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Abstract

Emphatic temporal-difference (TD) learning (Sutton et al. 2016) is a
pioneering off-policy reinforcement learning method involving the use
of the followon trace. The recently proposed Gradient Emphasis Learn-
ing (GEM, Zhang et al. 2020) algorithm is used to fix the problems of
unbounded variance and large emphasis approximation error introduced
by the followon trace from the perspective of stochastic approxima-
tion. In this paper, we rethink GEM and introduce a novel generalized
GEM(β) algorithm to learn the true emphasis. The key to the construc-
tion of the generalized GEM(β) algorithm is introducing a tunable hyper-
parameter β that is not necessarily the same as the discount factor γ to
the GEM operator. We then apply the emphasis estimated by the pro-
posed GEM(β) algorithm to the value estimation gradient and the policy
gradient, respectively, yielding the corresponding emphatic TD variant
for off-policy evaluation and actor-critic algorithm for off-policy control.
Finally, we demonstrate empirically the advantage of the proposed algo-
rithms across a range of problems, for both off-policy evaluation and off-
policy control, and for both linear and nonlinear function approximation.

Keywords: reinforcement learning, off-policy learning, emphatic approach,
gradient temporal-difference learning, gradient emphasis learning
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1 Introduction

Off-policy learning, where an agent learns its current target policy while fol-
lowing a different behavior policy, provides an agent with opportunities to
accumulate a wealth of knowledge by learning about the effects of different
behavioral policies and underpins many practical implementations of reinforce-
ment learning (RL, [3]) [4, 5, 6]. In many cases, we would prefer off-policy
learning to some extent to learn about the greedy policy while exploring
[7, 8], to enable data to be generated from one behavior policy to evalu-
ate multiple target policies simultaneously [9, 10], to improve data efficiency
via experience replay [11], or to correct data discrepancies introduced by
the distributed computation [12]. Unfortunately, the combination of off-policy
learning, function approximation, and bootstrapping via temporal-difference
(TD) updates, known as the deadly triad, can destabilize learning resulting in
“soft divergence” and slow convergence [3, 13, 14, 15].

In general, off-policy learning is challenging because the sampling distri-
bution is different from the distribution under the desired evaluation policy,
which is referred to as the distribution mismatch [16, 17, 18]. There are two
kinds of tasks in off-policy RL, evaluation and control. The problem of off-
policy evaluation (OPE, [19, 20]), where we want to predict the performance
of a given target policy (averaged reward in the continuing setting or expected
total discounted reward in the episode setting [21]) with samples collected by
one or more different behavior policies, serves as a crucial step for developing
efficient off-policy policy optimization algorithms [22, 23]. The work of off-
policy policy optimization algorithms began with the Off-Policy Actor-Critic
(Off-PAC) algorithm proposed by Degris et al. [24]. However, Off-PAC ignores
the distribution mismatch between the behavior and target policies, and is
convergent only in the tabular setting.

The Emphatic TD (ETD, [1]) algorithm resolves the instability due to the
distribution mismatch by partially adjusting the updates of off-policy TD to
be under the on-policy distribution through the introduced followon trace [1].
After this, Imani et al. [25] developed a new off-policy actor-critic algorithm
called Actor-Critic with Emphatic weightings (ACE), which reweights Off-
PAC updates with the use of followon trace as the emphasis. However, the
followon trace tends to have unbounded variance and large emphasis approx-
imation error, limiting the applicability of the methods. To remedy, Zhang
et al. [2] proposed a gradient-based stochastic approximation algorithm, Gra-
dient Emphasis Learning (GEM), to estimate the true emphasis, which poses
a promising solution to the bias-variance trade-off. At the same time, a Con-
vergent Off-Policy Actor-Critic (COF-PAC) algorithm is developed based on
GEM.

In this paper, we focus on emphatic methods, and how to better learn
the emphasis and derive more efficient OPE and off-policy control algorithms
is the focus of our work. Thus, in this work, we draw inspiration from
Hallak et al. [26] and develop a flexible and general algorithm for the bias-
variance trade-off of the emphasis learning to alleviate the problem-dependent
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dilemma. The contributions of our paper are as follows:

• We introduce a freely tunable hyperparameter β to the GEM opera-

tor, yielding the generalized GEM(β) algorithm. We then extend the
GEM(β) algorithm to the ETD variant, resulting in the corresponding
GEM-ETD(β) algorithm for OPE.

• We present the convergence analysis of the GEM(β) algorithm under
standard off-policy and stochastic approximation conditions, and estab-
lish a theoretical characterization of the stability for the derivative
GEM-ETD(β) algorithm.

• We empirically investigate the merits of GEM(β) in emphasis approx-
imation on the diagnostic OPE benchmark under various function
representations. For OPE, we compare the GEM-ETD(β) algorithm with
the vanilla off-policy versions of ETD, GEM-ETD, and ETD(0, β) algo-
rithms, and demonstrate the advantage of our GEM-ETD(β) algorithm
by showcasing its improved performance.

• To investigate the practical benefits of our GEM(β) algorithm when used
at scale, we further extend it to the actor-critic algorithm and name it
COF-PAC(β). Finally, we evaluate COF-PAC(β) empirically on classic
control tasks with neural network function approximators, and demon-
strate the scalability and broad applicability of COF-PAC(β).

The structure of this paper is as follows. Sec. 2 describes the related work.
Sec. 3 explains the notation and background. In Sec. 4, the generalized GEM(β)
algorithm and its extensions are developed, and the corresponding theoretical
analysis is presented in detail. In Sec. 5, the experimental results are presented
and discussed. Sec. 6 is the conclusion and suggestions for future work.

2 Related Work

TD learning presented by Sutton [27] is perhaps the most powerful method
for policy evaluation in RL. The divergence of off-policy linear TD was well
documented by Tsitsiklis and Van Roy [28], as highlighted in the seminal
counterexample by Baird [29]. The fundamental issue of divergence is the
combination of function approximation, off-policy learning, and bootstrap-
ping, which is known as the deadly triad [3, 13, 14, 15]. To address such an
issue, GTD methods [30, 31, 32] were proposed. Unlike the semi-gradient TD
algorithm, GTD methods are true stochastic gradient methods and enjoy con-
vergence guarantees. However, they involve two sets of parameters and the need
to tune the second stepsize in a problem-dependent way for good performance,
making them hard to use in practice. We will include the most pertinent work
to ours below due to the extensive research on emphatic methods.
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The ETD approach, which was originally proposed in the pioneering work
of Sutton et al. [1], involves a scalar followon trace to surmount the distribution
mismatch issue with off-policy learning. On the other hand, Hallak et al. [26]
demonstrated that the variance of the followon trace can be unbounded over a
long or infinite time horizon. They further proposed the ETD(0, β) framework
to bound the followon trace with a tunable hyperparameter but at the cost of a
possibly large bias error, where β is a variable decay rate used for bias-variance
trade-off. Jiang et al. [13] provided a new variant of ETD, where the followon

trace is extended to cope with multi-step TD methods like V-trace [12]. Zhang
and Whiteson [33] proposed to truncate the update of the followon trace to
bound the variance of ETD. In the same period, Guan et al. [15] proposed a
novel PER-ETD algorithm, which restarts and updates the followon trace only
for a finite period for each update of the value function parameter, effectively
reducing the variance of the followon trace.

The above variants belong to the Monte Carlo trace. In this work, we focus
on estimating and using the expectation of trace from the perspective of func-
tion approximation instead of the instantaneous trace. The idea of learning
expected trace as a function of state has been explored by van Hasselt et al.
[34]. Jiang et al. [14] utilized the simple semi-gradient TD update for learn-
ing expected followon trace and studied ETD with deep neural loss function.
However, since the asymptotic update matrix is not guaranteed to be positive
definite, resulting in the update fails to satisfy the prerequisite stability for
full convergence of the stochastic algorithm. Jiang et al. [14] then proposed
two stabilization techniques to facilitate at-scale learning. Motivated by the
guaranteed convergence of GTD methods under off-policy learning, the GEM
algorithm proposed by Zhang et al. [2] to learn the expected followon trace

through the GTD2-style update can somewhat alleviate the high-variance issue
of the original followon trace, which is the inspiration for our work.

An extension to the emphatic method is the ACE algorithm [25], which
applies the followon trace to policy gradient updates. Estimating the emphasis
of a state using the followon trace is similar to estimating the value of a state
using a single Monte Carlo return. As a result, the followon trace can have
unbounded variance and large emphasis approximation error, complicating
the convergence of ACE. Instead of using the followon trace, Zhang et al. [2]
propose a novel stochastic approximation algorithm, GEM, to approximate
the emphasis in COF-PAC. This reduces well-known variance issues with the
followon trace.

In addition to emphatic methods, there are also other methods for
addressing the distribution mismatch problem of off-policy learning, including
density-ratio-based methods [16, 17, 18, 35, 36, 37, 38] and target-network-
based methods [39]. Zhang et al. [2, 40] showed that some density ratios can
be interpreted as special emphasis.

Traces provide temporal credit assignment in the backward view and thus
rely on previous historical experience. Hence, the learning algorithms designed
to estimate the expected trace require the time-indexed reversed. The idea of
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bootstrapping in the reverse direction was explored by Gelada and Bellemare
[37]; Wang et al. [41]; Hallak and Mannor [42]; Zhang et al. [43].

3 Background

We use time-indexed uppercase letters (e.g., St) to denote random variables
and lowercase letters (e.g., St = s) to denote the values obtained. Multi-
dimensional functions or vectors are bolded (e.g., θ), as are matrices (e.g.,
Φ). When it does not confuse, we use vectors and functions interchange-

ably. All vectors are column vectors. We use ∥x∥Ξ
.
=
√
x⊤Ξx to denote the

norm induced by a positive definite matrix Ξ, which induces the matrix norm
∥A∥Ξ

.
= sup∥x∥

Ξ
=1∥Ax∥Ξ. We use I to denote the identity matrix and 1 to

denote an all-one matrix. We indicate sets by calligraphic font (e.g., S). For
all state-dependent functions, we also allow time-dependent shorthands (e.g.,
ϕt = ϕ(St)).

We consider the mathematically idealized form of the RL problem, mod-
eled as an infinite-horizon Markov Decision Process (MDP, [21]) (S,A, p, r, γ)
consisting of a finite state space S of |S| states, a finite action space A of
|A| actions, a state-transition distribution p : S × A × S → [0, 1], a reward
function r : S × A → R, and a discount factor γ ∈ [0, 1). The agent and
environment interact continually. Given a target policy π mapping states to
distributions over actions, the agent takes an action At ∈ A at state St ∈ S
according to π(·|St) ∈ [0, 1] at time step t, where π(At|St) denotes the prob-
ability of taking action At at state St. In response, the environment then
transitions to the next state St+1 ∈ S according to p(·|St, At) and emits a
reward Rt+1

.
= r(St, At, St+1). We use Pπ ∈ R

|S|×|S| to denote the state tran-
sition probability matrix induced by π, i.e., Pπ[s, s

′]
.
=
∑

a π(s, a)p(s
′|s, a). The

goal of policy evaluation is to estimate the value function vπ (Assumption 1
below ensures vπ is well-defined), defined as the expectation of the discounted
total rewards under the target policy π:

vπ(s)
.
= Eπ

[

T
∑

t=0

γtRt+1|St = s

]

, for all s ∈ S, (1)

where Eπ denotes the expectation w.r.t. the probability distribution of states,
actions, and rewards, generated under the target policy π, and T is for instance
the time the current episode terminates or T = ∞. It is well-known that vπ

satisfies the so-called Bellman equation:

vπ = R+ γPπvπ
.
= Bvπ,

(2)

where R ∈ R|S| denotes the reward vector induced by policy π, with R(s) =
Eπ[Rt+1|St = s], B is known as the Bellman operator.
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We consider function approximation and seek to learn the parameter vec-
tor θ ∈ R

n, with n ≪ |S|, such that vθ(s) ≈ vπ(s), for all s ∈ S, under an
arbitrary fixed target policy π. In the case of off-policy learning, we expect to
select actions with the action selection probability µ(a|s) ∈ [0, 1] following the
behavior policy µ and then generate a series of state transitions and rewards
as the observation data. Let dµ ∈ R

|S| and dπ ∈ R
|S| be the stationary dis-

tributions of µ and π, respectively. We define D
.
= diag(dµ) ∈ R

|S|×|S| and
Dπ

.
= diag(dπ) ∈ R

|S|×|S|. Assumption 3 below ensures dµ exists and D is
invertible.

3.1 Off-Policy Evaluation

We use the linear function approximation to demonstrate the RL algorithms
for OPE. In the linear function approximation setting, the value function vπ is
approximated as a linear combination of some features representing the state:
vπ(s) ≈ θ⊤ϕ(s), where ϕ(s) ∈ Rn is the feature vector characterizing state
s. We use Φ ∈ R|S|×n to denote the feature matrix, where each row of Φ is
ϕ(s)⊤.

Emphatic TD(λ, β): Prior work by Precup et al. [44] attempted to com-
pletely correct the distribution mismatch using the product of all importance
sampling (IS) ratios from time 0, and thereby reweighting the updates of
off-policy TD(λ). It is theoretically possible to convert the state distribution
from dµ to dπ. Unfortunately, the variance of this method is extremely large,
thus limiting its practicality. Lately, Sutton et al. [1] proposed the ETD(λ)
algorithm with much less variance than the IS-TD(λ) method. The variance
is tamped down by incorporating the discount factor γ over the product of
IS ratios. More generally, the ETD(λ, β) algorithm, which encompasses the
vanilla ETD(λ), using a free hyperparameter β in place of the discount factor
γ to control variance. For λ = 0, ETD(0, β) updates the parameter vector θ

recursively as
Mt = βρt−1Mt−1 + it, M0 = i(S0), (3)

θt+1 = θt + αtρtMtδtϕt, (4)

where αt > 0 is the stepsize parameter, β ∈ (0, 1] is a variable decay rate that
is not necessarily the same as γ, in particular, for β = γ, Mt is the followon

trace [1]. ρt
.
= π(At|St)

µ(At|St)
is the IS ratio, which is used to compensate for the

data value difference caused by sampling according to the behavior policy µ
(Assumption 3 below ensures ρ is well-defined), δt = Rt+1+ γθ⊤

t ϕt+1−θ⊤
t ϕt,

is the conventional TD error, and i : S → [0,∞) is the interest function used
to represent the user’s preference for different states. In practice, the interest
is usually set to 1 for all states, meaning that they are all equally important.

Gradient Emphasis Learning: Unlike the previous Monte Carlo style
trace Mt, GEM seeks to learn the limiting expected emphatic trace mπ using
function approximation. We refer to mπ as the emphasis in the rest of this
paper. To elaborate, GEM introduces a linear parametric function mw

.
= Φw
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such that mw(s) approximates mπ(s) = lim
t→∞

Eµ[Mt|St = s] when β = γ.1

Inspired by GTD methods, GEM seeks to find an approximate solution that

satisfies mw = ΠT̂mw via minimizing the projection objective
∥

∥Πδ̄w
∥

∥

2

D
,

where Π = Φ(Φ⊤DΦ)−1Φ⊤D is the projection operator (Assumption 4 below
ensures the existence of (Φ⊤DΦ)−1), T̂ is the GEM operator defined as
T̂mw

.
= i + γD−1P⊤

πDmw, and δ̄w
.
= T̂mw −mw. The GEM algorithm

updates κ and w recursively as

κt+1 = κt + ζt(δ̄t − κ⊤
t ϕt+1)ϕt+1, (5)

wt+1 = wt + ζt[(ϕt+1 − γρtϕt)κ
⊤
t ϕt+1], (6)

where {ζt} is a sequence of deterministic nonnegative non-increasing learning
rates satisfying Assumption 6, and δ̄t

.
= it+1+γρtw

⊤
t ϕt−w⊤

t ϕt+1 is the GEM

error in reversed time with a reward signal of it+1 for each time step t.

3.2 Off-Policy Control

In this paper, we focus on policy-based control. In off-policy control, the target
policy π is a differentiable function parameterized by ϖ ∈ R

n, with n ≪
|S|. The goal of off-policy actor-critic methods [2, 24, 25] is to maximize the
excursion objective J(π)

.
=

∑

s∈S dµ(s)i(s)vπ(s) by adapting the target policy
π. For J(π), the policy gradient is

∇J(π) = Es∼dµ,a∼µ[mπ(s)ρ(s, a)qπ(s, a)∇log π(a|s)], (7)

where

qπ(s, a)
.
= Eπ

[

T
∑

t=0

γtRt+1|St = s,At = a

]

, for all s ∈ S, a ∈ A,

is the state-action value function of π. To compute ∇J(π), we need qπ and
mπ, to which we typically do not have access. For qπ, Imani et al. [25] and
Zhang et al. [2] commonly use the conventional TD error δt as the alternative
to qπ. The key difficulty is then in estimating mπ. Degris et al. [24] ignore
the emphasis mπ and update ϖ as ϖt+1 = ϖt + αρtqπ(St, At)∇log π(At|St)
in Off-PAC, which is theoretically justified only in the tabular setting. Imani
et al. [25] approximate mπ(St) with the followon trace Mt, resulting in the
ACE update

ϖt+1 = ϖt + αρtMtqπ(St, At)∇log π(At|St). (8)

1Sutton et al. [1] show that lim
t→∞

Eµ[Mt|St = s] = mπ(s). The existence of this limit is

established in Lemma 1 in Zhang et al. [45].



Springer Nature 2021 LATEX template

8 Generalized Gradient Emphasis Learning with Function Approximation

COF-PAC proposed by Zhang et al. [2] is based on the gradient expression
in the ACE algorithm. The difference is that COF-PAC uses the emphasis
learned by GEM to reweight the update. COF-PAC updates ϖ as

ϖt+1 = ϖt + αρtmwt
qπ(St, At)∇log π(At|St), (9)

where mwt

.
= w⊤

t ϕt and wt is updated according to GEM (Eqs. (5) and (6)).

3.3 Assumptions

In order to analyze the off-policy parametric TD-style and GTD-style algo-
rithms in the literature, we now make the following standard assumptions.

Assumption 1 (Condition on the target policy) The target policy π is such that
(I− γPπ)

−1 exists.

Assumption 2 (Condition on the features) The feature matrix Φ has full column
rank.

Assumption 3 (Convergence of behavior policy) The behavior policy µ induces
an ergodic Markov chain on S, and, moreover, for all (s, a) ∈ S × A, µ(a|s) > 0 if
π(a|s) > 0.

Assumption 4 (Problem solvability) The matrices C
.
= Φ⊤DΦ and Ā

.
= Φ⊤D(I−

βP⊤
π )Φ are nonsingular.

Assumption 5 (Boundedness and i.i.d. conditions) (φt, Rt,φt+1, ρt)t≥0 is an inde-
pendent, identically distributed (i.i.d.) sequence with uniformly bounded second
moments for states and rewards.

Assumption 6 (Stepsize condition) The learning rates {ζt} are deterministic,
nonnegative, non-increasing, and satisfies the Robbins-Monro condition [46], i.e.,
∑∞

t=0 ζt = ∞,
∑∞

t=0 ζ
2
t < +∞.

Remark 1 Assumptions 2 and 3 are standard in the off-policy RL literature [3, 47,
48]. In Assumption 3, ergodicity holds if the Markov chain induced by the behavior
policy µ is irreducible and aperiodic [49]. Such an assumption ensures a unique
stationary distribution dµ. Assumptions 4 and 5 is commonly used in parametric
GTD methods [2, 16, 30, 31, 32, 50]. The non-singularity of matrices in Assumption
4 can be satisfied by using linearly independent features.

4 Proposed Emphatic Algorithms

In this paper, we develop the generalized GEM(β) algorithm by introducing
a freely tunable hyperparameter β ∈ (0, 1] to the GEM operator T̂ . In this
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case, T̂β is defined as T̂βy .
= i+βD−1P⊤

πDy, for any vector y ∈ R
|S|, and the

true emphasis mπ
.
= D−1(I− βP⊤

π )
−1Di. Given Prop. 1 below, the GEM(β)

algorithm can be established following the same derivation routine as Zhang
et al. [2]. We now present the GEM(β) algorithm, which updates κ and w

recursively as

κt+1 = κt + ζt(δ̄t(β)− κ⊤
t ϕt+1)ϕt+1, (10)

wt+1 = wt + ζt[(ϕt+1 − βρtϕt)κ
⊤
t ϕt+1], (11)

where δ̄t(β)
.
= it+1+βρtw

⊤
t ϕt−w⊤

t ϕt+1. Then the derivative GEM-ETD(0, β)
updates θ iteratively as

θt+1 = θt + αtmwt
ρtδtϕt, (12)

where mwt

.
= w⊤

t ϕt and wt is updated according to GEM(β) (Eqs. (10) and
(11)). Algorithm 1 provides the pseudocode of GEM-ETD(0, β) for OPE.

Motivation: The inspiration for the algorithm comes from the work of
Hallak et al. [26]. Hallak et al. [26] demonstrate that by controlling β in the
ETD(λ, β) algorithm, the variance of the algorithm can be reduced while still
maintaining a reasonable bias, thus allowing for improved performance. The
vanilla GEM algorithm for emphasis estimation and its variant GEM-ETD for
OPE truly trade off bias and variance. However, they are problem-dependent.
For example, as pointed out in Zhang et al. [2], “if the states are heavily
aliased, the GEM emphasis estimation may be heavily biased, as well GEM-
ETD” in the more challenging modified Baird’s counterexample [29]. Zhang
et al. [2] demonstrate that this is mainly due to the fact that the magnitude
of the GEM error δ̄t varies dramatically across different states. Thus, in order
to obtain the optimal choice for different problems, we investigate whether the
bias and variance of the algorithm can be managed flexibly by providing more
freedom in the choice of β.

Proposition 1 T̂β is a contraction mapping w.r.t some weighted maximum norm
and mπ is its unique fixed point.

Proof The proof involves Corollary 6.1 in Bertsekas and Tsitsiklis [51]. Details are
provided in Appendix A.1. □

Remark 2 In this paper, for the sake of brevity, we consider the simplest setting of
λ = 0, as does Zhang et al. [2]. The focus of our work is to observe qualitative prop-
erties such as convergence, bias, and variance that arise from the generalized GEM
algorithm, rather than eligibility traces. From here on we refer to GEM-ETD(0, β)
as GEM-ETD(β) and ETD(0, β) as ETD(β).
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Algorithm 1 GEM-ETD(0, β) for OPE

Input: {αt}, {ζt}: stepsize sequence; β ∈ (0, 1]: decay rate; γ ∈ [0, 1]: dis-
count factor; π: target policy; µ: behavior policy; i : S → [0,∞): interest
function.

1: for each episode do

2: Initialize w0, κ0, θ0.
3: Get an initial random state S0.
4: Set ρi = π(Ai|Si)/µ(Ai|Si), for i = 0, 1, 2, ..., T .
5: for t = 0, 1, 2, ..., T do

6: Take At from St according to µ, and arrive at St+1.
7: Observe sample (ϕt, Rt+1,ϕt+1) at time step t.
8: δ̄t ← it+1 + βρtw

⊤
t ϕt −w⊤

t ϕt+1.
9: κt+1 ← κt + ζt(δ̄t − κ⊤

t ϕt+1)ϕt+1.
10: wt+1 ←wt + ζt[(ϕt+1 − βρtϕt)κ

⊤
t ϕt+1].

11: δt ← Rt+1 + γρt+1θ
⊤
t ϕt+1 − θ⊤

t ϕt.
12: θt+1 ← θt + αt(w

⊤
t ϕt)ρtδtϕt.

13: end for

14: end for

4.1 Convergence Analysis

We have discussed the motivations and ideas that led to the development of the
generalized GEM(β) algorithm, which is used for the bias-variance trade-off in
estimating mπ. We now analyze the resulting GEM(β) algorithm theoretically.

Let y⊤
t

.
= [κ⊤

t ,w
⊤
t ], we rewrite the GEM(β) updates (Eqs. (10) and (11))

as
yt+1 = yt + ζt(gt+1 −Gt+1yt), (13)

where

Gt+1
.
=





ϕt+1ϕ
⊤
t+1 ϕt+1(ϕt+1 − βρtϕt)

⊤

−(ϕt+1 − βρtϕt)ϕ
⊤
t+1 0



 ,

gt+1
.
=

[

it+1ϕt+1

0

]

.

Then the limiting behavior of GEM(β) is governed by

G
.
= E[Gt] =

[

C Ā

−Ā⊤ 0

]

, g
.
= E[gt] =

[

Φ⊤Di

0

]

.

Theorem 1 (Convergence of GEM(β)) Under Assumptions (3-6), we have lim
t→∞

yt =

G−1g almost surely.

Proof The main step of the proof is to show that G is strictly positive definite. We
provide a detailed proof of Theorem 1 in Appendix A.2, which is inspired by Sutton
et al. [30, 31] and Maei [32]. □
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4.2 Asymptotic Stability Analysis

We now show that GEM-ETD(β) achieves asymptotic stability as defined
in Sutton et al. [1]. Let Dmw

∈ R|S|×|S| be the diagonal matrix with
diagonal entires [Dmw

]ss
.
= dµ(s)mw(s) for any state s. In GEM(β), we

approximate lim
t→∞

Eµ[Mt|St = s] with mw(s). In this, we also define Dm̄

.
=

diag(dµ(s) lim
t→∞

Eµ[Mt|St = s]) ∈ R|S|×|S|, and their difference, Dϵ
.
= Dmw

−
Dm̄. The GEM-ETD(β) update (12) can be rewritten to make the stability
issues more transparent:

θt+1 = θt + αt(bt −Atθt), (14)

where At
.
= mwt

ρtϕt(ϕt − γϕt+1)
⊤, and bt

.
= mwt

ρtRt+1ϕt. It can be
computed that

A
.
= lim

t→∞
Eµ[At] = Φ⊤Dmw

(I− γPπ)Φ.

According to Sutton et al. [1], we now establish stability by proving that A is
positive definite.

Lemma 1 (Stability) Under Assumptions 2 & 3, there exists a positive constant
ϑ > 0 such that if ∥Dϵ∥ < ϑ, then A is positive definite.

Proof Details are provided in Appendix A.3. □

4.3 Fixed Points Analysis

In addition to the stability analysis, there is the question of the quality of the
approximation at the fixed point. We now analyze the fixed point of GEM-
ETD(β).

We denote by ΠD a projection operator weighted by the diagonal matrix
D. First we consider the fixed point of GEM(β). The fixed point of GEM(β)
is a solution of the following projected equation, i.e., Φw∗ = ΠD(i +
βD−1P⊤

πDΦw∗). Rearranging the terms yields the analytical solution of
GEM(β):

w∗ =
(

Φ⊤D(Φ− βD−1P⊤
πDΦ)

)−1
Φ⊤Di.

We define m∗
w

.
= Φw∗. Let Dm∗

w

∈ R
|S|×|S| be the diagonal matrix with

diagonal entires
[

Dm∗

w

]

ss

.
= dµ(s)m

∗
w(s) for any state s. Then the fixed point

of GEM-ETD(β) is a solution of the Bellman operator followed by a projection,
i.e., Φθ∗ = ΠD

m
∗

w

(R+ γPπΦθ∗). Rearranging the terms yields the analytical

solution of GEM-ETD(β):

θ∗ =
(

Φ⊤Dm∗

w

(I− γPπ)Φ
)−1

Φ⊤Dm∗

w

R. (15)
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Fig. 1 Panel a): Two-state Markov chain presented by Kolter [52] for the off-policy coun-
terexample. Panel b): The mean squared error for different off-policy distributions, along
with the error of the optimal approximation.
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Fig. 2 The mean squared error by varying the decay rate β under different off-policy
distributions.

Numerical Illustration: Here we introduce a concrete numerical example
to illustrate the fixed point of GEM-ETD(β). Consider the two-state Markov
chain shown in Fig. 1(a), which is an off-policy counterexample presented
by Kolter [52] to show the bias bound of the off-policy TD, and used by
Hallak et al. [26] to demonstrate the bias bound of the ETD. In this MDP
model, the transition probability matrix Pπ = (1/2)1, the discount factor
γ = 0.99, and the true value function vπ = [1 1.05]⊤. The features are Φ =
[1 1.05 + ε]⊤, where ε ∈ R. Clearly, in this example, dπ = [0.5 0.5]⊤. We use
dµ = [p 1− p]⊤ for off-policy learning, where p ∈ [0, 1]. The interest function
is always 1.

We benchmark the vanilla TD, the vanilla ETD(β), and GEM-ETD(β) in
this off-policy counterexample. Fig. 1(b) shows a plot of the mean squared
error ∥Φθ∗ − vπ∥Dπ

for the example above with β = γ = 0.99 and ε = 0.001,
varying p from 0 to 1, where θ∗ is obtained from different equations for various
methods. This becomes most clear when juxtaposing the equations

θ∗ =
(

Φ⊤D(Φ− γPπΦ)
)−1

Φ⊤DR, (TD)
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θ∗ =
(

Φ⊤Dm̄(Φ− γPπΦ)
)−1

Φ⊤Dm̄R, (ETD(β))

θ∗ =
(

Φ⊤Dm∗

w

(Φ− γPπΦ)
)−1

Φ⊤Dm∗

w

R. (GEM-ETD(β))

Fig. 1(b) also shows the optimal error ∥ΠDπ
vπ − vπ∥Dπ

. We can find that
for certain behavior distributions (p ≈ 0.715), the bias of TD approaches
infinity (see Sutton et al. [1] for an extensive discussion and analysis of this
essential problem), which matches previous results on off-policy TD in Kolter
[52]. Again, for all behavior distributions, the bias of ETD is bounded and the
bias bound decreases with the growth of p, which is consistent with the results
on ETD in Hallak et al. [26]. Finally, GEM-ETD performs comparably to TD
in this case (β = γ), and the bias would be unbounded for p ≈ 0.721.

We now present the mean squared error results by varying β from 0 to
1, and consider three different behavior distributions: p = 0.1, p = 0.5, and
p = 0.9. ε is still set to 0.001. As shown in Fig. 2, the main points to note are:
(1) In the case of off-policy (p = 0.1 or p = 0.9), the bias of ETD(β) approaches
infinity at p = 0.9, β ≈ 0.472. The bias bound of GEM-ETD(β) does not
change across all β values for each p, indicating that it is stably independent of
β under extreme off-policy learning. (2) In particular, under on-policy learning
(p = 0.5), the bounds of vanilla TD and ETD(β) coincide, which are higher
than the optimal error and lower than the bias bound of GEM-ETD(β).

Interpretation 1 Due to stochastic function approximation, the objective of GEM-
ETD(β) replaces the true emphasis mπ with an estimate mw. Consequently, the
optimal solution under this objective depends on the features used to approximate
the emphasis, as confirmed by the behavior observed in the following experiments
(see Sec. 5.1.2). We remark that the bias bound of GEM-ETD(β) depends on the
features constructed.

4.4 Extension to Actor-Critic

The fact that actor-critic agents are more susceptible to off-policy learning
than value-based agents is one of the main reasons we choose to concentrate on
emphatic actor-critics in this paper. We can extend GEM(β) to a new actor-
critic algorithm by simply applying the learned emphasis to the policy gradient,
following existing work on ACE and COF-PAC. We name it COF-PAC(β)
because it builds on COF-PAC. For COF-PAC(β), we use neural networks to
parameterize vθ, mw, and πϖ. The joint loss function of critic and emphasis
for COF-PAC(β) is

(

Rt+1 + γv(St+1; θ̄t)− v(St; θt)
)2

+ (it+1 + βρtm(St; w̄t)−m(St+1; wt))
2
,

(16)
where w̄ and θ̄ indicate the parameters of the target network for vθ and mw,
respectively. Then following the derivation of policy gradient in Zhang et al.
[2], the actor of COF-PAC(β) takes the following update rules:

ϖt+1 = ϖt + αρtmwt
qπ(St, At)∇log π(At|St). (17)
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Fig. 3 Baird’s Counterexample from Chapter 11.2 of Sutton and Barto [3]. There are two
actions available at each state, dashed and solid. The solid action always results in the state
7 and a reward 0, and the dashed action results in one of states 1-6 with equal probability
and a reward 1. The initial state is sampled randomly from all seven states.
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Fig. 4 Averaged emphasis approximation error for the vanilla GEM and the followon trace

with different features. Learning rates used are bracketed.

The detailed algorithm implementation and experimental settings are
described in Section 5.2.

5 Experiments

We design experiments aiming to answer the following questions: 1) Can
GEM(β) approximate the true emphasis as promised? 2) Can we flexibly
manage the bias and variance of GEM(β) and its variant GEM-ETD(β) by
providing more freedom in the choice of β? 3) Can GEM(β) scale up to
classic control tasks from OpenAI Gym [53] with neural network function
approximators?

5.1 Diagnostic Experiments

In this section, we first establish the performance of GEM(β) and its variant
GEM-ETD(β) on a diagnostic MDP modified from Baird’s counterexample
[29]. This MDP model is a well-known star counterexample for evaluating the
performance of off-policy convergent algorithms and has been used to demon-
strate the soundness of emphasis-based TD learning methods under off-policy
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Fig. 5 Averaged emphasis approximation error for GEM(β) by varying β with different
features when π(solid|·) = 0.1. Learning rates used are bracketed.

learning [2, 3, 13, 14, 15], so provides a convincing testbed that can verify the
performance of our algorithms. As shown in Fig. 3, there are seven states with
linear features and two actions. The behavior policy µ always takes the solid
action with probability 1

7 . Our goal is to observe how qualitative properties
such as convergence, approximation error, learning speed, and variance man-
ifest in practice, and to illustrate the theoretical results previously obtained.
For all states, the interest is set to 1, and the discount factor γ

.
= 0.99.

In this problem, four different types of features are considered: original
features, one-hot features, zero-hot features, and aliased features. Original fea-
tures are the features used by Sutton and Barto [3], where each state’s features
lie in R8. One-hot features use one-hot encoding, where each feature lies in
R7, and zero-hot features are the complements of one-hot features. In par-
ticular, aliased features are the features lying in R6, where the quantities of
interest may not lie in the feature space, resulting in state aliasing (details are
described in Appendix A.4).
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Fig. 6 Averaged emphasis approximation error for GEM(β) by varying β with different
features when π(solid|·) = 0.3. Learning rates used are bracketed.

In addition to reporting the performance of the best learning
curves, we extensively investigate the sensitivity to the hyperparame-
ter β. So we extensively sweep the values of β by varying it in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. To create the best learning curve,
a large number of combinations of different hyperparameters are used to run
each algorithm, and the results are plotted using the best hyperparameters
that minimized the Area Under the learning Curve (AUC) for all algorithms
in the solid lines. The average is taken over 30 independent runs for all curves,
with the shaded regions indicating standard errors.

5.1.1 Emphasis Approximation

We first compare the performance of approximating the true emphasis mπ

with GEM(β) (Eqs. (10) and (11)) and the vanilla GEM (Eqs. (5) and (6)).
Additionally, we also benchmark the followon trace. The emphasis approxi-
mation error for the followon trace and GEM(β) at time step t is computed
as |Mt −mπ(St)| and |mw(St)−mπ(St)| respectively, where mπ is computed
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Fig. 7 Sensitivity to the decay rate β for emphasis approximation. For each specific value
of β, All methods choose the fixed value of ζ under different features. Values swept are
β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. Note that for β = γ = 0.99, we have the
vanilla GEM.

Table 1 Average area values obtained under the emphasis error learning curve for each
case corresponding to Fig. 7.

Cases
Original OneHot ZeroHot Aliased

π(solid|·) = 0.1 π(solid|·) = 0.3 π(solid|·) = 0.1 π(solid|·) = 0.3 π(solid|·) = 0.1 π(solid|·) = 0.3 π(solid|·) = 0.1 π(solid|·) = 0.3

β = 0.99 28.106±1.460 52.774±5.696 29.165±1.784 57.418±5.943 23.507±1.689 52.416±6.205 28.490±2.167 50.617±3.308
β = 0.90 0.256±0.004 0.487±0.012 0.361±0.002 0.623±0.008 0.179±0.007 0.978±0.013 0.675±0.004 1.985±0.008
β = 0.80 0.094±0.003 0.160±0.003 0.132±0.001 0.218±0.002 0.067±0.003 0.293±0.004 0.282±0.002 0.849±0.002
β = 0.70 0.048±0.002 0.078±0.002 0.066±0.001 0.108±0.001 0.036±0.002 0.132±0.001 0.158±0.002 0.486±0.002
β = 0.60 0.027±0.002 0.042±0.001 0.036±0.001 0.058±0.001 0.021±0.002 0.071±0.001 0.098±0.002 0.307±0.001
β = 0.50 0.016±0.001 0.025±0.001 0.020±0.001 0.032±0.001 0.013±0.001 0.040±0.001 0.064±0.002 0.202±0.001
β = 0.40 0.011±0.001 0.014±0.001 0.011±0.001 0.017±0.001 0.009±0.001 0.022±0.001 0.041±0.001 0.133±0.001
β = 0.30 0.006±0.001 0.008±0.001 0.006±0.001 0.009±0.001 0.006±0.001 0.011±0.001 0.026±0.001 0.084±0.001
β = 0.20 0.004±0.001 0.004±0.001 0.003±0.001 0.004±0.001 0.004±0.001 0.006±0.001 0.016±0.001 0.049±0.001
β = 0.10 0.002±0.001 0.002±0.001 0.002±0.001 0.001±0.001 0.003±0.001 0.002±0.001 0.007±0.001 0.022±0.001

analytically. For GEM(β), we consider a fixed learning rate ζ and tune it from
{0.1×2−6, ..., 0.1×22}. Note that for β = γ = 0.99, we have the vanilla GEM.

Here we consider two target policies: π(solid|·) = 0.1 and π(solid|·) = 0.3.
For the tuning of hyperparameters, we first tune the hyperparameters of the
vanilla GEM, and GEM(β) inherits the common hyperparameters of GEM to
investigate whether the tunable decay rate β plays a role in the performance
improvement of the algorithm. Fig. 4 presents the results for the followon trace

and the vanilla GEM. The followon trace exhibits large approximation error
and variance, and the vanilla GEM by comparison shows to be an effective
way to mitigate these two problems from the followon trace to some extent,
which matches previous experiments reported by Zhang et al. [2]. When we
reduce the value of β, as shown in Figs. 5 and 6, GEM(β) with a lower value
of β achieves lower variance and approximation error.

To better facilitate comparison and analysis, we also present a line graph
in Fig. 7 and a table of values in Table 1 that includes all the AUC values
shown in Fig. 7. The standard error of each entry in the table are statistically
reported as well, although some of them are invisible due to being small. As we
can see in Fig. 7 and the corresponding Table 1, we in fact find that compared
with the vanilla GEM, GEM(β) is indeed a better way to improve performance
in approximating the true emphasis.

5.1.2 Overall Performance

Our ultimate goal is to apply these approximated emphasis derived to the
value estimate gradient, and obtain the corresponding ETD variants. We now
investigate and compare the performance of these ETD variants for OPE.
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Fig. 8 The comparison of the best learning curve under different features using the AUC
criterion. Learning rates used are bracketed.

We extreme the difference between the behavior policy and the target policy
and consider a target policy π(solid|·) = 0.05. We train each algorithm with
every different hyperparameters combination for 105 steps and evaluate the
Root Mean Square Value Error (RMSVE) at each time step during training,
computed as RMSVE = ∥vθ − vπ∥D, where vθ is the estimated value function
and vπ is computed analytically. We use the same architecture and sweep range
of stepsize parameter α as Zhang et al. [2] and tune α from {0.1×2−19, ..., 0.1×
20}. Note that for β = γ = 0.99, we have the vanilla versions of ETD and
GEM-ETD.

We first tune hyperparameters for the vanilla versions of ETD, ETD(β),
and GEM-ETD. GEM-ETD(β) inherits the common hyperparameters from
the vanilla GEM-ETD, and then we tune the hyperparameter β. The results
with hyperparameters combinations that minimized the AUC in the solid lines
are reported in Fig. 8. The main points to note are: (1) Under all four sets
of features, ETD(β = 0.9) enjoys a lower variance than the vanilla ETD—
consistent with previous results on ETD(β) in Hallak et al. [26]. (2) The stable
convergence of GEM-ETD(β) occurs, illustrating Lemma 1. Further, GEM-
ETD(β = 0.9) has a clear win over the vanilla GEM-ETD. GEM-ETD(β = 0.9)
outperforms the vanilla GEM-ETD in terms of learning speed and variance
under original and zero-hot features. (3) Under one-hot and aliased features,
although GEM-ETD(β = 0.9) learns slower than the vanilla GEM-ETD, it
exhibits lower variance, thus, a higher value for α can be set to accelerate
convergence. We also show the results for the higher value of α (α = 0.1× 2−1

for the one-hot features, and α = 0.1 × 2−3 for aliased features), the results
show that when we increase the stepsize parameter α, GEM-ETD(β = 0.9)
converges faster, and the variance is still smaller than that of the vanilla GEM-
ETD. Overall, we conclude by highlighting that compared to vanilla GEM-
ETD, GEM-ETD(β) does provide a reasonable strategy to obtain substantial
improvements by controlling the decay rate β.

5.1.3 Sensitivity to β for OPE:

Until now, we have only reported the results using the best performing step-
sizes. In this section, we extensively investigate the sensitivity of GEM-ETD(β)
to the decay rate β for OPE. For the stepsize parameter α and the empha-
sis learning rate ζ, GEM-ETD(β) inherits the best performing values of the
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Fig. 9 Sensitivity to the decay rate β for OPE. For each specific value of β, All meth-
ods choose the fixed values of α and ζ under different features. Values swept are β ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. Note that for β = γ = 0.99, we have the vanilla
versions of ETD and GEM-ETD.

Table 2 The lowest AUC values for all algorithms corresponding to Fig. 9. The lowest
averaged area values obtained after comparison under the RMSVE learning curve are
highlighted in bold.

Cases Original OneHot ZeroHot Aliased

β = 0.99 49.054±99.641 61.102±7.716 10.767±3.157 55.916±9.050
β = 0.90 8.273±0.471 59.976±1.209 5.045±0.258 52.873±1.307

β = 0.80 14.071±0.368 101.342±0.601 6.417±0.270 92.019±0.939
β = 0.70 18.894±0.312 130.466±0.613 7.550±0.216 121.275±0.920
β = 0.60 24.222±0.373 150.876±0.687 9.012±0.263 142.966±1.105
β = 0.50 30.023±0.426 165.725±0.598 10.385±0.322 158.434±1.216
β = 0.40 35.686±0.561 176.723±2.292 11.750±0.380 170.273±1.699
β = 0.30 41.791±0.506 185.734±0.567 13.249±0.518 179.423±1.390
β = 0.20 48.120±0.827 192.558±0.631 14.977±0.540 187.263±1.742
β = 0.10 54.329±0.699 198.672±0.868 16.555±0.564 193.603±1.594

vanilla GEM-ETD obtained above for a fair comparison. For the sake of com-
pleteness, Table 2 contains the lowest values of all cases shown in Fig. 9 as a
table of values. The standard error of each entry in the table is also statistically
reported. The bold entries highlight the lowest RMSVE for the given case. The
results in Fig. 9 and the corresponding Table 2 show that GEM-ETD(β) with
β = 0.9 performs the best under all four sets of features. When it comes to
the bias-variance trade-off, the optimal choice is usually problem-dependent.
In conclusion, our experiments results demonstrate that our GEM-ETD(β) is
indeed a promising approach with a broader applicability to different problem
situations.

5.2 Classic Control Tasks

To answer the posed question 3) at the beginning of Sec. 5, we benchmark
ACE, COF-PAC, and COF-PAC(β) on classic control tasks from OpenAI Gym
[53], which are illustrated in Fig. 10. Additionally, we also benchmark ACE(β),
where we introduce the tunable decay rate β to the followon trace in ACE.
The detailed descriptions of the classic control tasks are shown in Table 3.

All curves are averaged over 10 independent runs and shaded regions indi-
cate standard errors. For all non-termination transitions, we set the discount
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(a) MountainCarContinuous-v0 (b) CartPole-v1

Fig. 10 Screenshots for the classic control tasks from OpenAI Gym used in our environ-
ments

Table 3 Descriptions of OpenAI Gym classic control tasks used in our experiments

Task Number of states Number of actions Control type Training goal

MountainCarContinuous-v0 2 1 Continuous Drive up a big hill

CartPole-v1 4 2 Discrete Balance a pole on a cart

Table 4 Hyperparameters table

Parameter Value
Gradient norm clip 0.5
Discount factor 0.99
Replay buffer size 106

Batch size of the replay buffer 10
Importance sampling ratio clip [0, 2]
Decay rate β (0, 1]
Warm-up steps before learning 100 environment steps
Target network update frequency 200 optimization steps
Optimizer RMSProp with an initial learning rate 10−3

factor γ to 0.99, and for all termination transitions, we set it to 0. Upon termi-
nation, the agent was transferred back to the initial state. The interest function
was always 1. The behavior policy µ is a uniformly random policy, and the
target policy π is a Gaussian policy. We evaluated J(π) every 103 steps. To
evaluate J(π), we first sample a state from dµ and then follow π until episode
termination, which we call an excursion. We use the averaged return of 10
excursions as an estimate of J(π). For qπ, we follow the existing work of Imani
et al. [25] and Zhang et al. [2], and replace qπ with the TD error value δt. Fur-
ther, inspired by the success of semi-gradient methods in large-scale RL [11],
a semi-gradient version of GEM is utilized to train mπ.

We conducted our experiments on a server with 56 Intel® Xeon® E5-2680
v4 CPUs and two Nvidia Tesla P40 GPUs. Our implementation is based on
PyTorch. All algorithms share the same architecture and common parame-
terization. For ACE, ACE(β), COF-PAC, and COF-PAC(β), we use separate
two-hidden-layer neural networks to parameterize vθ, mw, and πϖ. Each hid-
den layer has 64 hidden units and a ReLU activation function. Particularly, we
parameterized πϖ as a diagonal Gaussian distribution with the mean being
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Fig. 11 Comparison among ACE, ACE(β), COF-PAC, and COF-PAC(β) on Mountain-
CarContinuous and CartPole classic control tasks.

the output of the network. The COF-PAC(β) implementation is based on the
COF-PAC implementation of Zhang et al. [2]. In order to reduce instability,
we also clip the IS ratios [12]. Table 4 lists all hyperparameters used by COF-
PAC(β), most of which follow the hyperparameters reported in Zhang et al.
[2].

The results are reported in Fig. 11. In MountainCarContinuous, the per-
formance of ACE and ACE(β) is similar. COF-PAC outperforms ACE and
ACE(β), and COF-PAC(β) performs the best for the task with β = 1. In
CartPole, ACE performs better than COF-PAC. By adjusting β, the perfor-
mance of both ACE(β) and COF-PAC(β) is improved. In particular, although
ACE(β) reaches the similar final performance as COF-PAC(β), COF-PAC(β)
achieves more stable and fast convergence. To summarize, these experimental
results support our claim that our GEM(β)-learned emphasis can indeed lead
to performance improvements on classic control tasks at scale.

6 Conclusion

In this paper, inspired by Hallak et al. [26], we developed a novel general-
ized GEM(β) algorithm for OPE and off-policy control. We have empirically
demonstrated that a reasonable tuning of the decay rate β can indeed lead
to significantly better performance. We also showcased the merits of the
extended off-policy control algorithm COF-PAC(β) over existing emphatic
actor-critic algorithms on classic control tasks from OpenAI Gym [53]. We
analyzed our algorithms theoretically and empirically to increase the under-
standing of the concept. We conducted our empirical study on small-scale
diagnostic benchmarks as a proof of concept. Further, we investigated the
COF-PAC(β) algorithm in large-scale experiments to highlight both the scal-
ability and broad applicability of GEM(β). As we know, GEM(β) uses a
GTD2-style update, which relies so heavily on κ for learning w: wt+1 =
wt + αt[(ϕt+1 − βρtϕt)κ

⊤
t ϕt+1]. In the beginning, when κ is inaccurate, the

updates forw are poor. The TD with gradient correction (TDC) algorithm [31]
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has been verified to demonstrate superior performance in the family of gradi-
ent TD algorithms, as reaffirmed by extensive experiments on GTD methods
in Ghiassian et al. [50]. Thus, a possibility for further work is to apply the
update rules of TDC to learn the emphasis for better performance. Finally,
we anticipate that our GEM(β) algorithm can be extended to multi-agent RL
optimal control algorithms to solve the Nash equilibrium problem.
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Appendix A

A.1 Proof of Proposition 1

Proof From the definitions of T̂β and mπ, we have

T̂βmπ = i+ βD−1
P

⊤
π Dmπ

= i+ βD−1
P

⊤
π (I− βP⊤

π )−1
Di

=
(

D
−1(I− βP⊤

π ) + βD−1
P

⊤
π

)

(I− βP⊤
π )−1

Di

= D
−1(I− βP⊤

π )−1
Di = mπ.

According to Theorem 1.3.22 in Horn and Johnson [54], given any two square
matrices A and B, the products AB and BA have the same eigenvalues. Thus, we

have ρ(βD−1P⊤
π D) = ρ

(

(βP⊤
π D)D−1

)

= ρ(βP⊤
π ) = ρ(βPπ) < 1, where ρ(·) is the

spectral radius. Clearly, the matrix βD−1P⊤
π D is nonnegative. Consequently, accord-

ing to Corollary 6.1 in Bertsekas and Tsitsiklis [51], T̂β is a contraction mapping
w.r.t some weighted maximum norm, which completes the proof.

□

A.2 Proof of Theorem 1

Proof This proof is inspired by Sutton et al. [30, 31] and Maei [32]. We provide the
full proof here for completeness.

We first rewrite the iteration equation Eq. (13) in the following form:

yt+1 = yt + ζt(h(yt) + Lt+1),

where h(y)
.
= Gy+g and Lt+1

.
= (Gt+1−G)yt+(gt+1−g) is the noise sequence. Let

Ωt
.
= (y1, L1, ...,yt−1, Lt) be σ-fields generated by the quantities yi, Li, i ≤ k, k ≥ 1.
Now we apply the conclusions from Theorem 2.2 provided in Borkar and Meyn

[55], i.e., the following preconditions must be satisfied: (i) The function h(y) is Lip-
schitz, and there exists h∞(y)

.
= lim

c→∞
h(cy)/c for all y ∈ R

2n; (ii) The sequence

(Lt,Ωt) is a martingale difference sequence, and E[∥Mt+1∥
2|Ωt] ≤ K(1+∥y∥2) holds

for some constant K > 0 and any initial parameter vector y1; (iii) The nonnegative
stepsize sequence at satisfies

∑

t at = ∞ and
∑

t a
2
t < +∞; (iv) The origin is a glob-

ally asymptotically stable equilibrium for the ordinary differential equation (ODE)
ẏ = h∞(y); and (v) The ODE ẏ = h(y) has a unique globally asymptotically stable
equilibrium.

First for condition (i), because
∥

∥h(yi)− h(yj)
∥

∥

2
=

∥

∥G(yi − yj)
∥

∥

2
≤

G
∥

∥(yi − yj)
∥

∥

2
for ∀yi, yj , therefore h(·) is Lipschitz. Meanwhile, lim

c→∞
h(cy)/c =

lim
c→∞

(cGy + g)/c = lim
c→∞

g/c + lim
c→∞

Gy. Assumption 5 ensures that g is bounded.

Thus, when c → ∞, lim
c→∞

g/c = 0, lim
c→∞

h(cy)/c = lim
c→∞

Gy. Next, we establish that

condition (ii) is true: because

∥Lt+1∥
2 = ∥(Gt −G)yt + (gt − g)∥2

≤ ∥(Gt −G)∥2∥yt∥
2 + ∥(gt − g)∥2,

let K = max{∥(Gt −G)∥2, ∥(gt − g)∥2}, we have ∥Lt+1∥
2 ≤ K(1 + ∥yt∥

2). As
a result, we see that condition (ii) is met. Further, condition (iii) is satisfied by
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Assumption 6 in Theorem 1. Finally, for conditions (iv) and (v), we need to prove
that the real parts of all the eigenvalues of G are negative.

We first show that G is nonsingular. Using the determinant rule for partitioned
matrices, we have det(G) = det(C) det(Ā⊤C−1Ā) = det(Ā⊤Ā) = (det Ā)2 ̸= 0.
This indicates that all the eigenvalues of G are nonzero.

Now, let χ ∈ C, χ ̸= 0 be a nonzero eigenvalue of matrix G with normalized
eigenvector x ∈ C

2n, i.e., x∗x = 1, where x∗ is the complex conjugate of vector x.
Hence x∗Gx = χ. Let x⊤ .

= [x⊤
1 ,x⊤

2 ], where x1, x2 ∈ C
n. Clearly, we can obtain

χ = x
∗
Gx = x

∗
1Cx1 + x

∗
1Āx2 − x

∗
2Ā

⊤
x1,

because Ā is real, Ā∗ = Ā⊤. Consequently, (x∗
1Āx2)

∗ = x∗
2Ā

⊤x1, yielding
Re(x∗

1Āx2 − x∗
2Ā

⊤x1) = 0, where Re(·) denotes the real-part of the eigenvalue.

Finally, we have Re(χ) = Re(x∗
1Cx1) = ∥x1∥

2
C > 0, which completes the proof.

□

A.3 Proof of Lemma 1

Proof As shown by Sutton et al. [1] and Hallak et al. [26], Dm̄(I− γPπ) is positive
definite, i.e., for any real vector y, we have g(y)

.
= y⊤Dm̄(I − γPπ)y > 0. Since

g(y) is a continuous function, it obtains its minimum value in the compact set Y
.
=

{y : ∥y∥ = 1}, i.e., there exists a positive constant ϑ0 > 0 such that g(y) ≥ ϑ0 > 0

holds for any y ∈ Y. In particular, for any y ∈ R
|S|, we have g( y

∥y∥
) ≥ ϑ0, i.e.,

y⊤Dm̄(I− γPπ)y ≥ ϑ0∥y∥
2. Hence, we have

y
⊤
Dmw

(I− γPπ)y

= y
⊤
Dm̄(I− γPπ)y + y

⊤
Dϵ(I− γPπ)y

≥ ϑ0∥y∥
2 + y

⊤
Dϵ(I− γPπ)y

≥ ϑ0∥y∥
2 − |y⊤

Dϵ(I− γPπ)y|

≥ ϑ0∥y∥
2 − ∥y∥2∥Dϵ∥∥I− γPπ∥

= (
ϑ0

∥I− γPπ∥
− ∥Dϵ∥)∥I− γPπ∥∥y∥

2,

for any y.
Let ϑ

.
= ϑ0

∥I−γPπ∥
. Clearly, we can obtain that when ∥Dϵ∥ < ϑ holds,

Φ⊤Dmw
(I− γPπ)Φ is positive definite, which, together with Assumption 2, finally

implies that A is positive definite and completes the proof.
□

A.4 Features of Baird’s Counterexample

Original Features:

According to Sutton and Barto [3], we have ϕ(s1)
.
= [2, 0, 0, 0, 0, 0, 0, 1]⊤,

ϕ(s2)
.
= [0, 2, 0, 0, 0, 0, 0, 1]⊤, ϕ(s3)

.
= [0, 0, 2, 0, 0, 0, 0, 1]⊤, ϕ(s4)

.
=

[0, 0, 0, 2, 0, 0, 0, 1]⊤, ϕ(s5)
.
= [0, 0, 0, 0, 2, 0, 0, 1]⊤, ϕ(s6)

.
= [0, 0, 0, 0, 0, 2, 0, 1]⊤,

ϕ(s7)
.
= [0, 0, 0, 0, 0, 0, 1, 2]⊤.

One-Hot Features:

ϕ(s1)
.
= [1, 0, 0, 0, 0, 0, 0]⊤, ϕ(s2)

.
= [0, 1, 0, 0, 0, 0, 0]⊤, ϕ(s3)

.
=

[0, 0, 1, 0, 0, 0, 0]⊤, ϕ(s4)
.
= [0, 0, 0, 1, 0, 0, 0]⊤, ϕ(s5)

.
= [0, 0, 0, 0, 1, 0, 0]⊤,

ϕ(s6)
.
= [0, 0, 0, 0, 0, 1, 0]⊤, ϕ(s7)

.
= [0, 0, 0, 0, 0, 0, 1]⊤.
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Zero-Hot Features:

ϕ(s1)
.
= [0, 1, 1, 1, 1, 1, 1]⊤, ϕ(s2)

.
= [1, 0, 1, 1, 1, 1, 1]⊤, ϕ(s3)

.
=

[1, 1, 0, 1, 1, 1, 1]⊤, ϕ(s4)
.
= [1, 1, 1, 0, 1, 1, 1]⊤, ϕ(s5)

.
= [1, 1, 1, 1, 0, 1, 1]⊤,

ϕ(s6)
.
= [1, 1, 1, 1, 1, 0, 1]⊤, ϕ(s7)

.
= [1, 1, 1, 1, 1, 1, 0]⊤.

Aliased Features:

ϕ(s1)
.
= [2, 0, 0, 0, 0, 0]⊤, ϕ(s2)

.
= [0, 2, 0, 0, 0, 0]⊤, ϕ(s3)

.
= [0, 0, 2, 0, 0, 0]⊤,

ϕ(s4)
.
= [0, 0, 0, 2, 0, 0]⊤, ϕ(s5)

.
= [0, 0, 0, 0, 2, 0]⊤, ϕ(s6)

.
= [0, 0, 0, 0, 0, 2]⊤,

ϕ(s7)
.
= [0, 0, 0, 0, 0, 2]⊤.
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