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Abstract

In this paper, we study functional regression and its properties in testing the hypothesis of
a constant zero mean function or an unknown constant non-zero mean function. As we show,
the associated Wald test statistics have standard chi-square limiting null distributions, standard
non-central chi-square distributions for local alternatives converging to zero at a

√
n rate, and

are consistent against global alternatives. These properties permit computationally convenient
tests of hypotheses involving nuisance parameters. In particular, we develop new alternatives
to tests for mixture distributions and for regression misspecification, both of which involve
nuisance parameters identified only under the alternative. In Monte Carlo studies, we find
that our tests have well behaved levels. We find that the new procedures may sacrifice only
a modest amount of power compared to procedures like those of Davies (1987), which fully
exploit the covariance structure of the Gaussian processes underlying our statistics. Further,
functional regression tests can have power better than existing methods that do not exploit
this covariance structure, like the specification testing procedures of Bierens (1982, 1990) or
Stinchcombe and White (1998).
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1 Introduction

A considerable variety of useful testing procedures involve “nuisance” parameters. Examples are

those considered in the work of Davies (1977, 1987), Bierens (1982, 1990), Bierens and Ploberger

(1997), Andrews and Ploberger (1994), and Stinchcombe and White (1998). In these examples,

as well as in this context generally, test statistics are constructed by “integrating out” the nuisance

parameters, yielding nuisance parameter-free tests. A general consequence of this approach is that

the limiting null distributions of the resulting test statistics are highly context specific, requiring

special purpose computations to obtain suitable critical values.

In this paper, we consider a different approach, useful in this context, that yields statistics

having standard chi-square limiting null distributions. In some cases, the additional ease of com-

putation comes with a modest cost in power, relative to existing procedures. In other cases, our

procedures can have better power than previous procedures. The former case is illustrated by the

test for a mixture distribution proposed by Davies (1987); the latter by the specification tests of

Bierens (1982, 1990) and Stinchcombe and White (1998). The difference in these cases is that

whereas Davies’s (1987) test takes account of correlations among the elements of the Gaussian

process underlying the test statistic, the tests of Bierens (1982, 1990) and Stinchcombe and White

(1998) do not. Our procedures also do not take account of these correlations. This affords com-

putational convenience, analogous to the way that tests based on heteroskedasticity-consistent co-

variance matrices yield convenient tests of proper size by neglecting efficiency improvements that

could be gained by modeling the heteroskedasticity.

The approach taken here is that of hypothesis testing in functional regression. This is an exten-

sion of standard regression in which the dependent variable is a random function (of γ ∈ Γ, say)

rather than a random variable, and the regressors are user-specified non-random functions of γ cho-

sen to give a good approximation to the mean function of the dependent variable. Under the null

hypotheses of interest here, this mean function is either the zero function or an unknown non-zero

constant function. We analyze testing procedures designed to have power against the alternatives

to either of these nulls. An appealing consequence of using functional regression is that the re-

sulting test statistics have standard chi-square limiting distributions under the null. Both Wald and

Lagrange multiplier versions of these statistics are available. For concreteness and conciseness,
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our focus here is on the use of Wald statistics.

Although functional regression is of theoretical interest in its own right, our focus here is on

its usefulness in specific application areas. In one sense, functional regression is familiar, in that

standard panel data structures can be viewed as examples of functional data. We illustrate this with

a running example focused on tests of random effects structure in panel data. On the other hand,

the functions of interest arising in the analysis of models involving nuisance parameters identified

only under the alternative can also be viewed as instances of functional data. This possibility has

apparently not been previously recognized; we exploit this here to provide appealing new ways

of testing hypotheses concerning unidentified nuisance parameters. We pay specific attention to

testing for mixture distributions, as in Davies (1977, 1987), and to specification testing, as in

Bierens (1982, 1990) and Stinchcombe and White (1998).

The plan of this paper is as follows. In Section 2, we motivate and formally describe the data

generating process underlying functional regression, illustrating with examples involving random

effect structure in panel data, mixture models, and specification testing. In Section 3, we introduce

the Functional Ordinary Least Squares (FOLS) and Two-Stage FOLS (2SFOLS) estimators. We

provide conditions under which these estimators are consistent and asymptotically normal, and we

provide consistent estimators of their asymptotic covariance matrices. In Section 4, we specify the

null hypotheses of interest and introduce Wald statistics useful for testing these. As we show, these

statistics have standard chi-square distributions under the null. We analyze their global and local

power properties. Globally, our procedures are consistent; locally we obtain standard non-central

chi-square distributions for alternatives converging at the parametric
√
n rate. Section 5 applies

the theory developed in the preceding sections to obtain test statistics for our panel data, mixture

distribution, and specification testing examples. Section 6 provides a Monte Carlo analysis where

we study the finite and large sample properties of tests based on the statistics developed in Section

5. Section 7 contains a summary and concluding remarks.

Before proceeding, we introduce some mathematical notation used throughout. First, integrals

of functions will be often used in this paper, and we let
∫
g dP and

∫
h dPdQ respectively denote∫

g(x)dP(x) and
∫ ∫

h(x, y)dP(x)dQ(y) for brevity, unless confusion otherwise arises. When

there is no possible ambiguity, we may further abbreviate these to
∫
g and

∫ ∫
h. Unless explicitly

noted otherwise, limits are taken as n→∞.
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2 The Data Generating Process and Functional Regression

In this section, we motivate and formally describe the data generating process underlying func-

tional regression.

2.1 The Data Generating Process

We consider data generated as follows:

Assumption A.1 (DGP): (i) Let (Ω,F ,P) be a complete probability space and let (Γ, ρ) be a

compact metric space;

(ii) For i = 1, 2, ..., let Gi : Ω× Γ 7→ R be such that for each γ ∈ Γ, Gi( · , γ) is measurable

and independently and identically distributed (IID).

Often in econometrics, such a function Gi is used to define a model, that is a collection of

functions Gi := {Gi( · , γ) : γ ∈ Γ} that, when “correctly specified,” includes some functional of a

data generating process for random variables of interest. (See, for example, White, 1994, ch. 2.2.)

For example, in that context, Gi(ω, · ) might represent the log-likelihood function for observation

i, determined by the realization ω ∈ Ω. Correct specification occurs when there is γ0 ∈ Γ such

that Gi( · , γ0) represents the log density of the data generating process (DGP) for observation i.

Here, we view Gi rather differently. Specifically, we view the observed data not as realizations

of random variables, as is common, but as realizations of random functions γ 7→ Gi( · , γ). That

is, we observe Gi(ω, · ) : Γ 7→ R, i = 1, 2, ... for some ω ∈ Ω. The IID condition is not essential,

but we impose it to keep the main ideas clear. Because our interest is primarily on Gi as a random

function of γ, we may abbreviate Gi( · , γ) as Gi(γ) for notational simplicity.

To illustrate, we discuss three examples. First, we show how the familiar case of panel data falls

into the present framework. As we show later, this supports tests for features of interest in panel

data, such as random effects structure. We operate within the panel data setting nicely exposited

by Wooldridge (2002, ch.10.4).

Example 1 (Panel Random Effects): Let γ ∈ Γ := {1, 2, ..., T}, and suppose data are generated

as

Yi(γ) = Xi(γ)
′β0 + Vi(γ), i = 1, 2, ...,
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where β0 ∈ Rd and Vi(γ) := Ci + Ui(γ). We assume that (Yi, X
′
i)
′ : Ω × Γ 7→ R1+d is IID.

Ui : Ω × Γ 7→ R and Ci : Ω 7→ R are unobserved. Let Xi := (Xi(1), Xi(2), · · · , Xi(T ))′,

Vi := (Vi(1), Vi(2), · · · , Vi(T ))′, and assume that Σ := E[ViV
′
i] is finite and positive definite,

with rank(E[X′
iΣ

−1Xi]) = d. The data exhibit random effects structure when, for i = 1, 2, ...,

1. Ui(γ) is IID with respect to γ, and E[Ui(γ)|Xi(γ), Ci] = 0 for each γ ∈ Γ; and

2. E[Ci|Xi(γ)] = E[Ci] = 0 for each γ ∈ Γ.

Under these assumptions, we may write σ2
u := E[Ui(γ)

2] for all γ ∈ Γ and σ2
c := E[C2

i ]. The

covariance matrix Σ has the form

Σ =


σ2

u + σ2
c σ2

c · · · σ2
c

σ2
c σ2

u + σ2
c · · · σ2

c

...
... . . . ...

σ2
c σ2

c · · · σ2
u + σ2

c

 .

When σ2
c = 0, the unobserved effect Ci is absent, and Vi is identical to Ui.

Now consider

Gi(γ) = Vi(1)Vi(γ).

Under random effects with E[Gi(γ)] = 0 for all γ ∈ Γ r {1}, the conventional pooled OLS

estimator for β0 is efficient, and we can use pooled OLS to conduct efficient statistical inference.

On the other hand, whenE[Gi(γ)] = σ2
c > 0 for γ ∈ Γr{1}, the feasible generalized least squares

(FGLS) estimator that exploits the structure of Σ is more efficient than pooled OLS. Moreover, the

presence of the unobserved effect Ci may necessitate the use of methods appropriate for handling

unobserved fixed effects. �

A leading case of interest here is associated with what is known in the literature as “nuisance

parameters identified only under the alternative.” See, for example, Davies (1977, 1987), Andrews

(2001), Cho and White (2007, 2008), and the references therein. For example, Davies (1977)

considers the following case, involving a mixture of exponential distributions.
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Example 2 (Exponential Mixtures): Davies (1977) considers the following correctly specified

model for the probability density function (PDF) of an IID random variable Xi:

M := {f(X, π, γ) = (1− π) exp(−X) + πγ exp(−γX) : π ∈ Π, γ ∈ Γ},

where Π = [0, 1] and Γ = [γ, γ̄], with 1 < γ < γ̄ < ∞. Under correct specification, the data are

generated by (π∗, γ∗) ∈ Π× Γ. Davies’s (1977) main interest is in testing

Ho : π∗ = 0 versus HA : π∗ 6= 0.

Under Ho, γ∗ is not identified, so that the standard log-likelihood ratio statistic does not follow the

standard chi-square distribution under Ho asymptotically. To test Ho, Davies considers

Gi(γ) =
(2γ − 1)1/2

(γ − 1)
{γ exp[(1− γ)Xi]− 1} .

This choice for Gi satisfies A.1. Further, under Ho, E[Gi(γ)] = 0 for each γ ∈ Γ, since E[exp(1−

γ)Xi] = 1/γ, whereas under HA,

E[Gi(γ)] = π∗
(γ∗ − 1)(2γ − 1)1/2

(γ + γ∗ − 1)
.

Davies (1977) constructs a test ofHo by applying Neyman’s (1959) C(α) test to statistics based

on

Zn(γ) := n−1/2

n∑
i=1

Gi(γ).

�

Another important example involving nuisance parameters present only the alternative is the

specification testing framework of Bierens (1990) and its extensions (e.g., Stinchcombe and White,

1998 (SW)).

Example 3 (Specification Testing): Let {(Yi, X
′
i)
′ ∈ R1+d} be IID, and suppose E[Yi|Xi] is

modeled by a set of functions, say M := {f(X, θ) : θ ∈ Θ ⊂ Rm}, where d and m are finite
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integers. Further, for γ ∈ Γ, let

Gi(γ) = [Yi − f(Xi, θ
∗)]ψ{γ′Xi},

where θ∗ is the probability limit of an estimator θ̂n, e.g., the nonlinear least squares (NLS) estimator

θ̂n = arg min
θ∈Θ

n−1

n∑
i=1

[Yi − f(Xi, θ)]
2;

and ψ : R → R is a given function. Bierens (1990) specifies ψ = exp; SW consider large

families of choices for ψ, notably the comprehensively revealing (CR) and the generically CR

(GCR) families1.

This choice for Gi is easily seen to satisfy A.1 under mild conditions on f and ψ. Further,

Gi has remarkable and useful properties. Specifically, as Bierens (1990) and SW show, when M

is correctly specified (so that there exists θ0 ∈ Θ such that E[Yi|Xi] = f(Xi, θ0)), provided that

θ∗ = θ0 (as holds for the NLS estimator as well as for linear exponential family-based quasi-

maximum likelihood estimators generally), then

E[Gi(γ)] = 0 for all γ ∈ Γ;

whereas when M is not correctly specified and ψ is GCR (e.g., ψ = exp is GCR), SW show

E[Gi(γ)] 6= 0 for almost all γ ∈ Γ.

Bierens (1990) and SW exploit this property to construct tests for model misspecification. Their

test statistics are based on

Zn(γ) := n−1/2

n∑
i=1

Gi(γ).

�

As these examples suggest, our main interest here concerns the population mean functional µ

1To ensure boundedness, Bierens (1990) replaces Xi with Φ(Xi), a d×1 vector of measurable bounded one-to-one
mapping from Rd to Rd, such as Φ(Xi) ≡ [tan−1(X1i), tan−1(X2i), · · · , tan−1(Xdi)].> We leave this implicit
here.

6



of Gi (when it exists) defined by

µ(γ) := EP[Gi(γ)] :=

∫
Gi(γ)dP, γ ∈ Γ.

We exploit the identical distribution assumption to drop the i subscript for µ.

We pay particular attention to certain functionals of µ. To specify these, we introduce the notion

of an adjunct probability measure Q on Γ. This measure should be viewed as one selected by the

researcher; it corresponds to the familiar notion of a regression design. We specify its properties

formally as follows:

Assumption A.2 (Adjunct Probability Measure): (i) (Γ,G,Q) and (Ω × Γ,F ⊗ G,P · Q) are

complete probability spaces;

(ii) for i = 1, 2, ...., Gi is measurable −F ⊗ G.

The sample space is now the Cartesian product, Ω×Γ; the sigma field F ⊗G is the product sigma

field generated by F and G. Because (Γ, ρ) is a metric space, there exists a topology generated by

ρ. We may take G to be the Borel sigma field generated by this topology. The product probability

measure P ·Q governs events jointly involving ω and γ. Because of its product structure, we have

independence, in the usual sense that P ·Q[F ×G] = P[F ] ·Q[G] for all F ∈ F and G ∈ G.

The assumed joint measurability for Gi follows, for example, by Stinchcombe and White

(1992, lemma 2.15), if Gi( · , γ) is measurable for each γ ∈ Γ and Gi(ω, · ) is continuous on Γ

for all ω ∈ F, P[F ] = 1.

Under suitable integrability conditions, our assumptions ensure that integrals of the form

∫ ∫
Hi(ω, γ)dQ(γ)dP(ω)

are well defined. Of immediate interest is the integral arising when Hi(ω, γ) = {Gi(ω, γ) −

m(γ)}2, yielding

∫ ∫
{Gi −m}2dQdP =

∫ ∫
{Gi(ω, γ)−m(γ)}2dQ(γ)dP(ω).

This is the Q−functional mean squared error (Q−FMSE) for m as a predictor of Gi. As we show
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next, for every Q, the function m∗ minimizing the Q−FMSE is essentially the functional mean,

µ. To establish this, we introduce some notation and add some suitable regularity. First, we write

L2(P) := {f :
∫
|f(ω)|2dP(ω) <∞} and similarly L2(Q) := {f :

∫
|f(γ)|2dQ(γ) <∞}, where

f is measurable-F in the first instance and measurable-G in the second.

Assumption A.3 (Domination): There exist random variablesMi ∈ L2(P) such that supγ∈Γ |Gi(γ)|

≤Mi, i = 1, 2, ....

From this, it follows that µ as defined above exists and is measurable −G, and that µ ∈ L2(Q).

Applying eq. (3) in White (2006) gives the following result.

Proposition 1. Given Assumptions A.1, A.2, and A.3, let m ∈ L2(Q). Then

∫ ∫
{Gi −m}2dQdP =

∫
varP[Gi(γ)]dQ(γ) +

∫
{m(γ)− µ(γ)}2dQ(γ),

where varP[Gi(γ)] :=
∫
{Gi(γ)− µ(γ)}2dP.

Thus, for any given Q, the Q−FMSE is minimized by m∗ = µ a.s.−Q , so that

inf
m∈L2(Q)

∫ ∫
{Gi −m}2dQdP =

∫
varP[Gi(γ)]dQ(γ).

Clearly, the optimized Q−FMSE depends on Q. In particular, if for some γ0 ∈ Γ, Q is selected

so that Q(G) = 1 if γ0 ∈ G ∈ G and Q(G) = 0 otherwise, then m∗ = µ a.s.−Q holds for the

constant function m∗ = µ(γ0), and the minimized Q−FMSE is

∫
varP[Gi(γ)]dQ(γ) = varP[Gi(γ0)].

This replicates the familiar result for random variables that the expectation µ(γ0) is the best mean-

squared error predictor for the random variable Gi(γ0). Analogously, the function defined by µ(γ)

provides a Q−FMSE optimal prediction for the random function defined by Gi( · , γ).
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2.2 Functional Regression

Our primary interest attaches to testing hypotheses about µ. For example, given a known function

m∗ ∈ L2(Q), suppose we are interested in testing

Ho : µ = m∗ a.s.−Q vs. HA : Ho is false.

Because m∗ is known, this is equivalent to testing

Ho : µ∗ = 0 a.s.−Q vs. HA : Ho is false,

where µ∗ := µ−m∗ = EP[G
∗
i ], with G∗

i (γ) := Gi(γ)−m∗(γ).

We may be also interested in testing

Ho : µ∗ = c a.s.−Q vs. HA : Ho is false,

where c is an unknown real constant. For example, in our panel data example, this case is relevant

in testing the null of no serial correlation in Ui with respect to γ versus serial correlation in Ui in

the possible presence of the unobserved effect Ci.

In what follows, we drop the superscript ∗, letting any recentering by known m∗ be implicit,

and just consider testing

H1o : µ = 0 a.s.−Q vs. H1A : H1o is false; and

H2o : µ = c a.s.−Q vs. H2A : H2o is false.

Power against particular alternatives may be enhanced by making use of non-constant basis

functions gj : Γ 7→ R, j = 1, 2, ..., k; we write g := (g1, g2, ..., gk)
′. The next assumption specifies

their properties. We let λmin( · ) and λmax( · ) denote the minimum and maximum eigenvalues

respectively of a given matrix.

Assumption A.4 (Basis Functions): (i) For each j = 1, 2, ..., k, gj : Γ 7→ R is measurable−G;

(ii) For each j = 1, 2, ..., k, gj ∈ L2(Q); and
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(iii) λmin(A) > 0, where

A : =

 1
∫

g(γ)′dQ(γ)∫
g(γ)dQ(γ)

∫
g(γ)g(γ)′dQ(γ)

 .

Part (ii) ensures that λmax(A) <∞. Part (iii) ensures that the elements of g are non-constant and

non-redundant. As both g and Q are under the researcher’s control, verifying A.4 is in principle

straightforward.

We use g to approximate µ. Specifically, we consider affine approximations to µ of the form

m( · , δ0, δ) = δ0 + g( · )′δ.

Thus, m belongs to the affine model

A(g) := {δ0 + g( · )′δ : (δ0, δ) ∈ R1+k}.

A “trivial” but important special case for g is that in which g has no elements. This gives the

simplest test of H1o, although this choice is not relevant for testing H2o. The most convenient

non-trivial choice for g is g(γ) = γ, which yields a linear functional regression.

More elaborate choices of g are often relevant. In some cases (e.g., in our Example 2), the

alternative may provide specific knowledge about relevant choices for g. Alternatively, one can

use series functions, such as suitably chosen polynomials in γ, just as when one approximates

a standard conditional expectation. The key idea is that power may be gained by selecting g to

capture salient features of µ under important or plausible alternatives.

When H1o holds, we have the regression representation

Gi( · ) = δ†0 + g( · )′δ† + εi( · ), (1)

where δ†0 = 0, δ† = 0, EP[εi( · )] = 0, and EP[g( · )εi( · )] = 0. When H2o holds we have the same

representation, but now with δ†0 = c, δ† = 0. We call a representation of the form given by eq.(1) a

functional regression.
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We let δ∗0 and δ∗ index the Q−FMSE optimizer. That is, m( · , δ∗0, δ∗) solves

inf
m∈A(g)

∫ ∫
{Gi −m}2dQdP =

∫
varP[Gi]dQ + inf

δ0,δ

∫
{µ− δ0 − g′δ}2dQ.

The first-order conditions for the optimum are

∫
µ(γ)dQ(γ) = δ∗0 +

∫
g(γ)′δ∗dQ(γ);∫

µ(γ)g(γ)dQ(γ) =

∫
(δ∗0 + g(γ)′δ∗)g(γ)dQ(γ).

These yield convenient expressions for δ∗0 and δ∗, analogous to the standard regression approxima-

tion case (see, e.g., White, 1980): δ∗0

δ∗

 :=

 EQ[µ]

0

+

 −EQ[g ]′covQ[g,g]−1covQ[g, µ]

covQ[g,g]−1covQ[g, µ]

 ,
where EQ[µ] :=

∫
µ dQ, EQ[g ] :=

∫
g dQ;

covQ[g,g] :=

∫
g(γ)g(γ)′ dQ(γ)−

(∫
g(γ) dQ(γ)

)(∫
g(γ)′ dQ(γ)

)
; and

covQ[g, µ] :=

∫
g(γ)µ(γ) dQ(γ)−

(∫
g(γ) dQ(γ)

)(∫
µ(γ) dQ(γ)

)
.

It is readily verified that if µ = 0 a.s.−Q (H1o holds) then δ∗0

δ∗

 =

 0

0

 .
If instead, for unknown constant c, µ = c a.s.−Q (H2o holds) then δ∗0

δ∗

 =

 c

0

 .
Thus, δ∗0 and δ∗ coincide with the coefficients of the functional regression representation for Gi( · )

under H1o and H2o.
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On the other hand, if H1o does not hold, then δ∗0 or δ∗ need not equal zero, as covQ[g, µ] is

not necessarily 0 under H1A. Similarly, if H2o does not hold, then δ∗ need not equal zero. This

behavior gives our tests their power. We emphasize that in these cases, the optimizer m( · , δ∗0, δ∗)

generally does not coincide with µ, as m( · , δ∗0, δ∗) is essentially a misspecified approximation to

µ under the specified alternatives.

3 Functional Ordinary Least Squares (FOLS) Estimation

We construct hypothesis testing procedures based on estimators for δ∗0 and δ∗. For this, we mini-

mize with respect to δ0 and δ the sample analog of the Q−FMSE,

n−1

n∑
i=1

∫
{Gi(γ)− δ0 − g(γ)′δ}2dQ(γ).

The resulting estimator is the functional ordinary least squares (FOLS) estimator, denoted (δ̂0n,

δ̂n
′)′. This has the convenient representation

 δ̂0n

δ̂n

 :=

 1
∫

g′∫
g
∫

g g′

−1  n−1
∑∫

Gi

n−1
∑∫

g Gi

 ,
where the integration is always with respect to dQ.

3.1 Consistency of FOLS

The asymptotic properties of the FOLS estimator depend on the properties of Gi. We first require

that n−1
∑n

i=1Gi obeys the strong uniform law of large numbers (SULLN).

Assumption A.5 (SULLN):

sup
γ∈Γ

∣∣∣∣∣n−1

n∑
i=1

Gi(γ)− µ(γ)

∣∣∣∣∣→ 0 a.s.− P.

Given the domination condition of A.3, this holds under mild additional conditions on {Gi}.
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Specifically, if Gi(ω, · ) is continuous on Γ, then the SULLN of Le Cam (1953) (see also Jen-

nrich, 1969) applies. Additional relevant references are Andrews (1987), Pötscher and Prucha

(1989), and Newey (1991).

The Lebesgue dominated convergence theorem (LDCT) permits us to first let n tend to infinity

before integrating the relevant random functions with respect to Q involved in δ̂0n and δ̂n. The key

assumptions permitting this are A.3 and A.4(ii). With this, we obtain the consistency of the FOLS

estimator.

Theorem 2. Given Assumptions A.1 to A.5, (δ̂0n, δ̂n
′)′ → (δ∗0, δ

∗′)′ a.s. −P.

3.2 Asymptotic Normality of FOLS

The FOLS estimator has the joint normal distribution asymptotically. For this, we impose a func-

tional central limit theorem (FCLT).

Assumption A.6 (FCLT): (i) n−1/2
∑n

i=1(Gi − µ) ⇒ Z , where Z : Ω × Γ 7→ R is a mean zero

Gaussian process such that for γ, γ̃ ∈ Γ, EP[Z(γ)Z(γ̃)] = κ(γ, γ̃) <∞, where κ : Γ× Γ 7→ R is

such that for each j, j̃ ∈ {1, 2, ..., k},

∫ ∫
κ(γ, γ̃)dQ(γ)dQ(γ̃) <∞,

∫ ∫
gj(γ)κ(γ, γ̃)dQ(γ)dQ(γ̃) <∞, and

∫ ∫
gj(γ)κ(γ, γ̃)gj̃(γ̃)dQ(γ)dQ(γ̃) <∞; and

(ii) λmin(B) > 0, where

B :=

 ∫ ∫
κ(γ, γ̃)dQ(γ)dQ(γ̃)

∫ ∫
κ(γ, γ̃)g(γ̃)′dQ(γ)dQ(γ̃)∫ ∫

g(γ)κ(γ, γ̃)dQ(γ)dQ(γ̃)
∫ ∫

g(γ)κ(γ, γ̃)g(γ̃)′dQ(γ)dQ(γ̃)

 .

There is an extensive literature providing primitive conditions for the FCLT. Billingsley (1968,

1999) provides primitive conditions when Γ is a compact subset of the real line and Gi belongs

to a set of right-continuous functions with left-limits. These results are extended by Bickel and

Wichura (1971) to the case where Γ is a compact subset of a finite dimensional Euclidean space.

13



When, as is assumed here, (Γ, ρ) is a compact metric space, Jain and Marcus (1975) provide

sufficient conditions for the FCLT2. For additional literature developing these conditions under

various contexts, see, for example, Shorack and Wellner (1986) and van den Vaart and Wellner

(1996).

By construction, κ(γ, γ̃) defines a measurable symmetric function. Many useful choices for g

are bounded; in such cases, only the first of the integrability conditions in A.6(i) is needed. Further,

A.6(i) ensures that λmax(B) < ∞. A.6(ii) ensures that the asymptotic distribution of the FOLS

estimator is not degenerate. For example, A.6(ii) fails if κ is constant over Γ × Γ. Constant κ

occurs when Gi is a random constant function.

We can now give the asymptotic distribution of the FOLS estimator.

Theorem 3. Given Assumptions A.1 to A.6,
√
n[(δ̂0n − δ∗0), (δ̂n − δ∗)′]′

A∼ N (0,A−1BA−1).

The asymptotic normality ensured by this result makes it easy to construct tests of our hypotheses

of interest.

Observe that the asymptotic covariance matrix has the sandwich form common to estimators

of misspecified models (see, e.g., Huber, 1967; White, 1982, 1994). Nevertheless, this matrix

does not simplify further even under H1o or H2o (where functional form misspecification is absent)

because the functional data contain a stochastic dependence structure captured by κ; this is the

analog of neglected heteroskedasticity. We accept this in order to avoid undertaking the intensive

effort that would otherwise be required to model and accommodate κ.

3.3 Two-Stage FOLS

In applications, we often encounter situations in which an estimator Ĝi( · , γ) appears in place of

Gi( · , γ). Our Examples 1 and 3 are relevant instances. To handle these cases in a general way, it

suffices to assume that

Gi( · , γ) := G̃i( · , γ, θ∗)
2Jain and Marcus (1975) provide sufficient conditions for FCLT for random functions Gi with various properties.

For example, their theorem 1 states that given our DGP conditions, if Gi is Lipschitz continuous on Γ a.s. −P, so that
a.s. −P, for all γ, γ̃ ∈ Γ, |Gi(γ)−Gi(γ̃)| ≤ Kiρ(γ, γ̃) for some Ki such that E[K2

i ] < ∞; and if for any ε ∈ (0, 1),∫ ε

0
H

1/2
ρ (Γ, u)du < ∞, then the FCLT holds, where Hρ(Γ, u) := log[Nρ(Γ, u)], and Nρ(Γ, u) is the minimal number

of ρ−balls of radius less than or equal to u covering Γ.
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for some suitably regular function G̃i, where θ∗ is an unknown m × 1 vector (m finite) in Θ, say.

We then form

Ĝi( · , γ) := G̃i( · , γ, θ̂n),

where θ̂n is a suitable estimator of θ∗, computed in a first stage. From this, we can construct the

two-stage FOLS (2SFOLS) estimator

 δ̃0n

δ̃n

 ≡
 1

∫
g∫

g
∫

g g′

−1  n−1
∑∫

Ĝi

n−1
∑∫

Ĝi g

 .
When θ̂n is consistent for θ∗ and G̃i is mildly regular, the consistency of 2SFOLS follows straight-

forwardly.

To sketch the main ideas driving the asymptotic distribution result for 2SFOLS, we consider n−1/2
∑∫

Ĝi − µ

n−1/2
∑∫

g (Ĝi − µ)

 = n−1/2
∑∫

g̃ (Ĝi − µ),

where g̃ := (1,g′)′. This is the analog of the term whose asymptotic distribution drives the result

of Theorem 3 for FOLS.

Writing the integral on the left more explicitly and taking a mean value expansion at θ∗ (interior

to Θ) gives

n−1/2
∑∫

g̃(γ)[G̃i( · , γ, θ̂n)− µ(γ)]dQ(γ) (2)

= n−1/2
∑∫

g̃(γ)[G̃i( · , γ, θ∗)− µ(γ)]dQ(γ)

+ n−1
∑∫

g̃(γ)[∇′
θG̃i( · , γ, θ̄n,γ)]dQ(γ)

√
n(θ̂n − θ∗),

where the mean value θ̄n,γ lies between θ̂n and θ∗ and, as indicated, depends on γ.WithGi( · , γ) :=

G̃i( · , γ, θ∗), we recognize the first term as that arising for the simple FOLS estimator. The second

term is new and may alter the asymptotic distribution of 2SFOLS from that of FOLS.
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Under mild domination conditions, the first part of the second term converges:

n−1
∑∫

g̃(γ)[∇′
θG̃i( · , γ, θ̄n,γ)] dQ(γ) → D∗ :=

∫
g̃(γ) EP[∇′

θG̃i( · , γ, θ∗)] dQ(γ) a.s.− P.

(3)

The second part,
√
n(θ̂n − θ∗), generally converges in distribution.

When EP[∇θG̃i( · , γ, θ∗)] = 0 for all γ ∈ Γ, as can happen in important special cases, then

D∗= 0. It is then enough that
√
n(θ̂n − θ∗) = OP(1) to ensure that

n−1/2
∑∫

g̃(γ)[G̃i( · , γ, θ̂n)−µ(γ)] dQ(γ) = n−1/2
∑∫

g̃(γ)[Gi( · , γ)−µ(γ)] dQ(γ)+oP(1),

in which case 2SFOLS and FOLS are asymptotically equivalent and thus have the same asymptotic

covariance matrix.

When D∗ 6= 0, then some further mild assumptions deliver a straightforward result. Specifi-

cally, suppose that θ̂n is asymptotically linear in the sense that

√
n[θ̂n − θ∗] = −H∗−1

√
ns∗n + oP(1),

where H∗ is a nonstochastic finite nonsingular m ×m matrix and s∗n is an m × 1 random vector

such that for some nonstochastic finite symmetric positive semi-definite m×m matrix I∗,

√
ns∗n

A∼ N (0, I∗) .

Many estimators used in practice are asymptotically linear. Examples include quasi-maximum

likelihood estimators, GMM estimators, and estimators based on U-statistics. In this case,

n−1/2
∑∫

g̃(γ)[G̃i( · , γ, θ̂n)− µ(γ)] dQ(γ)

= n−1/2
∑∫

g̃(γ)[Gi( · , γ)− µ(γ)] dQ(γ)−D∗H∗−1
√
ns∗n + oP (1),

and an asymptotic normality result follows straightforwardly under mild conditions.

We collect together additional conditions ensuring the validity of the above heuristic arguments

as follows:
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Assumption B.1 (DGP) (i) Let A.1(i) and A.2(i) hold, and let Θ ⊂ Rm,m ∈ N, be compact;

(ii) For i = 1, 2, ..., let G̃i : Ω × Γ × Θ 7→ R be such that for each θ ∈ Θ, G̃i( · , · , θ) is

measurable−F ⊗ G and IID;

(iii) Θ is convex, and for each (ω, γ) ∈ Ω × Γ, G̃i(ω, γ, · ) is continuously differentiable

on Θ, sup(γ,θ)∈Γ×Θ |G̃i( · , γ, θ)| ≤ Mi, and supj=1,...,m sup(γ,θ)∈Γ×Θ |(∂/∂θj)G̃i( · , γ, θ)| ≤ Mi,

i = 1, 2, ....

Assumptions B.1(i) and (ii) ensure that Assumptions A.1 and A.2 hold forGi( · , γ) := G̃i( · , γ,

θ∗), where θ∗ is formally specified next. We use B.1(iii) in proving consistency for the FOLS es-

timator, as well as in obtaining the asymptotic distribution of statistics involving Ĝi.

Assumption B.2 (Parameter Estimator): There exist θ∗ ∈ Θ and a sequence of measurable

functions {θ̂n : Ω 7→ Θ} such that

(i) θ̂n → θ∗ a.s.− P;

(ii) θ∗ ∈ int(Θ) and (a) D∗ = 0 and
√
n(θ̂n − θ∗) = OP(1); or (b) D∗ 6= 0 and there exist a

nonstochastic finite nonsingular m×m matrix H∗ and a sequence of measurable random vectors

{s∗n : Ω 7→ Rm} such that

√
n[θ̂n − θ∗] = −H∗−1

√
ns∗n + oP(1).

Assumption B.2(i) helps ensure the consistency of estimators involving Ĝi. B.2(ii) plays a key

role in obtaining the asymptotic distribution of statistics involving Ĝi.

When Assumption B.2(ii.b) applies, we require one further condition, ensuring the joint con-

vergence of
√
ns∗n and n−1/2

∑n
i=1(Gi − µ). This condition implies A.6.

Assumption B.3 (Joint Convergence): (i) For Gi( · , γ) := G̃i( · , γ, θ∗), √
ns∗n

n−1/2
∑n

i=1(Gi − µ)

⇒ Z :=

 Z0

Z

 ,
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where Z : Ω× Γ 7→ Rm+1 is a mean zero Gaussian process such that for γ, γ̃ ∈ Γ,

EP[Z(γ)Z(γ̃)′] =

 I∗ κ0(γ̃)

κ0(γ)
′ κ(γ, γ̃)

 ,
where I∗ is a nonstochastic finite symmetric positive semi-definite m ×m matrix; κ0 : Γ 7→ Rm

belongs to L2(Q); and κ is as in A.6; and

(ii) λmin(B
∗) > 0, where

B∗ := B−D∗H∗−1K∗ −K∗′H∗−1′D∗′ + D∗H∗−1I∗H∗−1′D∗′ and

K∗ :=

∫
κ0(γ)g̃(γ)′dQ(γ).

Observe that when D∗ = 0, we have B∗ = B.

The consistency result for the 2SFOLS estimator is

Theorem 4. Given Assumptions B.1, B.2(i), A.4, and A.3 and A.5 for Gi( · , γ) := G̃i( · , γ, θ∗),

(δ̃0n, δ̃n
′)′ → (δ∗0, δ

∗′)′ a.s. −P.

The asymptotic normality result for the 2SFOLS estimator is

Theorem 5. Suppose that Assumptions B.1, B.2(i), and A.4 hold, and that A.3, A.5, and A.6 hold

for Gi( · , γ) := G̃i( · , γ, θ∗).

(i) If B.2(ii.a) also holds, then
√
n[(δ̃0n − δ∗0), (δ̃n − δ∗)′]′

A∼ N
(
0,A−1BA−1

)
.

(ii) If B.2(ii.b) and B.3 also hold, then
√
n[(δ̃0n − δ∗0), (δ̃n − δ∗)′]′

A∼ N (0,A−1B∗A−1) .

3.4 Consistent Asymptotic Covariance Matrix Estimation

A consistent estimator of the FOLS asymptotic covariance matrix is A−1B̂nA
−1, where B̂n is a

consistent estimator for B. Unlike the situation for standard regression estimation, we do not need

to estimate A, as it is known.

Let the functional regression estimated residuals ε̂in : Ω× Γ 7→ R be defined by

ε̂in( · , γ) := Gi( · , γ)− δ̂0n − g(γ)′δ̂n.
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For convenience, we write ε̂in(γ) as a shorthand for ε̂in( · , γ). We consider estimators of the form

B̂n := n−1

n∑
i=1

 ∫ ∫
ε̂in(γ)ε̂in(γ̃)dQ(γ)dQ(γ̃)

∫ ∫
ε̂in(γ)ε̂in(γ̃)g(γ̃)′dQ(γ)dQ(γ̃)∫ ∫

g(γ)ε̂in(γ)ε̂in(γ̃)dQ(γ)dQ(γ̃)
∫ ∫

g(γ)ε̂in(γ)ε̂in(γ̃)g(γ̃)′dQ(γ)dQ(γ̃)

 .
To ensure the consistency of this estimator, we add the following assumption:

Assumption A.7 (FOLS Covariance Matrix Estimation):

sup
(γ,γ̃)∈Γ×Γ

∣∣∣∣∣n−1

n∑
i=1

Gi(γ)Gi(γ̃)− EP[Gi(γ)Gi(γ̃)]

∣∣∣∣∣→ 0 a.s.− P.

Taken together, A.1–A.7 are the functional regression analogs of conditions for heteroskedasticity-

consistent covariance estimation (cf. White, 2001, ch.6). Formally, we have

Theorem 6. Given Assumptions A.1 to A.7, B̂n → B a.s.− P.

For the 2SFOLS estimator, we use the second-stage residuals ε̃in : Ω× Γ 7→ R defined by

ε̃in( · , γ) := Ĝi( · , γ)− δ̃0n − g(γ)′δ̃n.

When 2SFOLS and FOLS are asymptotically equivalent, we simply replace ε̂in with ε̃in in the

formula for B̂n above, and denote this B̃n.

Otherwise, we construct the estimator

B̃∗
n := B̃n − D̃nĤ

−1
n K̃n − K̃n

′Ĥ ′−1
n D̃′

n + D̃nĤ
−1
n ÎnĤ

′−1
n D̃′

n,

where

D̃n := n−1

n∑
i=1

∫
g̃(γ)∇′

θG̃i( · , γ, θ̂n) dQ(γ),

K̃n := n−1

n∑
i=1

∫
si( · , θ̂n)ε̃in( · , γ)g̃(γ)′ dQ(γ), and

În := n−1

n∑
i=1

si( · , θ̂n)si( · , θ̂n)′,
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where si : Ω×Θ 7→ Rm is such that

√
ns∗n = n−1/2

n∑
i=1

si( · , θ∗) + oP(1),

and Ĥn is a consistent estimator of H∗, for example

Ĥn = n−1

n∑
i=1

∇si( · , θ̂n).

Further conditions ensuring the consistency of B̃n and B̃∗
n are

Assumption B.2 (iii)(a) For i = 1, 2, ..., there exists si : Ω × Θ 7→ Rm such that si( · , θ) is

measurable−F for each θ ∈ Θ and si(ω, · ) is continuous on Θ for all ω ∈ F ∈ F , P(F ) =

1;
√
ns∗n = n−1/2

∑n
i=1 si( · , θ∗) + oP(1); and În → I∗ a.s.− P; and

(b) for n = 1, 2, ..., there exists Ĥn : Ω 7→ Rm×m such that Ĥn is measurable−F and Ĥn

→ H∗ a.s.− P.

Assumption B.4 (2SFOLS Covariance Matrix Estimation): (i)

sup
(γ,γ̃,θ)∈Γ×Γ×Θ

∣∣∣n−1
∑

G̃i(γ, θ)G̃i(γ̃, θ)− EP[G̃i(γ, θ)G̃i(γ̃, θ)]
∣∣∣→ 0 a.s.− P;

(ii) for each γ ∈ Γ

sup
θ∈Θ

∣∣∣n−1
∑

si(θ)G̃i(γ, θ)− EP[si(θ)G̃i(γ, θ)]
∣∣∣→ 0 a.s.− P.

Note that B.4(i) implies A.7, because Gi( · , γ) := G̃i( · , γ, θ∗). Assumption B.4(ii) helps ensure

the consistency of K̃n.

We can now state the desired consistency results:

Theorem 7. (i) Given Assumptions B.1, B.2(i), A.3 to A.5 for Gi( · , γ) := G̃i( · , γ, θ∗), and B.4(i),

B̃n → B a.s. −P;

(ii) Given Assumptions B.1 – B.4,and A.3 to A.5 for Gi( · , γ) := G̃i( · , γ, θ∗), B̃∗
n → B∗ a.s.

−P.
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4 Hypothesis Testing

In this section, we describe the properties of Wald tests for our hypotheses of interest, H1o and H2o.

We consider behavior under the null and global alternative hypotheses, as well as behavior under

natural local alternatives. Because of the foundations provided by the previous sections, our next

results follow as straightforward applications of standard arguments. It is necessary, however, to

exercise care in specifying the null and alternative hypotheses.

4.1 The Wald Test under Null and Global Alternative Hypotheses

To construct Wald test statistics for our hypotheses of interest, H1o and H2o, we define selection

matrices

S1 := Ik+1 and S2 := [0k, Ik],

where Ik+1 is the identity matrix of order k + 1 and 0k is the k × 1 vector of zeros. As discussed

above, H1o and H2o respectively imply

H1o(g) : S1

 δ∗0

δ∗

 = 0k+1 and H2o(g) : S2

 δ∗0

δ∗

 = 0k.

The indicated dependence on g reflects the fact that these hypotheses are implications of H1o and

H2o. They generally are not identical to H1o and H2o, as, e.g., H1o(g) could hold, even if H1o fails.

We express the global alternatives as

H1A(g) : S1

 δ∗0

δ∗

 6= 0k+1 and H2A(g) : S2

 δ∗0

δ∗

 6= 0k.

Note that these are not equivalent to H1A and H2A respectively, due to the possibility of misspec-

ification of the form of the functional regression under the alternative, as described above. We

exhibit the explicit dependence of the global alternatives on g to reflect this possibility.
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Wald statistics for testing H1o(g) and H2o(g) based on the FOLS estimator are

Wj,n := n(δ̂0n, δ̂n
′)S ′j

[
SjA

−1B̂nA
−1S ′j

]−1

Sj

 δ̂0n

δ̂n

 , j = 1, 2.

Wald statistics for testing H1o(g) and H2o(g) based on the 2SFOLS estimator and using B̃n are

W̃j,n := n(δ̃0n, δ̃n
′)S ′j

[
SjA

−1B̃nA
−1S ′j

]−1

Sj

 δ̃0n

δ̃n

 , j = 1, 2.

Wald statistics for testing H1o(g) and H2o(g) based on the 2SFOLS estimator and using B̃∗
n are

W∗
j,n := n(δ̃0n, δ̃n

′)S ′j

[
SjA

−1
n B̃∗

nA
−1S ′j

]−1

Sj

 δ̃0n

δ̃n

 , j = 1, 2.

The following results are now completely standard. We let χ2
k denote the standard chi-square

distribution with k degrees of freedom.

Theorem 8. (i) Suppose the conditions of Theorem 3 and 6 hold. Then for j = 1, 2, (a) under

Hjo(g), Wj,n
A∼ χ2

k+2−j; (b) under HjA(g), P[Wj,n ≥ cn] → 1 for any sequence {cn} s.t. cn =

o(n);

(ii) Suppose the conditions of Theorem 5(i) and 7(i) hold. Then for j = 1, 2, (a) under Hjo(g),

W̃j,n
A∼ χ2

k+2−j; (b) under HjA(g), P[W̃j,n ≥ cn] → 1 for any sequence {cn} s.t. cn = o(n);

(iii) Suppose the conditions of Theorem 5(ii) and 7(ii) hold. Then for j = 1, 2, (a) under

Hjo(g), W∗
j,n

A∼ χ2
k+2−j; (b) under HjA(g), P[W∗

j,n ≥ cn] → 1 for any sequence {cn} s.t. cn =

o(n).

4.2 The Wald Test under Local Alternatives

We consider local alternatives of the following form: {µn} is such that for some ς ∈ R1+k,

Hja(g) :
√
nSj

 δ∗0n

δ∗n

→ Sjς, j = 1, 2,
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where  δ∗0n

δ∗n

 :=

 EQ[µn]

0

+

 −EQ[g ]′covQ[g,g]−1covQ[g, µn]

covQ[g,g]−1covQ[g, µn]

 .
The required evolution of µn can arise from evolution of either Gi (becoming Gin) or P (be-

coming Pn).As the former yields less fundamental and fairly direct modifications to the underlying

regularity conditions, we adopt that approach. For brevity, however, we omit restating all the af-

fected conditions (Assumptions A.1(ii), A.2(ii), A.3, A.5 (which is more easily verified as a weak

ULLN for triangular arrays), A.6, B.1(ii, iii), B.2 (with weak rather than strong convergence to

D∗), B.3, A.7, and B.4 (with weak convergence)). Instead, we understand implicitly that any of

these conditions referenced in the next result are replaced with their suitable analogs involving

Gin.

The next results are again standard. We let χ2(k, ξ) denote the noncentral chi-square dis-

tribution with k degrees of freedom and noncentrality parameter ξ. The following noncentrality

parameters are relevant for j = 1, 2:

ξj := ς ′S ′j[SjA
−1BA−1S ′j]

−1Sjς;

ξ∗j := ς ′S ′j[SjA
−1B∗A−1S ′j]

−1Sjς.

Theorem 9. (i) Suppose the conditions of Theorems 3 and 6 hold. Then for j = 1, 2, under

Hja(g), Wj,n
A∼ χ2(k + 2− j, ξj);

(ii) Suppose the conditions of Theorems 5(i) and 7(i) hold. Then for j = 1, 2, under Hja(g),

W̃j,n
A∼ χ2(k + 2− j, ξj);

(iii) Suppose the conditions of Theorems 5(ii) and 7(ii) hold. Then for j = 1, 2, under Hja(g),

W∗
j,n

A∼ χ2(k + 2− j, ξ∗j ).

4.3 Other Hypotheses and Other Tests

Primary interest here attaches to tests of constant mean, H1o and H2o, as these are the cases directly

relevant to our applications of interest. Nevertheless, our framework applies directly to testing
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general hypotheses

Ho : S

 δ∗0

δ∗

 = 0 or Ho : s(δ∗0, δ
∗) = 0,

where S is any matrix of full row rank or s is a suitably behaved nonlinear function. For the

former, one can simply replace Sj with S in the expressions given above and proceed identically.

The details of the latter case are easily filled in.

So far, we have focused strictly on Wald tests of H1o and H2o. It is straightforward to establish

that the obvious Lagrange multiplier (LM ) tests are asymptotically equivalent to their Wald test

analogs under the null and under local alternatives. These LM tests are also consistent against

global alternatives. We omit provision of detailed conditions, as these are entirely straightforward.

One might also consider using a (quasi-)likelihood ratio ((Q)LR) statistic to test H1o or H2o.

Nevertheless, we recommend against this, as the (Q)LR statistic generally has a complicated as-

ymptotic distribution. This distribution is a mixture of chi-squares, arising as a consequence of the

unmodeled behavior of κ. (See, e.g., White (1994, ch.6).) Use of the (Q)LR statistic violates our

goal of convenient inference for our hypotheses of interest.

5 Examples

We illustrate the application of the foregoing results by returning to our examples of Section 2.

Example 1 (Panel Random Effects-Continued): Recall that interest attaches to

Gi(γ) = Vi(1)Vi(γ),

and to testing H1o. Because the Vi’s are unknown, we use a 2SFOLS procedure. Specifically, we

work with

Ĝi(γ) = V̂i(1)V̂i(γ),

where V̂i(γ) := Ṽi(γ, β̂n) = Yi(γ)−Xi(γ)
′β̂n, and β̂n is the pooled OLS estimator,

β̂n :=

(
n∑

i=1

T∑
γ=1

Xi(γ)Xi(γ)
′

)−1( n∑
i=1

T∑
γ=1

Xi(γ)Yi(γ)

)
.
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To determine which asymptotic covariance matrix applies in this case, we investigate

D∗ :=

∫
g̃(γ) EP[∇′

βG̃i( · , γ, β∗)] dQ(γ).

Now

(∂/∂βj)G̃i( · , γ, β∗) = [(∂/∂βj)Ṽi(1, β
∗)]Ṽi(γ, β

∗) + Ṽi(1, β
∗)[(∂/∂βj)Ṽi(γ, β

∗)]

= −Xij(1)Vi(γ)− Vi(1)Xij(γ).

Under pure random effects (σ2
c = 0), it then follows that for all γ ∈ {2, ..., T},

EP[∇′
βG̃i( · , γ, β∗)] = 0.

In this case, the first-stage estimation has no effect on the asymptotic covariance matrix, and we

can test for panel random effect assumption using W̃1,n for any desired choice of g and Q. For

example, we may let g(γ) = g1(γ) = γ. The 2SFOLS estimator minimizes

0.5

n(T − 1)

n∑
i=1

T∑
γ=2

{V̂i(1)V̂i(γ)− δ0 − δg1(γ)}2.

Letting
∑

γ =
∑T

γ=2, the matrices A and B are given by

A =
1

(T − 1)

 T − 1
∑

γ g1(γ)∑
γ g1(γ)

∑
γ g1(γ)

2

 , and

B =
1

(T − 1)2

 ∑
γ

∑
γ̃ κ(γ, γ̃)

∑
γ

∑
γ̃ κ(γ, γ̃)g1(γ̃)∑

γ

∑
γ̃ g1(γ)κ(γ, γ̃)

∑
γ

∑
γ̃ g1(γ)κ(γ, γ̃)g1(γ̃)

 ,
where

κ(γ, γ̃) ≡

 E[C4
i ] + 2σ2

cσ
2
u + σ4

u − σ4
c , if γ = γ̃;

E[C4
i ] + σ2

cσ
2
u − σ4

c , otherwise.

The conditions of Theorem 7.1(i) apply to deliver the consistency of B̃n for B.
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Example 2 (Exponential Mixtures - Continued): Recall that with

Gi(γ) =
(2γ − 1)1/2

(γ − 1)
{γ exp[(1− γ)Xi]− 1} ,

EP[Gi(γ)] = 0 for each γ ∈ Γ under Davies’s (1977) null hypothesis Ho, whereas under the global

alternative HA,

EP[Gi(γ)] = π∗
(γ∗ − 1)(2γ − 1)1/2

(γ + γ∗ − 1)
.

Consequently, one might consider a choice g(γ) = g1(γ), where for a pre-specified γ† ∈ [γ, γ̄],

g1(γ) =
(γ† − 1)(2γ − 1)1/2

(γ + γ† − 1)
.

With this choice, it is readily verified that Ho implies H1o(g), whereas under HA, a particular

element of H1A(g) holds. In particular, when γ† = γ∗, we have

H∗
1A(g) :

 δ∗0

δ∗

 =

 0

π∗

 ,
Otherwise, both δ∗0 and δ∗ may be non-zero under HA.

With this choice for Gi(γ), no first-stage estimation is necessary. Thus, our results for FOLS

apply directly for any choice of Q, and we can test H1o(g) using W1,n. For this, it is necessary to

obtain A and B. Taking Q to be the uniform distribution is particularly convenient in this regard,

as A and B can then be directly calculated. For example, if we let [γ, γ̄] = [1.5, 26.5], and take

γ† = 2, then under H1o(g) we have

A =

 1 1
25

∫
g1(γ)dγ

1
25

∫
g1(γ)dγ

1
25

∫
g1(γ)

2dγ

 ≈
 1 0.3736

0.3736 0.1481

 and

B =
1

252

 ∫ ∫
κ(γ, γ̃)dγdγ̃

∫ ∫
κ(γ, γ̃)g1(γ̃)dγdγ̃∫ ∫

g1(γ)κ(γ, γ̃)dγdγ̃
∫ ∫

g1(γ)κ(γ, γ̃)g1(γ̃)dγdγ̃

 ≈
 0.8953 0.3304

0.3304 0.1226

 .
In obtaining the latter result, we rely on theorem 1(i) of Jain and Marcus (1975) to verify that

under H1o(g), n−1/2
∑n

i=1Gi ⇒ Z, where Z is a zero mean Gaussian process with covariance
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kernel

κ(γ, γ̃) =
(2γ − 1)1/2(2γ̃ − 1)1/2

{γ + γ̃ − 1}
.

Example 3 (Specification Testing - Continued): For specificity, suppose that d = 2, Xi :=

(Xi1, Xi2)
′ := (1, X2i)

′ and that EP[Yi|Xi] = π∗ exp(X2i). Next, take f(X, θ) = θ1 + θ2X2, so

that M is correctly specified for EP[Yi|Xi] only when π∗ = 0.

Finally, take ψ to be the logistic function, ψ(z) = 1/[1 + exp(−z)], let γ ∈ Γ ≡ [γ, γ̄], and

let Q be the uniform distribution on Γ. These specification tests require a first stage estimator,

so our results for the 2SFOLS estimator will apply. Given the affine structure of M, we take

θ̂n := (θ̂1n, θ̂2n)′ to be the OLS estimator. We thus work with

Ĝi(γ) = [Yi − θ̂1n − θ̂2nX2i]ψ(X2iγ).

The 2SFOLS estimator is obtained by choosing δ̃0n and δ̃n to minimize

.5 n−1

n∑
i=1

(γ̄ − γ)−1

∫ γ̄

γ

{Ĝi(γ)− δ0 − g(γ)′δ}2dγ,

where g is suitably chosen function.

The theory of the foregoing sections for 2SFOLS applies directly. To determine which version

of the 2SFOLS asymptotic covariance matrix is required, we investigate

D∗ :=

∫
g̃(γ)EP[∇′

θG̃i( · , γ, θ∗)] dQ(γ) = (γ̄ − γ)−1

∫ γ̄

γ

g̃(γ) EP[(−1,−X2)ψ(X2γ)]dγ.

Inspecting this, we do not see that it vanishes in general, so we must estimate B∗ to compute our

test statistic. This estimation involves computation of

D̃n = (γ̄ − γ)−1n−1

n∑
i=1

∫ γ̄

γ

g̃(γ)(−1,−X2i)ψ(X2iγ)dγ,

K̃n = (γ̄ − γ)−1n−1

n∑
i=1

∫ γ̄

γ

si( · , θ̂n)ε̃in( · , γ)g̃(γ)′dγ,

În = n−1

n∑
i=1

si( · , θ̂n)si( · , θ̂n)′, and
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Ĥn = n−1

n∑
i=1

 −1

−X2i

 [−1,−X2i],

where

si( · , θ̂n) =

 −1

−X2i

 [Yi − θ̂1n − θ̂2nX2i], and

ε̃in( · , γ) = Ĝi(γ)− δ̃0n − g(γ)′δ̃n.

Here the relevant hypothesis is the hypothesis of correct specification, corresponding to H1o.

We thus compute W∗
1,n as specified above.

To examine further features of our test, suppose that we somehow knew that the DGP exhibits

conditional heteroskedasticity, such that

Ui = h(X2i)εi,

where Ui := Yi − EP[Yi|Xi], where h(x) = sin(x), and εi is IID with EP(εi|Xi2) = 0 and

EP(ε
2
i |Xi2) = 1, and that (X2i, εi)

′ ∼ IID N((1, 0)′, I2). Applying theorem 3 of Bierens (1990)

tells us that under H1o, n
−1/2

∑n
i=1 Ĝi ⇒ Z, a zero mean Gaussian process having the covariance

structure

κ(γ, γ̃) = EP[sin(X2)
2(ψ(X2γ)−X ′EP[XX

′]−1EP[Xψ(X2γ)])

× (ψ(X2γ̃)−X ′EP[XX
′]−1EP[Xψ(X2γ̃)])].

The complexity of this structure makes it difficult to exploit, even under the best circumstances,

where we have detailed knowledge of the DGP. In applications, matters are worse as h and the

unconditional distribution of Xi are typically unknown a priori. Fortunately, however, our ap-

proach here does not require explicitly taking into account the structure of κ, just as tests based

on a heteroskedasticity-robust estimator do not require explicitly taking into account the unknown

heteroskedasticity.
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The tests suggested by Bierens (1990) and SW rely on statistics computed as functionals of

n−1/2
∑

Ĝi(γ) = n−1/2
∑

[Yi − θ̂1n − θ̂2nX2i]ψ(X2iγ).

These statistics have asymptotic distributions that are generally highly complex, varying for dif-

ferent choices of ψ and for different choice of functional. This distribution typically must be

simulated in each case, requiring considerable computational effort in computing the critical val-

ues; or a special functional has to be selected to obtain a statistic with asymptotically standard null

distribution, as pointed out by Bierens (1990). The benefit of the approach taken here is that our

test statistics always have a straightforward asymptotic chi-square distribution regardless of ψ, g,

or Q.

6 Monte Carlo Experiments

In this section, we conduct Monte Carlo experiments using our Wald tests with the DGPs specified

in our previous examples. First, we investigate the behavior of functional regression tests for panel

data random effects and compare these to a Breusch-Pagan (1979) test. As the panel setting is

standard and familiar, these results are intended primarily to illustrate how this familiar setting

maps to the functional regression framework, rather than to yield new insights for panel data.

Second, we compare our Wald test with Davies’s (1977) test. Because our Wald test neglects κ

while Davies’s test does not, we trade computational convenience for power. Our experiments

shed light on this trade-off. Finally, we compare the specification tests of Bierens (1990) and SW

to our functional regression Wald tests. Here, functional regression offers not only computational

convenience, but we also observe some interesting power advantages.

6.1 Example 1: Panel Random Effects

For the panel random effects example, let d = 2 and T = 20, so that j ∈ {1, 2} and γ ∈

{1, 2, ..., T} for i ∈ {1, 2, ..., n}. Let Xji(γ) be IID χ2
1, and let Ui(γ) be such that Ui(γ) + 3 ∼ IID

χ2
3. Thus, for each γ, E[Ui(γ)] = 0, and the Ui(γ)’s have a non-normal distribution.

As discussed above, the choice of g is up to the researcher. Here we consider five different
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possibilities. The simplest choice omits g entirely, and simply tests for a zero intercept, coinciding

with a standard quasi-maximum likelihood procedure. The remaining choices are linear (g1(γ) =

γ), quadratic (g1(γ) = γ2), linear-quadratic (g1(γ) = γ, g2(γ) = γ2), and geometric (g1(γ) =

0.5γ). The latter choice is one a researcher might make if autocorrelation in the Ui(γ)’s were

suspected. We make these choices primarily because of their simplicity. Nevertheless, under

the alternative in which σ2
c > 0, µ is just a constant function different from zero. This implies

that the functional regression coefficients for the elements of g will be zero; including g will

thus result in some loss of power. Our experiments with g included permit us to assess this loss.

We denote the Wald statistics for these choices as W̃1,n(con), W̃1,n(con+lin), W̃1,n(con+quad),

W̃1,n(con+lin+quad), and W̃1,n(con+0.5γ), respectively.

We also apply the Breusch-Pagan (1979) statistic to test the null of pure random effects struc-

ture. This statistic is popularly used to test for unobserved fixed effects, as noted by Wooldridge

(2002), and can be written as

BPn ≡


∑n

i=1

∑T
γ=2 V̂i(1)V̂i(γ)√∑n

i=1{
∑T

γ=2 V̂i(1)V̂i(γ)}2


2

in our context. Under the null, σ2
c = 0 and there is no correlation between Ĝi(γ) and Ĝi(γ̃) when

γ 6= γ̃. Thus, BPn follows the chi-square distribution with one degree of freedom. On the other

hand, the alternative σ2
c > 0 leads to serial correlation, so that BPn yields a consistent test.

Tables 1 and 2 display the simulation results for level (10,000 replications) and power (5,000

replications), respectively. We examine power patterns by varying the sample size and the values

of σ2
c for the alternatives. As expected, the levels of the Wald statistics are well behaved. BPn also

shows good level behavior. Both W̃1,n(con) and BPn have comparable power, with W̃1,n(con)

having perhaps a small advantage. As expected, the inclusion of the additional regressors gener-

ally leads to modest losses in power, with (as expected) greater losses for W̃1,n(con+lin+quad),

which uses three degrees of freedom, than for the others, which use only two degrees of free-

dom. Although these power losses are modest, these results underscore the importance of using

knowledge about the alternative to arrive at a parsimonious functional regression.
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6.2 Example 2: Exponential Mixtures

We test the mixture hypothesis for exponential distributions using Davies’s (1979) DGP and test

statistic and compare the performance of his test to our Wald tests. We again consider the case of

functional regression with a constant only, together with the linear, quadratic, and linear-quadratic

cases. We denote the Wald statistics for these cases asW1,n(con),W1,n(con+lin),W1,n(con+quad),

and W1,n(con+lin+quad), respectively. Recall that under the alternative,

µ(γ) = π∗
(γ∗ − 1)(2γ − 1)1/2

(γ + γ∗ − 1)
.

As µ is a non-trivial function of γ under the alternative, we might expect some power to be gained

by the latter three choices.

We also consider two further choices, the first where the functional regression includes a con-

stant and

g1(γ) =
(γ† − 1)(2γ − 1)1/2

(γ + γ† − 1)
,

with γ† = γ∗, and the second with g1(γ) as above, but omitting the constant. The corresponding

Wald statistics are denotedW1,n(con+g1) andW1,n(g1), respectively. Because γ† = γ∗, this choice

is not feasible in applications. Nevertheless, it represents a “best case” scenario: we should expect

lower power in practice, where we will generally not have γ† = γ∗.

As above, we take Γ = [1.5, 26.5]. As further noted above, here the known covariance kernel κ

permits us to compute B analytically3. This permits us to substantially reduce the level distortions

of our Wald statistics compared to the case in which B is estimated.

We also compute Davies’s (1977) statistic, denoted Dn := supγ Zn(γ). This converges weakly

to supγ Z(γ) under Ho. Applying theorem 2(i) of Cho and White (2008) shows that Z is identical

to Z̄ in distribution, where for each γ ∈ Γ,

Z̄(γ) ≡
∞∑
k

[
γ2(2γ − 1)

(γ − 1)4

]1/2(
γ − 1

γ

)k

Wk,

3In particular, we compute the associated integrals by Gauss-Legendre quadrature. Many computer packages
provide commands for this. For example, GAUSS7.0 provides routines called ‘intquad’ and ‘intquad2.’ Their com-
putation speed is satisfactorily fast and their approximation errors are satisfactorily small.
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and Wk ∼ IID N(0, 1). We use this fact to generate the critical values for Davies’s (1977) test by

applying the simulation methods of Cho and White (2008).

Tables 3 contains the simulation results for our level experiments (10,000 replications). As

expected from Theorem 8(i) and affirmed by the entries in Table 3, all the Wald statistics yield

tests with well behaved levels, even for sample sizes as small as 25. In contrast, Dn over-rejects,

particularly for smaller levels and smaller n. In other experiments (not reported here) we find

that this level distortion is less noticeable when Γ is smaller (e.g., Γ = [1.5, 6.5]). In the present

case, the level distortion is of sufficient concern that we also compute a level-adjusted version of

Davies’s (1977) statistic, denoted D∗
n.

We present power simulation results in Table 4 (5,000 replications), generating alternatives

by letting γ∗ = 2 and considering a range of values for π∗. First, as we expect, all statistics

appear consistent. Also as expected, the (level-adjusted) Davies’s statistic D∗
n largely dominates.

Nevertheless, W1,n(con) performs almost as well in many cases. Interestingly, the other Wald

tests do not perform as well asW1,n(con), even though µ depends non-trivially on γ. We note that

W1,n(con+g1) outperforms W1,n(g1), emphasizing the importance of the constant in achieving

power. We also note that W1,n(con+lin) performs comparably to W1,n(con+g1), suggesting that

simple methods may perform just as well as more complicated ones.

Overall, these results suggest that a useful first step in this context is to perform the straight-

forward Wald test based on W1,n(con). If one rejects, then one has effective evidence against the

null. If one fails to reject, then one may elect to perform the more powerful Davies (1977) test by

expending the additional effort required to simulate the critical values for Davies’s (1977) statistic.

We note that obtaining these critical values is not always as straightforward as in this particular

example. Specifically, in other cases, it may not be so easy to find a suitable alternative repre-

sentation for the distribution of Z . In such cases, one may exploit the conservative critical values

suggested by Davies (1977), provided the dimension of Γ is equal to one. On the other hand, the

Wald statistics still can be easily applied when the dimension of Γ is greater than one.
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6.3 Example 3: Specification Testing

To test the hypotheses H1o(g) vs. H1A(g) for the specification tests of Example 3, we again con-

sider the case of functional regression with a constant only, together with the linear, quadratic, and

linear-quadratic cases. We denote the Wald statistics for these cases as W∗
1,n(con), W∗

1,n(con+lin),

W∗
1,n(con+quad), andW∗

1,n(con+lin+quad), respectively. As in Example 2, the associated integrals

are computed using Gauss-Legendre quadrature, now letting Γ = [γ, γ̄] = [−0.5, 0.5] with ψ the

logistic function, as before.

In addition, we compute test statistics suggested by Bierens (1990) and SW, letting Bn and

SWn denote the Bierens and SW test statistics, respectively. For Bn, we follow theorem 4 of

Bierens (1990) and let γ = 1, ρ = 0.5, and t0 = 1/4. These parameters must be selected by the

researcher before conducting the Bierens test and are those used by Bierens (1990, table 1) for

his own Monte Carlo experiments. For comparability, we again take ψ to be the logistic function.

Because of the particular structure imposed here, Bn is distributed asymptotically as χ2
1 under the

null.

SW give a simple consistent test procedure using critical values based on the law of the iterated

logarithm (LIL) bound. This is quite conservative, as SW point out. We follow their theorem

5.6(a) and let the associated norm be the uniform norm, with ψ again chosen to be the logistic

function. SW’s LIL procedure yields a test for which the level declines to zero as n increases.

For comparability, we scale the LIL-based critical value to yield a level of 5% for n = 100. For

n = 100, the ratio between the LIL-based critical value and the quantile yielding a 5% empirical

rejection is 2.2405. We then multiply the other LIL-based critical values for the different sample

sizes by this ratio.

Tables 5 and 6 present simulation results for level (10,000 replications) and power (5,000 repli-

cations). In Table 5, we see that the Wald tests and Bn have approximately correct levels. As the

sample size increases, the levels appear to converge to their nominal values. As expected, the level

for SWn decreases with n.

In Table 6, we examine power by varying the sample size and the coefficient π∗ (recall that

above we specified E[Yi|Xi] = π∗ exp(X2i)). First, we again see very strong performance for

tests based onW∗
1,n(con). Nevertheless, jointly including linear and quadratic functions of γ in the

33



functional regression (usingW∗
1,n(con+lin+quad)) is now seen to pay off, especially for all but the

smaller values of π∗, with relative improvement most noticeable for the smaller sample sizes. We

note that results for W∗
1,n(con+lin) and W∗

1,n(con+quad) are similar to each other and are not as

good as those for W∗
1,n(con+lin+quad).

Interestingly, we find that W∗
1,n(con) strongly dominates Bn, especially for smaller values of

π∗. For n ≥ 100 (where levels are comparable) we also see the conservative SWn test dominating

Bn. For these sample sizes, SWn performs comparably to W∗
1,n(con) and W∗

1,n(con+lin+quad).

Nevertheless, the utility of the SWn statistic is limited by the need to find a practical way to

control its level.

Overall, these results demonstrate the appeal of the functional regression Wald tests for spec-

ification testing. Not only are they easy to apply because of their standard chi-square asymptotic

distribution, but they can have power as good or better than previous procedures, such as tests

based on Bn or SWn.

7 Conclusion

In this paper, we study functional regression and its properties in testing the hypothesis of a con-

stant zero mean function or an unknown constant non-zero mean function. As we show, the asso-

ciated Wald test statistics have standard chi-square limiting null distributions, standard non-central

chi-square distributions for local alternatives converging to zero at a
√
n rate, and are consistent

against global alternatives. These properties permit the construction of straightforward tests of the

hypotheses of interest.

As we discuss, panel data can be viewed as functional data; we illustrate this with a running

example focusing on a test of random effects structure. Further, functional regression provides

a computationally convenient approach to testing hypotheses involving nuisance parameters. In

particular, we develop new alternatives to tests for mixture distributions and for regression mis-

specification, both of which involve nuisance parameters identified only under the alternative. We

find that our procedures may sacrifice only a modest amount of power compared to procedures like

those of Davies (1987), which fully exploit the covariance structure of the Gaussian processes un-

derlying our statistics. Moreover, our procedures can have power better than existing methods that
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do not exploit this covariance structure, like the specification testing procedures of Bierens (1982,

1990) or SW. Interestingly, we find that functional regression tests including only a constant have

remarkably good power, even when the functional mean depends non-trivially on its parameter.

This suggests that any battery of tests for a zero mean function should include tests based on the

intercept only, and that tests including additional functions of the parameter should be judiciously

constructed.

Finally, we note that functional regression tests may have utility in a variety of disparate con-

texts involving hypothesis testing with multiple statistics. For example, Tippett (1931), Fisher

(1932), Pearson (1950), Lancaster (1961), van Zwet and Oosterhoff (1967), Westberg (1985), and

the references therein consider combining a finite number of multiple statistics using a specified

weighting method or a Bayes method. Our approach accommodates such methods, allowing de-

pendence among multiple statistics. It further allows not just a finite number of tests, but allows

the tests to be indexed by elements of a multidimensional continuum.

8 Appendix: Proofs

Proof of Theorem 1: This simply follows from the fact that

∫ ∫
{Gi(γ)−m(γ)}2dQdP =

∫ ∫
{Gi(γ)−m(γ)}2dPdQ

=

∫ ∫
{Gi(γ)− µ(γ)}2dPdQ

− 2

∫ ∫
{Gi(γ)− µ(γ)}{m(γ)− µ(γ)}dPdQ +

∫ ∫
{m(γ)− µ(γ)}2dPdQ,

where the first equality follows from Tonelli’s theorem. Given this, we note that

∫ ∫
{Gi(γ)− µ(γ)}2dPdQ =

∫
varP[Gi(γ)]dQ,

∫ ∫
{Gi(γ)− µ(γ)}{m(γ)− µ(γ)}dPdQ =

∫
{m(γ)− µ(γ)}

∫
{Gi(γ)− µ(γ)}dPdQ = 0,
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and

∫ ∫
{m(γ)− µ(γ)}2dPdQ =

∫
1dP

∫
{m(γ)− µ(γ)}2dQ =

∫
{m(γ)− µ(γ)}2dQ,

so that

∫ ∫
{Gi(γ)−m(γ)}2dQdP =

∫
varP[Gi(γ)]dQ +

∫
{m(γ)− µ(γ)}2dQ,

as desired. �

Proof of Theorem 2: The given consistency easily follows by applying the LDCT given A.3,

A.4, and A.5. We note that A.3 implies that∣∣∣∣∣n−1

n∑
i=1

Gi

∣∣∣∣∣ ≤ n−1

n∑
i=1

G2
i ≤ n−1

n∑
i=1

M2
i <∞ a.s. − P and

∣∣∣∣∣n−1

n∑
i=1

Gigj

∣∣∣∣∣ ≤ n−1

n∑
i=1

G2
i g

2
j ≤ n−1

n∑
i=1

M2
i g

2
j

for every j, so that

∫ ∣∣∣∣∣n−1

n∑
i=1

Gi

∣∣∣∣∣ dQ < n−1

n∑
i=1

M2
i <∞ and

∫ ∣∣∣∣∣n−1

n∑
i=1

Gigj

∣∣∣∣∣ dQ ≤ n−1

n∑
i=1

M2
i

∫
g2

jdQ <∞

a.s. −P, as gj ∈ L2(Q) by A.4(ii). This implies that we can first let n tend to infinity before

integrating the associated random functions, so that n−1
∑∫

Gi −
∫
µ

n−1
∑∫

Gig −
∫
µg

 =

 ∫
n−1

∑
Gi −

∫
µ∫

n−1
∑
Gig −

∫
µg

→
 0

0

 a.s. − P,

where the given convergence follows from A.5. Thus, we obtain that

 δ̂0n

δ̂n

 ≡
 1

∫
g∫

g
∫

g g′

−1  n−1
∑∫

Gi

n−1
∑∫

Gi g

→
 1

∫
g∫

g
∫

g g′

−1  ∫
µ∫
µg

 ≡
 δ∗0

δ∗


a.s. −P. �
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Proof of Theorem 3: From the note that

√
n

 δ̂0n − δ∗0

δ̂n − δ∗

 =

 1
∫

g∫
g
∫

g g′

−1  n−1/2
∑∫

(Gi − µ)

n−1/2
∑∫

(Gi − µ)g

 ,
the desired result follows if  n−1/2

∑∫
(Gi − µ)

n−1/2
∑∫

(Gi − µ)g

 A∼ N (0,B) , (4)

the desired result follows. A.6(ii) implies that n−1/2
∑

(Gi−µ) ⇒ G, so that we obtain n−1/2
∑∫

(Gi−

µ) ⇒
∫
G, and for each j ∈ {1, 2, . . . , k},

∫
(Gi−µ)gj ⇒

∫
Ggj by the continuous mapping theo-

rem. Also, we note that
∫
G and

∫
Ggj (j ∈ {1, 2, . . . , k}) are the integrals of Gaussian processes,

so that they are normally distributed with

∫
G ∼ N

(
0,

∫ ∫
κ(γ, γ̃)dQ(γ)dQ(γ̃)

)
and (5)

∫
Ggj ∼ N

(
0,

∫ ∫
gj(γ)κ(γ, γ̃)gj(γ̃)dQ(γ)dQ(γ̃)

)
, (6)

where the given variances are computed by applying theorem 2 of Grenander (1981, p. 48). Given

this, the positive definite matrix B in A.6(iii) enables us to apply the Cramér-Wold’s device, which

we omit for brevity. This completes the proof. �

Proof of Theorem 4: The given consistency can be achieved in a parallel manner to that of

Theorem 2. We note that B.1(ii) implies that∣∣∣∣∣n−1

n∑
i=1

G̃i

∣∣∣∣∣ ≤ n−1

n∑
i=1

G̃2
i ≤ n−1

n∑
i=1

M2
i <∞ a.s. − P and

∣∣∣∣∣n−1

n∑
i=1

G̃igj

∣∣∣∣∣ ≤ n−1

n∑
i=1

G̃2
i g

2
j ≤ n−1

n∑
i=1

M2
i g

2
j

37



for every j, so that

∫ ∣∣∣∣∣n−1

n∑
i=1

G̃i

∣∣∣∣∣ dQ < n−1

n∑
i=1

M2
i <∞ and

∫ ∣∣∣∣∣n−1

n∑
i=1

G̃igj

∣∣∣∣∣ dQ ≤ n−1

n∑
i=1

M2
i

∫
g2

jdQ <∞

a.s. −P, as gj ∈ L2(Q) by A.4(ii). This implies that we can apply LDCT, so that

 n−1
∑∫

Ĝi −
∫
µ

n−1
∑∫

Ĝig −
∫
µg

 =

 ∫
n−1

∑
Ĝi −

∫
µ∫

n−1
∑
Ĝig −

∫
µg

→
 0

0

 a.s. − P.

The given convergence mainly follows from the facts that: (a)

sup
γ∈Γ

∣∣∣∣∣ 1n
n∑

i=1

Ĝi(γ)− µ

∣∣∣∣∣ ≤ sup
γ∈Γ

∣∣∣∣∣ 1n
n∑

i=1

Ĝi(γ)−
1

n

n∑
i=1

G̃i(γ, θ∗)

∣∣∣∣∣+ sup
γ∈Γ

∣∣∣∣∣ 1n
n∑

i=1

G̃i(γ, θ∗)− µ

∣∣∣∣∣ ;
(b) the second element in the RHS converges to zero a.s. −P by A.5; and (c) applying the mean-

value theorem implies that

sup
γ∈Γ

∣∣∣∣∣ 1n
n∑

i=1

Ĝi(γ)−
1

n

n∑
i=1

G̃i(γ, θ∗)

∣∣∣∣∣ = sup
γ∈Γ

∣∣∣∣∣ 1n
n∑

i=1

∇θG̃i(γ, θ̄n,γ)(θ̂n − θ∗)

∣∣∣∣∣ ,
where the RHS converges to zero a.s. −P by and B.1 (iii) and B.2(i). Thus, we obtain that

 δ̃0n

δ̃n

 ≡
 1

∫
g∫

g
∫

g g′

−1  n−1
∑∫

Ĝi

n−1
∑∫

Ĝi g

→
 1

∫
g∫

g
∫

g g′

−1  ∫
µ∫
µg

 ≡
 δ∗0

δ∗


a.s. −P. This completes the proof. �

Proof of Theorem 5: We explicitly prove only 5(ii). The proof for 5(i) is quite similar.

(ii) From the given fact that

√
n

 δ̃0n − δ∗0

δ̃n − δ∗

 =

 1
∫

g∫
g
∫

g g′

−1  n−1/2
∑∫

(Ĝi − µ)

n−1/2
∑∫

(Ĝi − µ)g

 ,
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the desired result follows if  n−1/2
∑∫

(Ĝi − µ)

n−1/2
∑∫

(Ĝi − µ)g

 A∼ N (0,B∗) . (7)

Given this, we note that applying the mean-value theorem in (2) and B.3 yields that

1√
n

∫ n∑
i=1

g̃(Ĝi − µ) =
1√
n

n∑
i=1

∫
g̃(Gi − µ) +

1

n

n∑
i=1

∫
g̃[∇′

θG̃i(θ̄n,γ)]
√
n(θ̂n − θ∗) (8)

⇒
∫

g̃G −D∗H∗−1Z0

because (i) n−1/2
∑∫

(Gi − µ) ⇒
∫
G, and for each j ∈ {1, 2, . . . , k},

∫
(Gi − µ)gj ⇒

∫
Ggj by

the continuous mapping theorem; and (ii) for j = 1, 2, . . . , k and j̃ = 1, 2, . . . ,m,

sup
γ,θ

∣∣∣∣∣n−1

n∑
i=1

∂

∂θj̃

G̃i(γ, θ)

∣∣∣∣∣ ≤
(
n−1

n∑
i=1

M2
i

)1/2

<∞ a.s. − P, and

sup
γ,θ

∣∣∣∣∣n−1

n∑
i=1

∂

∂θj̃

G̃i(γ, θ)gj(γ)

∣∣∣∣∣ ≤
(
n−1

n∑
i=1

M2
i

)1/2

×

(
n−1

n∑
i=1

M2
i

)1/2

<∞ a.s. − P

by B.2, so that we can let n tend to infinity first before computing the associated integrals by the

LDCT, implying that

n−1

n∑
i=1

∫
g̃[∇′

θG̃i(θ̄n,γ)]dQ →
∫

g̃EP[∇′
θG̃i(θ̄n,γ)]dQ,

which we defined as D∗. Given this, we note that (5), (6), and the joint convergence condition in

B.3 imply that
∫

g̃G −D∗H∗−1Z0 is also a normal random variable having the covariance matrix

B∗, obtained by applying theorem 2 of Grenander (1981, p. 48). Given this, the positive definite

matrix B∗ in B.3(ii) enables us to apply the Cramér-Wold device, which we omit for brevity. This

completes the proof. �

Proof of Theorem 6: To show this, we examine the asymptotic limit of each element in B̂n.
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First, we consider the first row and first column element in B̂n. Note that

1

n

∑∫ ∫
ε̂in(γ)ε̂in(γ̃) =

1

n

∑∫ ∫
εi(γ)εi(γ̃)

+
2

n

∑∫
εi(γ)

{∫
µ(γ̃)− δ̂0n − δ̂′ng(γ̃)

}
+

{∫
µ(γ)− δ̂0n − δ̂′ng(γ)

}2

,

using the fact that ε̂in = εi + {µ(γ)− δ̂0n− δ̂′ng(γ)}. Further, by the FOC for the FOLS estimator,

n−1
∑∫

{Gi(γ)− δ̂0n − δ̂′ng(γ)}dQ(γ) ≡ 0, so that

1

n

∑∫ ∫
ε̂in(γ)ε̂in(γ̃) =

1

n

∑∫ ∫
εi(γ)εi(γ̃)−

{
1

n

∑∫
εi(γ)

}2

.

Given this, using Cauchy-Schwarz inequality we obtain that

sup
γ,γ̃

∣∣∣∣ 1n∑Gi(γ)Gi(γ̃)

∣∣∣∣ ≤ sup
γ,γ̃

∣∣∣n−1
∑

Gi(γ)
2
∣∣∣1/2 ∣∣∣n−1

∑
Gi(γ̃)

2
∣∣∣1/2

≤ n−1

n∑
i=1

M2
i a.s. − P

by A.3, and the RHS is finite a.s. −P. Thus, we can first let n tends to infinity before computing

the associated integrals. The given SULLNs in A.5 and A.7 imply that

∫ ∫
n−1

∑
Gi(γ)Gi(γ̃) →

∫ ∫
EP[Gi(γ)Gi(γ̃)] and

∫
n−1

∑
Gi(γ) →

∫
µ(γ) a.s. − P,

so that we obtain

n−1
∑∫ ∫

ε̂in(γ)ε̂in(γ̃)dQ(γ)dQ(γ̃) →
∫ ∫

κ(γ, γ̃)dQ(γ)dQ(γ̃) (9)

a.s. −P. Second, we consider the first row and (j + 1)-th column element of B̂n, where j =

1, 2, . . . , k. We note that

1

n

∑∫ ∫
ε̂in(γ)ε̂in(γ̃)gj(γ̃) =

1

n

∑∫ ∫
εi(γ)εi(γ̃)gj(γ̃)

− 2

{
1

n

∑∫
εi(γ)

}{
1

n

∑∫
εi(γ̃)gj(γ̃)

}
+

{
1

n

∑∫
εi(γ̃)gj(γ̃)

}2

by the FOC for the FOLS estimator, n−1
∑
{
∫

[Gi(γ)− δ̂0n − δ̂′ng(γ)]gj(γ)} = 0. Given this, the
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Cauchy-Schwarz inequality and A.4(ii) imply that

∣∣∣n−1
∑

Gi(γ)Gi(γ̃)gj(γ̃)
∣∣∣ ≤ ∣∣∣n−1

∑
M2

i

∣∣∣× |gj(γ̃)|,

∣∣∣n−1
∑

Gi(γ̃)gj(γ̃)
∣∣∣ ≤ ∣∣∣n−1

∑
M2

i

∣∣∣1/2

× |gj(γ̃)|, and∣∣∣n−1
∑

Gi(γ)gj(γ̃)
∣∣∣ ≤ ∣∣∣n−1

∑
M2

i

∣∣∣1/2

× |gj(γ̃)|

uniformly in γ and γ̃. Note that when the RHS’s of these inequalities are viewed as functions of γ̃,

they all are in L1(Q) a.s. −P. These imply that we can apply the LDCT, so that

1

n

∑∫ ∫
[Gi(γ)− µ(γ)][Gi(γ̃)− µ(γ̃)]gj(γ̃)dQ(γ)dQ(γ̃) →

∫ ∫
κ(γ, γ̃)gj(γ̃)dQ(γ)dQ(γ̃)

(10)

a.s. −P. Third, we consider the (j + 1)-th row and (j̃ + 1)-th column element of B̂n. Note that

1

n

∑∫ ∫
gj(γ)ε̂in(γ)ε̂in(γ̃)gj̃(γ)

=
1

n

∑∫ ∫
gj(γ)εi(γ)εi(γ̃)gj̃(γ̃)−

{
1

n

∑∫
gj(γ)εi(γ)

}{
1

n

∑∫
εi(γ̃)gj̃(γ̃)

}

using the fact that n−1
∑
{
∫

[Gi(γ) − δ̂0n − δ̂′ng(γ)]gj(γ)} = 0 and n−1
∑
{
∫

[Gi(γ̃) − δ̂0n −

δ̂′ng(γ̃)]gj̃(γ̃)} = 0. Also, by exploiting Cauchy-Schwarz inequality iteratively, we can obtain that

∣∣∣∣ 1n∑ gj(γ)Gi(γ)Gi(γ̃)gj̃(γ̃)

∣∣∣∣ ≤ (n−1
∑

M2
i

)
× |gj(γ)| × |gj̃(γ̃)| and

∣∣∣∣ 1n∑ gj(γ)Gi(γ̃)gj̃(γ̃)

∣∣∣∣ ≤ (n−1
∑

M2
i

)1/2

× |gj(γ)| × |gj̃(γ̃)|

uniformly in γ and γ̃. Note that the RHSs of these inequalities are in L1(Q × Q) a.s. −P when

they are viewed as functions of γ and γ̃ by A.4(ii). This implies that we can apply the LDCT. By

applying A.5, A.7, and Theorem 2, it follows that

n−1
∑∫ ∫

gj(γ)[Gi(γ)− µ(γ)][Gi(γ̃)− µ(γ̃)]gj̃(γ̃)dQ(γ)dQ(γ̃)

→
∫ ∫

gj(γ)κ(γ, γ̃)gj̃(γ)dQ(γ)dQ(γ̃) a.s. − P. (11)

41



Finally, collecting all the elements in (9), (10), and (11) for j, j̃ = 1, 2, . . . , k, we obtain that the

asymptotic limit of B̂n is identical to B. This completes the proof. �

Proof of Theorem 7: (i) The proof is almost identical to the proof of Theorem 6. We examine

the asymptotic limit of each element in B̃n. First, we consider the first row and first column

element in B̂n. Note that

1

n

∑∫ ∫
ε̃in(γ)ε̃in(γ̃) =

1

n

∑∫ ∫
ε̈in(γ)ε̈in(γ̃)−

{
1

n

∑∫
ε̈in(γ)

}2

,

using the facts that ε̃in = ε̈in + {µ(γ)− δ̃0n − δ̃′ng(γ)} and the FOC that n−1
∑∫

{Ĝi(γ)− δ̃0n −

δ̃′ng(γ)}dQ(γ) = 0, where ε̈in := Ĝi − µ. Given this, we already proved in the proof of Theorem

4 that n−1
∑∫

ε̈in(γ) → 0 a.s. −P. Also, B.1(iii) enables us to apply the LDCT, so that we can

first let n tend to infinity before computing the associated integral. Note that

1

n

∑∫ ∫
ε̈in(γ)ε̈in(γ̃)

=
1

n

∑∫ ∫
G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)− 2

n

∑∫
G̃i(γ, θ̂n)

∫
µ(γ̃) +

(∫
µ(γ̃)

)2

.

We examine each element in the RHS. First,

sup
γ,γ̃,θ

∣∣∣n−1
∑

G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)− EP[G̃i(γ, θ
∗)G̃i(γ̃, θ

∗)]
∣∣∣→ 0 a.s. − P

by B.4(i), Theorem 4, and the continuity of Gi with respect to θ, implying that

n−1
∑∫ ∫

G̃i(γ, θ̂n)G̃i(γ̃, θ̂n) →
∫ ∫

EP[G̃i(γ, θ
∗)G̃i(γ̃, θ

∗)] a.s. − P.

Also, from the fact that n−1
∑∫

ε̈i(γ) → 0 a.s. −P, n−1
∑∫ ∫

Ĝi(γ)µ(γ̃) →
(∫

µ
)2 a.s. − P,

so that it follows that

1

n

∑∫ ∫
ε̈in(γ)ε̈in(γ̃) →

∫ ∫
κ(γ, γ̃) a.s. − P. (12)

Second, we consider the first row and (j + 1)-th column element of B̃n, where j = 1, 2, . . . , k.
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Note that

1

n

∑∫ ∫
ε̃in(γ)ε̃in(γ̃)gj(γ̃) =

1

n

∑∫ ∫
ε̈i(γ)ε̈in(γ̃)gj(γ̃)

− 2

{
1

n

∑∫
ε̈in(γ)

}{
1

n

∑∫
ε̈in(γ̃)gj(γ̃)

}
+

{
1

n

∑∫
ε̈in(γ̃)gj(γ̃)

}2

,

and we already saw that n−1
∑∫

ε̈in → 0 a.s. −P and n−1
∑∫

ε̈i(γ̃)gj(γ̃) → 0 a.s. −P in the

proof of Theorem 4. Also, note that

1

n

∑∫ ∫
ε̈in(γ)ε̈in(γ̃)gj(γ̃)

=
1

n

∑∫ ∫
G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)gj(γ̃)−

1

n

∑∫
G̃i(γ, θ̂n)

∫
µ(γ̃)gj(γ̃)

− 1

n

∑∫
µ(γ)

∫
G̃i(γ̃, θ̂n)gj(γ̃) +

∫
µ(γ)

∫
µ(γ̃)gj(γ̃).

Given this, from the facts that n−1
∑∫

ε̈in → 0 a.s. −P and that n−1
∑∫

ε̈in(γ̃)gj(γ̃) → 0 a.s.

−P, it follows that n−1
∑∫

G̃i(γ, θ̂n) →
∫
µ(γ) a.s. −P and that n−1

∑∫
G̃i(γ̃, θ̂n)gj(γ̃) →∫

µ(γ̃)gj(γ̃) a.s. −P respectively. Further, using the Cauchy-Schwarz inequality, A.4(ii), and

B.1(iii) shows that

∣∣∣n−1
∑

G̃i(γ, θ)G̃i(γ̃, θ)gj(γ̃)
∣∣∣ ≤ ∣∣∣n−1

∑
M2

i

∣∣∣× |gj(γ̃)|

uniformly in γ, γ̃, and θ. Note that the RHS of this inequality is in L1(Q) a.s. −P when viewed as

a function of γ̃ by A.4(ii). This implies that we can apply the LDCT, so that B.4(i) implies that

n−1
∑∫ ∫

ε̈in(γ)ε̈in(γ̃)gj(γ̃) →
∫ ∫

κ(γ, γ̃)gj(γ̃) a.s. − P. (13)

Third, we consider the (j+1)-th row and (j̃+1)-th column element of B̃n. We note that the FOLS

FOC n−1
∑
{
∫

[Gi(γ)− δ̂0n− δ̂′ng(γ)]gj(γ)} = 0 and n−1
∑
{
∫

[Gi(γ̃)− δ̂0n− δ̂′ng(γ̃)]gj̃(γ̃)} = 0
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imply

1

n

∑∫ ∫
gj(γ)ε̃in(γ)ε̃in(γ̃)gj̃(γ̃)

=
1

n

∑∫ ∫
gj(γ)ε̈i(γ)ε̈i(γ̃)gj̃(γ̃)−

{
1

n

∑∫
gj(γ)ε̈i(γ)

}{
1

n

∑∫
ε̈i(γ̃)gj̃(γ̃)

}
=

1

n

∑∫ ∫
gj(γ)ε̈i(γ)ε̈i(γ̃)gj̃(γ̃) + oa.s.(1),

as n−1
∑∫

ε̈i(γ̃)gj̃(γ̃) → 0 a.s. −P. Also, note that

1

n

∑∫ ∫
gj(γ)ε̈in(γ)ε̈in(γ̃)gj̃(γ̃)

=
1

n

∑∫ ∫
gj(γ)G̃i(γ, θ̂n)G̃i(γ̃, θ̂n)gj̃(γ̃)−

∫
gj(γ)µ(γ)

∫
µ(γ̃)gj̃(γ̃) + oa.s.(1),

because n−1
∑∫

ε̈in(γ)gj(γ) → 0 a.s. −P and n−1
∑∫

ε̈in(γ̃)gj̃(γ̃) → 0 a.s. −P imply that

n−1
∑∫

G̃i(γ, θ̂n)gj(γ) →
∫
µ(γ)gj(γ) a.s. −P and n−1

∑∫
G̃i(γ̃, θ̂n)gj̃(γ̃) →

∫
µ(γ̃)gj̃(γ̃) a.s.

−P respectively. Further, exploiting the Cauchy-Schwarz inequality iteratively, we can obtain that

∣∣∣n−1
∑

gj(γ)G̃i(γ, θ)G̃i(γ̃, θ)gj̃(γ̃)
∣∣∣ ≤ (n−1

∑
M2

i

)
× |gj(γ)| × |gj̃(γ̃)|

uniformly in γ, γ̃, and θ. Note that the RHS of this inequalities is in L1(Q × Q) a.s. −P, when it

is viewed as a function of γ and γ̃. This also implies that we can apply the LDCT. From B.4(i), it

now follows that

1

n

∑∫ ∫
gj(γ)ε̃in(γ)ε̃in(γ̃)gj̃(γ̃) →

∫ ∫
gj(γ)κ(γ, γ̃)gj̃(γ) a.s. − P. (14)

Finally, collecting all the elements in (12), (13), and (14) for j, j̃ = 1, 2, . . . , k, we obtain that the

asymptotic limit of B̃n is identical to B.

(ii) Given Theorem 7(i), the definition of B̃∗
n, and the conditions in B.2(iii), the desired result

follows if D̃n → D∗ and K̃n → K∗ a.s. −P. We already saw in the proof of Theorem 5(ii) that
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D̃n → D∗ a.s. −P. Therefore, we only prove here that K̃n → K∗ a.s. −P. Note that

K̃n =
1

n

∑∫
si(θ̂n)ε̈in(γ)g̃(γ)′dQ(γ) +

1

n

∑
si(θ̂n)

∫
{µ(γ)− δ̃0n − g(γ)′δ̃n}g̃(γ)′dQ(γ),

(15)

and first consider the second element. First, n−1
∑
si(θ̂n) − n−1

∑
si(θ

∗) = oa.s.(1) because si

is continuous with respect to θ, and θ̂n → θ∗ a.s. −P by B.2(i). Further, B.2(iii) and B.3(i)

imply that
∑
si(θ

∗) = oa.s.(n), so that n−1
∑
si(θ̂n) → 0 a.s. −P. Next, we already saw that

n−1
∑∫

{Ĝi(γ)− δ̃0n − δ̃′ng(γ)}g̃(γ)′dQ(γ) = 0 by the FOC for the 2SFOLS estimator, and that

n−1
∑∫

Ĝi(γ)g̃(γ)′dQ(γ) →
∫
µ(γ)g̃(γ)′dQ(γ) in the proof of Theorem 7(i). Therefore,

∫
{µ(γ)− δ̃0n − g(γ)′δ̃n}g̃(γ)′dQ(γ) → 0 a.s. − P.

Third, we consider the first element in (15), and for this we verify that we can apply the LDCT.

From the definition of ε̈in, note that for each j = 1, 2, · · · ,m and j̃ = 1, 2, · · · , k + 1,

1

n

∑∣∣∣sij(θ̂n)ε̈in(γ)g̃j̃(γ)
∣∣∣ ≤ { 1

n

∑
sij(θ̂n)2

}1/2
({

1

n

∑
Ĝi(γ)

2

}1/2

+ |µ(γ)|

)
× |g̃j̃(γ)|

≤
{

1

n

∑
sij(θ̂n)2

}1/2
({

1

n

∑
M2

i

}1/2

+ E[M2
i ]

)
× |g̃j̃(γ)|

by B.1(iii). Given this, În is finite a.s. −P and converges to I∗ a.s. −P by B.2(iii), implying that

for each j = 1, 2, · · · ,m, n−1
∑
sij(θ̂n)2 is finite a.s. −P. Therefore, the RHS must be in L1(Q),

when viewed as a function of γ. Therefore, we can apply the LDCT. Given this,

1

n

∑
si(θ̂n)ε̈in(γ) =

1

n

∑
si(θ̂n)Ĝi(γ)− µ(γ)

1

n

∑
si(θ̂n)

by the definition of ε̈in; and B.1(iii) and
∑
si(θ̂n) = oa.s.(n) imply that µ(γ)

∑
si(θ̂n) = oa.s.(n)

uniformly in γ. Further, B.4(ii) and the continuity of si and Gi with respect to θ by B.2(iii.a) and

B.1(iii) respectively implies that for each γ,

1

n

∑
si(θ̂n)Ĝi(γ) = EP[si(θ

∗)Gi(γ, θ
∗)] + oa.s.(1)
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because θ̂n → θ∗ a.s. −P by B.2(i). We note that EP[si(θ
∗)Gi(γ, θ

∗)] = κ0(γ) from the IID

condition and the condition in B.2(iii.a) that
√
ns∗n = n−1/2

∑
si( · , θ∗) + oP(1). Therefore,

n−1
∑∫

si(θ̂n)ε̈in(γ)g̃(γ)′dQ(γ) →
∫
κ0(γ)g̃(γ)′dQ(γ). Finally, collecting all these together

implies that

K̃n =

∫
1

n

∑
siε̈in(γ)g̃(γ)′dQ(γ) + oa.s.(1) =

∫
κ0(γ)g̃(γ)′dQ(γ) + oa.s.(1),

and this completes the proof. �

Proof of Theorem 8: (i)
√
nSj[(δ̂0n − δ∗0), (δ̂n − δ∗)′]′

A∼ N(0,Γj) by Theorem 3, where

Γj := SjA
−1BA−1S ′j , so that Γ−1/2√nSj[(δ̂0n − δ∗0), (δ̂n − δ∗)′]′

A∼ N(0, Ik+2−j). Because

B̂n → B a.s. −P as given in Theorem 6, Γ̂nj → Γj a.s. −P by proposition 2.30 of White (2001),

where Γ̂nj := SjA
−1B̂nA

−1S ′j . Therefore,

Mj,n := n
[
(δ̂0n − δ∗0), (δ̂n − δ∗)′

]
S ′jΓ̂

−1

n Sj

 δ̂0n − δ∗0

δ̂n − δ∗

 A∼ χ2
k+2−j

by theorem 4.30 of White (2001). Given this, we note that

Wj,n = Mj,n + 2n
[
δ∗0, δ

∗′
]
S ′jΓ̂

−1

n Sj

 δ̂0n − δ∗0

δ̂n − δ∗

+ n
[
δ∗0, δ

∗′
]
S ′jΓ̂

−1

n Sj

 δ∗0

δ∗

 .
Therefore, Mj,n = Wj,n = OP(1) under Hjo, so that Wj,n

A∼ χ2
k+2−j; and Wj,n = OP(1) +

OP(
√
n) +O(n) under HjA(g), implying the desired result.

(ii)
√
nSj[(δ̃0n − δ∗0), (δ̃n − δ∗)′]′

A∼ N(0,Γj) by Theorem 5(i), and B̃n → B a.s. −P from

Theorem 7(i). The rest is identical to the proof of Theorem 8(i).

(iii)
√
nSj[(δ̃0n−δ∗0), (δ̃n−δ∗)′]′

A∼ N(0,Γ∗
j) by Theorem 5(ii), where Γ∗

j := SjA
−1B∗A−1S ′j ,

and B̃∗
n → B∗ a.s. −P from Theorem 7(ii). The rest is identical to the proof of Theorem 8(i). �

Proof of Theorem 9: (i)
√
nSj[(δ̂0n − δ∗0n), (δ̂n − δ∗n)′]′

A∼ N(0,Γj) by applying Theorem 3,

where Γj is defined in the proof of Theorem 8(i), so that Γ−1/2√nSj[(δ̂0n − δ∗0), (δ̂n − δ∗)′]′
A∼

N(0, Ik+2−j). Given this,
√
nSj[δ

∗
0n, δ

∗′
n ]′ → Sjς under Hja(g), which implies that

√
nSj[δ̂0n, δ̂

′
n]′

A∼

N(Sjς,Γj). Further, from the fact that B̂n → B a.s. −P as given in Theorem 6, it follows that
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Γ̂nj → Γj a.s. −P by proposition 2.30 of White (2001), where Γ̂nj is defined in the proof of

Theorem 8(i). Therefore, Wj,n
A∼ χ2(k + 2 − j, ξj) by lemma 8.2 of White (1994), implying the

desired result.

(ii)
√
nSj[δ̃0n, δ̃

′
n]′

A∼ N(Sjς,Γj) by Theorem 5(i), and B̃n → B a.s. −P from Theorem 7(i).

The rest is identical to the proof of Theorem 9(i).

(iii)
√
nSj[δ̃0n, δ̃

′
n]′

A∼ N(Sjς,Γ
∗
j) by Theorem 5(ii), and B̃∗

n → B∗ a.s. −P from Theorem

7(ii), where Γ∗
j is defined in the proof of Theorem 8(iii). The rest is identical to the proof of

Theorem 9(i). �
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Table 1: LEVELS OF THE WALD AND BREUSCH AND PAGAN TESTS

NUMBER OF REPLICATIONS: 10,000
Statistics Levels \ n 25 50 100 200 400 600 800

1% 1.04 0.83 0.82 0.90 0.96 1.05 0.92
W̃1,n(con) 5% 5.74 4.85 5.13 4.75 4.95 5.31 4.95

10% 11.18 10.74 10.57 9.85 9.79 10.61 9.89
1% 1.51 0.96 0.99 1.00 1.07 1.13 0.98

W̃1,n(con+lin) 5% 6.64 5.32 5.02 5.10 5.00 5.15 4.77
10% 12.41 11.19 10.53 9.98 10.23 10.32 10.15
1% 1.68 1.09 0.99 0.93 0.95 0.90 1.07

W̃1,n(con+quad) 5% 6.65 5.46 5.07 5.18 4.81 4.91 5.05
10% 12.75 11.21 10.81 10.44 9.86 9.97 10.16
1% 2.16 1.38 1.14 0.82 0.79 1.08 0.99

W̃1,n(con+lin+quad) 5% 8.09 6.19 5.29 4.87 4.74 4.95 4.73
10% 15.40 12.45 11.07 10.21 9.73 10.11 9.96
1% 1.60 1.14 0.91 0.98 0.79 0.94 0.98

W̃1,n(con + 0.5γ) 5% 6.71 5.58 5.39 5.29 5.23 4.84 5.31
10% 13.01 11.64 10.81 10.43 10.39 9.89 10.34
1% 0.31 0.63 0.72 0.81 1.00 1.03 0.81

BPn 5% 3.77 4.31 4.82 5.04 4.99 4.88 4.74
10% 9.60 10.07 9.92 9.96 9.66 9.82 10.19
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Table 2: POWERS OF THE WALD AND BREUSCH AND PAGAN TESTS (NOMINAL LEVEL: 5%)
NUMBER OF REPLICATIONS: 5,000

Statistics σ2
c \ n 25 50 100 200 400 600 800
0.10 6.82 7.48 9.66 14.50 24.40 33.00 42.98
0.20 9.64 11.74 19.54 35.70 62.38 78.74 88.92

W̃1,n(con) 0.30 11.90 19.08 32.28 56.98 86.04 96.70 99.16
0.40 14.64 25.70 48.02 75.44 96.66 99.54 99.88
0.50 20.28 34.94 59.90 86.28 99.20 99.96 100.0
0.10 7.06 6.74 7.40 11.00 18.16 24.70 33.34
0.20 8.84 9.42 15.46 26.60 51.70 69.48 81.76

W̃1,n(con+lin) 0.30 11.26 14.80 26.52 47.52 78.04 92.32 97.40
0.40 13.80 20.28 38.50 66.40 92.02 98.76 99.82
0.50 15.74 27.32 49.10 79.86 98.06 99.76 100.0
0.10 7.28 6.88 7.64 10.40 17.50 25.48 33.90
0.20 9.08 9.78 15.76 27.62 49.90 67.28 81.60

W̃1,n(con+quad) 0.30 11.42 14.58 25.04 47.50 79.12 93.02 97.74
0.40 12.68 19.30 36.96 67.22 92.52 98.70 98.84
0.50 16.92 26.86 50.00 80.02 97.92 99.80 100.0
0.10 8.78 6.56 7.64 9.62 14.84 21.00 27.54
0.20 9.72 9.44 14.00 23.20 45.34 62.10 76.26

W̃1,n(con+lin+quad) 0.30 11.52 14.12 21.22 41.46 72.72 89.54 96.34
0.40 13.70 18.74 31.30 58.94 90.12 97.88 99.72
0.50 16.38 24.02 42.88 74.40 96.48 99.62 99.98
0.10 7.74 6.38 7.70 11.88 16.76 24.48 33.68
0.20 9.06 9.82 14.36 28.80 51.02 68.86 81.68

W̃1,n(con+0.5γ) 0.30 10.90 15.68 26.12 48.28 78.82 92.08 97.92
0.40 13.68 21.94 37.30 65.88 92.94 98.46 99.76
0.50 15.38 26.46 48.98 79.76 97.96 99.80 100.0
0.10 4.28 5.16 8.28 14.28 23.16 32.84 41.52
0.20 6.84 10.52 19.02 36.18 59.34 78.38 89.34

BPn 0.30 8.64 17.00 32.52 58.34 86.90 96.10 99.08
0.40 11.48 23.86 45.58 74.76 96.10 99.68 99.96
0.50 15.72 29.94 58.14 86.42 99.16 99.96 100.0
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Table 3: LEVELS OF THE WALD AND DAVIES TESTS

NUMBER OF REPLICATIONS: 10,000
DGP: Xi ∼ IID Exp(1)

Statistics Levels \ n 25 50 100 200 400 600 800
1% 1.01 0.89 0.90 0.84 0.89 1.06 1.05

W1,n(con) 5% 4.92 5.06 5.02 4.95 5.04 4.81 5.03
10% 10.13 9.54 10.01 10.02 10.00 9.80 9.96
1% 1.68 1.18 1.00 1.06 1.11 0.92 1.09

W1,n(con+lin) 5% 5.03 4.74 4.99 4.88 4.96 4.91 4.96
10% 8.95 9.17 9.56 9.49 9.78 9.81 9.58
1% 1.59 1.37 1.37 0.98 1.01 1.05 0.90

W1,n(con+quad) 5% 4.96 4.84 4.85 4.88 5.04 4.99 4.86
10% 8.78 9.25 9.27 10.01 9.85 9.83 9.92
1% 1.64 1.22 1.06 1.18 1.29 1.08 1.14

W1,n(con+lin+quad) 5% 5.14 4.85 5.01 5.19 5.32 4.92 5.22
10% 9.61 9.05 9.60 9.98 10.49 9.61 10.57
1% 1.52 1.26 1.05 1.12 1.15 1.33 1.05

W1,n(con + g1) 5% 4.86 4.90 5.05 5.33 5.02 5.12 5.09
10% 9.39 9.64 9.95 10.08 10.29 9.71 9.64
1% 1.26 0.92 0.97 1.04 1.03 0.94 1.01

W1,n(g1) 5% 4.76 4.85 4.60 4.91 4.84 5.04 4.92
10% 9.50 9.80 10.02 9.84 9.72 10.02 10.38
1% 2.42 2.00 1.73 1.42 1.38 1.13 1.50

Dn 5% 7.29 7.05 6.26 5.78 6.04 5.59 5.82
10% 11.95 11.87 11.35 11.13 11.23 10.78 10.96

Note: Exp(λ) indicates exponential distribution with parameter λ.
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Table 4: POWERS OF THE WALD AND DAVIES TESTS (NOMINAL LEVEL: 5%)
NUMBER OF REPLICATIONS: 5,000

DGP: Yi ∼ IID π∗ Exp(1) + (1− π∗) Exp(2)
Statistics π∗ \ n 25 50 100 200 400 600 800

0.10 5.89 6.70 8.74 12.02 21.54 29.24 37.98
0.20 8.34 13.02 20.56 36.98 63.70 81.70 90.52

W1,n(con) 0.30 12.84 23.84 41.54 69.04 93.44 99.16 99.94
0.40 21.90 37.96 64.82 91.18 99.74 100.0 100.0
0.50 28.84 54.38 84.42 98.70 100.0 100.0 100.0
0.10 7.44 7.50 7.64 11.06 16.22 21.68 26.52
0.20 8.98 12.04 17.12 27.36 48.00 65.24 78.50

W1,n(con+lin) 0.30 13.04 18.88 30.84 52.52 81.76 95.10 98.62
0.40 18.92 29.58 48.92 78.02 97.74 99.80 100.0
0.50 24.86 40.02 67.28 93.16 99.74 100.0 100.0
0.10 6.82 7.16 7.88 10.82 15.02 21.74 24.92
0.20 8.50 11.18 16.52 25.34 46.80 63.06 75.08

W1,n(con+quad) 0.30 13.36 18.60 30.66 50.30 79.68 93.62 98.20
0.40 18.82 27.86 47.16 75.98 96.76 99.68 100.0
0.50 23.64 39.74 66.42 91.54 99.84 100.0 100.0
0.10 7.94 7.50 7.86 9.86 15.54 20.46 26.00
0.20 9.30 12.64 15.92 25.88 47.90 64.90 78.56

W1,n(con+lin+quad) 0.30 12.76 19.12 30.02 52.38 82.92 95.94 99.10
0.40 18.30 27.98 49.20 80.62 98.08 99.90 100.0
0.50 24.84 39.72 71.00 95.34 99.92 100.0 100.0
0.10 6.46 7.00 8.68 10.40 15.92 21.66 26.44
0.20 9.14 12.40 17.28 28.02 49.86 66.86 80.00

W1,n(con + g1) 0.30 13.14 19.28 31.64 54.86 84.88 95.78 99.10
0.40 18.98 28.40 51.40 79.48 98.30 99.86 100.0
0.50 25.88 42.30 70.40 94.10 99.92 100.0 100.0
0.10 5.90 7.04 8.20 9.70 14.26 19.16 22.44
0.20 8.70 10.86 13.90 23.78 38.94 53.54 64.74

W1,n(g1) 0.30 11.58 16.44 24.86 44.12 69.70 85.16 93.36
0.40 16.62 23.88 39.46 63.76 90.14 97.64 99.50
0.50 21.18 33.66 54.02 81.74 98.02 99.82 100.0
0.10 10.20 11.12 15.10 19.76 28.90 36.38 43.70
0.20 15.50 19.12 28.28 45.76 69.90 83.60 92.30

Dn 0.30 20.56 30.60 48.02 73.50 95.20 99.28 99.94
0.40 28.54 44.38 68.58 92.46 99.70 100.0 100.0
0.50 37.42 59.14 85.70 99.04 100.0 100.0 100.0
0.10 7.38 8.02 12.68 17.84 24.96 34.18 40.04
0.20 11.82 13.92 24.68 43.02 66.20 82.16 90.98

D∗n 0.30 15.92 23.58 43.42 70.90 93.72 99.10 99.92
0.40 22.26 36.34 64.20 91.38 99.60 100.0 100.0
0.50 29.94 50.60 82.68 98.88 100.0 100.0 100.0

Note: D∗n indicates size-distortion adjusted Dn.
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Table 5: LEVELS OF THE WALD, BIERENS, AND SW TESTS

NUMBER OF REPLICATIONS: 10,000
Statistics Levels \ n 25 50 100 200 400 600 800

1% 1.72 1.15 1.02 0.97 1.20 0.89 1.03
W∗

1,n(con) 5% 6.64 5.68 5.36 5.31 5.25 4.96 5.05
10% 12.44 11.51 10.64 10.31 10.36 10.26 10.02
1% 1.45 0.77 0.59 0.67 0.60 0.78 0.62

W∗
1,n(con+lin) 5% 6.87 4.36 3.96 4.10 4.42 4.20 4.30

10% 13.37 9.79 9.01 8.91 9.27 9.61 9.41
1% 1.24 0.70 0.56 0.58 0.57 0.53 0.79

W∗
1,n(con+quad) 5% 6.39 4.35 4.03 3.79 4.02 3.83 4.34

10% 12.83 9.78 8.93 9.22 8.71 8.76 9.47
1% 2.38 1.26 0.87 0.66 0.58 0.67 0.56

W∗
1,n(con+lin+quad) 5% 8.52 5.69 4.40 3.93 3.92 4.06 3.97

10% 15.82 11.76 9.48 8.57 8.64 9.18 8.91
1% 0.85 0.77 0.52 0.84 1.03 0.86 0.88

Bn 5% 5.79 4.68 4.71 5.12 5.12 5.07 5.09
10% 12.86 11.05 10.69 10.48 10.56 10.56 10.19

SWn 11.42 7.42 5.00 3.91 3.54 3.36 3.28
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Table 6: POWERS OF THE WALD, BIERENS, AND SW TESTS (NOMINAL LEVEL: 5%)
NUMBER OF REPLICATIONS: 5,000

Statistics π∗ \ n 25 50 100 200 400 600 800
0.10 49.02 76.34 95.16 99.04 99.76 99.90 100.0
0.20 64.14 85.32 95.48 99.02 99.90 100.0 100.0

W∗
1,n(con) 0.30 70.28 87.00 95.92 99.36 99.92 100.0 100.0

0.40 70.44 87.64 96.14 98.96 99.88 100.0 100.0
0.50 71.92 87.26 96.00 99.08 99.82 100.0 100.0
0.10 17.04 28.56 60.12 92.16 99.86 100.0 100.0
0.20 32.08 58.30 90.26 99.52 100.0 100.0 100.0

W∗
1,n(con+lin) 0.30 44.76 73.58 94.90 99.68 100.0 100.0 100.0

0.40 53.98 79.82 96.00 99.86 100.0 100.0 100.0
0.50 59.56 81.66 96.50 99.90 100.0 100.0 100.0
0.10 16.20 28.56 59.66 92.20 99.92 100.0 100.0
0.20 32.50 56.50 90.88 99.80 100.0 100.0 100.0

W∗
1,n(con+quad) 0.30 45.34 73.40 96.20 99.92 100.0 100.0 100.0

0.40 52.78 81.02 97.22 100.0 100.0 100.0 100.0
0.50 60.32 82.24 97.70 100.0 100.0 100.0 100.0
0.10 16.50 28.51 57.50 92.33 99.86 100.0 100.0
0.20 33.40 63.43 94.20 99.97 100.0 100.0 100.0

W∗
1,n(con+lin+quad) 0.30 49.92 83.59 99.49 99.98 100.0 100.0 100.0

0.40 63.24 92.90 99.78 100.0 100.0 100.0 100.0
0.50 73.36 96.30 99.78 100.0 100.0 100.0 100.0
0.10 18.82 40.02 70.88 92.18 98.64 99.56 99.74
0.20 38.42 67.60 87.34 95.74 99.04 99.72 99.90

Bn 0.30 52.30 77.30 89.62 96.40 99.36 99.78 99.92
0.40 58.12 80.26 90.48 96.90 99.18 99.82 99.98
0.50 64.30 82.58 91.20 96.58 99.18 99.86 99.96
0.10 26.30 38.02 65.08 91.78 99.82 100.0 100.0
0.20 46.78 69.72 93.50 99.76 100.0 100.0 100.0

SWn 0.30 60.98 82.48 96.94 99.94 100.0 100.0 100.0
0.40 69.86 87.66 98.06 99.92 100.0 100.0 100.0
0.50 75.28 90.52 98.26 99.92 100.0 100.0 100.0
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