. Proc. UMAP (2017)

Vertanen, K., Kristensson, P.O.: A versatile dataset for text entry evalu-
ations based on genuine mobile emails. In: Proc. Intl. Conf. on Human-
computer Interaction with Mobile Devices and Services (MobileHCI), pp.
295-298 (2011)

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with
neural networks. In: Proc. NeurIPS (2014)

Du, W., Wang, Y., Qiao, Y.: Recurrent spatial-temporal attention net-
work for action recognition in videos. IEEE Trans. Image Process. 27(3)
(2018)

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep cap-
tioning with multimodal recurrent neural networks (m-RNN). In: Proc.
ICLR (2015)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Com-
put. 9(8) (1997)

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning phrase representations using RNN encoder-decoder



28

Springer Nature 2021 BTEX template

What Can a Swiped Word Tell Us More?

for statistical machine translation. In: Proc. EMNLP (2014)

Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of
recurrent network architectures. In: Proc. ICML (2015)

Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of
gated recurrent neural networks on sequence modeling. In: NeurIPS
Workshops (2014)

Dey, R., Salemt, F.M.: Gate-variants of gated recurrent unit (GRU) neural
networks. In: Proc. MWSCAS (2017)

D.P.Kingma, Ba, J.L.: Adam: A method for stochastic optimization. In:
Proc. ICLR (2015)

Ranganath, R., Gerrish, S., Blei, D.M.: Black box variational inference.
In: Proc. AISTATS (2014)

Powers, D.M.W.: Evaluation: from Precision, Recall and F-measure to
ROC, informedness, markedness and correlation. J. Mach. Learn. Technol.
2(1) (2011)

Smith, M.W., Sharit, J., Czaja, S.J.: Aging, motor control, and the
performance of computer mouse tasks. Hum. Factors 41(3) (1999)

Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly
learning to align and translate. In: Proc. ICLR (2015)

Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to
attention-based neural machine translation. In: Proc. EMNLP (2015)



	Introduction
	Related Work
	Biometrics Prediction from Movement Data
	Inferring User Interest
	Inferring Visual Attention
	Inferring Emotional State
	Inferring Demographics
	Summary

	Experiments
	Dataset
	Predictive Targets
	Model Architectures
	Methodology
	Model Hyperparameters
	Model Regularization
	Evaluation Metrics


	Results and Discussion
	Limitations and Future Work
	Conclusion
	Acknowledgements


