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Abstract Estimating the number of buildings in any geo-
graphical region is a vital component of urban analysis, dis-
aster management, and public policy decision. Deep learn-
ing methods for building localization and counting in satel-
lite imagery, can serve as a viable and cheap alternative.
However, these algorithms suffer performance degradation
when applied to the regions on which they have not been
trained. Current large datasets mostly cover the developed
regions and collecting such datasets for every region is a
costly, time-consuming, and difficult endeavor. In this pa-
per, we propose an unsupervised domain adaptation method
for counting buildings where we use a labeled source do-
main (developed regions) and adapt the trained model on
an unlabeled target domain (developing regions). We ini-
tially align distribution maps across domains by aligning
the output space distribution through adversarial loss. We
then exploit counting consistency constraints, within-image
count consistency, and across-image count consistency, to
decrease the domain shift. Within-image consistency enforces
that the building count in the whole image should be greater
than or equal to the count in any of its sub-image. Across-
image consistency constraint enforces that if an image con-
tains considerably more buildings than the other image, then
their sub-images shall also have the same order. These two
constraints encourage the behavior to be consistent across
and within the images, regardless of the scale. To evalu-
ate the performance of our proposed approach, we collected
and annotated a large-scale dataset consisting of challeng-
ing South Asian regions having higher building densities
and irregular structures as compared to existing datasets. We
perform extensive experiments to verify the efficacy of our
approach and report improvements of approximately 7% to
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20% over the competitive baseline methods. The dataset and
code are available here: https://github.com/intelligentMachines-
ITU/ domain-Adaptive-Building-Counting.

1 Introduction

The precise and accurate estimation of the number of build-
ings is vital for many tasks, such as monitoring economic
well-being [53], planning aid for a natural or a man-made
disaster-stricken region [1], analyzing poverty [12], and pre-
dicting the vitality of a city [37]. Over the years, there has
been an effort to approximate the population size by esti-
mating the number of buildings in an area through satel-
lite imagery and through land use/cover data [48]. Building
counting acts as an indicator of important metrics such as
population density [32,6], and power usage [16]. This in-
formation is generally collected through various censuses
and surveys or their fusion, requiring costly, expansive, and
time-consuming efforts. One way to tackle this challenge is
to make the process cost-effective and labor-saving by us-
ing deep learning-based methods on satellite images to get
an automatic estimate of building counts [38] or through the
extraction of buildings [51] .

The problem of counting objects in an image has been
studied extensively in the last few years. The ubiquitous na-
ture of the counting problem is exhibited in the variety of
research works that deal with counting cells in the petri dish
[29], estimating crowd size [25], and counting the buildings
[38]. In the literature, counting has been performed mainly
through segmentation [18], clustering [33], and regression-
based methods [25,57,36,45,31]. As compared to counting
in normal images, counting the number of buildings (or in
short, building counting) from satellite imagery is less ex-
plored [35].

The training data on which a deep learning model is
trained is called the source domain (data) and while the one
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Fig. 1 The left block shows the images captured from colder regions and have sloped roofs while the images in the right block show flat roofs as
those areas belong to hotter regions.

on which it is to be tested is called the target domain (data).
Ideally, source and target domain data distributions should
be the same, however, in real-world applications, source,
and target domain distributions are different. This is more
apparent in the case of the building counting problem, since
depending upon the region, climate, and culture, the build-
ing structures are different from each other. In Figure 1, for
example, we show images from the colder region having
buildings with sloped roofs, whereas the other ones have
flat roofs. Similarly density of the neighborhood, building
material, time of image acquisition, quality, and resolution
of the aerial/satellite imagery, can affect the robustness of
the building count. The gap between the distributions of two
(source and target) domains, called domain shift, is the rea-
son for this failure. It is well known that the deep learning-
based methods, even when trained on large datasets fail to
generalize to the new domain [9,2,7,10,41].

To overcome the limitation due to domain shift, domain
adaptation strategies have been applied to numerous prob-
lems including crowd counting [7,2,41,9,10]. Domain adap-
tation in building counting is a relatively unexplored prob-
lem and more focus of these domain adaptation problems is
on semantic segmentation or object detection etc [10].

Recently various remote sensing datasets have been in-
troduced for deep learning applications [50,46]. However,
these datasets majorly cover regions from the developed world.
When a deep learning model trained on developed regions,
is tested on developing or under-developed regions, it de-
clines in performance due to domain shift.

In this paper, we propose to tackle this performance de-
cline in building counting across regions (from developing
to under-developed regions). In our case, the source dataset
contains regions from developed countries and the target
dataset contains developing regions. Since we do not as-
sume the availability of ground truth data of the target train-
ing dataset, we call our approach an unsupervised domain
adaptation method. Given the satellite image, we first au-
tomatically obtain building density maps employing [25].
The total building count in an image is produced by sum-
ming the whole density map. Learning to predict the map
forces the model to learn to localize the buildings it is try-
ing to count. However, due to the domain shift, the den-
sity maps predicted on the target domain lack structure. To
address this, we propose to use adversarial learning which

forces the model to learn to produce density maps that are
indistinguishable across the source and target domains. Fur-
thermore, we design a problem-specific strategy to align two
domains for improved building counting. Specifically, we
propose two counting consistency constraints, within-image
count consistency, and across-image count consistency, to
help decrease the domain shift in an unsupervised way. Both
of these consistencies should naturally occur in any area.
Within-image consistency encompasses the logic that the
number of buildings in the whole image should be greater
than or equal to the number of buildings in any of the sub-
region captured in the image. Across-image consistency con-
straint on the other hand enforces that if a region contains
considerably more number of buildings than other regions,
then a considerably large sub-region of the former one will
also have more number of buildings than the sub-region of
the latter one. These two constraints encourage the behavior
to be consistent across and within the images, regardless of
the scale.

To summarize, the following are the contributions of our
work:

– We attempt to address a new problem of cross-region
building counting and localization.

– We propose two problem-specific constraints, count con-
sistency, to direct the unsupervised domain adaptation
process. These constraints i.e., the within-image and across-
image count consistency constraints force the model to
learn a generalized representation of buildings.

– We collect a new large-scale and challenging dataset for
building localization and counting with a focus on South
Asian regions having irregular building structures.

– We perform extensive experiments to show the effective-
ness of our proposed approach and the efficacy of the
collected dataset.

We will cover the related works in section 2, explore the
used datasets in section 3, explain our adopted methodolo-
gies in section 4, detail out our implementation and discuss
our results in section 5, and finally conclude in section 7.

2 Related Work

In our proposed approach, we tackle the problem of cross-
region building counting and localization using counting con-
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sistency constraints based on ranking loss and introduce a
new dataset. Hence, below we discuss the works related to
object counting, ranking, domain adaptation, and remote sens-
ing datasets.
Object Counting: Counting objects of interest through com-
puter vision has been done in several application areas which
include counting people, animals, fruits, buildings, etc. Count-
ing crowd from images was performed in the early days us-
ing detection based methods [49,52,18]. Clustering-based
methods have also been employed to count people in crowded
scenes [33,45]. However, regression-based counting meth-
ods [25,31,36] have generally produced more state-of-the-
art results than the other mentioned methods. Recently, Liu
et al. [25] have predicted crowd density by encoding the con-
textual information contained within various scales. To ac-
count for the fact that the appropriate scale varies over the
image, Kang et al. [13] proposed to weight the generated
density maps differently at different scales. Whereas, Li et
al. [17] performed crowd counting using multi-resolution
context and image quality assessment-guided training. To
count building from satellite imagery, Shakeel et al., [38]
proposed a regression model using attention-based re-weighting.

Detecting and counting fruits is of unmatched impor-
tance in agriculture [34,27,54]. Rahnemoonfar et al. [34]
and Liu et al. [27] used deep learning-based methodologies
to count fruits in images. Similarly, Zabawa et al. [54] used
convolutional neural networks to perform semantic segmen-
tation to detect grapevine berries in images and then count
them using a connected component algorithm. The problem
of counting vehicles has been tackled using various method-
ologies in literature [5,31,56].
Ranking: The ranking makes sure that the ordering of a
list of items is in the correct order. The framework of rank-
ing has been applied to solve various problems of computer
vision including improving the counting of crowds in con-
gested scenes using a ranking loss [26], anomaly detection
in surveillance videos where the ranking loss was used to
localize the anomalies during the training [42] and detection
of features by employing a deep ranking framework [47].
Domain Adaptation: Domain adaptation is the process of
minimizing the effects of a domain shift that arises when
training and testing data is drawn from different distribu-
tions. Domain adaptation has been used to solve several prob-
lems such as object classification [55], detection [58,39,40]
, semantic segmentation [43,9,2,10], person re-identification
[8] and crowd counting [7,21] . Domain adaptation has been
addressed by [30] by proposing a new latent sub-domain
discovery model for dividing the target domain into sub-
domains by considering them a cluster while bridging the
domain gap. A weakly supervised domain adaptation net-
work for latent space and output space has been proposed by
[10] to diminish the cross-domain gap in satellite and aerial
imagery for performing semantic segmentation of built-up

areas. Hossain et al., [7] used domain adaptation for crowd
counting where they used semi-supervised domain adapta-
tion using a limited number of labeled images from target
data. Finally, they have minimized maximum mean discrep-
ancy (MMD) loss between the generated density maps of
source and target. In addition to semi or weakly supervised
domain adaptation, some recent works also address unsuper-
vised domain adaptation [22,23,8,59] . Moreover, domain
adaptation in remote sensing image classification was also
addressed by Zhang et al. [55] and Liu et al. [24] using unsu-
pervised transfer learning. In addition to above cited works,
domain shift problems have also been addressed in recom-
mendation systems by [19] using context-aware bandits, by
[20] using Collaborative Filtering Bandits, and by similar
bandits [14,28].

Datasets for Remote Sensing: Several datasets have been
introduced for remote sensing applications such as object
detection or built-areas detection. One of the most popu-
lar datasets for object detection is the xView dataset [15].
It contains bounding box annotations of objects of multi-
farious classes. The xView dataset consists of a total of 1
million object instances that come under 60 classes. It cov-
ers a land area of 1415km2. A building detection dataset
was released by the SpaceNet [46], covering the areas of
Rio De Janeiro, Las Vegas, Paris, Shanghai, and Khartoum.
A semantic labeling benchmark dataset was launched by IS-
PRS [11] which contained 2D semantic labels in high qual-
ity of two cities in Germany. For the problem of counting
built structures from satellite imagery, a large and diverse
dataset was introduced by [38] covering urban, hilly, and
desert regions. Another important dataset was proposed by
[1] to detect destructed sites due to natural and man-made
disasters from satellite imagery. Similarly, for object detec-
tion in aerial imagery, a large-scale dataset, DOTA, was put
forward by [50].

In contrast to the above-mentioned works, our approach
focuses on counting buildings in satellite imaging across dif-
ferent regions. Instead of employing within-image counts
ranking for self-training [26], we have used across and within-
image counts ranking for unsupervised domain adaptation
across different regions. Furthermore, we have introduced a
new dataset and annotations to demonstrate the efficacy of
the proposed approach.

3 Dataset Preparation

xView: We appropriated xView [15] for the building count-
ing task utilizing it as a source dataset. The motivation be-
hind using this dataset is that it is distributed across vari-
ous parts of the world to detect objects ranging across 60
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Fig. 2 Side-by-side comparison of geographical locations of IML-DAC and xView datasets.

Fig. 3 (a) compares the percentage of South Asian regions contained in xView and IML-DAC. Our dataset contains 81% more images from South
Asian regions than xView dataset. (b) shows the distribution of images of xView and IML-DAC datasets with respect to the number of buildings
contained in them.

classes which also includes buildings.1 The xView dataset
originally contained 847 training images along with ground
truth. The ground truth is available in geoJSON format. The
fields in it contained the bounding box label ID, a unique
ID for image strips, image filename, coordinates of bound-
ing boxes, and longitude-latitude information of bounding
boxes. To generate our desired annotations, we first selected
the bounding boxes which covered Buildings only. After-
ward, we use original ground truth coordinates to generate
the points which are in the center of these buildings. After
that, we generate non-overlapping patches of size 500 × 500
pixels and selected a total of 4935 patches. The division of
these patches with respect to the number of buildings con-
tained in them is shown in Figure 3(b). Note the xView is
geographically biased towards developed regions/countries.
There are a few images from developing countries that we
did not use during training the model.

IML-DAC: To evaluate the accuracy of the proposed ap-
proach in cross-region building counting, in our experiments,

1 We have not used DOTA [50] since it does not contain buildings
class.

we use the xView as a source (train) dataset and IML-DAC
and South Asian regions of xView as target (test) datasets.
The geographical locations of areas from which xView and
IML-DAC are collected are presented in Figure 2. Figure
3(a) compares the percentage of South Asian regions con-
tained in both datasets and Figure 3(b) shows the distribu-
tion of images of xView and IML-DAC with respect to the
number of buildings contained in them. Figure 5 communi-
cates a better understanding of the distribution of our dataset
with respect to the percentage of images from each region.

In Figure 4, we demonstrate a comparison of both datasets
with respect to their counts and structures. Figure 4(a) shows
the images (side by side) of xView and IML-DAC having
similar building counts. It can be observed that buildings in
xView are well-placed and distant while there is no proper
planning for building placements in the IML-DAC dataset.
Figure 4(b) highlights the difference in structures of both
datasets. Most images in xView contain tall buildings while
in IML-DAC, the majority of buildings are small in size or
either built of non-concrete material. Since our main goal is
to count buildings, the images in IML-DAC are annotated
through a dotted annotation on each building. Some typical
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Fig. 4 Comparison of images from both datasets. (a) shows the images of xView and IML-DAC for similar building counts. Similarly (b) highlights
the difference in building structures. In the last row, we show the annotated points on the buildings. The images are histogram equalized.

examples of annotations are shown in the bottom row of Fig-
ure 4. Note that as mentioned in the ‘xView’ section, dotted
annotations for xView are extracted from the bounding box
annotations provided by the original authors of xView.

4 Methodology

In the following section, we provide the details of each com-
ponent used in our pipelines and explain all the design choices
behind them.

4.1 Preliminaries

Let us define the source and target datasets to be Ds =

{(Isi , lsi ), i = 1 . . . Ns} and Dt = {(Itj), j = 1 . . . N t}.
Where Isi and Itj are the satellite imagery patches from the
source and target datasets, and Ns and N t are the total num-
ber of source and target data image patches respectively.
Note that in this paper, we use satellite images from devel-
oped regions as a source dataset and satellite images from
developing regions as target dataset. For each image patch
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Fig. 5 Distribution of IML-DAC dataset. The majority of images have
been collected from Pakistan across its various cities.

Isi in the source domain dataset, we have a ground-truth list
lsi of locations where the buildings are present. Using [25]
the ground-truth density map Ds

i is created for each source
sample, such that a Gaussian is centered on each location in
lsi and the variance of the Gaussian depends upon how far
away the other buildings are from the current one.

Since the proposed approach works on the building den-
sity maps, we use the Context-Aware Convolutional Net-
work (CACN) [25] based on counting pipeline fc. Origi-
nally this network was introduced to count people in images
of crowded scenes. The motivation behind using CACN for
counting buildings is the fact that it can encode the contex-
tual information contained within multiple scales in an adap-
tive manner by incorporating spatial pyramid pooling. Such
spatial and contextual variations are also visible in the build-
ing dataset. CACN is trained over the source domain using
the ground-truth density maps Ds

i ’s .

Ls
MSE =

1

2Ns

Ns∑
i=1

∥Ds
i − fc(I

s
i )∥

2
2 , (1)

where Ls
MSE represents the mean square loss on the source

dataset, Ns is the batch size chosen for training, Ds
i is the

ground truth density map and fc(I
s
i ) is the predicted den-

sity map of image patch Isi . Figure 6 shows the example
of a building density map generated by CACN. During in-
ference, the predicted count is the summation of the den-
sity map. This source-only model serves as a baseline upon
which we add our proposed modules to conduct progressive
performance enhancement.

4.2 Unsupervised Domain Alignment

The source-only trained model from the previous section
performs poorly on the target domain. This decrease in per-
formance is attributed to the domain gap between the source
and target domains. We design an unsupervised domain adap-
tation strategy guided by adversarial feature alignment and

Fig. 6 Generating density maps of buildings from satellite images us-
ing Context-Aware Convolutional Network (CACN) [25].

the proposed consistency constraints. The resultant model
is robust to domain shift and is more generalized than the
baseline source-only model.

4.2.1 Distribution Map Alignment (DMA) using
Adversarial Learning

The counting pipeline, trained on the source dataset, pro-
duces the density map that has a structure similar to what is
in the ground-truth maps. However, due to the domain shift,
the distribution map produced for target data has visible ar-
tifacts as shown in Figure 7.

The learned features of the network are biased by the
supervised training of the source domain. Thus the network
does not recognize the features that it needs to localize the
center of the building in the target domain. To learn a better
output space distribution for the target domain, we must en-
force the network to learn to output similar distribution for
the target as for the source domain. For this, we perform ad-
versarial alignment over the output distribution map using a
domain discrepancy minimizer module as depicted in Fig-
ure 8. The process of adversarial alignment is described in
Figure 9.

The output distribution of a network for two domains
is considered to be consistent if we cannot discriminate be-
tween the two distributions. A domain discriminator can be
used to learn to classify whether the generated distribution
map is for the source image or target image. The more dis-
criminative the two outputs are, the less consistent the two
distributions would be and vice versa. Thus we can see that
there is an inverse relationship between the consistency of
outputs of the network and the ability of the discriminator
to distinguish them. In adversarial domain adaptation, out-
puts for the two domains are aligned by forcing the network
that produces the outputs to generate similar distributions.
Since there is a relation between the discriminator and the
density-maps-generating network, we can use the former to
adjust the latter by using the loss gradients of the discrimi-
nator.
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Fig. 7 The distribution map predicted for the source images by source trained model has a visible structure consisting of multiple Gaussians.
However, prediction over the target image patch results in a distribution map that is more blurred and lacks structure. Here, IS is the source image
patch, fc(IS) is the predicted distribution map of the source image patch from the source model, IT is the target image patch, fc(IT ) is the
predicted distribution map of the target image patch from the source model, DT is the ground-truth density map of the target image patch.

Fig. 8 Domain Discrepancy Minimizer Module: A discriminator and
GRL are added after the network outputs for adversarial domain adap-
tation.

Fig. 9 This figure depicts distribution map alignment using adversarial
learning. IS is the source image patch. IT is the target image patch.
fc() represents density maps of their respective images. Ls

MSE is the
M.S.E loss between generated and ground truth density maps of the
source image.

Ganin et al. [4] showed this the above-mentioned objec-
tive could be achieved by using a Gradient Reversal Layer
(GRL) with a discriminator to learn domain invariant fea-
tures. In this setting, the discriminator tries to distinguish
the domains using a standard cross-entropy loss function.
And as the training continues, we adjust the density-maps-
generating network such that the discriminator is not able
to distinguish the domains. This is where gradient reversal
comes in. Gradients coming from the discriminator are re-
versed before being propagated to the density-maps-generating
network. Thus, in effect, we are exploiting the reverse rela-
tion between the two where the gradients-updating-discriminator
in one direction are updating the density-maps-generating-
network in opposite direction. Thus while the discrimina-
tor is trying to distinguish the domains, the density-maps-

generating network is now trying to generate outputs such
that the discriminator is unable to distinguish the domains.
As the training continues, the discriminator finds it more and
more difficult to distinguish the domains which means that
the density maps generated are more and more consistent.
Thus, we can align the outputs of the network for the two
domains.

In our case, the discriminator is a small network contain-
ing a couple of convolution layers and a batch norm layer
as shown in Figure 8. The discriminator minimizes the fol-
lowing standard classification loss function of Binary Cross
Entropy:

LB.C.E = −
Nc∑
i=1

yi log(ŷi), (2)

where LB.C.E is the Binary Cross Entropy Loss, y is
the label vector and Nc is the number of classes which is
two (source and target) in our case. The discriminator is ap-
plied after the output density maps and the GRL layer is
used between the density maps outputs and the discrimina-
tor. It should also be noted that the discriminator and GRL
are only added at training time to minimize the domain gap
and are removed at test time. So, the total loss for the ad-
versarial learning-based domain adaptation step is given as:

LDMA = Ls
MSE + αLB.C.E , (3)

where LDMA is distribution map alignment loss, α is the
weighting factor and Ls

MSE is the mean square error com-
puted over the source domain (Equation 1).

4.2.2 Counting Consistency within Image

To overcome the limitation of unlabeled target data, we de-
sign basic constraints that should be true for correct count-
ing. In its basic form, any patch of the image cannot have
more objects than the whole image. To accomplish this, we
have employed the ranking loss. Ranking loss has been used
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Fig. 10 Within-Image consistency constraint ensures that the count of
Ia should be greater than or equal in value to the count of IaSub.

previously to constrain unsupervised deep learning-based meth-
ods [26]. Let Ca = C(fc(Ia)) be predicted number of build-
ings in the image patch Ia and the IaSub be the sub-patch
(see Figure 10) extracted from Ia, and CaSub = C(fc(IaSub))

is the predicted number of buildings in the sub-patch. The
within-image count consistency loss is given as:

LWI(Ia, IaSub) = max(0,−(Ca − CaSub) +m), (4)

where LWI is the within-image counting consistency loss,
margin m allows us to control the relaxation in the con-
straint. No loss is back-propagated in case of equal counts
or when they are in the correct order as depicted in Equation
4. The total loss for this step is given as:

LCWI = LDMA + λ1LWI , (5)

where LCWI is the total loss to compute within-image count-
ing consistency, LDMA is distribution map alignment loss,
and λ1 is the relative weight assigned. The whole process
of learning employing counting consistency within images
is shown in Figure 11.

4.2.3 Counting Consistency Across Image

Counting consistency loss within the same images is not a
powerful enough constraint, as indicated by [26] who used it
for warmup task before using the supervised learning to pre-
dict the counting. Therefore, a much stronger across-image-
counting-consistency constraint is proposed to help in do-
main adaptation. The constraint states if image patch Ia has
buildings substantially greater than the Ib, any large-enough
sub-patch of Ia will also contain buildings greater than or
equal to the number of buildings in an equally large-enough
sub-patch of Ib (see Figure 12). Let Ca = C(fc(Ia)) and

Fig. 11 This figure represents a learning framework employing im-
age counting consistency constraint. ISa is the source image. ITa is the
target image. ITaSub is the resized sub-image of ITa . fc() represents
density maps of their respective images. Ls

MSE is the M.S.E loss be-
tween generated and ground truth density map of the source image.
LWI is the within-image count consistency loss.

Fig. 12 Counting consistency across images ensures that if the pre-
dicted count of Ia is greater than or equal to the predicted count of
Ib, then the count of IaSub should also be greater than or equal to the
count of IbSub.

Cb = C(fc(Ib)) be predicted number of buildings in the
patches Ia and Ib, and CaSub and CbSub are the predicted
number of buildings in the sub-patches respectively.

The constraint is represented as loss in the following
equation,

LAI(Ia, Ib) =
{
max(0,−(CaSub − CbSub) +m) if Ca≥Cb

max(0,−(CbSub − CaSub) +m) otherwise
,(6)

where LAI is the across-image counting consistency loss,
m is the margin. While implementing, Ia and Ib are chosen
such that there is a larger than 5 difference in their count. To
further keep this constraint true, the extracted sub-image is
80% of the original image. The total loss in the case of the
across-image-consistency loss is given as:

LCAI = LDMA + λ1LWI(Ia, IaSub)

+λ1LWI(Ib, IbSub) + λ2LAI(Ia, Ib),
(7)

where LCAI is the total loss to compute across-image count-
ing consistency, LDMA is distribution map alignment loss,
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Fig. 13 This figure shows the learning framework using both within
the image and across the image counting consistency constraints. ISa
is the source image patch. ITa , ITb , ITaSub , and ITbSub are the target
image patches and their respective resized sub-patches. fc() represents
density maps of their respective patches. Ls

MSE is the M.S.E loss be-
tween generated and ground truth density map of the source image
patch. LWI is the within-image count consistency loss. LAI is the
across-image count consistency loss.

LWI computes within-image counting consistency loss, LAI

computes across-image counting consistency loss, λ1 and
λ2 are the relative weights assigned. The whole process of
maintaining counting consistency across images is depicted
in Figure 13.

5 Experiments

5.1 Implementation details

Both source dataset and target datasets were divided into
training, validation, and testing sets according to 60:20:20
ratios which made 2958 training images, 989 validation im-
ages, and 988 testing images. The image patches of both
source and target datasets have a size of 500 × 500 pix-
els each. As a pre-processing step, we performed histogram
equalization on patches of both our source and target datasets
such that they have the same contrast level. We trained the
source model on 2958 training patches of xView dataset for
140 epochs using Adam as an optimizer and by keeping a
learning rate of 1e−4. Ls

MSE (Equation 1 ) is minimized be-
tween the predicted and ground truth density maps of the
xView dataset. We kept the batch size to be equal to 26
patches. Validation was performed on 989 patches of the val-
idation set of xView.

While adapting the source model for DMA, we have
used the learning rate of 1e-5 and α was set to 0.1. During
this adaptation process, the training set of xView images and
the unlabeled training set of IML-DAC were utilized. In the
experiments performed for within-image consistency only,
the learning rate was kept at 1e-5 and the total number of
epochs was set to be 50. The relative weight λ was chosen

to be 45. During adaptation for both within-image consis-
tency and across-the-images consistency, the learning rate
and the number of epochs were 1e-5 and 50, while λ1 and
λ2 were taken to be 45 and 1 respectively. The batch size
was again kept as 26 for these two adaptation experiments.
The number of training images from both our source and
target datasets was kept the same to be 2958 respectively.
Hence a total of 5916 training image patches were utilized
in the adaptation processes. Testing of these adapted models
was performed on 988 patches of the testing set of the IML-
DAC dataset and on 230 patches of the South Asian subset
of xView dataset.

5.1.1 Computation Cost:

Training is done on a single machine equipped with TitanX
GPU having 12 GB memory. Source model training took ap-
proximately 12-13 hours to complete. Adaptation time for
Distribution Map Alignment (DMA) took approximately 4
hours, within image Counting Consistency took approximately
4 hours, and the adaptation time for across-image counting
consistency is approximately 6 hours. Testing on a single
image takes (on average) 4678 ms.

5.2 Evaluation Metrics:

To evaluate our approach, we compute Mean Relative Error
(MRE) :

MRE =
1

N

N∑
i=1

(
|CGT (Ii)− CPred (Ii)| × 100

CGT (Ii)
) (8)

where N is the number of image patches in our testing set,
CGT (Ii) is the ground truth count of buildings in the ith im-
age and CPred (Ii) is the predicted count of buildings in the
ith image patch. MRE, also known as Mean Absolute Per-
centage Error (MAPE) [3,44] is less susceptible to outliers
in comparison to Mean Absolute Error (MAE) and the Root
Mean Squared Error (RMSE) [3].

5.3 Hyper-parameter Selection

Histogram equalization is utilized as a pre-processing step
to improve the contrast level of the images and is applied to
each image separately. This preprocessing step improves the
source trained model (that has not seen the target data) be-
cause it does not have to overcome the difference in contrast
level in the two domains. In Figure 14, we have compared
our patches of both xView and IML-DAC datasets, before
and after applying histogram equalization. Below we present
the results before and after performing histogram equaliza-
tion. As shown in Table 5, the source-only trained model
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Fig. 14 Side-by-side comparison of patches, before and after histogram equalization, of IML-DAC and xView datasets.

Table 1 This table demonstrates the hyper-parameters selection of our
different experiments.

Experiments Parameters MRE ω

LDMA

α = 0.05 32.91 118
α = 0.1 32.06 140
α = 0.15 32.65 106

LCWI

α = 0.1, λ1 = 35 31.25 890
α = 0.1, λ1 = 40 31.98 815
α = 0.1, λ1 = 45 30.16 1116
α = 0.1, λ1 = 50 30.94 1077

LCAI

α = 0.1, λ1 = 45, λ2 = 1/22 29.77 1098
α = 0.1, λ1 = 45, λ2 = 1/24 28.86 1246
α = 0.1, λ1 = 45, λ2 = 1/26 27.89 1464
α = 0.1, λ1 = 45, λ2 = 1/28 28.37 1321

performed 22.9% better on the target dataset (IML-DAC)
when histogram equalization was applied on patches.

Optimal hyper-parameters are selected by training on a
small part of the training dataset in the target domain (IML-
DAC) and testing over the full training dataset. The hyper-
parameters were selected according to ω which represents
the number of image patches of the training set of our tar-
get data (IML-DAC) which followed within-image counting
consistency and the MRE being computed on its testing set.
Note that MRE is not used in choosing the parameters due
to the assumption of the unavailability of ground truth den-
sity maps of the target training dataset. However, the corre-
lation between the last two columns indicates the effective-
ness of using with-in consistency loss for hyper-parameter
selection. We start with LDMA (Eq. 3) and iterate over dif-
ferent values of α. For each value of α, the model is trained
over a small dataset. The setting that results in the smallest
within-image consistency loss over the full training dataset
is chosen as the optimal value. Similarly, we find optimal
value for λ1, by minimizing LCWI (Eq. 5) and keeping α

constant. For λ2 both the α and λ1 are kept equal to optimal
values picked in previous steps, as we minimize LCAI (Eq.
7). In Table 1, our different sets of experiments demonstrate
the usefulness of our selected hyperparameters.

5.4 Experimental Results

We evaluate our proposed approach on the testing set of
IML-DAC which consists of 988 images and on a subset
of xView consisting of South Asian countries.
Component-wise analysis of the proposed approach: A
detailed quantitative comparison of the proposed approach
and its components is given in Table 2 and Table 4. As in-
dicated in Table 2, the source-trained model suffers a sig-
nificant decline in performance when tested on the target
(IML-DAC) dataset. We detail both, MRE over the target
and the reduction in MRE with respect to when the only
source-trained model is used, as different loss functions are
introduced. Where density map alignment results in a de-
crease in Mean Relative Error (MRE), the significant im-
provement comes with the introduction of Counting Con-
sistency Constraints, especially their combination. The final
combination of all three losses results in the lowest counting
error of 26.40%. A similar trend can also be seen while test-
ing on south Asian regions of xView. Note that DMA also
contains MSE loss.

Table 2 Comparison of mean relative error of all models on the tar-
get datasets. The first row is the model trained only on the source.
Other rows represent adaptation by the indicated loss. Our final adapted
model reduces error by approximately 7% on the IML-DAC dataset
and approximately 20% on the South Asian subset of xView from the
source trained model. MRE: lower is better. Reduction in Error: higher
is better

Target:
IML-DAC

Target:
xView (South Asian)

Experiments MRE Reduction
in Error MRE Reduction

in Error
Source Trained Model 33.14% - 48.24% -

LDMA 31.97% 1.17% 37.40% 10.84%
LCWI 29.45% 3.69% 33.30% 14.94%
LCAI 26.40% 6.74% 28.41% 19.83%

To check the quality of density maps produced by our
source and final adapted model, we have shown a detailed
comparison in Figure 15. It is noticeable that as the model is
adapted from the source to the target dataset, the predicted
density maps improve in quality, i.e, they are better able to
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Fig. 15 From Left to Right: Input Image, distribution map predicted by source only trained model, distribution map predicted by the adapted
model and Ground-truth. After adaptation, the predicted density map captures the localization information of the buildings much better than the
ones produced by source only model.

locate and count the buildings. It is also worth noting that
the density maps also become sharper as we adapt the model
from the source to our target dataset. Moreover, in Figure 16
we observe the improvement in building counting for the
satellite images using our proposed approaches.

Comparison with related works: Since, to the best of our
knowledge, we are the first one to address the problem of
building counting across the regions, we have compared our
methods with previous methods which have addressed do-
main adaptation in crowd counting. The method of [7] min-
imized MMD loss between the source and target density
maps, generated from crowded images, in a semi-supervised
manner using three settings of the few-shot learning. In these
three settings, 1, 5, and 10 labeled images respectively from
the target domain were utilized while minimizing the MMD
loss. We, however, have implemented their method in an un-
supervised manner without using any labeled image of the
target dataset. The work of [21] also proposes to address do-
main adaptation in crowd counting by utilizing ranking and
adversarial loss to adapt the target dataset to cater to differ-
ent density distributions and various scales.

Table 3 In this table we compare our method with two of the existing
works which deal with domain adaptation, but in crowd counting. Our
final adapted model outperforms these models when tested on both the
target datasets.

Target:
IML-DAC

Target:
xView (South Asian)

Experiments MRE Reduction
in Error MRE Reduction

in Error
Source Trained Model 33.14% - 48.24% -

MMD [7] 29.23% 3.91% 34.38% 13.86%
CODA [21] 28.17% 4.97% 30.67% 17.57%

Ours 26.40% 6.74% 28.41% 19.83%

As demonstrated in Table 3, our proposed methodology
outperforms both of these methods in terms of a higher re-
duction in error while testing on an unseen target domain.

Results for different building count ranges: To analyze
the model’s behavior as the density of the buildings changes,
we report results on different ranges in the number of build-
ings. For this purpose, we have segregated our testing data
(IML-DAC) into three divisions: (i) images containing less
than 31 buildings, (ii) images containing 31 to 60 buildings,
(iii) images containing more than 60 buildings, and com-
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Fig. 16 Qualitative Results. Each column shows the improvement in building counting for the satellite image shown at the top of the column.

Fig. 17 Comparison of predicted and ground truth counts using our final adapted model on images containing a different range of buildings. (a)
depicts successfully predicted counts and (b) shows images where our model has failed to predict precise counts from images.

Table 4 Comparison of mean relative error of all models across differ-
ent ranges of buildings of target dataset (IML-DAC).

Building
Ranges

Source
Trained Model

LDMA LCWI LCAI

MRE MRE MRE MRE
Less than 31 30.65 % 29.15 % 26.57 % 23.36 %

31 - 60 51.03 % 52.83 % 51.13 % 50.07 %
More than 60 55.04 % 55.98 % 53.52 % 50.78 %

pared the results of different models in Table 4. We can ob-
serve that the count is more erroneous as we move to im-
ages with a high building count. In Figure 17, we present
the qualitative results on some of the images from these
three ranges of buildings. Figure 17(a) shows some images
where count prediction is accurate, whereas Figure 17(b)
shows cases where predicted counts are inconsistent from
the ground truths.

5.5 Ablation

Table 5 Comparison of M.R.E of source only model when trained on
source dataset and tested on target dataset, with and without histogram
equalization being part of preprocessing step. With histogram equal-
ization generalization of the model improves.

With
Histogram Equalization

Without
Histogram Equalization

Experiments MRE MRE
Source Trained Model
Tested on IML-DAC

33.14% 42.98%

Histogram equalization is utilized to improve the con-
trast level of the images and is applied to each image sepa-
rately. Figure 14, qualitatively show the effect of this step.
This preprocessing step improves the source trained model
(that has not seen the target data) because it does not have
to overcome the difference in contrast level in the two do-
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Fig. 18 Convergence of performance during adaptation (a) λ1 is fixed to 45 and λ2 is being varied. (b) λ2 is fixed to 1/26 and λ1 is being varied.

mains. To show its effectiveness, we compared when the
source-only trained model was trained on the source dataset
and tested on the target dataset, without having this prepro-
cessing step and when it is included. As shown in Table 2,
the histogram equalization source-only trained model per-
formed 22.9% better on the target dataset (IML-DAC).

The Figure 18 illustrates the convergence of our objec-
tive function. In these adaptation experiments shown in (a),
we fixed alpha at 0.1, lambda1 (λ1) at 45, and varied lambda2
(λ2) from 1/22 to 1/30. The figure in (b) shows alpha fixed
at 0.1, lambda2 (λ2) at 1/26 while lambda1 (λ1) is varied
from 30 to 55. The given plots show the effect of these hy-
perparameters on performance convergence. For all these
values we see convergence, indicating that hyperparameters
are not too sensitive in these ranges.

6 Limitations & Future Directions

The current experiments on the target dataset were restricted
to regions from South Asian countries only. The images cov-
ered not all but a few cities of these countries. For the fu-
ture, a much larger dataset needs to be tagged and presented
as standard for such studies, with special consideration to
make it diverse and inclusive. In future work, we intend to
include multi-task learning that exploits information such as
the presence of roads or parks to improve the domain align-
ment and explainability component.

7 Conclusion

In this paper, we have addressed the challenging problem
of cross-region building counting. We propose two count-
ing consistency constraints to help direct the domain adap-

tation for the counting problem over the unlabeled target
dataset. Exploiting the structure that should be there in the
density map, we use adversarial learning to align the features
across domains. Furthermore, we have introduced a large-
scale dataset based on satellite imagery consisting of regions
belonging to various South Asian regions to validate our do-
main adaptation methodology. The quantitative results prove
that adapting the source trained model using our approach
of count consistency and output space adaptation can pre-
dict counts from the target dataset quite accurately. Our pro-
posed approach acts as a benchmark in this setting as it does
not require any labeled images from the target dataset, mak-
ing the whole process of building counting computationally
efficient and labor-saving. We reported an improvement of
approximately 7% on the IML-DAC dataset, and approxi-
mately 20% on the South Asian subset of xView over the
model trained on the source dataset only. The huge improve-
ment South Asian subset of xView could be due to the rea-
son that both developed and developing regions in xView are
captured at the same resolution and with the same sensors.
On the other hand, comparatively less improvement on the
IML-DAC dataset could be due to the large domain shift and
demonstrate that our dataset is more challenging.
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