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Abstract

In this paper, we study functional regression and its properties in testing the hypothesis of
a constant zero mean function or an unknown constant non-zero mean function. As we show,
the associated Wald test statistics have standard chi-square limiting null distributions, standard
non-central chi-square distributions for local alternatives converging to zero at a y/n rate, and
are consistent against global alternatives. These properties permit computationally convenient
tests of hypotheses involving nuisance parameters. In particular, we develop new alternatives
to tests for mixture distributions and for regression misspecification, both of which involve
nuisance parameters identified only under the alternative. In Monte Carlo studies, we find
that our tests have well behaved levels. We find that the new procedures may sacrifice only
a modest amount of power compared to procedures like those of Davies (1987), which fully
exploit the covariance structure of the Gaussian processes underlying our statistics. Further,
functional regression tests can have power better than existing methods that do not exploit
this covariance structure, like the specification testing procedures of Bierens (1982, 1990) or
Stinchcombe and White (1998).
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1 Introduction

A considerable variety of useful testing procedures involve “nuisance” parameters. Examples are
those considered in the work of Davies (1977, 1987), Bierens (1982, 1990), Bierens and Ploberger
(1997), Andrews and Ploberger (1994), and Stinchcombe and White (1998). In these examples,
as well as in this context generally, test statistics are constructed by “integrating out” the nuisance
parameters, yielding nuisance parameter-free tests. A general consequence of this approach is that
the limiting null distributions of the resulting test statistics are highly context specific, requiring
special purpose computations to obtain suitable critical values.

In this paper, we consider a different approach, useful in this context, that yields statistics
having standard chi-square limiting null distributions. In some cases, the additional ease of com-
putation comes with a modest cost in power, relative to existing procedures. In other cases, our
procedures can have better power than previous procedures. The former case is illustrated by the
test for a mixture distribution proposed by Davies (1987); the latter by the specification tests of
Bierens (1982, 1990) and Stinchcombe and White (1998). The difference in these cases is that
whereas Davies’s (1987) test takes account of correlations among the elements of the Gaussian
process underlying the test statistic, the tests of Bierens (1982, 1990) and Stinchcombe and White
(1998) do not. Our procedures also do not take account of these correlations. This affords com-
putational convenience, analogous to the way that tests based on heteroskedasticity-consistent co-
variance matrices yield convenient tests of proper size by neglecting efficiency improvements that
could be gained by modeling the heteroskedasticity.

The approach taken here is that of hypothesis testing in functional regression. This is an exten-
sion of standard regression in which the dependent variable is a random function (of v € I, say)
rather than a random variable, and the regressors are user-specified non-random functions of v cho-
sen to give a good approximation to the mean function of the dependent variable. Under the null
hypotheses of interest here, this mean function is either the zero function or an unknown non-zero
constant function. We analyze testing procedures designed to have power against the alternatives
to either of these nulls. An appealing consequence of using functional regression is that the re-
sulting test statistics have standard chi-square limiting distributions under the null. Both Wald and

Lagrange multiplier versions of these statistics are available. For concreteness and conciseness,



our focus here is on the use of Wald statistics.

Although functional regression is of theoretical interest in its own right, our focus here is on
its usefulness in specific application areas. In one sense, functional regression is familiar, in that
standard panel data structures can be viewed as examples of functional data. We illustrate this with
a running example focused on tests of random effects structure in panel data. On the other hand,
the functions of interest arising in the analysis of models involving nuisance parameters identified
only under the alternative can also be viewed as instances of functional data. This possibility has
apparently not been previously recognized; we exploit this here to provide appealing new ways
of testing hypotheses concerning unidentified nuisance parameters. We pay specific attention to
testing for mixture distributions, as in Davies (1977, 1987), and to specification testing, as in
Bierens (1982, 1990) and Stinchcombe and White (1998).

The plan of this paper is as follows. In Section 2, we motivate and formally describe the data
generating process underlying functional regression, illustrating with examples involving random
effect structure in panel data, mixture models, and specification testing. In Section 3, we introduce
the Functional Ordinary Least Squares (FOLS) and Two-Stage FOLS (2SFOLS) estimators. We
provide conditions under which these estimators are consistent and asymptotically normal, and we
provide consistent estimators of their asymptotic covariance matrices. In Section 4, we specify the
null hypotheses of interest and introduce Wald statistics useful for testing these. As we show, these
statistics have standard chi-square distributions under the null. We analyze their global and local
power properties. Globally, our procedures are consistent; locally we obtain standard non-central
chi-square distributions for alternatives converging at the parametric \/n rate. Section 5 applies
the theory developed in the preceding sections to obtain test statistics for our panel data, mixture
distribution, and specification testing examples. Section 6 provides a Monte Carlo analysis where
we study the finite and large sample properties of tests based on the statistics developed in Section
5. Section 7 contains a summary and concluding remarks.

Before proceeding, we introduce some mathematical notation used throughout. First, integrals
of functions will be often used in this paper, and we let [ g dP and [ h dPdQ respectively denote
[ g(z)dP(z) and [ [ h(z,y)dP(z)dQ(y) for brevity, unless confusion otherwise arises. When
there is no possible ambiguity, we may further abbreviate these to [ g and [ [ h. Unless explicitly

noted otherwise, limits are taken as n — oo.



2 The Data Generating Process and Functional Regression

In this section, we motivate and formally describe the data generating process underlying func-

tional regression.

2.1 The Data Generating Process

We consider data generated as follows:

Assumption A.1 (DGP): (i) Let (2, F,IP) be a complete probability space and let (', p) be a
compact metric space;

(17) Fori=1,2,...,let G; : Q x I +— R be such that for each ~y € T, G;( - ,~y) is measurable
and independently and identically distributed (IID).

Often in econometrics, such a function (G; is used to define a model, that is a collection of
functions G; := {G;(-,7) : 7 € I'} that, when “correctly specified,” includes some functional of a
data generating process for random variables of interest. (See, for example, White, 1994, ch. 2.2.)
For example, in that context, G;(w, - ) might represent the log-likelihood function for observation
1, determined by the realization w € (). Correct specification occurs when there is 7, € I' such
that G;( -, vo) represents the log density of the data generating process (DGP) for observation i.

Here, we view G, rather differently. Specifically, we view the observed data not as realizations
of random variables, as is common, but as realizations of random functions v — G;(-,~). That
is, we observe G(w, ) : ' — R, i = 1,2, ... for some w € ). The IID condition is not essential,
but we impose it to keep the main ideas clear. Because our interest is primarily on (; as a random
function of -, we may abbreviate G;( -, ) as G;(~y) for notational simplicity.

To illustrate, we discuss three examples. First, we show how the familiar case of panel data falls
into the present framework. As we show later, this supports tests for features of interest in panel
data, such as random effects structure. We operate within the panel data setting nicely exposited

by Wooldridge (2002, ch.10.4).

Example 1 (Panel Random Effects): Let v € " := {1,2, ..., 7'}, and suppose data are generated

as



where 3y € R? and Vi(7) := C; + U;(y). We assume that (Y;, X!)’ : Q x ' — R is 1ID.
Ui : QxT +— Rand C; : Q — R are unobserved. Let X; := (X;(1), X;(2), -, X;(T)),
V, = (Vi(1),Vi(2),- -+, Vi(T))', and assume that ¥ := E[V,;V]] is finite and positive definite,

with rank( E[X/X7'X,]) = d. The data exhibit random effects structure when, fori = 1,2, ...,

1. U;(7y) is ID with respect to v, and E[U;(7)|X;(7), C;] = 0 for each v € I'; and

2. E[Ci|X;(v)] = E[C;] = 0 foreachy € T

Under these assumptions, we may write o2 := FE[U;(v)?] forall v € T and 02 := E[C?]. The

C

covariance matrix X has the form

2 2 2 2
O-’LL + O-C UC UC
o2 o402 o2
Yy =
2 2 2 2
o o o, +o;

When af = 0, the unobserved effect C; is absent, and V; is identical to U;.

Now consider

Under random effects with E[G;(y)] = 0 for all v € T" \ {1}, the conventional pooled OLS
estimator for [, is efficient, and we can use pooled OLS to conduct efficient statistical inference.
On the other hand, when E[G;(7)] = 02 > 0 fory € I'\. {1}, the feasible generalized least squares
(FGLS) estimator that exploits the structure of 32 is more efficient than pooled OLS. Moreover, the
presence of the unobserved effect C; may necessitate the use of methods appropriate for handling

unobserved fixed effects. [l

A leading case of interest here is associated with what is known in the literature as “nuisance
parameters identified only under the alternative.” See, for example, Davies (1977, 1987), Andrews
(2001), Cho and White (2007, 2008), and the references therein. For example, Davies (1977)

considers the following case, involving a mixture of exponential distributions.



Example 2 (Exponential Mixtures): Davies (1977) considers the following correctly specified

model for the probability density function (PDF) of an IID random variable X;:
M :={f(X,m7) = (1 = m)exp(=X) + myexp(—yX) :w € 1L,y €T},

where IT = [0,1] and I' = [y,7], with 1 < v <% < oo. Under correct specification, the data are

generated by (7*,~*) € II x I'. Davies’s (1977) main interest is in testing
H,: 7™ =0 versus Hy:7" #0.

Under H,, v* is not identified, so that the standard log-likelihood ratio statistic does not follow the

standard chi-square distribution under H, asymptotically. To test H,, Davies considers

(2y -1

{yexp[(1—7)X;] —1}.

This choice for G; satisfies A.1. Further, under H,, E[G;(7y)] = 0 foreach vy € T, since E[exp(1 —

v)X;] = 1/~, whereas under H 4,

L =Dy -2
(v+7 -1

ElGi(y)] =7

Davies (1977) constructs a test of H, by applying Neyman’s (1959) C(«) test to statistics based

on

Zn(v) ="/ ZGZ-(W)-
0

Another important example involving nuisance parameters present only the alternative is the
specification testing framework of Bierens (1990) and its extensions (e.g., Stinchcombe and White,

1998 (SW)).

Example 3 (Specification Testing): Let {(Y;, X])’ € R'*¢} be IID, and suppose E[Y;|X;] is
modeled by a set of functions, say M := {f(X,0) : § € © C R™}, where d and m are finite



integers. Further, for v € I, let

Gi(y) = [Yi = f(Xi,07)]o{~' X},

where 6* is the probability limit of an estimator /Q\n, e.g., the nonlinear least squares (NLS) estimator

O = argmin n" ;[Y;' — f(X5,0))%
and ¢ : R — R is a given function. Bierens (1990) specifies v = exp; SW consider large
families of choices for v, notably the comprehensively revealing (CR) and the generically CR
(GCR) familieq']

This choice for (G; is easily seen to satisfy A.1 under mild conditions on f and . Further,
G; has remarkable and useful properties. Specifically, as Bierens (1990) and SW show, when M
is correctly specified (so that there exists 6, € © such that E[Y;|X;] = f(X;,6p)), provided that

0* = 6y (as holds for the NLS estimator as well as for linear exponential family-based quasi-

maximum likelihood estimators generally), then
E[Gi(v)] =0 forally eT;
whereas when M is not correctly specified and ¢/ is GCR (e.g., 1 = exp is GCR), SW show
E[Gi(v)] #0 foralmostall vy € I'.

Bierens (1990) and SW exploit this property to construct tests for model misspecification. Their

test statistics are based on

Zn(v) ="/ ZGZ-(W)'
0

As these examples suggest, our main interest here concerns the population mean functional p

To ensure boundedness, Bierens (1990) replaces X; with ®(X;), a d x 1 vector of measurable bounded one-to-one
mapping from R to R?, such as ®(X;) = [tan~1(X;), tan~!(Xy;), -+, tan™1(Xy)].T We leave this implicit
here.



of GG; (when it exists) defined by

1Y) = EplGi()] = / Gi(7)dB, ~<T.

We exploit the identical distribution assumption to drop the ¢ subscript for .

We pay particular attention to certain functionals of x. To specify these, we introduce the notion
of an adjunct probability measure Q on I'. This measure should be viewed as one selected by the
researcher; it corresponds to the familiar notion of a regression design. We specify its properties

formally as follows:

Assumption A.2 (Adjunct Probability Measure): (i) (I';G,Q) and (2 x ') F ® G,P - Q) are
complete probability spaces;

(1) fori =1,2,...., G; is measurable —F ® G.

The sample space is now the Cartesian product, €2 x ['; the sigma field 7 ® G is the product sigma
field generated by F and G. Because (I, p) is a metric space, there exists a topology generated by
p. We may take G to be the Borel sigma field generated by this topology. The product probability
measure [P - Q governs events jointly involving w and 7. Because of its product structure, we have
independence, in the usual sense that P - Q[F' x G| = P[F] - Q[G] forall F € Fand G € G.

The assumed joint measurability for G; follows, for example, by Stinchcombe and White
(1992, lemma 2.15), if G;(-,~y) is measurable for each v € I" and G;(w, - ) is continuous on I'
forallw € F,P[F] = 1.

Under suitable integrability conditions, our assumptions ensure that integrals of the form

[ [ Hoaaaee)

are well defined. Of immediate interest is the integral arising when H;(w,v) = {G;(w,v) —

m(7)}?, yielding
[ [16i=mpiaae = [ [(Giw.r) - m)ydom)de).

This is the Q—functional mean squared error (Q—FMSE) for m as a predictor of GG;. As we show



next, for every Q, the function m* minimizing the Q—FMSE is essentially the functional mean,
w. To establish this, we introduce some notation and add some suitable regularity. First, we write
={f: [|f(w)]?dP(w) < oo} and similarly Ly(Q) := {f : [ |f(7)[?dQ(7) < oo}, where

f is measurable-F in the first instance and measurable-G in the second.

Assumption A.3 (Domination): There exist random variables M; € Ly(P) such that sup, . |Gi(7)|
<M, i=1,2 ..

From this, it follows that 1 as defined above exists and is measurable —G, and that u € Ly(Q).

Applying eq. (3) in White (2006) gives the following result.

Proposition 1. Given Assumptions A.1, A.2, and A.3, let m € Ly(Q). Then

/ / {Gi — m}2dQdP = / vars[Gy(1)1dQ() + [ {m(2) - () Q)

where varp|G = [{Gi(v) — p(7)}2dP.

Thus, for any given Q, the Q—FMSE is minimized by m* = p a.s.—Q , so that

inf / / [Gy — m)2dQdP — / vars[Gi(7)]dQ(7).

mELz Q)

Clearly, the optimized Q—FMSE depends on Q. In particular, if for some 7 € I', Q is selected
so that Q(G) = 1if 79 € G € G and Q(G) = 0 otherwise, then m* = p a.s.—Q holds for the

constant function m* = p(~y), and the minimized Q—FMSE is

/ varg[G(1)}dQ() = varg[Gi(0)].

This replicates the familiar result for random variables that the expectation () is the best mean-
squared error predictor for the random variable G;(7,). Analogously, the function defined by 1(7)

provides a Q—FMSE optimal prediction for the random function defined by G;( -, ).



2.2 Functional Regression

Our primary interest attaches to testing hypotheses about .. For example, given a known function

m* € Ly(Q), suppose we are interested in testing

H,: p=m* as.—Q vs. Hy: H, is false.

Because m* is known, this is equivalent to testing

H,: p* =0 as.—Q vs. Hy:H,is false,

where p* 1=y —m* = Ep|G}], with G} () := Gi(v) — m*(7).

We may be also interested in testing

Hy,: p*=c¢ as.—Q vs. Hy: H, is false,

where c is an unknown real constant. For example, in our panel data example, this case is relevant
in testing the null of no serial correlation in U; with respect to vy versus serial correlation in U; in
the possible presence of the unobserved effect C;.

In what follows, we drop the superscript *, letting any recentering by known m* be implicit,

and just consider testing

Hy, : p=0 as.—Q vs. Hyu: Hy,isfalse; and

Hy, : p=c as.—Q vs. Hyu: Hoy, is false.

Power against particular alternatives may be enhanced by making use of non-constant basis
functions g; : ' — R, j = 1,2, ..., k; we write g := (g1, g2, ..., gx)’. The next assumption specifies
their properties. We let Apin(-) and Apax(-) denote the minimum and maximum eigenvalues

respectively of a given matrix.

Assumption A.4 (Basis Functions): (i) For each j = 1,2, ..., k, g; : I' — R is measurable—G;
(i1) Foreach j = 1,2, ...k, g; € L2(Q); and



(lll) /\mln(A) > 0, where

1 [ &(7)/dQ(7)
Je()dQ() [ g(v)g(v)dQ(v)

Part (ii) ensures that Ay (A) < co. Part (ii7) ensures that the elements of g are non-constant and
non-redundant. As both g and QQ are under the researcher’s control, verifying A.4 is in principle
straightforward.

We use g to approximate j. Specifically, we consider affine approximations to j of the form
m(-,d,0) =do +g(-)'d.
Thus, m belongs to the affine model
A(g) = {6 +g(-)6: (,6) € RMF}.

A “trivial” but important special case for g is that in which g has no elements. This gives the
simplest test of H;,, although this choice is not relevant for testing Hs,. The most convenient
non-trivial choice for g is g(y) = =y, which yields a linear functional regression.

More elaborate choices of g are often relevant. In some cases (e.g., in our Example 2), the
alternative may provide specific knowledge about relevant choices for g. Alternatively, one can
use series functions, such as suitably chosen polynomials in v, just as when one approximates
a standard conditional expectation. The key idea is that power may be gained by selecting g to
capture salient features of ;1 under important or plausible alternatives.

When H, holds, we have the regression representation
Gi(+) = b +8(-)0" +ei-), (1)

where ) = 0,61 = 0, Ep[e;(-)] = 0, and Ep[g( - )e;(-)] = 0. When H, holds we have the same
representation, but now with (58 = ¢, 8" = 0. We call a representation of the form given by eq. a

functional regression.

10



We let 6; and 0* index the Q—FMSE optimizer. That is, m( -, &5, 0*) solves

inf //{GZ — m}*dQdP = /Varp[Gi]dQ + %&E /{u — 6o — g'6}2dQ.

meA(g)

The first-order conditions for the optimum are

/ WdQy) = &+ / g(7)'5*dQ(y);
/ WE()QR) = / (55 + g(7)/5)g()dQ().

These yield convenient expressions for d; and ¢*, analogous to the standard regression approxima-

tion case (see, e.g., White, 1980):

& | | Ealy N —Eqg[g]'covglg, g] 'covglg, 1]
0" 0 covglg, g] 'covglg, 4]

where Eglu] := [ 1 dQ, Eg[g] := [ g dQ;

covals. ¢l = [ &g d2() - ( [ &0 d@m) ( [ty d@m) . and

covale.s] = [ g a0 - ( [ et dee)) ([ e aem).

It is readily verified that if ¢ = 0 a.s. — Q (H, holds) then

& 0
5 0

If instead, for unknown constant ¢, u = ¢ a.s. — Q (Hs, holds) then

o5 c

o* 0

Thus, 0§ and 6* coincide with the coefficients of the functional regression representation for G;( - )

under H;, and H,.

11



On the other hand, if Hj, does not hold, then & or 6* need not equal zero, as covg[g, p] is
not necessarily 0 under H; 4. Similarly, if Hs, does not hold, then 0* need not equal zero. This
behavior gives our tests their power. We emphasize that in these cases, the optimizer m( -, &g, %)
generally does not coincide with p, as m( -, 5, 0%) is essentially a misspecified approximation to

1 under the specified alternatives.

3 Functional Ordinary Least Squares (FOLS) Estimation

We construct hypothesis testing procedures based on estimators for d; and 0*. For this, we mini-

mize with respect to dy and ¢ the sample analog of the Q—FMSE,
w Y [16i0) - b - g)81400).
i=1

The resulting estimator is the functional ordinary least squares (FOLS) estimator, denoted (5%,

6,/). This has the convenient representation

-1

o | [ 1 s WY [ G
On fg [gg ntY [gGi

where the integration is always with respect to dQ.

3.1 Consistency of FOLS

The asymptotic properties of the FOLS estimator depend on the properties of GG;. We first require
that n=' Y7 | G; obeys the strong uniform law of large numbers (SULLN).

Assumption A.5 (SULLN):

n

sup [n~" Z Gi(v) — p(y)| = 0 a.s. — P.

vel i=1

Given the domination condition of A.3, this holds under mild additional conditions on {G;}.

12



Specifically, if G;(w, -) is continuous on I', then the SULLN of Le Cam (1953) (see also Jen-
nrich, 1969) applies. Additional relevant references are Andrews (1987), Potscher and Prucha
(1989), and Newey (1991).

The Lebesgue dominated convergence theorem (LDCT) permits us to first let n tend to infinity
before integrating the relevant random functions with respect to QQ involved in 80r and 6,,. The key
assumptions permitting this are A.3 and A.4(:7). With this, we obtain the consistency of the FOLS

estimator.

Theorem 2. Given Assumptions A.1 to A.5, (3, 0,)) — (6%,6%) a.s. —PP.

3.2 Asymptotic Normality of FOLS

The FOLS estimator has the joint normal distribution asymptotically. For this, we impose a func-

tional central limit theorem (FCLT).

Assumption A.6 (FCLT): (i) n~'/? Yo (G — pu) = Z, where Z : Q x T — R is a mean zero
Gaussian process such that for v, 5 € I, Ep[Z(7)Z(7)] = k(7,7) < 0o, where k : T' x I' — Riis
such that for each j,j € {1,2,...,k},

[ [senndemaai) <oo. [ [otstni)aemaai) < oo, and

/ / 6 (1)1, 3)95(7)dQ(7)AQ(R) < o0;  and

(77) Amin(B) > 0, where

a._ | JJF0:9)AQH)QE) J sy,
J [ 8(0)E(v,9)dQ()dQ(7) [ [ g(7)x(
There is an extensive literature providing primitive conditions for the FCLT. Billingsley (1968,
1999) provides primitive conditions when I" is a compact subset of the real line and GG; belongs
to a set of right-continuous functions with left-limits. These results are extended by Bickel and

Wichura (1971) to the case where I is a compact subset of a finite dimensional Euclidean space.

13



When, as is assumed here, (I', p) is a compact metric space, Jain and Marcus (1975) provide
sufficient conditions for the FCLTﬂ For additional literature developing these conditions under
various contexts, see, for example, Shorack and Wellner (1986) and van den Vaart and Wellner
(1996).

By construction, (7, 7) defines a measurable symmetric function. Many useful choices for g
are bounded; in such cases, only the first of the integrability conditions in A.6(z) is needed. Further,
A.6(7) ensures that A\, (B) < co. A.6(i7) ensures that the asymptotic distribution of the FOLS
estimator is not degenerate. For example, A.6(i7) fails if « is constant over I' X I'. Constant «
occurs when G, is a random constant function.

We can now give the asymptotic distribution of the FOLS estimator.
Theorem 3. Given Assumptions A.1 10 A.6, \/i|(don — 62), (6, — 6*)']' ~ N (0, A"'BA1).

The asymptotic normality ensured by this result makes it easy to construct tests of our hypotheses
of interest.

Observe that the asymptotic covariance matrix has the sandwich form common to estimators
of misspecified models (see, e.g., Huber, 1967; White, 1982, 1994). Nevertheless, this matrix
does not simplify further even under H;, or Hs, (where functional form misspecification is absent)
because the functional data contain a stochastic dependence structure captured by «; this is the
analog of neglected heteroskedasticity. We accept this in order to avoid undertaking the intensive

effort that would otherwise be required to model and accommodate «.

3.3 Two-Stage FOLS

In applications, we often encounter situations in which an estimator Gz( -,7) appears in place of
G;(-,7). Our Examples 1 and 3 are relevant instances. To handle these cases in a general way, it

suffices to assume that
Gl( : 77) = Gl( 5, (9*)

2Jain and Marcus (1975) provide sufficient conditions for FCLT for random functions G; with various properties.
For example, their theorem 1 states that given our DGP conditions, if G; is Lipschitz continuous on I' a.s. —P, so that
as. —P, forall v, € T, |Gi(y) — Gi(7)| < K;p(7y,7) for some K; such that E[K?] < oo; and if for any € € (0, 1),
N H;/Q(F, u)du < oo, then the FCLT holds, where H,(I", u) := log[N,(T', u)], and N,(I", u) is the minimal number
of p—balls of radius less than or equal to u covering I

14



for some suitably regular function G;, where 6* is an unknown m x 1 vector (m finite) in ©, say.
We then form

~

Gz( : 77) = él( : 777671)7

where 6, is a suitable estimator of 6%, computed in a first stage. From this, we can construct the

two-stage FOLS (2SFOLS) estimator

-1

SOn . 1 fg n_lzféi
On [g [gg n 'S [Gig

When 6, is consistent for 6* and G is mildly regular, the consistency of 2SFOLS follows straight-
forwardly.

To sketch the main ideas driving the asymptotic distribution result for 2SFOLS, we consider

n—l/zzf@i_u "y .
X =n (G; —
n23 [g(Gi—p) Z/g

where g := (1,g’)’. This is the analog of the term whose asymptotic distribution drives the result
of Theorem 3 for FOLS.
Writing the integral on the left more explicitly and taking a mean value expansion at §* (interior

to ©) gives

w2 Y OG- 7.0 - Q) @
=023 [FIG( 287~ n(la00)
Z/ VGG e é,w)]d(@('y) \/ﬁ(én —0"),
where the mean value énﬁ lies between 6,, and 6* and, as indicated, depends on . With G;(-,7v) :=

éz( -,7,0"), we recognize the first term as that arising for the simple FOLS estimator. The second

term is new and may alter the asymptotic distribution of 2SFOLS from that of FOLS.

15



Under mild domination conditions, the first part of the second term converges:

Tty / EMNIVHGi(+,7,0n,)] dQ(7) — D := /é(v) Ep[VyGi(-,7,07)] dQ(7) a.s. —P.
3)
The second part, \/ﬁ(én — 6*), generally converges in distribution.
When Ep[VyGi(-,7,0%)] = 0 for all v € I, as can happen in important special cases, then
D*= 0. It is then enough that \/n(6, — %) = Op(1) to ensure that

n‘l/QZ/g(v)[@i(-,vvén)—u(v)] dQ(y) Zn‘l/ZZ/é(v)[Gi(w p(7)] dQ(y)+0p(1),

in which case 2SFOLS and FOLS are asymptotically equivalent and thus have the same asymptotic
covariance matrix.
When D*+# 0, then some further mild assumptions deliver a straightforward result. Specifi-

cally, suppose that 0, is asymptotically linear in the sense that
Vnl, — 0] = —H*'/ns* + op(1),

where H* is a nonstochastic finite nonsingular m X m matrix and s}, is an m X 1 random vector

such that for some nonstochastic finite symmetric positive semi-definite m X m matrix [*,
* A *
Vnst ~ N (0,1%).

Many estimators used in practice are asymptotically linear. Examples include quasi-maximum

likelihood estimators, GMM estimators, and estimators based on U-statistics. In this case,

n—l/ZZ/é(v)[G‘i(-,%én) — 1(7)] dQ(7)
WY [EOG- ) — n)] dQ) — DS, + or (1),

and an asymptotic normality result follows straightforwardly under mild conditions.
We collect together additional conditions ensuring the validity of the above heuristic arguments

as follows:
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Assumption B.1 (DGP) (i) Let A.1(7) and A.2(i) hold, and let © C R™, m € N, be compact,

(i) Fori = 1,2,...,let G; : @ x T' x © — R be such that for each 6 € ©, él(, -, 0) is
measurable—F ® G and IID;

(131) © is convex, and for each (w,v) € Q x I, Gi(w,~, -) is continuously differentiable

.....

i=1,2,...

Assumptions B.1(7) and (i) ensure that Assumptions A.1 and A.2 hold for G;( - ,7v) := G;( -, 7,
0*), where 0* is formally specified next. We use B.1(#i¢) in proving consistency for the FOLS es-

timator, as well as in obtaining the asymptotic distribution of statistics involving Gi.

Assumption B.2 (Parameter Estimator): There exist 0* € © and a sequence of measurable
functions {0,, : Q@ — O} such that

(i) 0, — 0% a.s. — P;

(ii) 0* € int(©) and (a) D* = 0 and \/n(0, — 6*) = Op(1); or (b) D* # 0 and there exist a
nonstochastic finite nonsingular m x m matrix H* and a sequence of measurable random vectors

{s : Q +— R™} such that

Vb, — 0*] = —H*'\/ns® + op(1).

Assumption B.2(i) helps ensure the consistency of estimators involving (;. B.2(ii) plays a key
role in obtaining the asymptotic distribution of statistics involving Gi.
When Assumption B.2(i:.b) applies, we require one further condition, ensuring the joint con-

vergence of v/ns’ and n=/23""  (G; — u). This condition implies A.6.

Assumption B.3 (Joint Convergence): (i) For G;(-,7) := G;(-,v,6%),

Vst 2

= 7 = ,
n23 (G ) Z
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where Z : Q) x T’ +— R™" is a mean zero Gaussian process such that for v,5 € T,

- I* Ko(7)
EpZ(v)Z(7)] = , E
ro(7)" K(7,7)
where [* is a nonstochastic finite symmetric positive semi-definite m X m matrix; kg : I' — R™

belongs to L»(Q); and k is as in A.6; and
(12) Amin(B*) > 0, where

B* =B - D'H* 'K~ K"H* VD" + D*H* ' I"H* VD" and

K* = / 0(7)&(7) Q).

Observe that when D* = 0, we have B* = B.

The consistency result for the 2SFOLS estimator is

Theorem 4. Given Assumptions B.1, B.2(i), A.4, and A.3 and A.5 for G;(-,7) = él( Ly, 0%),
(50m gn,)/ — (05,0") a.s. —P.

The asymptotic normality result for the 2SFOLS estimator is

Theorem 5. Suppose that Assumptions B.1, B.2(i), and A.4 hold, and that A.3, A.5, and A.6 hold

fOl" G’L( ' a’y) = G’L( 57 9*)
(i) If B.2(ii.a) also holds, then \/n[(8on — 83), (6, — 8*)'] ~ N (0, A""BA™) .
(id) If B.2(ii.b) and B.3 also hold, then\/n[(3on — &%), (5, — 6*)] 2 N (0, A"B*A~1).

3.4 Consistent Asymptotic Covariance Matrix Estimation

A consistent estimator of the FOLS asymptotic covariance matrix is A~'B, A~ where B,, is a
consistent estimator for B. Unlike the situation for standard regression estimation, we do not need
to estimate A, as it is known.

Let the functional regression estimated residuals &;, : {2 x I' — R be defined by

~

Ein( 1) = Gi(+.7) = don — 8(7) b0
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For convenience, we write £;,,(vy) as a shorthand for £;,( -, y). We consider estimators of the form

To ensure the consistency of this estimator, we add the following assumption:

Assumption A.7 (FOLS Covariance Matrix Estimation):

sup |n! Z G:(v)G:(7) — Ep|Gi(v)Gi(7)]| — 0 a.s. — P.

(v ) ErxT

Taken together, A.1-A.7 are the functional regression analogs of conditions for heteroskedasticity-

consistent covariance estimation (cf. White, 2001, ch.6). Formally, we have

Theorem 6. Given Assumptions A.1 to A.7, ]§n — Ba.s. — P.

For the 2SFOLS estimator, we use the second-stage residuals £;,, : {2 x I" — R defined by

When 2SFOLS and FOLS are asymptotically equivalent, we simply replace &;, with £, in the

formula for ]§n above, and denote this ]§n
Otherwise, we construct the estimator
o B N -1y e 1711 N 7-17 711
B':=B,-D,H,'K,-K,/H D, +D,H, 'I,H D,

where
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where s; : () x © — R™ is such that

n

Vish =n"2Y " si(+,07) + op(1),

i=1

and H,, is a consistent estimator of H*, for example
n
H,=n" szi( -, 0,).
i=1

Further conditions ensuring the consistency of ]§n and ]§;§ are

Assumption B.2 (iii)(a) For i = 1,2, ..., there exists s; : X © — R"™ such that s;(-,0) is
measurable—F for each 0 € © and s;(w, -) is continuous on © forallw € F € F, P(F) =
1 /nst =n~23" si(-,60%) +op(1); and I, — I* a.s. — P; and

(b) for n = 1,2, ..., there exists H, : Q — R™™ guch that H, is measurable—F and H,,

— H* a.s. — P.

Assumption B.4 (2SFOLS Covariance Matrix Estimation): (7)

swp |t Y0 Gily,0)Gi(3,0) — BelGi(7, 0)Gi(3,0)]| — 0 a.s. — P

(v,7,0)er'xI'x©

(17) for each vy € T

21€1®p nt Z 5:(0)Gy(7,0) — Ep[s:(0)Gy(, 9)]‘ — 0a.s. —P.

Note that B.4(i) implies A.7, because G;(-,7) := G;(-,v,0"). Assumption B.4(i7) helps ensure
the consistency of K,.

We can now state the desired consistency results:
Theorem 7. (i) Given Assumptions B.1, B.2(i), A.3 to A.5 for G;( - ,7) = éz( ., 0%), and B.4(i),
]§n — Ba.s. —P;

(ii) Given Assumptions B.1 — B.4,and A.3 to A.5 for Gi(-,7) := Gi(-,7,0%), B — B* a.s.
—P.
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4 Hypothesis Testing

In this section, we describe the properties of Wald tests for our hypotheses of interest, H;, and Hj,.
We consider behavior under the null and global alternative hypotheses, as well as behavior under
natural local alternatives. Because of the foundations provided by the previous sections, our next
results follow as straightforward applications of standard arguments. It is necessary, however, to

exercise care in specifying the null and alternative hypotheses.

4.1 The Wald Test under Null and Global Alternative Hypotheses

To construct Wald test statistics for our hypotheses of interest, H;, and Hs,, we define selection

matrices

Sl = Ik+1 and SQ = [Ok,]:k],

where I, is the identity matrix of order £ + 1 and Oy is the £ x 1 vector of zeros. As discussed
above, H;, and H, respectively imply
0 0

= 0k+1 and Hgo(g> . Sg = Ok
o* 0

Hlo (g) . Sl

The indicated dependence on g reflects the fact that these hypotheses are implications of H;, and
H,. They generally are not identical to H, and Hs,, as, e.g., Hj,(g) could hold, even if Hj, fails.

We express the global alternatives as

o *
Hia(g) : Sy 52 #0p1 and Hoa(g) @ So 52 £ 0.

Note that these are not equivalent to H; 4 and H 4 respectively, due to the possibility of misspec-
ification of the form of the functional regression under the alternative, as described above. We

exhibit the explicit dependence of the global alternatives on g to reflect this possibility.
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Wald statistics for testing H;,(g) and Hs,(g) based on the FOLS estimator are

(SOn

~ ~ ~ -1
Win i= nldon, 6:)8; [ S4B, AT | 5, .

, 7=12

Wald statistics for testing H;,(g) and Hy,(g) based on the 2SFOLS estimator and using B,, are

—~

N AN 1n A-lor] 50”
Win i= (0o, 5,)5) [S;A7 B AT 85 |

On

=12

Wald statistics for testing H;,(g) and Hy,(g) based on the 2SFOLS estimator and using ]§: are

* N AN 1% A —1 ¢/ -1 Oon .
W, = 1(Gon, 6,) 9] [SjAn Biats) s L g2

The following results are now completely standard. We let x? denote the standard chi-square

distribution with £ degrees of freedom.

Theorem 8. (i) Suppose the conditions of Theorem 3 and 6 hold. Then for j = 1,2, (a) under
H;o(g), Wjn 2 Xiso_ji (b) under Hjs(g), PIW, > cu] — 1 for any sequence {c,} s.t. ¢, =
o(n);

(1) Suppose the conditions of Theorem 5(i) and 7 (i) hold. Then for j = 1,2, (a) under H,,(g),
Vﬂ\jj’n R Xiro_ji (b) under H;4(g), P[Vf\zn > ¢,] — 1 for any sequence {c,} s.t. ¢, = o(n);

(7ii) Suppose the conditions of Theorem 5(ii) and 7(ii) hold. Then for j = 1,2, (a) under
H;o(g), Wi, N Xir2_ji (b) under Hjz(g), PIWV;,, > c,] — 1 for any sequence {c,} s.t. ¢, =

o(n).

4.2 The Wald Test under Local Alternatives

We consider local alternatives of the following form: {s,} is such that for some ¢ € R'**

O
Hja(g) : \/ESJ 50* - Sjga j = 1727

n
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where
on Eg[pn] N —Eg[g]'covglg, g] ' covglg, n]

o* 0 covg(g, g] " 'covglg, )]

The required evolution of i, can arise from evolution of either G; (becoming G,,) or P (be-
coming IP,,). As the former yields less fundamental and fairly direct modifications to the underlying
regularity conditions, we adopt that approach. For brevity, however, we omit restating all the af-
fected conditions (Assumptions A.1(7i), A.2(i7), A.3, A.5 (which is more easily verified as a weak
D*), B.3, A.7, and B.4 (with weak convergence)). Instead, we understand implicitly that any of
these conditions referenced in the next result are replaced with their suitable analogs involving
Gin.

The next results are again standard. We let x?(k, ) denote the noncentral chi-square dis-
tribution with &k degrees of freedom and noncentrality parameter £. The following noncentrality

parameters are relevant for j = 1, 2:

& =SS ATTBATIS TS g
& =SS AT BT AT TS )G

J

Theorem 9. (i) Suppose the conditions of Theorems 3 and 6 hold. Then for j = 1,2, under
Hja(8): Win ~ X2k 42— 1.6));

(i1) Suppose the conditions of Theorems 5(i) and 7(i) hold. Then for j = 1,2, under H,,(g),
Win ~ X2k +2 = 5,6);

(7i) Suppose the conditions of Theorems 5(ii) and 7 (ii) hold. Then for j = 1,2, under H,,(g),
Wi, ~ 2 (k+2— 4,6,

4.3 Other Hypotheses and Other Tests

Primary interest here attaches to tests of constant mean, H;, and H,, as these are the cases directly

relevant to our applications of interest. Nevertheless, our framework applies directly to testing
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general hypotheses

5*
H,:S| " | =0 or H,:s(,0) =0,
(5*

where S is any matrix of full row rank or s is a suitably behaved nonlinear function. For the
former, one can simply replace \S; with .S in the expressions given above and proceed identically.
The details of the latter case are easily filled in.

So far, we have focused strictly on Wald tests of H;, and Hj,. It is straightforward to establish
that the obvious Lagrange multiplier (L M) tests are asymptotically equivalent to their Wald test
analogs under the null and under local alternatives. These LM tests are also consistent against
global alternatives. We omit provision of detailed conditions, as these are entirely straightforward.

One might also consider using a (quasi-)likelihood ratio ((Q)LR) statistic to test Hj, or H,.
Nevertheless, we recommend against this, as the (Q)) LR statistic generally has a complicated as-
ymptotic distribution. This distribution is a mixture of chi-squares, arising as a consequence of the
unmodeled behavior of k. (See, e.g., White (1994, ch.6).) Use of the () LR statistic violates our

goal of convenient inference for our hypotheses of interest.

S5 Examples
We illustrate the application of the foregoing results by returning to our examples of Section 2.

Example 1 (Panel Random Effects-Continued): Recall that interest attaches to

and to testing H,. Because the V;’s are unknown, we use a 2SFOLS procedure. Specifically, we

work with
Gi(y) = Vi()Vi(y),
where Vi(7) := Vi(v, Ba) = Yi(7) — X;(7)Bn, and 3, is the pooled OLS estimator,
. n T -1 n T
B = (Z > Xi(v)Xi(v)’> (Z > Xi(v)Yi(v)> :
i=1 7=1 i=1 y=1
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To determine which asymptotic covariance matrix applies in this case, we investigate
D" = [ () EelViGi(- 17,6 dQ(a).

Now

(0/08)Gi(-,7,B%) = [(8/98,)Vi(1, B)Vi(v, B) + Vi(L, 87)[(9/98;) Vi (7, B7)]
= —Xy()Vily) = Vi(1) X5 (7).

Under pure random effects (02 = 0), it then follows that for all v € {2, ..., T},

In this case, the first-stage estimation has no effect on the asymptotic covariance matrix, and we
can test for panel random effect assumption using Wlm for any desired choice of g and Q. For

example, we may let g(y) = g1(y) = 7. The 2SFOLS estimator minimizes

n(T —1)

i=1 =2

Letting ) = Z;F:Q, the matrices A and B are given by

1 T-1
. >, 91(7) and

T=D 1S g0) X, 00)

1 Z'y Zﬁ/ H(Vaﬁ/) 27 Z’y 5(77;5/)‘91(;5/)

B- ;
=D S S a3 3,5 a6, 3)9i1(3)

where
E[CH + 20202 + 02 — o, ify=7;

c?

E[C}] + 0202 — o2, otherwise.

The conditions of Theorem 7.1(¢) apply to deliver the consistency of ]§n for B.
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Example 2 (Exponential Mixtures - Continued): Recall that with

(2y — 1)V/2

Gi(y) = NCEDR

{yexp[(1 —7)Xi] =1},
Ep[G;(7)] = 0 for each v € I" under Davies’s (1977) null hypothesis H,, whereas under the global

alternative H 4,
(v =12y —1)"?
(vt -1

Consequently, one might consider a choice g(y) = g1(7), where for a pre-specified 7' € [v,7],

EplGi(y)] = 7"

(V' =12y —1)'7
(v +9T=1)

91(y) =

With this choice, it is readily verified that H, implies H;,(g), whereas under H4, a particular
element of H 4(g) holds. In particular, when v = +*, we have
. o 0
lA(g) : = )
0 T
Otherwise, both d; and 6* may be non-zero under H 4.

With this choice for G;(y), no first-stage estimation is necessary. Thus, our results for FOLS
apply directly for any choice of Q, and we can test H;,(g) using W, ,,. For this, it is necessary to
obtain A and B. Taking Q to be the uniform distribution is particularly convenient in this regard,
as A and B can then be directly calculated. For example, if we let [y,7] = [1.5,26.5], and take

4T = 2, then under H,(g) we have

1 1 0.3736
A — 25 fgl ’7 ~ an
= [ ou(Vdy 5 [ 91(7)%dy 0.3736 0.1481
1 [ [ k(y,3)dvydy [ [ 6(v,%)g1(7)dvd7y | 0:8953 0.3304
250 [ [ A)drdy [ [ g1(y)r(, 7)1 (F)dvdd 0.3304 0.1226

In obtaining the latter result, we rely on theorem 1(z) of Jain and Marcus (1975) to verify that

under H,,(g), n~/2 >, G; = Z, where Z is a zero mean Gaussian process with covariance
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kernel
(2y — 1)V2(25 — 1)1/

{r+7-1}

K(7,7) =

Example 3 (Specification Testing - Continued): For specificity, suppose that d = 2, X; :=
(X1, Xi2) = (1, Xy;)" and that Ep[Y;|X;] = 7 exp(Xy;). Next, take f(X,0) = 61 + 6, X5, so
that M is correctly specified for Ep[Y;|X;] only when 7* = 0.

Finally, take 1 to be the logistic function, ¥)(2) = 1/[1 4 exp(—2)], let v € I' = [v,7], and
let Q be the uniform distribution on I". These specification tests require a first stage estimator,
so our results for the 2SFOLS estimator will apply. Given the affine structure of M, we take

0, = (éln, égn), to be the OLS estimator. We thus work with
Gi(y) =1Yi - éln - éanQi]?/J(XQi’Y)-

The 2SFOLS estimator is obtained by choosing SOn and Sn to minimize
1 - 1 7 A /{2
S - [ (G — 60— s 5¥an,
=1 b

where g is suitably chosen function.
The theory of the foregoing sections for 2SFOLS applies directly. To determine which version
of the 2SFOLS asymptotic covariance matrix is required, we investigate
¥

D :z/é(v)Eu»[Vé@i(n%@*)] dQ(y) = (’7—1)1/ 8(7) Eel(=1, = Xo)y (Xoy)ldy.

o

Inspecting this, we do not see that it vanishes in general, so we must estimate B* to compute our

test statistic. This estimation involves computation of

B, = (=) Y [ B0 -1 Xl Xa ),

5
Il

CEEIRTED Y ETOUAEHERY et

n

o= S s s ), and

i=1
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where

si(-, én) = lY; — O — é2nX2i]7 and
— Xy

En(,7) = Gi(7) = don — 8(7)' 0.
Here the relevant hypothesis is the hypothesis of correct specification, corresponding to Hy,,.
We thus compute Wy, as specified above.

To examine further features of our test, suppose that we somehow knew that the DGP exhibits

conditional heteroskedasticity, such that
Ui = h(Xa:)ei,

where U; := Y, — Ep|Y;|X;], where h(z) = sin(x), and ¢; is ID with Ep(g;|X;2) = 0 and
FEp(e?|Xs2) = 1, and that (Xo;,¢;)" ~ IID N((1,0),I). Applying theorem 3 of Bierens (1990)
tells us that under H,, n='/2 >y G; = Z, a zero mean Gaussian process having the covariance

structure

£(7,9) = EBpsin(X2)?*(0(Xoy) — X' Ep[X X'] ' Ep[X1p(X27)))
X ((X2Y) — X'Ep[X X'] 7 Ep[ X0 (X57)])].-

The complexity of this structure makes it difficult to exploit, even under the best circumstances,
where we have detailed knowledge of the DGP. In applications, matters are worse as h and the
unconditional distribution of X are typically unknown a priori. Fortunately, however, our ap-
proach here does not require explicitly taking into account the structure of x, just as tests based
on a heteroskedasticity-robust estimator do not require explicitly taking into account the unknown

heteroskedasticity.
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The tests suggested by Bierens (1990) and SW rely on statistics computed as functionals of

n_1/2 Z éz(’}/) = n_1/2 ZD/; - éln - é?nXQZ]w(XQI’Y)

These statistics have asymptotic distributions that are generally highly complex, varying for dif-
ferent choices of v and for different choice of functional. This distribution typically must be
simulated in each case, requiring considerable computational effort in computing the critical val-
ues; or a special functional has to be selected to obtain a statistic with asymptotically standard null
distribution, as pointed out by Bierens (1990). The benefit of the approach taken here is that our

test statistics always have a straightforward asymptotic chi-square distribution regardless of ¢, g,

or Q.

6 Monte Carlo Experiments

In this section, we conduct Monte Carlo experiments using our Wald tests with the DGPs specified
in our previous examples. First, we investigate the behavior of functional regression tests for panel
data random effects and compare these to a Breusch-Pagan (1979) test. As the panel setting is
standard and familiar, these results are intended primarily to illustrate how this familiar setting
maps to the functional regression framework, rather than to yield new insights for panel data.
Second, we compare our Wald test with Davies’s (1977) test. Because our Wald test neglects «
while Davies’s test does not, we trade computational convenience for power. Our experiments
shed light on this trade-off. Finally, we compare the specification tests of Bierens (1990) and SW
to our functional regression Wald tests. Here, functional regression offers not only computational

convenience, but we also observe some interesting power advantages.

6.1 Example 1: Panel Random Effects

For the panel random effects example, let d = 2 and 7" = 20, so that j € {1,2} and v €
{1,2,...,T} fori € {1,2,...,n}. Let X;;(y) be IID x3, and let U;(y) be such that U;(y) + 3 ~ IID
x3- Thus, for each v, E[U;(y)] = 0, and the U;(~y)’s have a non-normal distribution.

As discussed above, the choice of g is up to the researcher. Here we consider five different
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possibilities. The simplest choice omits g entirely, and simply tests for a zero intercept, coinciding
with a standard quasi-maximum likelihood procedure. The remaining choices are linear (g1 () =
7), quadratic (g1(7y) = ~?), linear-quadratic (g;(y) = 7, g2(y) = 7?), and geometric (g;(y) =
0.57). The latter choice is one a researcher might make if autocorrelation in the U;(y)’s were
suspected. We make these choices primarily because of their simplicity. Nevertheless, under
the alternative in which 02 > 0, yu is just a constant function different from zero. This implies
that the functional regression coefficients for the elements of g will be zero; including g will
thus result in some loss of power. Our experiments with g included permit us to assess this loss.
We denote the Wald statistics for these choices as Wlm(con), W17n(con+lin), Wl,n(con+quad),
VNVLn (con+lin+quad), and VNVLn (con+0.57), respectively.

We also apply the Breusch-Pagan (1979) statistic to test the null of pure random effects struc-
ture. This statistic is popularly used to test for unobserved fixed effects, as noted by Wooldridge

(2002), and can be written as

Y Y Vi)Vi(y)

BP, s
VI A, (Vi) 32

in our context. Under the null, 0> = 0 and there is no correlation between G;(7) and G;(%) when
~v # 4. Thus, BP,, follows the chi-square distribution with one degree of freedom. On the other
hand, the alternative 03 > ( leads to serial correlation, so that BP,, yields a consistent test.

Tables 1 and 2 display the simulation results for level (10,000 replications) and power (5,000
replications), respectively. We examine power patterns by varying the sample size and the values
of ag for the alternatives. As expected, the levels of the Wald statistics are well behaved. BP,, also
shows good level behavior. Both Wl,n(con) and BP,, have comparable power, with VNVLn(con)
having perhaps a small advantage. As expected, the inclusion of the additional regressors gener-
ally leads to modest losses in power, with (as expected) greater losses for Wl,n(con+lin+quad),
which uses three degrees of freedom, than for the others, which use only two degrees of free-
dom. Although these power losses are modest, these results underscore the importance of using

knowledge about the alternative to arrive at a parsimonious functional regression.
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6.2 Example 2: Exponential Mixtures

We test the mixture hypothesis for exponential distributions using Davies’s (1979) DGP and test
statistic and compare the performance of his test to our Wald tests. We again consider the case of
functional regression with a constant only, together with the linear, quadratic, and linear-quadratic
cases. We denote the Wald statistics for these cases as W, ,,(con), W, ,,(con+lin), W ,,(con+quad),

and W ,,(con+lin+quad), respectively. Recall that under the alternative,

L =12y — )2
(v+y—=1)

ply) ==

As p is a non-trivial function of v under the alternative, we might expect some power to be gained
by the latter three choices.
We also consider two further choices, the first where the functional regression includes a con-

stant and
(yF = 1)(2y — 1)/2
(y+1=1)

with 47 = 4*, and the second with g;(vy) as above, but omitting the constant. The corresponding

91(y) =

Y

Wald statistics are denoted W, ,,(con+g; ) and W ,,(g1 ), respectively. Because " = ~+*, this choice
is not feasible in applications. Nevertheless, it represents a “best case” scenario: we should expect
lower power in practice, where we will generally not have v = ~v*.

As above, we take I' = [1.5,26.5]. As further noted above, here the known covariance kernel x
permits us to compute B analyticall This permits us to substantially reduce the level distortions
of our Wald statistics compared to the case in which B is estimated.

We also compute Davies’s (1977) statistic, denoted D,, := sup., Z,(7y). This converges weakly
to sup,, Z(7) under H,. Applying theorem 2(i) of Cho and White (2008) shows that Z is identical

to Z in distribution, where for each vel,

k

3In particular, we compute the associated integrals by Gauss-Legendre quadrature. Many computer packages
provide commands for this. For example, GAUSS7.0 provides routines called ‘intquad’ and ‘intquad2.’” Their com-
putation speed is satisfactorily fast and their approximation errors are satisfactorily small.
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and W, ~ IID N (0, 1). We use this fact to generate the critical values for Davies’s (1977) test by
applying the simulation methods of Cho and White (2008).

Tables 3 contains the simulation results for our level experiments (10,000 replications). As
expected from Theorem 8(7) and affirmed by the entries in Table 3, all the Wald statistics yield
tests with well behaved levels, even for sample sizes as small as 25. In contrast, D,, over-rejects,
particularly for smaller levels and smaller n. In other experiments (not reported here) we find
that this level distortion is less noticeable when I is smaller (e.g., I' = [1.5,6.5]). In the present
case, the level distortion is of sufficient concern that we also compute a level-adjusted version of
Davies’s (1977) statistic, denoted D;.

We present power simulation results in Table 4 (5,000 replications), generating alternatives
by letting v* = 2 and considering a range of values for 7*. First, as we expect, all statistics
appear consistent. Also as expected, the (level-adjusted) Davies’s statistic D}, largely dominates.
Nevertheless, W, ,,(con) performs almost as well in many cases. Interestingly, the other Wald
tests do not perform as well as WV ,,(con), even though x depends non-trivially on . We note that
Wi n(con+g;) outperforms W ,,(¢1), emphasizing the importance of the constant in achieving
power. We also note that W, ,,(con+lin) performs comparably to W, ,,(con+g; ), suggesting that
simple methods may perform just as well as more complicated ones.

Overall, these results suggest that a useful first step in this context is to perform the straight-
forward Wald test based on W, ,,(con). If one rejects, then one has effective evidence against the
null. If one fails to reject, then one may elect to perform the more powerful Davies (1977) test by
expending the additional effort required to simulate the critical values for Davies’s (1977) statistic.
We note that obtaining these critical values is not always as straightforward as in this particular
example. Specifically, in other cases, it may not be so easy to find a suitable alternative repre-
sentation for the distribution of Z. In such cases, one may exploit the conservative critical values
suggested by Davies (1977), provided the dimension of I' is equal to one. On the other hand, the

Wald statistics still can be easily applied when the dimension of I' is greater than one.
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6.3 Example 3: Specification Testing

To test the hypotheses H,(g) vs. Hj4(g) for the specification tests of Example 3, we again con-
sider the case of functional regression with a constant only, together with the linear, quadratic, and
linear-quadratic cases. We denote the Wald statistics for these cases as Wy, (con), Wy, (con+lin),
Wi . (con+quad), and Wy, (con+lin+quad), respectively. As in Example 2, the associated integrals
are computed using Gauss-Legendre quadrature, now letting I' = [y, 7] = [~0.5,0.5] with ¢ the
logistic function, as before.

In addition, we compute test statistics suggested by Bierens (1990) and SW, letting B,, and
SW,, denote the Bierens and SW test statistics, respectively. For B,,, we follow theorem 4 of
Bierens (1990) and let v = 1, p = 0.5, and ¢ty = 1/4. These parameters must be selected by the
researcher before conducting the Bierens test and are those used by Bierens (1990, table 1) for
his own Monte Carlo experiments. For comparability, we again take 1) to be the logistic function.
Because of the particular structure imposed here, B,, is distributed asymptotically as x? under the
null.

SW give a simple consistent test procedure using critical values based on the law of the iterated
logarithm (LIL) bound. This is quite conservative, as SW point out. We follow their theorem
5.6(a) and let the associated norm be the uniform norm, with ¢ again chosen to be the logistic
function. SW’s LIL procedure yields a test for which the level declines to zero as n increases.
For comparability, we scale the LIL-based critical value to yield a level of 5% for n = 100. For
n = 100, the ratio between the LIL-based critical value and the quantile yielding a 5% empirical
rejection is 2.2405. We then multiply the other LIL-based critical values for the different sample
sizes by this ratio.

Tables 5 and 6 present simulation results for level (10,000 replications) and power (5,000 repli-
cations). In Table 5, we see that the Wald tests and 5,, have approximately correct levels. As the
sample size increases, the levels appear to converge to their nominal values. As expected, the level
for SW,, decreases with n.

In Table 6, we examine power by varying the sample size and the coefficient 7* (recall that
above we specified F[Y;|X;] = 7*exp(Xy;)). First, we again see very strong performance for

tests based on Wy, (con). Nevertheless, jointly including linear and quadratic functions of 7 in the
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functional regression (using Wy, (con+lin+quad)) is now seen to pay off, especially for all but the
smaller values of 7*, with relative improvement most noticeable for the smaller sample sizes. We
note that results for Wy (con+lin) and WY, (con+quad) are similar to each other and are not as
good as those for Wy, (con+lin+quad).

Interestingly, we find that Wy, (con) strongly dominates B,,, especially for smaller values of
7*. For n > 100 (where levels are comparable) we also see the conservative SV, test dominating
B,.. For these sample sizes, SW,, performs comparably to Wy, (con) and WY, (con+lin+quad).
Nevertheless, the utility of the SW,, statistic is limited by the need to find a practical way to
control its level.

Overall, these results demonstrate the appeal of the functional regression Wald tests for spec-
ification testing. Not only are they easy to apply because of their standard chi-square asymptotic
distribution, but they can have power as good or better than previous procedures, such as tests

based on B,, or SW,,.

7 Conclusion

In this paper, we study functional regression and its properties in testing the hypothesis of a con-
stant zero mean function or an unknown constant non-zero mean function. As we show, the asso-
ciated Wald test statistics have standard chi-square limiting null distributions, standard non-central
chi-square distributions for local alternatives converging to zero at a y/n rate, and are consistent
against global alternatives. These properties permit the construction of straightforward tests of the
hypotheses of interest.

As we discuss, panel data can be viewed as functional data; we illustrate this with a running
example focusing on a test of random effects structure. Further, functional regression provides
a computationally convenient approach to testing hypotheses involving nuisance parameters. In
particular, we develop new alternatives to tests for mixture distributions and for regression mis-
specification, both of which involve nuisance parameters identified only under the alternative. We
find that our procedures may sacrifice only a modest amount of power compared to procedures like
those of Davies (1987), which fully exploit the covariance structure of the Gaussian processes un-

derlying our statistics. Moreover, our procedures can have power better than existing methods that
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do not exploit this covariance structure, like the specification testing procedures of Bierens (1982,
1990) or SW. Interestingly, we find that functional regression tests including only a constant have
remarkably good power, even when the functional mean depends non-trivially on its parameter.
This suggests that any battery of tests for a zero mean function should include tests based on the
intercept only, and that tests including additional functions of the parameter should be judiciously
constructed.

Finally, we note that functional regression tests may have utility in a variety of disparate con-
texts involving hypothesis testing with multiple statistics. For example, Tippett (1931), Fisher
(1932), Pearson (1950), Lancaster (1961), van Zwet and Oosterhoff (1967), Westberg (1985), and
the references therein consider combining a finite number of multiple statistics using a specified
weighting method or a Bayes method. Our approach accommodates such methods, allowing de-
pendence among multiple statistics. It further allows not just a finite number of tests, but allows

the tests to be indexed by elements of a multidimensional continuum.

8 Appendix: Proofs

Proof of Theorem I: This simply follows from the fact that

| [16i) - myair - / [16i0) ~ m()yapag
/ / (Gi(7) — (7))} 2dPdQ

=7 / (G.0) = w)Hm() - )}ipaQ + [ [(m(y) - o) Papag

where the first equality follows from Tonelli’s theorem. Given this, we note that

/ / {Gi(vy (7)}2dPdQ = / varp[G;(7)]dQ,

[ [46:0) = n)(ma) = ni)apag = [ ) - ) / {Gi(y) — () }dPdQ = 0,
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and

[ [ = nyapag = [1a [ {mer) - ey = [{me) - ui)yae

so that

| [160) - menpanae = [aniciolae+ [(me) - e

as desired. |

Proof of Theorem 2: The given consistency easily follows by applying the LDCT given A.3,
A.4, and A.5. We note that A.3 implies that

n
nil E Gl
i=1

n n
gn’lsz §n’121\/[i2 < oo as. —Pand

n n

<nt Z G?gjz- <n’! Z Mfgj?

i=1 =1

n_1 i ngj
=1

for every j, so that

n
n_l E Gl
=1

dQ <n™'> M} < oo and
=1

n_l i Glg]
i=1

dQ < n7t ZMZZ/gJZdQ < 00
i=1

as. —P, as g; € L2(Q) by A.4(i7). This implies that we can first let n tend to infinity before

integrating the associated random functions, so that

T [Gi— [ S X Gi— [
= — as. — P,
n 'Y [Gig— [ g Jn 'YX Gig— [ug 0

where the given convergence follows from A.5. Thus, we obtain that

A _1 _1

oon | _ | 1 Jg D DN TN I I S| _ |6

On Je [eg n 'y [Gig Je [eg S 1g &
a.s. —P. |
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Proof of Theorem 3: From the note that

don — 0 1 Jg n V23 (G — )

n —_=

~

Oy — 6* fg [gg n 2y [(Gi—p)g

the desired result follows if

n~2 Y [(Gi— )

X N(0,B), )
n 2y [(Gi—p)g

the desired result follows. A.6(i7) implies thatn=1/2 3" (G;—pu) = G, so that we obtainn /2 Y [(G;—
p) = [G,andforeachj € {1,2,...,k}, [(G;—p)g; = | Gg; by the continuous mapping theo-
rem. Also, we note that [ G and [ Gg; (j € {1,2,...,k}) are the integrals of Gaussian processes,

so that they are normally distributed with

Jo~n (0, // ff(%?)d@(v)dQ(i)) and 5)

[ 95~ (0. [ [t asiaemien)). ©)

where the given variances are computed by applying theorem 2 of Grenander (1981, p. 48). Given
this, the positive definite matrix B in A.6(727) enables us to apply the Cramér-Wold’s device, which

we omit for brevity. This completes the proof. [

Proof of Theorem 4: The given consistency can be achieved in a parallel manner to that of

Theorem 2. We note that B.1(¢2) implies that

n
nil E Gz
i=1

n n
< n’lz@f < 71’122\/@2 < oo as. —Pand
=1 =1

TL_1 zn: ézg]
=1

n n
—1 ~2 2 -1 2 2
<n7') Glgi<nT') Mg
=1 =1
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for every j, so that

nt iél dQ < n* iMf < 0o and
i=1 i=1

n_l i é,‘gj
=1

dQ < n! ZMf/gf.dQ < 00
i=1
a.s. —P, as g; € L2(Q) by A.4(i7). This implies that we can apply LDCT, so that

nD N KeEy 7R I I e SICE T I
n 'Y [Gig— [ug [n 'Y Gig— [ ug 0

The given convergence mainly follows from the facts that: (a)

sup
vyel

< sup
~yel

5 2010)

nZG )= 3G, 00)
i=1

(b) the second element in the RHS converges to zero a.s. —IP by A.5; and (c) applying the mean-

value theorem implies that

n

%Z@i(v) — %Z@(%H*)

=1

sup
yel’

= sup
~yel

nZVGG 77 nq/ 9 0*)

I

where the RHS converges to zero a.s. —P by and B.1 (i22) and B.2(z). Thus, we obtain that

-1 -1

don | _ | 1 e U SN R R IR - Ju | _ |6
On Je [sg n 'Y [Gig Je [eg g 0
a.s. —P. This completes the proof. |

Proof of Theorem 5: We explicitly prove only 5(¢7). The proof for 5(¢) is quite similar.

(22) From the given fact that

-1

Son — & 1 [g n 2y [(G -

n =

O — " /g Jeg n Y [(Gi -
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the desired result follows if

n 23 [(Gi = )

) 2 N(0,B). (7)
n 2y [(Gi—p) g

Given this, we note that applying the mean-value theorem in (2)) and B.3 yields that

I [SaG-n= =3 [eGi-w+ > [EiG0.)Wad, ) ®)

= /gg —-D*H*'Z,

because (i) =2 [(G; — p) = [ G, and foreach j € {1,2,...,k}, [(Gi — u)g; = [ Gy, by

the continuous mapping theorem; and (ii) for j = 1,2,..., kand j = 1,2,...,m,

n

n 1/2
0 =
nt 2 8703@(7,9) < (n‘liz:;Mi2> <oo as. —P, and

sup
7,0

n

0 =~
n pa 895 G1(77 9)9](7)

sup
7,0

n 1/2 n 1/2
<(n > Mf) X <n1 > Mf) <oo as. —P
i=1

i=1

by B.2, so that we can let n tend to infinity first before computing the associated integrals by the

LDCT, implying that
w S [EViG 0,0 — [ BEA(ViGi0,))d0,
=1

which we defined as D*. Given this, we note that @) @ and the joint convergence condition in
B.3 imply that [ §G — D*H* ' Z is also a normal random variable having the covariance matrix
B*, obtained by applying theorem 2 of Grenander (1981, p. 48). Given this, the positive definite
matrix B* in B.3(i7) enables us to apply the Cramér-Wold device, which we omit for brevity. This

completes the proof. |

Proof of Theorem 6: To show this, we examine the asymptotic limit of each element in ]§n
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First, we consider the first row and first column element in ]§n. Note that

%Z//ém(v)ém(ﬁ) = %Z//@(V)@W)
25 [en {58 )+ { [~ 5800}

using the fact that &;,, = &; + {1(7) — don — 9. g(7)}. Further, by the FOC for the FOLS estimator,
n Y [{Gi(v) — bon — 0, (7)}dQ(y) = 0, so that

2 [ fazm =23 [ [amat {Z/‘EZ }

Given this, using Cauchy-Schwarz inequality we obtain that

1/2

ZG ‘ <sup’ ZGi(v)2‘l/2‘n_IZGi

_IZM2as —

by A.3, and the RHS is finite a.s. —[P. Thus, we can first let n tends to infinity before computing
the associated integrals. The given SULLNs in A.5 and A.7 imply that

[ [ cmc - [ [EGoc@m [0 3600~ [utas P,

so that we obtain

_IZ//% Ein(7)dQ(7)dQ(¥ —>// (7, 7)dQ(7)dQ(7) ©)

a.s. —P. Second, we consider the first row and (j + 1)-th column element of B,,, where j =

1,2,..., k. We note that

L feionr -5 [ |
—2{52/@@)} X [atae}+ £ [ata0)

by the FOC for the FOLS estimator, = S°{ [[G4(7) — don — 0,8(7)]g;(7)} = 0. Given this, the
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Cauchy-Schwarz inequality and A.4(:7) imply that

Y GiNGHF) ()| < [0t YD P x g5
‘n‘lzGi(’?)gj ‘_‘ Py oM Y %19, and
Y Gie )| < [ M2 g )

uniformly in v and 7. Note that when the RHS’s of these inequalities are viewed as functions of 7,

they all are in L;(Q) a.s. —IP. These imply that we can apply the LDCT, so that

3 [ [160) = wai66) - sl aemaai) — [ [ st @iemda
(10)
a.s. —P. Third, we consider the (j 4 1)-th row and (j + 1)-th column element of B,.. Note that

%Z / / 95 (Ve (V)én(7)g;(7)
=5 [ [ameaeatngt - 5 Y [awao} 5T [amem]

using the fact that = S°{ [[Gi(7) — don — 0Lg()]g;(7)} = 0 and n~ ' S{[[Gi(7) — don —
5 ()] g;(7)} = 0. Also, by exploiting Cauchy-Schwarz inequality iteratively, we can obtain that

L S GGG < (1 5 M) x gy x 153 and

LS 006 @0 < (1 ) g0 x g )

uniformly in v and 7. Note that the RHSs of these inequalities are in L; (Q x Q) a.s. —P when
they are viewed as functions of v and 7 by A.4(:2). This implies that we can apply the LDCT. By
applying A.5, A.7, and Theorem 2, it follows that

w3 [ [ 40)60) - sOGE) - w(lgs (7))
H//gj g;(1)dQ()dQ(F) as. ~B. (1)
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Finally, collecting all the elements in @) , and for j,} =1,2,...,k, we obtain that the

asymptotic limit of B,, is identical to B. This completes the proof. [

Proof of Theorem 7: (1) The proof is almost identical to the proof of Theorem 6. We examine
the asymptotic limit of each element in B,,. First, we consider the first row and first column

element in ]§n Note that

L5 faorr= L feaoran L [}

using the facts that &;,, = &;,, + {1(7) — don — 8,g(7)} and the FOC that = 3° f{@l('y) — bopn —
0 g(7)}dQ(y) = 0, where &;, := G; — p. Given this, we already proved in the proof of Theorem
4 that n= 'y f Ein(7) — 0as. —P. Also, B.1(ii7) enables us to apply the LDCT, so that we can

first let » tend to infinity before computing the associated integral. Note that

Sl i ENOENC)
% [ [Gobncion - 2% [ [aer+ ([ um)Q.
We examine each element in the RHS. First,

sup |07 Gi(7,6,)Gi(3,6) — EelGilr, 607Gl ‘ .0 as. — P

77,0

by B.4(i), Theorem 4, and the continuity of (G; with respect to ¢, implying that

_12// i(7,6n)Gi(3, 0 H//Ep i(7,09)Gy(7,07)] as. — P,

Also, from the fact that n=' 3" [£(y) — Oas. =P, n '3 [ [Gily (fp) as. — P,

so that it follows that
1 . . -
> / / in(1)Em(7) — / / w(1,7) as. —P. (12)

Second, we consider the first row and (j + 1)-th column element of B,,, where j=1,2,... k.
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Note that

_Z//gm )Ein (V)95 (¥ Z//& Ein(7)9;(7) 2
_Q{Ez/gmm} {Ez/émmm}+{%Z/ém>gm>} ,

and we already saw that n™' Y [ &, — Oas. —Pandn™ ') [£(¥)g;(7) — 0 as. —P in the

proof of Theorem 4. Also, note that

2 [ amzama)
3 [ [ Gciine e - =3 [ b [ n)a)
__Z/ / )g](7)+/ﬂ(7)//i(7)gj(’~7)-

Given this, from the facts that n™' )" [&;, — O as. —Pand thatn™' )" [&;,,(7)g;(¥) — 0 as.
—P, it follows that n=* 3" [ Gy(7,6,) — [ u(7) as. —P and that n= '3 [ Gy(%,6,)9;(7) —
J 1(7)g;(¥) as. —P respectively. Further, using the Cauchy-Schwarz inequality, A.4(ii), and
B.1(7i7) shows that

[0 3 G, 0)Gi(3,0)g5 ()| < [ Y aE|

uniformly in 7, 7, and 6. Note that the RHS of this inequality is in L;(Q) a.s. —IP when viewed as

|93

a function of 4 by A.4(:7). This implies that we can apply the LDCT, so that B.4(¢) implies that

nty / / En(1)Ein(7)9;(7) — / / K(7,7)9;(7) as. —P. (13)

Third, we consider the (5 +1)-th row and (j + 1)-th column element of B,,. We note that the FOLS

FOC n! 32 { [[Gi(7) = d0n — 0,8(1)]g5 (1)} = 0and n " S2{[[Gi(7) — don — 0,8()]g;(7)} = 0
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imply

eSS i PO ENGIENGIG

__Z//gj EER) G {Z/gj iy }{%Z/éﬁ)gﬂ)}

=3 [ [ s00E0E@GE +onl),

asn~' Y [€(7)g;(7) — 0as. —P. Also, note that

e i O ENGIENGPE
z—Z//gJ 0,)G:(7,0,)9:(7) —/gj(v)u(v)/u(i)g;(&)+oa.s.(1),

because n 'Y [ €, (7)g;(v) — 0as. —Pand n 'Y [ £,,(7) (i) — 0as. —P imply that
0 [ Gi(1,02)95(7) — [ 1(7)g;(7) as. —Pand '3 [ Gi(5.0 — [ ()

—P respectively. Further, exploiting the Cauchy-Schwarz inequality 1terat1vely, we can obtain that

03 (NG (,0Gi(3. 0)g3)| < (n7 D M2) ¢ lgi ()] x g5 (7))

uniformly in 7, 7, and 6. Note that the RHS of this inequalities is in L;(Q x Q) a.s. —IP, when it
is viewed as a function of + and 7. This also implies that we can apply the LDCT. From B.4(z), it

now follows that

—Z//gg )Ein(7)éin (V)95 (7 —>//gj K(7,7)g;(v) as. —P. (14)

Finally, collecting all the elements in , , and for j,} =1,2,...,k, we obtain that the
asymptotic limit of ]§n is identical to B.
(22) Given Theorem 7(2), the definition of ]§;§, and the conditions in B.2(7¢7), the desired result

follows if f)n — D* and I~{n — K* a.s. —P. We already saw in the proof of Theorem 5(i7) that
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D, — D* a.s. —P. Therefore, we only prove here that IN{n — K* a.s. —P. Note that

K, = % > / 51(0n)Em(7)E()'dQ(y) + % > si(0,) / {1(7) = don — 2(7)'0,}8(7)'dQ(),
(15)
and first consider the second element. First, n '3 5;(6,) — n ™'Y 5;(6*) = 04..(1) because s;
is continuous with respect to #, and én — 0% a.s. —P by B.2(:). Further, B.2(iz) and B.3(2)
imply that 3 5;(6%) = 04.5.(n), so that n=* 3" 5;(A,) — 0 a.s. —P. Next, we already saw that
S [{Gi(y) = don — 0,8(7)}E(7)'dQ(7) = 0 by the FOC for the 2SFOLS estimator, and that
n' Y [ Gi(7)&()dQ(y) — [ u()&(7)'dQ(y) in the proof of Theorem 7(i). Therefore,

) = 30— 80)3.}80V Q) — 0 as. —F.

Third, we consider the first element in (I5)), and for this we verify that we can apply the LDCT.

From the definition of ¢;,,, note that foreach j = 1,2,--- ;m and} =1,2,--- k+1,

5

Sij(én>éin(7>gj(7)) < {% > Sij(én)2}1/2 ({% > éi(7)2}1/2 + |u(v)|> X |&;(7)

< {%zszj(én)?}m ({%ZMZ?}W +E{ME]> < 18(7)

by B.1(4:2). Given this, I, is finite a.s. —IP and converges to [* a.s. —P by B.2(447), implying that
foreach j = 1,2,--- ,m,n~' Y 5;;(6,)? is finite a.s. —P. Therefore, the RHS must be in L;(Q),

when viewed as a function of . Therefore, we can apply the LDCT. Given this,

3 si0)za0) = 356G — p()5 Y (60)

n n

by the definition of &;,,; and B.1(¢i7) and ) sz(én) = 04.5.(n) imply that p(y) > sl(én) = 04.5.(n)
uniformly in 7. Further, B.4(iz) and the continuity of s; and GG; with respect to 6 by B.2(:2i.a) and

B.1(z17) respectively implies that for each -,
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because 6, — 0* as. —P by B.2(i). We note that Ep[s;(6*)Gi(v,0%)] = ro(7) from the IID
condition and the condition in B.2(i7i.a) that \/ns? = n~'/23 s;(-,0*) + op(1). Therefore,
N3 [ 5i(00)Em(1)E(Y)dQ(y) — [ Ko(7)E(7)'dQ(v). Finally, collecting all these together

implies that

Ro= [ 13 w8000 + o0 = [ ()EA00) + a0 )

and this completes the proof. |

Proof of Theorem 8: (i) /nS;[(on — 07), (6, — 0*)') R N(0,T';) by Theorem 3, where

= S;AT'BALS, so that T™Y2/nS;[(don — 65), (0, — &%) X N(0,I;45_;). Because
]§n — B a.s. —IP as given in Theorem 6, f‘nj — I'; a.s. —IP by proposition 2.30 of White (2001),
where f‘nj = SjAflﬁnAflS;». Therefore,

I * < *\/ it 50" -9
Mjn=n [(5071 —05)5 (0 — 07) Sjrn S; 5 53 S X2+2—j

by theorem 4.30 of White (2001). Given this, we note that

9
5*

don — O

Win = M+ 20 |8,6" | SIT,S; .

+n [5;;, 5*’] St
Therefore, M;,, = W, = Op(1) under Hj,, so that W;,, 2 Xiro_js and Wi, = Op(1) +
Op(y/n) + O(n) under H,4(g), implying the desired result.

(1) /nS;[(don — 02), (5, — %))’ R N(0,T;) by Theorem 5(¢), and B, — Bas. —P from
Theorem 7(z). The rest is identical to the proof of Theorem 8(z).

(i) \/1.S;[(Bon—63), (6, — %)) 2 N(0, I';) by Theorem 5(i7), where I’} := S;A"'B*A~'S,

and B;‘; — B* a.s. —P from Theorem 7(zz). The rest is identical to the proof of Theorem 8(z). W

Proof of Theorem 9: (i) \/1uS;[(don — 05,), (0 — 62)') 2 N(0,T;) by applying Theorem 3,
where T is defined in the proof of Theorem 8(i), so that T=/%\/nS;[(dgn — ), (6, — 0%)')' 2
N(0,T44o_;). Given this, \/n.5;[0%,, 6%'] — S;¢ under Hj,(g), which implies that \/n.S; [, 0',]’ IS

N(S;s,T;). Further, from the fact that B, — Bas. —P as given in Theorem 6, it follows that
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f‘nj — I'j a.s. —P by proposition 2.30 of White (2001), where f‘nj is defined in the proof of
Theorem 8(i). Therefore, W, ,, A X*(k + 2 — j,&) by lemma 8.2 of White (1994), implying the
desired result.

(ii) v/nS; [507“ S;L]’ 2 N(S;s,T;) by Theorem 5(i), and B, — Bas. —P from Theorem 7(3).
The rest is identical to the proof of Theorem 9(z).

(iii) v/1S;[0on, 0 IS N(Sjs,T) by Theorem 5(i7), and B — B* as. —P from Theorem
7(17), where I‘; is defined in the proof of Theorem 8(¢i7). The rest is identical to the proof of
Theorem 9(3). |
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Table 1: LEVELS OF THE WALD AND BREUSCH AND PAGAN TESTS
NUMBER OF REPLICATIONS: 10,000

Statistics Levels \ n 25 50 100 200 400 600 800

1% 1.04 0.83 0.82 0.90 0.96 1.05 0.92

VN\/l,n(con) 5% 574 485 513 475 495 5.31 4.95
10% 11.18 10.74 1057  9.85 9.79 10.61 9.89

1% 1.51 096  0.99 1.00 1.07 1.13 0.98

W1,n(con+lin) 5% 6.64 532 502 510 500 515 477
10% 12.41  11.19 1053  9.98 1023 1032 10.15

1% 1.68 .09 099 093 095 0.90 1.07

)7\//1,7,, (con+quad) 5% 6.65 5.46 5.07 5.18 4.81 491 5.05
10% 1275 11.21 10.81 10.44  9.86 9.97 10.16

1% 2.16 1.38 .14 082  0.79 1.08  0.99

len(con+lin+quad) 5% 8.09 6.19 5.29 4.87 4.74 4.95 4.73
10% 1540 1245 11.07 10.21 9.73 10.11 9.96

1% 1.60 1.14 091 098 079 094 098

Wl,n(con—l— 0.57) 5% 6.71 5.58 5.39 5.29 5.23 4.84 5.31
10% 13.01 11.64 10.81 1043 1039 9.89 10.34

1% 0.31 0.63 072  0.81 1.00 1.03  0.81

BP,, 5% 3.77 4.31 4.82 5.04 4.99 4.88 4.74
10% 9.60 10.07  9.92 9.96 9.66 9.82 10.19
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Table 2: POWERS OF THE WALD AND BREUSCH AND PAGAN TESTS (NOMINAL LEVEL: 5%)
NUMBER OF REPLICATIONS: 5,000
Statistics o?\n 25 50 100 200 400 600 800

0.10 6.82 7.48 9.66 1450 2440 33.00 4298

0.20 9.64 11.74 19.54 3570 6238 78774 88.92

Wl,n(con) 0.30 1190 19.08 3228 5698 86.04 96.70 99.16
0.40 14.64 2570 48.02 7544 96.66 99.54 99.88

0.50 20.28 3494 5990 86.28 9920 99.96 100.0

0.10 7.06 6.74 740  11.00 18.16 2470 33.34

0.20 8.84 942 1546 2660 51.70 6948 81.76

VNVLn(COnHin) 0.30 1126 1480 2652 4752 78.04 9232 9740
0.40 13.80 20.28 3850 6640 92.02 98.76 99.82

0.50 15.74 2732 49.10 79.86 98.06 99.76  100.0

0.10 7.28 6.88 7.64 1040 17.50 2548 33.90

0.20 9.08 978 1576 27.62 4990 67.28 81.60

Wl,n(con+quad) 0.30 1142 1458 25.04 4750 79.12 93.02 97.74
0.40 12.68 1930 3696 6722 9252 98.70 98.84

0.50 16.92 26.86 50.00 80.02 9792 99.80 100.0

0.10 8.78 6.56 7.64 9.62 1484 21.00 27.54

0.20 9.72 944 1400 2320 4534 62.10 76.26

VNV1,n(00n+lin+quad) 0.30 11.52 1412 2122 4146 7272 89.54 96.34
0.40 13.70 18.74 3130 5894 90.12 97.88 99.72

0.50 16.38 24.02 4288 7440 96.48 99.62 99.98

0.10 7.74 6.38 7.70  11.88 16.76 2448 33.68

0.20 9.06 9.82 1436 28.80 51.02 68.86 81.68

Wl,n(con+0.57) 0.30 1090 15.68 26.12 4828 78.82 92.08 97.92
0.40 13.68 2194 3730 6588 9294 9846 99.76

0.50 1538 2646 4898 79.76 9796 99.80 100.0

0.10 4.28 5.16 828 1428 23.16 32.84 41.52
0.20 6.84 1052 19.02 36.18 59.34 78.38 89.34
BP, 0.30 8.64 17.00 3252 5834 8690 96.10 99.08
0.40 1148 2386 4558 74776 96.10 99.68 99.96
0.50 1572 2994 5814 86.42 99.16 99.96 100.0
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Table 3: LEVELS OF THE WALD AND DAVIES TESTS
NUMBER OF REPLICATIONS: 10,000
DGP: X; ~ IID Exp(1)

Statistics Levels\n 25 50 100 200 400 600 800
1% 1.0l 089 090 084 089 106 105

Wi ,(con) 5% 492 506 502 495 504 481  5.03
10% 10.13 954 1001 1002 1000 9.80  9.96

1% 168 118 1.00 106 L1l 092 1.09

Wi (con+lin) 5% 503 474 499 488 496 491 496
10% 895 9.7 956 949 978 981 9.8

1% 159 137 137 098 101 105 090

Wi (con+quad) 5% 496 484 485 488 504 499 486
10% 878 925 927 1001 985 983  9.92

1% 164 122 106 1.8 129 108 114

Wi (con+lin+quad) 5% 514 485 501 519 532 492 522
10% 961 9.05 9.60 998 1049 9.61 1057

1% 152 126 105 112 115 133 105

Wi n(con + g1) 5% 48 490 505 533 502 512 5.09
10% 939 964 995 1008 1029 971  9.64

1% 126 092 097 104 103 094 101

Wi n(g1) 5% 476 485 460 491 484 504 492
10% 950 9.80 1002 984 972 10.02 10.38

1% 242 200 173 142 138 113 150

D, 5% 729 705 626 578 604 559 582
10% 1195 11.87 1135 11.13 1123 1078 1096

Note: Exp(\) indicates exponential distribution with parameter \.
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Table 4: POWERS OF THE WALD AND DAVIES TESTS (NOMINAL LEVEL: 5%)
NUMBER OF REPLICATIONS: 5,000
DGP: Y; ~ 1ID 7*Exp(1) + (1 — 7*) Exp(2)

Statistics ™\ n 25 50 100 200 400 600 800

0.10 5.89 6.70 874 12.02 2154 2924 3798
0.20 834 13.02 2056 3698 6370 81.70 90.52
Wi n(con) 0.30 12.84 2384 4154 69.04 9344 99.16 99.94
0.40 2190 3796 6482 91.18 99.74 100.0 100.0
0.50 28.84 5438 84.42 98770 100.0 100.0 100.0

0.10 7.44 7.50 7.64 11.06 1622 21.68 26.52
0.20 898 12.04 17.12 2736 48.00 6524 78.50
Wi n(con+lin) 0.30 13.04 18.88 30.84 5252 81.76 95.10 98.62
0.40 18.92 2958 4892 78.02 97.74 99.80 100.0
0.50 2486 40.02 6728 93.16 99.74 100.0 100.0

0.10 6.82 7.16 7.88  10.82 15.02 21.74 2492
0.20 850 11.18 16,52 2534 46.80 63.06 75.08
Wi (con+quad) 0.30 1336 18.60 30.66 5030 79.68 93.62 98.20
0.40 18.82 2786 47.16 7598 96.76 99.68  100.0
0.50 23.64 39.74 6642 91.54 99.84 100.0 100.0

0.10 7.94 7.50 7.86 9.86 1554 2046 26.00
0.20 930 12.64 1592 2588 4790 6490 78.56
Wi, (con+lin+quad) 0.30 1276 19.12  30.02 5238 8292 9594 99.10
0.40 18.30 2798 49.20 80.62 98.08 99.90 100.0
0.50 2484 3972 71.00 9534 9992 100.0 100.0

0.10 6.46 7.00 8.68 1040 1592 21.66 26.44
0.20 9.14 1240 1728 28.02 49.86 66.86 80.00
Wi p(con + g1) 0.30 13.14 19.28 31.64 5486 84.88 9578 99.10
0.40 1898 2840 5140 79.48 9830 99.86 100.0
0.50 25.88 4230 7040 94.10 99.92 100.0 100.0

010 590 704 820 970 1426 19.16 2244
020 870 1086 1390 23.78 3894 5354 64.74
Win(g1) 030 1158 1644 2486 4412 69.70 8516 93.36
040 1662 2388 3946 6376 90.14 97.64 99.50
050 2118 33.66 5402 81.74 9802 99.82 100.0

0.10 1020 1112 15.10 19.76 2890 36.38 43.70
0.20 15.50 19.12 2828 4576 6990 83.60 92.30
Dy, 0.30 20.56  30.60 48.02 7350 9520 99.28  99.94
0.40 28.54 4438 6858 9246 99.70 100.0 100.0
0.50 3742 59.14 8570 99.04 100.0 100.0 100.0

0.10 7.38 8.02 12.68 17.84 2496 34.18 40.04
0.20 11.82 1392 24.68 43.02 6620 82.16 90.98
D;, 0.30 1592 2358 4342 7090 9372 99.10 99.92
0.40 2226 3634 6420 9138 99.60 100.0 100.0
0.50 2994 50.60 82.68 98.88 100.0 100.0 100.0

Note: D} indicates size-distortion adjusted D,,.
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Table 5: LEVELS OF THE WALD, BIERENS, AND SW TESTS

NUMBER OF REPLICATIONS: 10,000

Statistics Levels\n 25 50 100 200 400 600 800

1% 172 115 102 097 120 089 1.03

Wi ,(con) 5% 6.64 568 536 531 525 496  5.05
10% 1244 1151 1064 1031 1036 1026 10.02

1% 145 077 059 067 060 078 062

Wi, (con+lin) 5% 6.87 436 396 410 442 420 430
10% 1337 979 901 891 927 961 941

1% 124 070 056 058 057 053 0.79

Wi, (con+quad) 5% 639 435 403 379 402 383 434
' 10% 1283 978 893 922 871 876 947
1% 238 126 087 066 058 067 056

Wi . (con+lin+quad) 5% 852 569 440 393 392 406  3.97
10% 1582 1176 948 857 864 9.8 891

1% 085 077 052 084 103 086 088

B, 5% 579 468 471 512 512 507 5.9
10% 1286 11.05 1069 1048 10.56 10.56 10.19

SW, 1142 742 500 391 354 336 3.8
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Table 6: POWERS OF THE WALD, BIERENS, AND SW TESTS (NOMINAL LEVEL: 5%)
NUMBER OF REPLICATIONS: 5,000
Statistics 7\ n 25 50 100 200 400 600 800

0.10 49.02 7634 95.16 99.04 99.76 99.90 100.0

0.20 64.14 8532 9548 99.02 9990 100.0 100.0

Wi . (con) 0.30 70.28 87.00 9592 9936 9992 100.0 100.0
0.40 7044 87.64 96.14 9896 99.88 100.0 100.0

0.50 7192 8726 96.00 99.08 99.82 100.0 100.0

0.10 17.04 2856 60.12 92.16 99.86 100.0 100.0

0.20 3208 5830 90.26 9952 100.0 100.0 100.0

WY . (con+lin) 0.30 4476 7358 9490 99.68 100.0 100.0 100.0
0.40 5398 79.82 96.00 99.86 100.0 100.0 100.0

0.50 59.56 81.66 9650 9990 100.0 100.0 100.0

0.10 16.20 28.56 59.66 9220 9992 100.0 100.0

0.20 3250 56,50  90.88  99.80 100.0 100.0 100.0

Wy, (con+quad) 0.30 4534 7340 9620 99.92 100.0 100.0 100.0
' 0.40 52.78 81.02 9722 100.0 100.0 100.0 100.0
0.50 60.32 8224 9770 100.0 100.0 100.0 100.0

0.10 16.50 2851 5750 9233 99.86 100.0 100.0

0.20 3340 6343 9420 9997 100.0 100.0 100.0

WY . (con+lin+quad) 0.30 4992 8359 9949 9998 100.0 100.0 100.0
0.40 63.24 9290 99.78 100.0 100.0 100.0 100.0

0.50 7336 9630 99.78 100.0 100.0 100.0 100.0

0.10 18.82 40.02 70.88 92.18 98.64 99.56 99.74

0.20 3842 67.60 8734 9574 99.04 99.72  99.90

B, 0.30 5230 7730 89.62 9640 9936 99.78  99.92
0.40 58.12  80.26 90.48 9690 99.18 99.82 99.98

0.50 64.30 8258 91.20 96.58 99.18 99.86 99.96

0.10 26.30 38.02 65.08 91.78 99.82 100.0 100.0

0.20 46.78 69.72 9350 99.76 100.0 100.0 100.0

SW, 0.30 60.98 8248 9694 9994 100.0 100.0 100.0
0.40 69.86 87.66 98.06 9992 100.0 100.0 100.0

0.50 7528 90.52 9826 9992 100.0 100.0 100.0
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