
ORIGINAL ARTICLE

Archive-based coronavirus herd immunity algorithm for optimizing
weights in neural networks

Iyad Abu Doush1,2 • Mohammed A. Awadallah3,4 • Mohammed Azmi Al-Betar5,6 • Osama Ahmad Alomari7 •

Sharif Naser Makhadmeh5 • Ammar Kamal Abasi8 • Zaid Abdi Alkareem Alyasseri9

Received: 9 July 2022 / Accepted: 5 April 2023 / Published online: 19 April 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural

network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the

gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from

the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are

invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the

herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive

strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is

implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of

CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters

thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with

classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence

algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate

results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for

others.

Keywords Coronavirus herd immunity optimizer � CHIO � Optimization � Feedforward neural networks �
MLP � Archive technique

1 Introduction

Artificial neural network (ANN) is considered an intelli-

gent mathematical model inspired by the neurons in the

biological brain where the connections between neurons

exchange signals to communicate their data [1]. In machine

learning, the main applications of ANN are feature

extraction, classifications, predictions and regressions

problems [2–4]. Since their establishment in 1943 [5],

ANNs different types have been developed including radial

basis function (RBF) network [6], Feedforward neural

network [7], convolutional neural network [8], recurrent

neural network [9], and spiking neural networks [10]. The

main difference between these types is the learning pro-

cess. Normally, the learning process is either supervised,

where ANN takes feedback from the outsource, or unsu-

pervised, where the model discovers hidden patterns in the

data by itself [11].

The multilayer perceptron (MLP) neural network is one

of the most popular feedforward versions of the ANN that

has been applied successfully for several classification

problems [12–14]. This is because of its success in the

learning process during the training stage. The MLP nor-

mally used a supervised method based on the backpropa-

gation principle to accomplish accurate training which

adjusts the weights and biases of the MLP through at least

three layers (i.e., input, hidden, and output). The back-

propagation algorithm is a well-known gradient decent

technique [15]. Generally speaking, gradient descent

techniques suffer from chronic problems related to the slow

convergence and local optima trap [16, 17]. In order to

Extended author information available on the last page of the article

123

Neural Computing and Applications (2023) 35:15923–15941
https://doi.org/10.1007/s00521-023-08577-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-7200-0032
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08577-y&domain=pdf
https://doi.org/10.1007/s00521-023-08577-y

overcome such shortcomings, stochastic methods such as

metaheuristic-based techniques came to the fore [18].

Metaheuristic-based techniques such as evolutionary

algorithms and swarm-based algorithms can greatly sup-

port the MLP by accelerating the convergence as well as

avoiding becoming trapped in local optima. There is a wide

range of metaheuristic-based approaches used in the

training process of MLP. The earliest methods are genetic

algorithm (GA) [19], particle swarm optimization (PSO)

[20], and differential evolution (DE) [21, 22]. Nowadays, a

plethora of recent metaheuristic-based algorithm are being

used for MLPs with a very successfully outcomes such as

gray wolf optimizer [18, 23], salp swarm algorithm [24],

glowworm swarm optimization [25], grasshopper opti-

mization algorithm [26, 27], artificial bee colony [28],

butterfly optimization algorithm [29], monarch butterfly

optimization [30], social spider optimization algorithm

[31], dragonfly algorithm [28], fish swarm algorithm [32],

ant colony optimization [33], bat algorithm [34], bio-

geography-based optimization [35], gravitational search

algorithm [36], krill herd algorithm [37], ant lion optimizer

[38], cuckoo search algorithm [39], organisms search

algorithm [40], and lightning search algorithm [41].

According to the no free lunch (NFL) theorem for

optimization [42], there is no superior algorithm that can

perform well and excel others for all optimization problems

or even for different instances of the same optimization

problem. Therefore, there is still a window for improving

the MLP performance by investigating other state-of-the-

art metaheuristic-based methods to function as a training

method in MLP. Quite recently, a new human-based

metaheuristic algorithm called coronavirus herd immunity

optimizer (CHIO) has been proposed for global optimiza-

tion problems [43]. The main idea of CHIO is inspired

from herd immunity as a strategy to confront the pandemic.

CHIO can be considered as an evolutionary algorithm

which is initiated with a population of random individuals.

The population has three types of individual cases: sus-

ceptible, infected, and recovered. During the improvement

loop, the susceptible case can be infected based on their

inherited attributes. Also, the infected cases can be either

recover or die based on their improvement over a specific

period (i.e., specific iterations or can be called age). The

recovered cases which are the highly immuned cases are

stronger than the other cases and stand as a shield to stop

the pandemic. CHIO algorithm will stop when the whole

population is immune based on the herd immunity strategy.

The main advantage of using CHIO to tackle any

optimization problem is its ability to be adapted to the

optimization problem without prior-knowledge or deriva-

tive information in the initial search. It is very simple and

easy-to-use as a black-box. Recently, CHIO has been

successfully applied for solving several problems such as

traveling salesman problems [44] and wheel motor design

[45].

Archive methods have been introduced by many

researchers to promote the population diversity during

evolution and to store the potential optima. For example,

Lacroix et al. [46] introduced an archive method to store

the best-known solution in the evolving population into one

collection. The collection is used as an indexer for

searching space regions to identify the weak regions for

exploration. Later, these regions are stored in another

collection. During the evolution, the two collections are

continuously updated. Archive method for sub-populations

was introduced in Zhang et al. [47], Kundu et al. [48] to

undergo regeneration that will eventually form an initial

population of solutions for the evolving population. In [49],

an archive method is implemented to store stagnant solu-

tions. In this method, the detected stagnant solution will be

reinitialized, along with its neighbors whose fitness is

lower than the stagnant individual. Additionally, Sheng

et al. [50], Turky and Abdullah [51] utilizes the archive to

solve dynamic optimization problems. The archive aims to

improve the population evolution and maintain the best

potential solutions for subsequent cycles. The findings

demonstrate that the method has achieved better perfor-

mance than other methods in terms of locating several

optimal solutions in the problem search space reliably. The

external archive is used by other researchers to tackle

multi-objective optimization problems [52, 53]. Such

modification can increase the methods’ exploration capa-

bilities by speeding up the convergence toward their opti-

mal/near-optimal solutions.

To improve the exploration capabilities of CHIO an

archive that saves the best results is implemented. The use

of archive [46, 49, 54] can help in enhancing the ability to

search into more promising regions. The modified CHIO is

called archive-CHIO (ACHIO). The proposed algorithm is

used to improve the performance of MLP in training a

single hidden layer neural network. ACHIO is used to a

good initial sets of weights and biases to train MLP effi-

ciently. In order to measure the performance of the pro-

posed ACHIO-MLP system, the mean square error (MSE)

is used as an accuracy measurement [24, 55–57]. The

proposed ACHIO-MLP system is evaluated using 15

15924 Neural Computing and Applications (2023) 35:15923–15941

123

classification datasets of various complexity. The proposed

algorithm is evaluated against the original CHIO and six

well-known swarm intelligence algorithms (Artificial Bee

Colony (ABC), Bat Algorithm (BA), Flower Pollination

Algorithm (FPA), Particle Swarm Optimization (PSO),

Sine Cosine Algorithm (SCA), and Harmony Search (HS)).

The remaining parts of the present paper are arranged as

follows: the feedforward neural network (FNN) is dis-

cussed in Sect. 2. The proposed ACHIO-MLP is thor-

oughly described in Sect. 3. The experimental results and

their discussions are provided in Sect. 4. Finally, the paper

is concluded and the possible future developments are

given in Sect. 5.

2 Feedforward neural networks

A feedforward neural networks (FFNN) is computational

learning algorithm inspired by the processing units of the

human brain. These processing units are called neurons;

they are interconnected and grouped in three layers. The

first layer, the input layer, is composed of the same number

of neurons as the number of the input features corre-

sponding vector, the middle layers are called hidden layers,

and the last layer is the output layer that consists of output

neurons to the predicted class labels [58]. Multilayer per-

ceptron (MLP) is a FFNN model whose architecture is

formed by neurons interconnected in layers. Through these

connections, the information flows one-way. Figure 1

shows the network structure of an MLP with only one

hidden layer. The mathematical model of an MLP is based

on three factors: input data, weights, and biases. These

factors are applied in three steps in order to calculate the

output of MLPs as follows:

1. Initially, the weighted sum of the input is calculated

using Eq. (1).

Sj ¼
Xn

i¼1
ðwij:XiÞ � bj; j ¼ 1; 2; :::; h ð1Þ

where n represents the number of the input nodes in

the network, wij represents the weight on the connec-

tions between the input node i and hidden node j, Xi is

the ith input, and bj is the bias of the jth hidden node.

2. In this step, an activation function (e.g., Sigmoid,

which is commonly used in MLPs) is adopted to

transfer the weighted output in the hidden layer to the

next layer as follows:

Sj ¼ SigmoidðSjÞ ¼
1

1þ expð�SjÞ
; j ¼ 1; 2; :::h ð2Þ

3. Finally, the last output of the network is computed as

follows:

ŷk ¼
Xm

i¼1
wkjfi þ bk ð3Þ

where wjk is the weighted edge connecting hidden node j

to the output node k, and the bias of the output node k is bk.

As observed from Eqs. (1) and (3), the weights and

biases are primary factors for computing the final output in

MLPs. Having robust training for MLPs entails seeking the

proper values for both weights and biases [23]. In the next

sections, the CHIO algorithm is adapted as a trainer for

MLPs.

Fig. 1 Network structure of

MLPs with only single one

hidden layer

Neural Computing and Applications (2023) 35:15923–15941 15925

123

3 Archive-based coronavirus herd immunity
optimizer for MLP training

Coronavirus herd immunity optimizer (CHIO) is a recent

nature-inspired human-based optimization algorithm pro-

posed by Al-betar et al. [43]. CHIO imitates how herd

immunity can be utilized to confront the COVID-19 pan-

demic. The algorithm proves its effectiveness when com-

pared with other comparative methods to tackle

optimization problems [59, 60].

In CHIO, the total population is divided into three sub-

populations. The susceptible case sub-populations are the

solutions not infected by the virus, so they can be infected.

The infected case sub-populations have the solutions where

they are changed from being susceptible to being infected

after they inherit values from an infected case. The

immuned case sub-populations have solutions which are

the cases that survived after being infected. They are the

strongest portion of the population who are not affected by

the infected cases.

If a susceptible individual takes attributes from an

infected case and is not immuned, he will become also

infected (see Eq. (14) and lines 44–45 of Algorithm 1). The

individual will stay in this status until MaxAge is reached

where the case becomes either immuned (recovered) or

died (see lines 65-72 of Algorithm 1). Any susceptible

individual who takes attributes from the infected person

will become also infected. The contagion is possible only

for the susceptible individual. As the infected case will

become immuned (recovered) or it will die after reaching

MaxAge, but the immuned case cannot become infected.

Note that if a susceptible individual takes attributes from an

immuned individual his status will not change (i.e., will

still be susceptible) as shown in lines 57-60 of Algorithm 1.

The external archive is used to improve CHIO perfor-

mance by saving the best solutions to be used in the next

iterations. This enhanced version of CHIO is called

ACHIO. This section describes how ACHIO can be used to

train an MLP. As mentioned before, weights and biases are

the variables in MLP neural networks. The proposed

technique uses ACHIO to optimize the selected weights

and biases of the MLP neural networks by choosing the

MLPs that obtain the highest classification accuracy. In

ACHIO-MLP, the MLP is used in each iteration in the

process of evaluating the current solutions where the

weights and biases are the input vectors.

The archive rate (Ar) indicates the percentage of the best

solutions from the population that will be used (i.e., the

best weights and biases for the fittest MLP). These best

solutions as well as are stored in an external archive to be

used as a part of the initial population in the following run.

This allows ACHIO-MLP to make use of the best-obtained

solutions so far, during the algorithm evolution. This pro-

cess is repeated in each run. Since the initial run has no

feedback from the historical runs, the population is ran-

domly constructed in the first run. The archive will be

utilized after the first run.

The procedural steps of ACHIO-MLP to train a NN are

presented next. Figure 2 presents the steps of the ACHIO-

MLP algorithm. Furthermore, the pseudo-code of ACHIO-

MLP is given in Algorithm 1.

The proposed ACHIO-MLP algorithm has eight main

steps as follows:

Step 1: Define the external archive The external archive is

a matrix (ARCH) of size K � N (see Eq. (4)) where N is the

total number of weights and biases in the solution vector

while K is the number of best MLPs selected after each

training session for copying to the archive. K is set in

Eq. (4) by the ratio Ar. Ar is a parameter of the ACHIO

algorithm that is chosen in a preliminary experiment (see

Sect. 4.3). Note that in the first run, the ARCH will be

empty and it will be updated after the first run.

ARCH ¼

w1
1 � � � w1

n b11 � � � b1m
w2
1 � � � w2

n b21 � � � b2m
..
. ..

.
� � � ..

.

wK
1 � � � wK

n bK1 � � � bKm

2
6664

3
7775: ð4Þ

K ¼HIS� Ar ð5Þ

where the Ar is the archive rate which determines the rate

of extracting the best solutions from the previous run. In

other words, Ar is the ratio of MLPs selected from the

training set of MLPs for the next version of the archive.

The population size (i.e., HIS) determines the number of

solutions where each solution consists of a vector of

weights and biases for each MLP. Note that the archive

size depends on the population size using the archive rate

(Ar). Note that ARCH is only constructed at the beginning

of the execution and it keeps updating after each run.

Step 2: setting ACHIO and MLP parameters In MLP neural

network, the optimization problem can be represented

using a one-dimensional vector that is the set of weights

and biases that needs to be adjusted to increase the fitness

of an MLP to the data. The number of weights and biases in

the vector can be calculated using Eq. (6):

h ¼ 2� F þ 1; ð6Þ

n1 ¼ N � hþ h� o ð7Þ

b ¼ hþ o ð8Þ

where h is the number of neurons in the hidden layer, F is

the number of features in the dataset, n1 is the number of

15926 Neural Computing and Applications (2023) 35:15923–15941

123

weights, o is the number of outputs from the MLP neural

network, and b is the number of biases.

The resulting MLP is applied to all instances in the

dataset, and it is measured using mean square error (MSE).

The MSE is the difference between the MLP output and the

actual data. MSE is a common metric used that calculates

the difference between the actual value and the predicted

value. The equation for MSE is demonstrated in Eq. (9).

Note that y represents the actual value, ŷ represents the

predicted value, and k represents the number of training

samples.

MSE ¼ 1

k

Xk

i¼1
ðy� ŷÞ2 ð9Þ

The ŷ is predicted based on feeding the current weights and

biases to the MLP and identifying the correct class label for

each data input. The output of MLP is compared against

the actual data output to identify the quality of the MLP

(i.e., the MSE against the data). In the training phase, the

MSE value is the difference between the actual outcomes

and the predicted outcomes by the generated MLPs by the

proposed ACHIO-MLP algorithm.

Note that the size of the output prediction vector pro-

duced by the neural network will be depending on the

number of classes. For example, in case we have 3 classes

then we have an output vector of size 3 from the neural

network. Now the predicted class will have the larger value

of the 3 values in the vector. Assuming that the correct

class is the first one and the neural network predicted it to

be the second class. Then when calculating MSE the pre-

dicted value (i.e., ŷ) used for the first and the third classes

will be zero. On the other hand, the actual value (i.e., y) for

the second class and the third class will be zero.

In general, the classification problem can be modeled as

follows:

min
x

f ðxÞ x 2 ½lb; ub� ð10Þ

where f ðxÞ is MSE value (i.e., the objective function that

must be lowered) which is evaluated for the case

x ¼ ðx1; x2; . . .; xNÞ. Note that for MLP, the vector x has

two parts which are the weights (n) and biases (m) such that

Fig. 2 The steps of the proposed

ACHIO-MLP

Neural Computing and Applications (2023) 35:15923–15941 15927

123

x ¼ ðw1;w2; . . .;wn; b1; b2; . . .; bmÞ. Here, xi is the decision
variable indexed by i, and N is the total number of decision

variables in each individual which is N ¼ nþ m. The

weights and biases values for the MLP are within the

interval 2 ½lbi; ubi� where lbi and ubi are the smallest and

highest limits of the variable xi (i.e., the acceptable range

for MLP weights and biases).

There are five algorithmic parameters for ACHIO-MLP

which are as follows:

• C0 represents how many infected cases we have

initially, normally set to be one.

• MaxItr represents the maximum number of iterations.

• HIS is the population size (i.e., the weights and biases

vectors of MLPs).

• N represents the number of variables in the solution

(i.e., the number of weights and biases for each MLP).

• Ar represents the archive rate which is the percentage of

re-using the best solutions from the previous run.

In addition, ACHIO-MLP has two control parameters:

• Basic reproduction Rate (BR): which identifies the

speed of virus spreading among individuals, where it

assigned a random value in the range of [0, 1]. In other

words, BR is the average proportion of MLP’s weights

and biases that are changed toward the corresponding

weight or bias of another MLP at each time step (see

Eq. (19)).

• Maximum infected cases age (MaxAge): when an

infected (S = 1) (but not immune) case’s age reaches

MaxAge it will either die (i.e. removed from the

population of MLPs being trained) or become immune

(S = 2), depending on its MSE value compare to the

average MSE value of all the MLPs in the population

being trained (see Eq. (19)).

Step 3: Produce the population for MLP configuration

Firstly, in the first run, ACHIO-MLP generates HIS random

solutions and stores them in CHIO memory (CHIOM) as

shown in Eq. (11) where in the consecutive run, the

ACHIO-MLP will generate HIS� K random solutions and

K solution will be taken from ARCH. Each solution rep-

resents possible weights and biases as input for MLP. Each

solution is a vector x ¼ ðw1;w2; . . .;wn; b1; b2; . . .; bmÞ.

CHIOM ¼

w1
1 � � � w1

n b11 � � � b1m
w2
1 � � � w2

n b21 � � � b2m
..
. ..

.
� � � ..

.

wHIS
1 � � � wHIS

n bHIS1 � � � bHISm

2

6664

3

7775:

ð11Þ

where each row represents a solution xj which is a set of

weights and biases. The solution is generated as follows:

x j
i ¼ lbi þ ðubi � lbiÞ � Uð0; 1Þ, 8i ¼ 1; 2; . . .;N. The cost

function is computed using MSE as presented in Eq. (9). It

is worth mentioning that after the first run, some solutions

K are copied from the archive ARCH directly and the

remaining solutions are constructed randomly to fill up

CHIOM.

For simplicity, the term x j
i is used next to refer to the

variable i (weight or bias) of a solution vector j.

Step 4: The progress of herd immunity The ACHIO-MLP

algorithm is used to improve the weights and biases of all

MLP in the current population. Note that the current pop-

ulation is improved including the archive added from the

previous population. The weight or bias (xji) (i.e., x
j
i ¼ wi

j or

xji ¼ bij) for the individual xj stored in CHIOM would be

changed or not by applying the following three social

distancing rules based on the BR ratio:

x j
i ðt þ 1Þ

Cðx j
i ðtÞÞ r 2 0;

1

3
BR

� �
: //infected case

Nðx j
i ðtÞÞ r 2 1

3
BR;

2

3
BR

� �
: //susceptible case

Rðx j
i ðtÞÞ r 2 2

3
BR;BR

� �
: //immuned case

x j
i ðtÞ r�BR

8
>>>>>>>>><

>>>>>>>>>:

ð12Þ

Note that r is a random number within the range [0,1]. The

following is how the weights and biases of an MLP change

depending on other MLPs:

Infected case : in case r 2 ½0; 1
3
BRÞ, the new weight or

bias value xjiðt þ 1Þ would be based on a previous value of

an infected case xc computed as follows:

xjiðt þ 1Þ ¼ CðxjiðtÞÞ ð13Þ

where

CðxjiðtÞÞ ¼ xjiðtÞ þ r � ðxjiðtÞ � xci ðtÞÞ ð14Þ

where xci ðtÞ is from a randomly chosen infected case xc.

Susceptible case: in case r 2 ½1
3
BR; 2

3
BRÞ then the new

weight or bias value xjiðt þ 1Þ would be based on a previous
susceptible case xm as follows:

xjiðt þ 1Þ ¼ NðxjiðtÞÞ ð15Þ

where

NðxjiðtÞÞ ¼ xjiðtÞ þ r � ðxjiðtÞ � xmi ðtÞÞ ð16Þ

where xmi ðtÞ is from a randomly chosen susceptible case

xm.

Immuned case: in case r 2 ½2
3
BR;BRÞ, the new weight or

bias value xjiðt þ 1Þ would be based on a previous immuned

case xv as follows:

15928 Neural Computing and Applications (2023) 35:15923–15941

123

xjiðt þ 1Þ ¼ RðxjiðtÞÞ ð17Þ

where

RðxjiðtÞÞ ¼ xjiðtÞ þ r � ðxjiðtÞ � xvi ðtÞÞ ð18Þ

Note that xvi ðtÞ is from a randomly chosen immuned case

xv.

f ðxvÞ ¼ arg min
js fkjSk¼2g

f ðxjÞ:

The weights and biases of xjiðt þ 1Þ are used as input

parameters for MLP. The obtained result of MLP is used in

MSE which is a common metric used to evaluate the per-

formance of the obtained result. The objective here is to

find the set of weights and biases that minimize MSE using

the training instances from the selected dataset.

It is worth mentioning that in each CHIO operator, the

next value of any variable is calculated based on the

original value plus a small distance between the current

value and a randomly chosen variable value from a solution

with the same type.

Step 5: Refreshing the population The cost function

f ðxjðt þ 1ÞÞ of the newly generated weights and biases

vector, xjðt þ 1Þ, is computed. Then, it will replace the

current case xjðtÞ if better, such as f ðxjðt þ 1ÞÞ\f ðxjðtÞÞ
then the age vector Aj would be incremented one step.

For each case xj, the status value (Sj) is modified

according to the herd immune threshold represented in

Eq. (19).

Sj
1 f ðxjðt þ 1ÞÞ\ f ðxÞjðt þ 1Þ

Mf ðxÞ ^ Sj ¼ 0 ^ is Corona ðxjðt þ 1ÞÞ

2 f ðxjðt þ 1ÞÞ[f ðxÞjðt þ 1Þ
Mf ðxÞ ^ Sj ¼ 1

8
>>>><

>>>>:

ð19Þ

Note that is corona ðxjðt þ 1ÞÞ symbolizes a binary value

that is equal to one if the newly generated case xjðt þ 1Þ
was based on any infected case. Additionally, Mf ðxÞ is the
mean value of the population immune rates which is

defined as

PHIS

i¼1 f ðxiÞ
HIS

. Note that each MLP’s status value

indicates its current state; for MLPj its status is Sj 2
f0; 1; 2g where Sj ¼ 0 indicates a susceptible case, Sj ¼ 1

indicates an infected case, and Sj ¼ 2 indicates an

immuned case. The status of an MLP can change at any

iteration of the training, see Step 6 below.

Step 6: Fatality cases The MLP becomes dead if it is an

infected case (Sj == 1) and its immunity rate (f ðxjðt þ 1Þ)
did not improve over a predefined number of trials deter-

mined by age comparable to the maximum age MaxAge
(i.e., Aj � MaxAge). In such a situation, the case is

reconstructed as a new solution by applying x j
i ðt þ 1Þ =

lbi þ ðubi � lbiÞ � Uð0; 1Þ, 8i ¼ 1; 2; . . .;N. The algo-

rithm performs that to diversify its population (i.e., weights

and biases).

Step 7: Stop and test Steps 4 to 6 are replicated until we

reach the maximum number of iterations. After that, the

MLP with the lowest MSE value is tested with the test

dataset. In this study, all datasets are split into 30% for

testing and 70% for training.

Step 8: Update the external archive At the end of each run,

the solutions (i.e., the vector of weights and biases for each

MLP) in the population are arranged in ascending order

according to MSE values. The archive is cleared, the best

Ar solutions are copied to a new ARCH. Even though the

archive (ARCH) is emptied at the start of each training run,

its K MLPs are included in the new population of MLPs to

be trained, and the best Ar of the new population of MLPs

after training are copied to a new version archive (ARCH),

so the archive can be considered the store of accumulated

knowledge.

Neural Computing and Applications (2023) 35:15923–15941 15929

123

15930 Neural Computing and Applications (2023) 35:15923–15941

123

4 Experiments and results

In this section, the effectiveness and robustness of the

proposed ACHIO-MLP algorithm are studied using 15

benchmark datasets with different levels of complexity.

The characteristics of these datasets are presented in

Sect. 4.1. The experimental settings are demonstrated in

Sect 4.2. The influence of the archive rate parameter on the

performance of the ACHIO-MLP is studied in Sect. 4.3.

Finally, the performance of the proposed ACHIO-MLP

against the classical CHIO-MLP and six other meta-

heuristic algorithms in terms of classification accuracy and

algorithm convergence are discussed and analyzed in

Sect. 4.4.

4.1 Test datasets

The effectiveness of the proposed ACHIO-MLP is inves-

tigated using a set of experiments by utilizing 15 bench-

mark classification problems. These problems are selected

from the UCI Machine Learning Repository.1 The number

of classes, features, and instances (or samples) of these

datasets are presented in Table 1. The selected benchmark

datasets have different numbers of classes, i.e. 2, 4, 6, or 10

classes.

The datasets are normalized by applying min-max nor-

malization to improve the performance and training sta-

bility of the model. The following is the mathematical

formula used to reduce the scale of the features:

x0 ¼ xi �minF

maxF �minF
ð20Þ

where x0 is the normalized value of x in the range

½minF;maxF�.
In the last two columns of Table 1, the number of nodes

in the hidden layer and the MLP structure is presented. The

number of nodes in the hidden layer can be determined

using different techniques. In this paper, we followed the

method presented in [61, 62] in which the number of

neurons in the hidden layer can be identified using the

formula demonstrated in Eq. (21).

h ¼ 2� Lþ 1; ð21Þ

where L represents the number of features in the dataset.

Therefore, the whole MLP structure of each dataset is

presented in the form of input-hidden-output. For example,

in the Monk dataset, the MLP structure is 6-13-2 where the

number of input features is 6, the number of nodes in the

hidden layers is 13, and the number of output class labels is

2.

All datasets are split into 30% for testing and 70% for

training. We used a stratified sampling to split the dataset

[63]. This technique computes the ratio of each class and

then satisfies the train/test split percentage for each dataset

based on the computed ratio. Using this strategy can help in

maintaining the proportion of each class in the divided data

and in increasing the presence of minority classes. Such

that the train/test portions will have a balanced number of

classes.

4.2 Experimental settings

The proposed algorithm is compared against six swarm

intelligence algorithms using the same datasets. All

experiments are conducted using a Microsoft Azure server

with MATLAB version 9.7.0 on a PC with Windows

operating system, Intel R Xeon Silver 1.8 GHz CPU, and 6

GB of RAM. The algorithms are implemented for each

dataset over 30 independent runs and the number of iter-

ations is 250. The size of the population of MLPs to be

trained for all comparative algorithms is set to 70. The

parameter settings of all comparative methods are given in

Table 2. These parameters are set based on the recom-

mendation given by researchers of their original papers.

Note that the proposed ACHIO-MLP is compared with

other algorithms in terms of classification accuracy. Clas-

sification accuracy represents the number of correct pre-

dictions from all predictions made.

4.3 Study the influence of archive rate

The influence of using various settings of the archive rate

(Ar) parameter on the performance of the proposed

ACHIO-MLP is studied in this section. Note that each

preliminary experiment divided the data 70% for training

and 30% for testing. Three different Ar values are con-

sidered Ar 2 f0:1; 0:2; 0:5g . It should be noted that the

higher value of Ar leads to a higher rate of exploration.

It is worth mentioning that for choosing Ar, the data are

divided into 70% for training and 30% for testing in

ACHIO. However, the meta parameters of the other swarm

intelligence algorithms were set using the default values as

suggested in the literature.

Table 3 shows the classification accuracy of the three

variants of the proposed ACHIO-MLP compared to the

original CHIO-MLP in terms of the mean, the standard

deviation, and the best results. The higher accuracy results

mean better performance, while the lower STD values

reflect the algorithm’s robustness. The best results are

highlighted using bold fonts.

The accuracy mean results shows that the proposed

ACHIO-MLP with Ar ¼ 0:2 was ranked first by achieving

the best accuracy results in 9 out of 15 datasets. The1 https://archive.ics.uci.edu/ml/index.php.

Neural Computing and Applications (2023) 35:15923–15941 15931

123

https://archive.ics.uci.edu/ml/index.php

proposed ACHIO-MLP with Ar ¼ 0:5 ranked second with

the best accuracy results in 4 datasets, while the remaining

two algorithms (i.e., CHIO-MLP and ACHIO-MLP with

Ar ¼ 0:1) ranked last with each one obtains the best

accuracy results in 2 datasets.

According to the best accuracy results, it is clear that the

proposed ACHIO-MLP with Ar ¼ 0:2 was ranked first by

obtaining the highest accuracy results in 8 datasets. In

addition, the CHIO-MLP was placed second by obtaining

the best results in 6 datasets. While the proposed ACHIO-

MLP with Ar ¼ 0:5 ranked third by getting the best results

in 4 datasets. The ACHIO-MLP with Ar ¼ 0:1 was placed

last by obtaining the best results in 3 datasets.

Reading the standard deviation results in Table 3, it can

be concluded that the performance of the three variants of

the proposed ACHIO-MLP is more robust than the CHIO-

MLP by getting the minimum standard deviation results in

the largest number of datasets.

Table 3 shows that the proposed ACHIO-MLP with

Ar ¼ 0:2 ranked first by having the minimum average

ranking using Friedman’s test, while the two remaining

variants of the proposed ACHIO-MLP (i.e., ACHIO-MLP

with Ar ¼ 0:5 and ACHIO-MLP with Ar ¼ 0:1) are ranked

second and third. The CHIO-MLP is ranked last by having

the highest Friedman score. This proves the effectiveness

Table 1 The classification

datasets and MLP structure for

each dataset

No Dataset # Classes # Features Instances #Nodes in hidden layer MLP structure

1 Monk 2 6 556 13 6-13-2

2 Balloon 2 4 20 9 4-9-2

3 Cancer 2 9 699 19 9-19-2

4 Heart 2 22 80 45 22-45-2

5 Vertebral 2 6 310 13 6-13-2

6 Blood 2 4 748 9 4-9-2

7 Ionosphere 2 33 351 67 33-67-2

8 German 2 24 1000 49 24-49-2

9 Titanic 2 3 2201 7 3-7-2

10 Parkinson 2 22 195 45 22-45-2

11 Iris 3 4 150 9 4-9-3

12 Seeds 3 7 210 15 7-15-3

13 Vehicle 4 18 846 37 18-37-4

14 Glass 6 9 214 19 9-19-6

15 Yeast 10 8 1484 17 8-17-10

Table 2 Parameters settings of

the comparative algorithms
Algorithm Parameter Settings

HS [64] Harmony memory size (HMS) 30

Pitch adjustment rate (PAR) 0.1

Memory consideration rate (HMCR) 0.95

Bandwidth (bw) 0.02

PSO [65] Population size 30

Acceleration constants (c1 and c2) [2, 2]

Inertia weights (w) [0.2, 0.9]

BA [66] Population size 30

Loudness (A0) 0.5

Pulse emission rate (r) [0,1]

Minimum frequency (fmin) 0

Maximum frequency (fmax) 2

ABC [67] Food sources 60

Limit 0.5*Food sources*(#weights ? #biases)

FPA [68] Population size 30

Switch probability (p) 0.8

SCA [69] Population size 30

15932 Neural Computing and Applications (2023) 35:15923–15941

123

Table 3 The accuracy results of

the proposed ACHIO-MLP

using various settings of the

archive rate parameter

Dataset Measures CHIO-MLP ACHIO-MLP

Ar ¼ 0:1 Ar ¼ 0:2 Ar ¼ 0:5

Monk Mean 75.94 93.86 96.12 95.32

STD 3.79 6.56 6.23 4.71

Best 83.13 98.19 100.00 98.19

Balloon Mean 100.00 100.00 100.00 100.00

STD 0.00 0.00 0.00 0.00

Best 100.00 100.00 100.00 100.00

Iris Mean 94.81 97.48 98.30 97.70

STD 2.21 0.96 1.51 0.41

Best 97.78 97.78 100.00 97.78

Cancer Mean 96.24 96.35 96.28 97.13

STD 0.72 0.60 0.59 0.87

Best 97.61 97.13 97.13 98.09

Heart Mean 58.75 56.53 67.08 55.69

STD 7.69 5.65 4.42 3.37

Best 79.17 75.00 75.00 62.50

Vertebral Mean 83.19 86.99 79.28 83.87

STD 1.90 2.06 2.31 0.75

Best 89.25 89.25 83.87 84.95

Blood Mean 80.03 79.69 79.09 80.22

STD 1.00 0.30 0.42 0.90

Best 82.14 80.36 79.91 82.59

Seeds Mean 88.15 94.71 96.77 97.25

STD 3.81 3.55 0.66 1.50

Best 93.65 98.41 98.41 98.41

Glass Mean 54.27 56.35 64.22 53.54

STD 7.32 2.84 3.75 1.48

Best 67.19 62.50 68.75 56.25

Ionosphere Mean 83.59 85.59 89.62 85.59

STD 3.66 1.80 1.76 2.76

Best 92.38 89.52 91.43 89.52

German Mean 71.06 81.47 83.28 80.43

STD 1.90 2.06 1.13 1.09

Best 76.00 83.33 85.00 82.67

Titanic Mean 79.23 78.79 79.07 76.68

STD 0.42 0.65 0.06 0.33

Best 79.55 79.24 79.09 77.12

Vehicle Mean 43.39 46.68 57.18 57.10

STD 5.28 2.28 3.19 3.23

Best 53.75 49.80 60.87 60.47

Parkinson Mean 85.57 84.14 88.45 87.53

STD 3.75 1.31 1.76 2.20

Best 93.10 86.21 91.38 91.38

Yeast Mean 37.43 47.43 48.35 47.12

STD 3.15 4.45 4.66 4.32

Best 43.60 52.13 54.38 52.36

Ranking 3.2 2.6 1.8 2.4

Neural Computing and Applications (2023) 35:15923–15941 15933

123

of the proposed changes to the CHIO framework when it is

used for optimizing the weights of neural networks.

Note that ACHIO-MLP with Ar ¼ 0:2 will be used in

the next comparison section as it obtains the best results.

Table 4 The accuracy results of

the proposed ACHIO-MLP in

comparison with other swarm-

based algorithms

Dataset Measures ACHIO CHIO ABC BA FPA PSO SCA HS

Monk Mean 96.12 75.94 78.21 65.02 66.22 93.69 69.64 61.29

STD 6.23 3.79 4.22 5.21 3.73 7.64 4.13 4.62

Best 100.00 83.13 88.55 74.70 75.30 100.00 78.31 73.49

Balloon Mean 100.00 100.00 97.78 87.78 94.44 100.00 95.56 81.11

STD 0.00 0.00 8.46 14.47 12.63 0.00 10.66 16.22

Best 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Iris Mean 98.30 94.81 94.07 66.15 87.11 92.52 87.04 65.48

STD 1.51 2.21 1.96 14.99 6.94 5.07 6.78 7.82

Best 100.00 97.78 95.56 93.33 97.78 97.78 97.78 86.67

Cancer Mean 96.28 96.24 96.24 95.84 94.82 96.83 95.30 94.21

STD 0.59 0.72 0.79 0.68 0.85 0.97 0.79 1.37

Best 97.13 97.61 97.61 97.13 96.17 98.56 96.17 96.65

Heart Mean 67.08 58.75 49.86 68.06 64.58 63.89 63.75 63.33

STD 4.42 7.69 11.55 10.17 9.65 7.45 9.23 8.85

Best 75.00 79.17 75.00 87.50 79.17 79.17 79.17 75.00

Vertebral Mean 79.28 83.19 80.22 80.04 78.85 85.91 79.32 73.33

STD 2.31 1.90 2.44 4.33 2.19 1.79 2.58 4.44

Best 83.87 89.25 84.95 86.02 83.87 89.25 82.80 81.72

Blood Mean 79.09 80.03 78.81 76.61 78.11 79.29 76.90 76.65

STD 0.42 1.00 1.08 1.28 0.60 0.79 1.04 1.80

Best 79.91 82.14 80.36 78.57 79.02 80.36 79.02 79.91

Seeds Mean 96.77 88.15 92.91 66.14 87.99 83.33 78.10 58.36

STD 0.66 3.81 1.85 13.36 4.58 10.37 6.08 10.22

Best 98.41 93.65 96.83 93.65 93.65 92.06 88.89 76.19

Glass Mean 64.22 54.27 53.59 37.81 45.31 47.76 44.95 29.79

STD 3.75 7.32 7.92 9.06 3.74 9.13 5.83 10.74

Best 68.75 67.19 67.19 53.13 53.13 62.50 57.81 51.56

Ionosphere Mean 89.62 83.59 83.68 79.05 86.10 86.95 78.13 72.92

STD 1.76 3.66 3.61 5.58 3.66 3.17 3.60 4.39

Best 91.43 92.38 89.52 88.57 92.38 92.38 85.71 81.90

German Mean 83.28 71.06 78.42 73.71 79.40 81.87 77.31 68.66

STD 1.13 1.90 2.95 3.91 2.48 1.88 2.25 2.43

Best 85.00 76.00 84.33 81.00 83.67 86.67 81.67 74.67

Titanic Mean 79.07 79.23 77.53 77.87 78.99 77.76 77.43 76.61

STD 0.06 0.42 0.47 0.83 0.47 0.27 0.86 1.17

Best 79.09 79.55 78.03 79.39 80.15 77.88 78.94 78.33

Vehicle Mean 57.18 43.39 41.75 29.47 31.42 43.39 35.18 28.26

STD 3.19 5.28 5.83 5.87 6.67 8.77 6.34 5.58

Best 60.87 53.75 58.10 41.11 42.69 62.45 44.27 40.71

Parkinson Mean 88.45 85.57 81.72 87.30 82.93 87.01 82.76 80.29

STD 1.76 3.75 3.83 5.17 3.77 3.64 3.84 4.22

Best 91.38 93.10 89.66 93.10 87.93 94.83 91.38 86.21

Yeast Mean 48.35 37.43 38.85 24.99 33.45 36.02 31.78 21.87

STD 4.66 3.15 3.85 8.39 2.77 3.62 2.98 10.77

Best 54.38 43.60 46.29 32.58 37.53 42.47 37.98 34.61

15934 Neural Computing and Applications (2023) 35:15923–15941

123

4.4 Comparison with other swarm-based
optimization algorithms

In this section, the performance of the proposed ACHIO-

MLP is evaluated and compared against seven swarm-

based metaheuristics. These metaheuristics are the original

CHIO [43], artificial bee colony (ABC) [28], bat algorithm

(BA) [34], flower pollination algorithm (FPA) [68], particle

swarm optimization (PSO) [20], sine cosine algorithm

(SCA) [70], harmony search (HS) [71]. In order to ensure a

fair comparison, all comparative algorithms are coded by

the authors using the same datasets. The same parameter

settings of all comparative methods are also unified as

mentioned in Sect. 4.2.

The experimental results obtained by the ACHIO-MLP

and all comparative methods are presented in Table 4. The

Fig. 3 Convergence results for the different algorithms

Neural Computing and Applications (2023) 35:15923–15941 15935

123

results are presented in terms of the mean, standard devi-

ation, and best classification accuracy. The bold values

indicate the best value in each dataset. Note that the fittest

MLPs which is the one with the lowest MSE on the training

dataset are measured on the test dataset.

The best classification accuracy results are presented in

Table 4. It shows that the ACHIO-MLP obtains the best

classification accuracy for 6 datasets, including Monk (2),

Balloon (2), Iris (3), Seeds (3), Glass (6), and Yeast (10).

Note that the number of classes is shown between

parentheses. Surprisingly, ACHIO-MLP excels the other

comparative methods in two large datasets with six and ten

classes. This shows the proposed algorithm’s strength in

navigating the search space in different ways and being

able to achieve promising results. These high-quality

results are due to the high balance between the exploration

and exploitation of ACHIO-MLP. The proposed ACHIO-

MLP algorithm comparison against the comparative

methods shows that the ACHIO-MLP algorithm outper-

forms the CHIO, ABC, BA, FPA, PSO, SCA, and HS

Fig. 4 Boxplot charts of MSE results for the different algorithms

15936 Neural Computing and Applications (2023) 35:15923–15941

123

algorithms in seven, ten, nine, ten, five, twelve, and twelve

datasets, respectively. On the other hand, PSO and CHIO

achieve the best results in five and three datasets, respec-

tively. Indeed, the PSO and ACHIO have common char-

acteristics where they behave efficiently when navigating

the search space of the weights and biases. They can

widely explore several regions of the search space and

exploit deeply each region of the MLP search space and

find the local optima. Furthermore, since the MLP search

space is non-convex and multimodal, the PSO and ACHIO

are proven to be very efficient in dealing with the nature of

this search space. Finally, the ACHIO behaves as a strong

exploiter through the proposed archive-based concept. This

allows it to make use of the accumulative knowledge and

remember the best points in the MLP search space. Note

that all of the algorithms produce the same optimal results

for the Balloon dataset. Since the size of this dataset is

small with only two classes, the algorithms did not require

much effort to achieve the best results.

Similarly, the proposed algorithm is compared against

comparative methods in terms of the mean of the classifi-

cation accuracy. Table 4 shows that the performance of the

ACHIO-MLP performs better than other comparative

algorithms on ten datasets (i.e., Monk (2), Balloon (2),

Ionosphere (2), German (2), Parkinson (2), Iris (3), Seeds

(3), Vehicle (4), Glass (6), and Yeast (10)). Furthermore,

the performance of the ACHIO-MLP is similar to CHIO

and PSO by obtaining the best results for the Balloon

dataset. The ACHIO-MLP is able to achieve the second-

best results on three datasets (i.e., Cancer (2), Heart (2),

and Titanic (2)). While ACHIO-MLP obtained the third-

best results on the Blood (2) dataset. The strength of

ACHIO-MLP is due to the behavior of its efficient opera-

tors where the infection and susceptible cases’ operators

can follow any random solution in the population while the

recovered case operator exploits the attributes of the best

solution. Furthermore, archiving the best results to be used

in the next iteration improves the algorithm search. The

lower standard derivation reflects the robustness of the

algorithm. From Table 4, it can be observed that ACHIO-

MLP has better robustness than other comparative algo-

rithms in most datasets.

4.4.1 Convergence analysis

The performance of the comparative methods can be

investigated using the convergence behavior toward the

optimal solution. Accordingly, ACHIO-MLP and all the

comparative methods convergence behaviors for all data-

sets are plotted in Fig. 3. In the figure, the iteration number

is the x-axis and the fitness values are the y-axis. Notably,

ACHIO-MLP significantly and rapidly converges toward

its optimal solution without stagnation in local optima.

This yields improvement in its achievements. In addition,

ACHIO-MLP obtains the best convergence rate in ten

datasets (i.e., Monk (2), Iris (3), Cancer (2), Heart (2),

Vertebral (2), Seeds (3), Glass (6), Vehicle (4), Parkinson

(2), and Yeast (10)) as the best MSE is reached within the

defined number of iterations. It achieves the second-best in

almost all other datasets. The ACHIO-MLP operators

allow the algorithm to explore efficiently the search space

niches and exploit each niche deeply. Using this strategy,

the ACHIO-MLP owns a maneuver behavior movement

strategy in the search space to escape the local optima trap

during the search.

The boxplots for various classification datasets are

shown in Fig. 4. Note that the MSE values obtained from

MLP using the test dataset by utilizing the fittest MLP with

the lowest MSE using the training dataset are plotted. This

figure boxplots the obtained MSEs for the 15 classification

datasets. In the boxplot, the smaller distance between the

Fig. 5 Average rankings of the comparative algorithms using

Friedman’s statistical test

Table 5 Holm/Hochberg

outcome when having ACHIO

the controlled algorithm against

the other algorithms

Order Algorithm Adjusted q-value Holm/Hochberg Null hypotheses H0

7 HS 1.18E-11 0.00714 Reject

6 SCA 7.74E-06 0.00833 Reject

5 BA 1.09E-05 0.01000 Reject

4 FPA 4.60E-04 0.01250 Reject

3 ABC 0.01127 0.01667 Reject

2 CHIO 0.07984 0.025 Not reject

1 PSO 0.19211 0.05 Not reject

Neural Computing and Applications (2023) 35:15923–15941 15937

123

best, median, and worst MSE demonstrates the stability of

the algorithm. It is worth mentioning that the whiskers

represent the farthest MSE values, while the box represents

the interquartile range. The outliers are represented by the

small circles, and the median value is represented by the

bar in the box. In this figure, the boxplots demonstrate and

explain the good performance of ACHIO-MLP for training

MLP. The ACHIO-MLP shows the smallest MSE distance

in twelve datasets (i.e., Balloon (2), Iris (3), Cancer (2),

Heart (2), Blood (2), Seeds (3), Glass (6), German (2),

Titanic (2), Vehicle (4), Parkinson (2), and Yeast (10)). In

addition, the proposed ACHIO-MLP presents the second-

best MSE distance in most of the rest datasets.

4.4.2 Friedman’s statistical test

Figure 5 shows the ranking of the comparative algorithms

using Friedman’s test. It should be noted that the experi-

mental results provided in Table 4 are used to calculate the

rankings of the comparative algorithms. The null hypoth-

esis (H0) is that there is no significant difference between

the performance of the proposed ACHIO-MLP and the

alternative methods judged over all the datasets. On the

other hand, the alternative hypothesis (H1) is that there is a

significant difference between the performance of the

ACHIO-MLP and the alternative methods judged over all

the datasets. Fig. 5 proves the high performance of the

proposed method, where the ACHIO-MLP achieves the

best ranking among all compared algorithms. The q-value
calculated by Friedman’s test is equal to 8.134649E-11,

and this value is below the significance level (a = 0.05). As

a result, there is a significant difference between the

comparative algorithms, and thus, the hypothesis H0 is

rejected.

The Holm and Hochberg procedures are used as post-

hoc techniques to calculate the adjusted q-value in order to

show if there is a significant difference between the con-

trolled algorithm and other algorithms. It should be noted

that the proposed ACHIO-MLP is the controlled algorithm

because it obtains the first ranking as shown in Fig. 5. The

null hypothesis H0 is rejected using Holm’s procedure

when the q-value � 0:01667, and the null hypothesis H0 is

rejected using Hochberg’s procedure when the q-value
� 0:0125. As presented in Table 5, there is a significant

difference between ACHIO-MLP and the other five com-

parative algorithms (HS, SCA, BA, FPA, and ABC).

However, no significant difference between the behavior of

the ACHIO-MLP and the two algorithms CHIO and PSO.

This proves that the proposed ACHIO-MLP algorithm is a

new good alternative algorithm that is able to succeed in

solving such problems.

5 Conclusion and future work

CHIO is a powerful algorithm recently proposed to imitate

the herd immunity treatment strategy to tackle the coron-

avirus pandemic. CHIO algorithm is selected because of its

capabilities in finding the right trade-off between the

exploration of the different search space niches and the

exploitation of each search space niche. In this paper, to

maintain the local optima and to preserve a good level of

population diversity, an archive of best solutions is

implemented. The new proposed algorithm (called

ACHIO-MLP) selects and trains MLPs. The MLP training

problem is mathematically modeled to minimize MSE. The

decision variables are the weights and biases in MLPs for

which ACHIO-MLP searches to find the elite amount for

weights and biases.

In order to evaluate the performance of ACHIO-MLP, a

collection of 15 classification datasets with different

degrees of difficulty is utilized. Each dataset is normalized

before it is used. All datasets are split into 30% for testing

and 70% for training. A stratified way is used to split each

dataset to maintain the proportion of each class in the

divided data to have a balanced number of classes in the

train/test split. As each dataset has a different number of

features (or class labels), each MLP uses a variant number

of inputs, hidden, and output nodes.

The results of the proposed method are compared

against the original CHIO and six swarm optimization

algorithms: HS, PSO, BA, ABC, FPA, and SCA. Interest-

ingly, ACHIO-MLP can produce very accurate results

which excel other comparative methods in ten out of fifteen

classification datasets and very competitive results for

other datasets. In addition to that, the results demonstrate a

better convergence of the proposed algorithm. In a nutshell,

the proposed ACHIO-MLP avoids local optima because of

its different diversification techniques. Moreover, the

results expose how fast the convergence of the proposed

algorithm is when compared to other comparable methods.

Finally, ACHIO-MLP can train MLPs to obtain a promis-

ing set of weights and biases that can produce better

results.

In the future, the proposed algorithm will be applied to

tackle real-world applications. Also, the proposed algo-

rithm can be hybridized with other local search algorithms

to improve its exploitation abilities

Funding No funding sources are applicable for this research.

Data Availability The data that support the findings of this study are

available from the corresponding author upon reasonable request.

15938 Neural Computing and Applications (2023) 35:15923–15941

123

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Hassoun MH et al (1995) Fundamentals of artificial neural net-

works. MIT press

2. Schmidhuber J (2015) Deep learning in neural networks: an

overview. Neural Netw 61:85–117

3. Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA,

Arshad H (2018) State-of-the-art in artificial neural network

applications: a survey. Heliyon 4(11):00938

4. Liao S-H, Wen C-H (2007) Artificial neural networks classifi-

cation and clustering of methodologies and applications-literature

analysis from 1995 to 2005. Expert Syst Appl 32(1):1–11

5. McCulloch WS, Pitts W (1943) A logical calculus of the ideas

immanent in nervous activity. Bull Math Biophys 5(4):115–133

6. Orr MJ et al (1996) Introduction to radial basis function net-

works. Technical Report, center for cognitive science, University

of Edinburgh

7. Bebis G, Georgiopoulos M (1994) Feed-forward neural networks.

IEEE Potentials 13(4):27–31

8. Nowlan SJ, Platt JC (1995) A convolutional neural network hand

tracker. Adv Neural Inf Process Syst, 901–908

9. Medsker LR, Jain L (2001) Recurrent neural networks. Design

Appl , 5

10. Ghosh-Dastidar S, Adeli H (2009) Spiking neural networks. Int J

Neural Syst 19(04):295–308

11. Samarasinghe S (2016) Neural networks for applied sciences and

engineering: from fundamentals to complex pattern recognition.

Crc Press

12. She FH, Kong L, Nahavandi S, Kouzani A (2002) Intelligent

animal fiber classification with artificial neural networks. Textile

Res J 72(7):594–600

13. Ahmadian S, Khanteymoori AR (2015) Training back propaga-

tion neural networks using asexual reproduction optimization. In:

2015 7th Conference on Information and Knowledge Technology

(IKT), pp 1–6. IEEE

14. Savalia S, Emamian V (2018) Cardiac arrhythmia classification

by multi-layer perceptron and convolution neural networks.

Bioengineering 5(2):35

15. Zhang L, Li H, Kong X-G (2019) Evolving feedforward artificial

neural networks using a two-stage approach. Neurocomputing

360:25–36

16. Nasr MB, Chtourou M (2006) A hybrid training algorithm for

feedforward neural networks. Neural Process Lett 24(2):107–117

17. Ng S-C, Cheung C-C, Leung S-H (2004) Magnified gradient

function with deterministic weight modification in adaptive

learning. IEEE Trans Neural Netw 15(6):1411–1423

18. Faris H, Mirjalili S, Aljarah I (2019) Automatic selection of

hidden neurons and weights in neural networks using grey wolf

optimizer based on a hybrid encoding scheme. Int J Mach Learn

Cybern 10(10):2901–2920

19. Ding S, Su C, Yu J (2011) An optimizing bp neural network

algorithm based on genetic algorithm. Artif Intell Rev

36(2):153–162

20. Das G, Pattnaik PK, Padhy SK (2014) Artificial neural network

trained by particle swarm optimization for non-linear channel

equalization. Expert Syst Appl 41(7):3491–3496

21. Slowik A, Bialko M (2008) Training of artificial neural networks

using differential evolution algorithm. In: 2008 Conference on

Human System Interactions, pp 60–65. IEEE

22. Ilonen J, Kamarainen J-K, Lampinen J (2003) Differential evo-

lution training algorithm for feed-forward neural networks.

Neural Process Lett 17(1):93–105

23. Mirjalili S (2015) How effective is the grey wolf optimizer in

training multi-layer perceptrons. Appl Intell 43(1):150–161

24. Bairathi D, Gopalani D (2019) Salp swarm algorithm (ssa) for

training feed-forward neural networks. In: Soft Computing for

Problem Solving, pp 521–534. Springer

25. Alboaneen DA, Tianfield H, Zhang Y (2017) Glowworm swarm

optimisation for training multi-layer perceptrons. In: Proceedings

of the Fourth IEEE/ACM International Conference on Big Data

Computing, Applications and Technologies, pp 131–138

26. Moayedi H, Nguyen H, Foong LK (2019) Nonlinear evolutionary

swarm intelligence of grasshopper optimization algorithm and

gray wolf optimization for weight adjustment of neural network.

Eng Comput, 1–11

27. Heidari AA, Faris H, Aljarah I, Mirjalili S (2019) An efficient

hybrid multilayer perceptron neural network with grasshopper

optimization. Soft Comput 23(17):7941–7958

28. Ghanem WA, Jantan A (2018) A cognitively inspired

hybridization of artificial bee colony and dragonfly algorithms for

training multi-layer perceptrons. Cognit Comput

10(6):1096–1134

29. Jalali SMJ, Ahmadian S, Kebria PM, Khosravi A, Lim CP,

Nahavandi S (2019) Evolving artificial neural networks using

butterfly optimization algorithm for data classification. In:

International Conference on Neural Information Processing,

pp 596–607. Springer

30. Faris H, Aljarah I, Mirjalili S (2018) Improved monarch butterfly

optimization for unconstrained global search and neural network

training. Appl Intell 48(2):445–464

31. Mirjalili SZ, Saremi S, Mirjalili SM (2015) Designing evolu-

tionary feedforward neural networks using social spider opti-

mization algorithm. Neural Comput Appl 26(8):1919–1928

32. Chen H, Wang S, Li J, Li Y (2007) A hybrid of artificial fish

swarm algorithm and particle swarm optimization for feedfor-

ward neural network training. In: International Conference on

Intelligent Systems and Knowledge Engineering 2007. Atlantis

Press

33. Socha K, Blum C (2007) An ant colony optimization algorithm

for continuous optimization: application to feed-forward neural

network training. Neural Comput Appl 16(3):235–247

34. Jaddi NS, Abdullah S, Hamdan AR (2015) Multi-population

cooperative bat algorithm-based optimization of artificial neural

network model. Inf Sci 294:628–644

35. Zhang Y, Phillips P, Wang S, Ji G, Yang J, Wu J (2016) Fruit

classification by biogeography-based optimization and feedfor-

ward neural network. Expert Syst 33(3):239–253

36. Mirjalili S, Hashim SZM, Sardroudi HM (2012) Training feed-

forward neural networks using hybrid particle swarm optimiza-

tion and gravitational search algorithm. Appl Math Comput

218(22):11125–11137

37. Faris H, Aljarah I, Alqatawna J (2015) Optimizing feedforward

neural networks using krill herd algorithm for e-mail spam

detection. In: 2015 IEEE Jordan Conference on Applied Elec-

trical Engineering and Computing Technologies (AEECT),

pp 1–5. IEEE

38. Heidari AA, Faris H, Mirjalili S, Aljarah I, Mafarja M (2020) Ant

lion optimizer: theory, literature review, and application in multi-

layer perceptron neural networks. Nature-Inspired Optimizers,

23–46

39. Valian E, Mohanna S, Tavakoli S (2011) Improved cuckoo search

algorithm for feedforward neural network training. Int J Artif

Intell Appl 2(3):36–43

Neural Computing and Applications (2023) 35:15923–15941 15939

123

40. Wu H, Zhou Y, Luo Q, Basset MA (2016) Training feedforward

neural networks using symbiotic organisms search algorithm.

Comput Intell Neurosci 2016

41. Faris H, Aljarah I, Al-Madi N, Mirjalili S (2016) Optimizing the

learning process of feedforward neural networks using lightning

search algorithm. Int J Artif Intell Tools 25(06):1650033

42. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

43. Al-Betar MA, Alyasseri ZAA, Awadallah MA, Doush IA (2020)

Coronavirus herd immunity optimizer (chio). Neural Comput

Appl, 1–32

44. Dalbah LM, Al-Betar MA, Awadallah MA, Zitar RA (2021) A

coronavirus herd immunity optimization (chio) for travelling

salesman problem. In: International Conference on Innovative

Computing and Communications, pp 11–19. Springer

45. Kumar C, Magdalin Maryb D, Gunasekar T (2021) Mochio: A

novel multi-objective coronavirus herd immunity optimization

algorithm for solving brushless direct current wheel motor design

optimization problem. PREPRINT (Version 1) available at

Research Square

46. Lacroix B, Molina D, Herrera F (2016) Region-based memetic

algorithm with archive for multimodal optimisation. Inf Sci

367:719–746

47. Zhang Y-H, Gong Y-J, Chen W-N, Zhan Z-H, Zhang J (2014) A

generic archive technique for enhancing the niching performance

of evolutionary computation. In: 2014 IEEE Symposium on

Swarm Intelligence, pp 1–8. IEEE

48. Kundu S, Biswas S, Das S, Suganthan PN (2013) Crowding-

based local differential evolution with speciation-based memory

archive for dynamic multimodal optimization. In: Proceedings of

the 15th Annual Conference on Genetic and Evolutionary Com-

putation, pp 33–40

49. Wang Z-J, Zhan Z-H, Lin Y, Yu W-J, Yuan H-Q, Gu T-L,

Kwong S, Zhang J (2017) Dual-strategy differential evolution

with affinity propagation clustering for multimodal optimization

problems. IEEE Trans Evol Comput 22(6):894–908

50. Sheng W, Wang X, Wang Z, Li Q, Chen Y (2021) Adaptive

memetic differential evolution with niching competition and

supporting archive strategies for multimodal optimization. Inf Sci

573:316–331

51. Turky AM, Abdullah S (2014) A multi-population harmony

search algorithm with external archive for dynamic optimization

problems. Inf Sci 272:84–95

52. Zhu Q, Lin Q, Chen W, Wong K-C, Coello CAC, Li J, Chen J,

Zhang J (2017) An external archive-guided multiobjective par-

ticle swarm optimization algorithm. IEEE Trans Cybern

47(9):2794–2808

53. Got A, Moussaoui A, Zouache D (2020) A guided population

archive whale optimization algorithm for solving multiobjective

optimization problems. Expert Syst Appl 141:112972

54. Kalra S, Rahnamayan S, Deb K (2017) Enhancing clearing-based

niching method using delaunay triangulation. In: 2017 IEEE

Congress on Evolutionary Computation (CEC), pp 2328–2337.

IEEE

55. Bhesdadiya R, Jangir P, Jangir N, Trivedi IN, Ladumor D (2016)

Training multi-layer perceptron in neural network using whale

optimization algorithm. Indian J Sci Technol 9(19):28–36

56. Askari Q, Younas I (2021) Political optimizer based feedforward

neural network for classification and function approximation.

Neural Process Lett 53(1):429–458

57. Irmak B, Karakoyun M, Gülcü Ş (2022) An improved butterfly

optimization algorithm for training the feed-forward artificial

neural networks. Soft Comput, 1–19

58. Sun K, Huang S-H, Wong DS-H, Jang S-S (2016) Design and

application of a variable selection method for multilayer per-

ceptron neural network with lasso. IEEE Trans Neural Netw

Learn Syst 28(6):1386–1396

59. Makhadmeh SN, Al-Betar MA, Awadallah MA, Abasi AK,

Alyasseri ZAA, Doush IA, Alomari OA, Damaševičius R,

Zajančkauskas A, Mohammed MA (2022) A modified coron-

avirus herd immunity optimizer for the power scheduling prob-

lem. Mathematics 10(3):315

60. Dalbah LM, Al-Betar MA, Awadallah MA, Zitar RA (2022) A

modified coronavirus herd immunity optimizer for capacitated

vehicle routing problem. J King Saud Univ Comput Inf Sci

34(8):4782–4795

61. Wdaa ASI, Sttar A (2008) Differential evolution for neural net-

works learning enhancement. In: PhD Thesis, Universiti Tekno-

logi Malaysia Johor Bahru

62. Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-

based optimizer train your multi-layer perceptron. Inf Sci

269:188–209

63. Cano J-R, Garcı́a S, Herrera F (2008) Subgroup discover in large

size data sets preprocessed using stratified instance selection for

increasing the presence of minority classes. Pattern Recogn Lett

29(16):2156–2164

64. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic

optimization algorithm: harmony search. SIMULATION

76(2):60–68

65. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc

ICNN’95 Int Conf Neural Netw 4:1942–1948

66. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In:

Nature Inspired Cooperative Strategies for Optimization (NICSO

2010), pp 65–74. Springer

67. Karaboga D (2005) An idea based on honey bee swarm for

numerical optimization. Technical report, Technical report-tr06,

Erciyes university, engineering faculty, computer.

68. Yang X-S (2012) Flower pollination algorithm for global opti-

mization. In: International Conference on Unconventional Com-

puting and Natural Computation, pp 240–249. Springer

69. Mirjalili S (2016) Sca: a sine cosine algorithm for solving opti-

mization problems. Knowl Based Syst 96:120–133

70. Sahlol AT, Ewees AA, Hemdan AM, Hassanien AE (2016)

Training feedforward neural networks using sine-cosine algo-

rithm to improve the prediction of liver enzymes on fish farmed

on nano-selenite. In: 2016 12th International Computer Engi-

neering Conference (ICENCO), pp 35–40. IEEE

71. Kulluk S, Ozbakir L, Baykasoglu A (2012) Training neural net-

works with harmony search algorithms for classification prob-

lems. Eng Appl Artif Intell 25(1):11–19

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

15940 Neural Computing and Applications (2023) 35:15923–15941

123

Authors and Affiliations

Iyad Abu Doush1,2 • Mohammed A. Awadallah3,4 • Mohammed Azmi Al-Betar5,6 • Osama Ahmad Alomari7 •

Sharif Naser Makhadmeh5 • Ammar Kamal Abasi8 • Zaid Abdi Alkareem Alyasseri9

& Iyad Abu Doush

idoush@auk.edu.kw

Mohammed A. Awadallah

ma.awadallah@alaqsa.edu.ps

Mohammed Azmi Al-Betar

m.albetar@ajman.ac.ae

Osama Ahmad Alomari

oalomari@sharjah.ac.ae

Sharif Naser Makhadmeh

s.makhadmeh@ajman.ac.ae

Ammar Kamal Abasi

ammar.abasi@mbzuai.ac.ae

Zaid Abdi Alkareem Alyasseri

zaid.alyasseri@uokufa.edu.iq

1 College of Engineering and Applied Sciences, American

University of Kuwait, Salmiya, Kuwait

2 Computer Science Department, Yarmouk University, Irbid,

Jordan

3 Department of Computer Science, Al-Aqsa University, Gaza,

Palestine

4 Artificial Intelligence Research Center (AIRC), Ajman

University, Ajman, United Arab Emirates

5 Artificial Intelligence Research Center (AIRC), College of

Engineering and Information Technology, Ajman University,

Ajman, United Arab Emirates

6 Department of Information Technology, Al-Huson University

College, Al-Balqa Applied University, Irbid, Jordan

7 MLALP Research Group, University of Sharjah, Sharjah,

UAE

8 Machine Learning Department, Mohamed Bin Zayed

University of Artificial Intelligence (MBZUAI), Abu Dhabi,

United Arab Emirates

9 Information Technology Research and Development Center

(ITRDC), University of Kufa, Najaf, Iraq

Neural Computing and Applications (2023) 35:15923–15941 15941

123

http://orcid.org/0000-0001-7200-0032

	Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks
	Abstract
	Introduction
	Feedforward neural networks
	Archive-based coronavirus herd immunity optimizer for MLP training
	Experiments and results
	Test datasets
	Experimental settings
	Study the influence of archive rate
	Comparison with other swarm-based optimization algorithms
	Convergence analysis
	Friedman’s statistical test

	Conclusion and future work
	Data Availability
	References

