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Abstract
Achieving precise 6 degrees of freedom (6D) pose estimation of rigid objects from color images is a critical challenge with

wide-ranging applications in robotics and close-contact aircraft operations. This study investigates key techniques in the

application of YOLOv5 object detection convolutional neural network (CNN) for 6D pose localization of aircraft using

only color imagery. Traditional object detection labeling methods suffer from inaccuracies due to perspective geometry

and being limited to visible key points. This research demonstrates that with precise labeling, a CNN can predict object

features with near-pixel accuracy, effectively learning the distinct appearance of the object due to perspective distortion

with a pinhole camera. Additionally, we highlight the crucial role of knowledge about occluded features. Training the CNN

with such knowledge slightly reduces pixel precision, but enables the prediction of 3 times more features, including those

that are not initially visible, resulting in an overall better performing 6D system. Notably, we reveal that the data

augmentation technique of scale can interfere with pixel precision when used during training. These findings are crucial for

the entire system, which leverages the Solve Perspective-N-Point (Solve-PnP) algorithm, achieving 6D pose accuracy

within 1� and 7 cm at distances ranging from 7.5 to 35 m from the camera. Moreover, this solution operates in real-time,

achieving sub-10ms processing times on a desktop PC.

Keywords Real time 6D pose estimation � YOLOv5 object detection � Convolutional neural network � Perspective
distortion � Synthetic imagery generation � Solve Perspective-N-Point algorithm

1 Introduction1

Accurate 6D pose estimation of rigid objects from color

images is a paramount challenge with diverse applications

spanning robotics and close-contact aircraft operations.

This study explores the techniques to apply the YOLOv5

object detection CNN and Solve Perspective-N-Point

(Solve-PnP) for the precise localization of aircraft 6D

poses using color imagery. Conventional methods for

object detection labeling encounter inaccuracies stemming

from perspective geometry and are typically restrained to

visible key points. This research demonstrated that with

meticulous labeling, a CNN can achieve near-pixel accu-

racy in predicting object features, effectively grasping the

distinct appearance of objects distorted by a camera’s

perspective. Additionally, the pivotal role of understanding

occluded features in the training process is emphasized.

While the inclusion of occluded features in the training

slightly reduces the pixel precision, it leads to a substantial

increase in the number of predicted features, including

those initially hidden from view. Ultimately, this holistic

approach results in an overall improvement in 6D pose

estimation.

To underscore the necessity and significance of this

approach, close-contact aircraft maneuvers, specifically

aerial refueling is examined. The cost, risk, and necessity

associated with aerial refueling have previously limited the

adoption to military operations. However, if the process

can be reliably and cheaply automated then there is the

potential to democratize this technology by making it

accessible beyond military circles. Thus, revealing the
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economic advantages highlighted by Nangia [29] and Parry

[33], where it is shown that lightweight civilian aircraft

could perform longer range flights with enhanced effi-

ciency, thanks to the prospect of automated aerial refueling

(AAR). Past attempts at AAR relied on differential Global

Positioning System (GPS) and custom data-links to con-

duct their demonstrations [14, 44], thus making the cost

untenable and failing to meet the military’s need to operate

in signal degraded environments.

Close-contact aircraft operations like aerial refueling

require robust solutions in scenarios where human con-

trollers, global positioning system data, and distance-based

sensors may be unreliable or unavailable. Imagery-based

sensors emerge as a potential solution, but their efficacy

hinges on their ability to serve as both the primary source

of information and be processed onboard. This paper

identifies the necessary techniques for labeling and training

YOLOv5, a CNN, to locate aircraft components with the

precision required for the Solve-PnP algorithm. The

objective is to achieve an aircraft’s pose prediction accu-

racy within 7 cm and 1� of error. With these techniques in

place, automated aircraft can extend their autonomous

range, thereby reducing the need for human operators in

high-risk missions and enhancing overall flight safety.

Beyond close-contact aircraft operations, this work

addresses the fundamental challenge in the deployment of

an artificial intelligence (AI) on autonomous aircraft - the

need for airworthiness certification. The existing certifica-

tion processes assume deterministic system behaviors with

humans in the loop, and establishing a clear path for cer-

tifying algorithms designed for autonomous flight is cur-

rently lacking. [18]. Such a certification will be required to

operationalize algorithms such as those designed in this

article. Certifications prescribe the conditions under which

algorithms can operate, such as proximity to population

centers, times of day, aircraft compatibility, range between

aircraft, in presence of precipitation, and many potential

others. This process can be easier if a system’s components

are modular, understandable, individually testable, and

individually certifiable. These are some of the reasons why

object detection is used for the approach in this paper,

instead of relying on a monolithic neural network that

provides the 6D localization of an observed object. How-

ever, typical object detection still presents some issues for

this application.

In typical object detection, a classified bounding box is

drawn over the visible portion of an object in an image.

This causes a mismatch with the bounding box’s 2D center

and the projection of the 3D geometric center of the item

being observed, thus resulting in inaccurate 6D pose

localization when using these mismatched bounding boxes.

There are two reasons for this mismatch. First, the inherent

nature of labeling visible portions of an object means the

center point would not be guaranteed to match and hence

training a neural network would lead to imprecise 6D

localization. Second, perspective distortion introduces

disparity between the 2D center of a bounding box and the

3D geometric center of an object when projected onto a 2D

image plane, a concept elaborated in the Background sec-

tion. The broader question that emerges is whether a CNN,

such as YOLOv5, can predict bounding boxes that correct

for perspective distortion and occlusions while maintaining

low pixel error.

To show the necessity of both correcting for perspective

distortion and training with the knowledge of occluded

components, an ablation study was conducted. This study

serves to underscore the importance of these techniques in

achieving accurate 6D pose estimation. Additionally, the

impact of various data augmentation parameters, particu-

larly focusing on those that may hinder the network’s

ability to learn perspective distortion correction. There is

an analysis in the Background regarding which parameters

may interfere with learning perspective distortion, with

detailed equations in Appendix 2. To further explore the

intuition of what the neural network is learning, a final

experiment took images and tiled them onto a larger image

in different positions. This allowed for an accuracy and 2D

error comparison between the various positions within an

image as well as to the original image in order to explore

how the CNN was learning to correct for perspective

distortion.

In summary, this paper showcases the capability of the

YOLOv5 CNN to effectively correct perspective distortion

and predict occluded features. This investigation highlights

the proper intuition for perspective distortion and demon-

strates a method for correcting such distortion. This

research shows the necessity for each of the steps in the

process to attain an error of less than 1� and 7 cm at

7.5–35 m from the camera. This is significant because it

demonstrates that the system is both accurate and fast

enough to potentially be used on autonomous aircraft or for

aerial refueling in the civilian sector. Additionally, this

method can be applied to 6D localization of objects with

occlusions, making it useful for robotics. It could also be

applied for use with even more accurate and faster object

detection neural networks which have yet to be invented. A

video showing these findings is available at [5].

The contributions of the paper are:

1. A challenge to current best practice, augmenting scale

during CNN training, via experiments showing degra-

dation of pixel precision.

2. A novel set of mathematical operations, exploring how

perspective geometry causes distortion on projection of

3D components to 2D bounding boxes.
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3. Experimental results demonstrating that a CNN-Solve-

PnP system is performant when trained with knowl-

edge of occluded components and equivariant to

translation.

4. Experimental results showing ability of a CNN to learn

distinct appearance caused by perspective geometry.

5. An application-specific trade-off where 6D perfor-

mance is enhanced via an increase in true positives

from occluded components, despite a slight decrease in

2D precision.

2 Background

2.1 Aerial refueling use case

Aerial refueling has been a crucial capability for military

and civilian aircraft for over 90 years, enabling extended

flight durations and acting as a true force multiplier. The

history of aerial refueling dates back to the mid-1920s

when the first successful aerial refueling was performed

between two Airco DH-4B biplanes [27]. Past attempts in

2006 and 2015 with Defense Advanced Research Projects

Agency, National Aeronautics and Space Administration,

and Northrop Grumman have succeeded in demonstrations

of AAR systems [14, 44], but these relied on expensive

custom sensor and communication suites between the

receiver and tanker aircraft.

The two main aerial refueling systems in use are the

United States Air Force (USAF) boom and the Navy (also

NATO) probe and drogue system. With the USAF system,

stereo vision cameras are used by a boom operator to look

backwards towards a receiver aircraft and move the boom

into the proper position. The boom operator extends the

boom into a receptacle for a receiver aircraft once the

receiver is in the correct position. The Navy system

employs a flexible hose that trails from tanker with a

drogue, also referred to as a basket, behind it into which a

receiver aircraft must guide its probe.

In order to operate in GPS denied environments, recei-

vers and tankers need sensors and the ability to process the

sensor data. Tankers already tend to have cameras facing

backward, so if those cameras can be used, modifications to

the aircraft could be minimal. Modifying receivers could

be kept to a minimum if only upward facing cameras are

needed and local processing could be used. Hence, the

approach proposed here focuses on implementing 6D

localization with only images and knowledge of the aircraft

being observed; this paper focused on a tanker camera

facing a receiver.

Inexpensively adding sensors and creating reliable

enough autonomy could extend AAR to the civilian

community [29, 33]. Parry and Hubbard focused on using a

vision based approach exclusively for finding the refueling

basket immediately before contact, while relying on GPS

for all other aspects of the refueling process [33]. This is

due to certification concerns with neural networks.

2.2 Center point correction - perspective
geometry

One of the key features to this process is the proper training

of the CNN by correcting for a mismatch in the 2D

bounding box center and the projection of a component’s

3D geometric center to the image plane. This mismatch

occurs because the length and proportions between pro-

jected points on a flat image sensor are not invariant to

projective transformations. This is often called projective

distortion, but typically that term is not used to emphasize

the effects of the image sensor being flat.

The causes of perspective distortion on a flat image

sensor are due to three main factors: 1) the distance from

the camera, 2) the angle that object is away from the

principle axis, and 3) the rotation the object itself has.

Perspective distortion ultimately occurs because a part of

an object is closer to the camera than another part of the

object. The amount of distortion is based on the proportion

of the distance to the object versus the amount one part is

closer than another part. The key nuance is learning the fact

that the perspective changes the proportion of mismatch or

distortion correction required based on these criteria, not

just the number of pixels that an item may be distorted.

Each of these criteria inspire some general rules for

perspective distortion and the mismatch it causes in the

bounding box center points. First, the further away from

the camera, the lower the proportion of distortion; the

closer, the greater proportion of distortion, observed in

Figs. 16 and 17 and Table 10. Second, the distortion is

minimized to zero when the object itself is rotated such that

it is parallel the image plane. Minimization also occurs

when the angle of an object’s rotation is complementary to

the the angle created by the ray from the optical center to

the object’s center and the principle axis. The rotation

effect has local maxima for the error at approximately the

bisector of the two angles. This is stated as approximate

due to the complex nature of the equation and the nonlinear

effects of distortion; however, effects of rotation are still

useful as a general rule to develop intuition. These effects

are detailed via equations in Tables 12, 13, and 14 in

Appendix 2.

The angle between an object and the principle axis has

two general observations useful here. First, as a camera

changes its orientation, the object’s angle relative the

image plane also changes, causing different distortions.

This particular observation is difficult for humans to intuit
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because the retina is curved, thus when an individual

changes their eye’s orientation, the item does not change in

appearance at all. The second observation for this angle

changing is that it affects where the minimum and maxi-

mum values occur for the angle at which an object itself is

rotated relative to the image plane. Additional examples,

figures, equations, and tables of proportion changes are

provided in Appendix 2 to assist readers with developing

their own intuitions.

These behaviors of perspective distortion are critical to

designing experiments to test how a CNN may learn to

correct the distortion and how to best teach a neural net-

work. For the aerial refueling use case, the observed object

is typically similar in orientation to the camera, with only

slight perturbations. It is possible that a network may learn

to correlate the pixel position in an image to the amount of

correction needed. If this is the learned method, then

clipping an image could lose vital information about the

position of the object in the image. Further examination

revealed this was likely incorrect due to the amount of

random rotation of the observed object in the testing data.

Compared to a camera with a 56� field of view, a similar

amount of distortion could occur for 25% of the image due

to random rotation of the observed object. Thus, leading to

another insight, perspective distortion leads to observed

objects having a distinct appearance depending on their 3D

location and orientation, hence the correction required

could be calculated and learned based on this distinct

appearance regardless of location in an image. This leads to

the experiment in the Latent Space Perspective Distortion

Experiment section testing the pixel precision of the net-

work respective of the position in an image.

This analysis of perspective geometry and how it creates

distortion also provides insights to the relationship between

data augmentation parameters used during training and

their potential effectiveness. Earlier it was noted that the

distance an item is from the camera can affect the distor-

tion. Hence, the size of an object could indicate the amount

of correction required. Much of the existing research

[3, 6, 8, 9, 12, 13, 15, 16, 28, 40, 45, 46, 53, 58, 59] on

object detectors improve their results by varying the scale

during training, which helps generalization across large

data sets, but could also hinder pixel precision by confusing

the neural network during training. There is also an

apparent correlation to the position in the image, leading to

a potential for mosaic and translation as data augmentation

techniques to affect the results. Mosaic is a technique

where multiple images are combined into a single training

sample and translation involves shifting the object within

the image to different positions. Both techniques are typi-

cally utilized to create more diverse training data. This lead

to the experiment detailed in the Training Data

Augmentation Optimization section testing networks

trained with different training time data augmentation.

3 Related work

With many tankers having stereo vision on them already, a

previous approach by Anderson et al., was to utilize these

cameras for the 6D pose estimate. Here, the stereo block

matching algorithm created 3D point clouds that would be

compared to a truth point cloud via the iterative closest

point method to gain a pose estimate [1, 2]. While this was

able to meet the error threshold, stereo block matching is

restricted to stereo vision systems, requires extremely

precise calibration, and requires extensive filtering of noise

and occlusions to be effective. Modern approaches have

shown that it is possible to use neural networks with Solve-

PnP on monocular color imagery to meet the error

threshold required [26], the experiments here extend this

work.

3.1 Key point vs object detection

Typical approaches which use Solve-PnP involve using key

point finders with known 2D-3D correspondences. Many of

the simpler key point finders like Scale-Invariant-Feature-

Transform or Speeded-Up-Robust-Features will find points

and create descriptions with their own methods, which can

really only be matched to other 2D points found in similar

images with those same methods, lacking a bridge to

making 3D correspondences reliably. Some more modern

approaches have tried to solve this blind Solve-PnP prob-

lem by using neural networks to create descriptors and

create these correspondences [23, 43]. Without corre-

spondences, the task of using Solve-PnP becomes an

optimization problem to search for the best set of corre-

spondences [42], which can be slow and unreliable.

Similarly, CNNs have been shown to be able to identify

key points with their own descriptors that are more resilient

to image changes than the legacy methods and have

extremely low latency[10, 11, 21, 25]. However, all of

these key point identification methods thus far hide infor-

mation inside their respective algorithms with custom

descriptors for features that are found, which cause diffi-

culty if used for 2D-3D correspondences. These custom

descriptors are less explainable and suboptimal for usage

with 6D localization. Consequently, generic key point

finders and descriptors were not employed.

Other CNNs solve the correspondence issue by using

landmark detection [15, 24, 54] and object detection. Often

landmark detection is also called key point detection

without distinction to the earlier methods. Landmark and

object detectors are able to both classify and provide 2D
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localization of individual features. In landmark detection, a

neural network is trained to find pixel locations of gener-

ically classified features in an image. An example of this is

a person’s knee or nose. At the time of writing, landmark

detectors did not exhibit comparable execution speed,

scalability, or the level of adoption achieved by leading

object detectors. Nevertheless, landmark detectors present

a promising alternative to the object detection for 6D

localization, and recent advancements in object detection

CNN design could certainly be leveraged for landmark

detection.

You Only Look Once, YOLO [37] is a family of algo-

rithms that was originally released at the Conference on

Computer Vision and Pattern Recognition in 2016 from

Joseph Redmon. Redmon released further versions [38, 39]

the next two years following after which the algorithm was

continued by others in the computer vision community,

with many more iterations addressing modernizations in

neural networks such as skip connections, cross-stage

partial connections, inception modules, and different

training techniques.

In general, the YOLO family of CNNs has a pre-trained

classification network as its backbone. The neck, middle

layers, of the network utilizes a feature pyramid, spatial

pyramid pooling, and path aggregation networks to identify

features at various scales as well as feed multiple output

convolutional nodes to produce multiple bounding boxes

for a given image. After the backbone is pre-trained, the

neck is attached and the entire network is further trained on

imagery which has bounding boxes labeled. For the work

in this paper, YOLOv5 [19, 57] was chosen. This was due

to its ease of adaptability, flexibility in precision vs speed,

and precision achievable at speed.

3.2 Other pose detectors

In recent years, there has been a surge in other approaches

that use CNNs for 6D pose localization. Kehl [20] devel-

oped a single shot 6D pose estimator which works in two

stages: first, creating bounding boxes around objects to clip

them into their own images at a specific size, then running

other neural networks against that, which are essentially

trained as classifiers based on the viewpoint. Xiang [52]

developed a single neural network that is able to output the

segmentation, translation, and orientation of objects by

being trained on that data.

Pix2Pose [31] has an innovative approach, they apply a

custom coloring of each object in an image where that

coloring is associated with the 3D coordinate of the skin of

the object, hence creating unique correspondences between

color and positions on that object. They then train networks

to create images with that coloring, then send those cor-

respondences to Solve-PnP to estimate the 6D localization.

Finally another neural network, BB8 [36], is trained to

identify 3D bounding boxes for items, overlay them onto

an image, and use the 8 corners of the resulting 3D

bounding box as inputs to Solve-PnP to get a final 6D

localization. [4, 7, 32, 34, 35, 47, 55, 56] are very similar to

these approach with slight variations, all basically doing

direct pose regression from a CNN. There are many other

examples which use combinations of these approaches and

add in depth data [17, 22, 41, 48–51], however depth data

is outside the scope of the desired solution here.

Each of these methods show great promise using neural

networks, but suffer from a similar issue: the concealing of

the learned features inside of them, making them difficult

for humans to understand. This could lead to difficulty

certifying them or testing them. The difficulty is increased

for monolithic systems like these, hence a lack of modu-

larity. This increase in difficulty is because if a change

occurs then the entire system would need to be re-tested

and re-certified, as opposed to a single module. These are

some of the reasons our approach utilizes an object detector

with Solve-PnP, as they can be made small and fast with

the ability to identify components in human readable ways

and each step of the process can be tested independently

and as a whole.

4 Methodology

4.1 Overall process

In order to conduct an ablation study on the importance of

each step in the system, one must first understand the

overall system designed. The system utilizes a trained

CNN, YOLOv5, to draw bounding boxes around aircraft

components in an image. The CNN provides a classifica-

tion used later for 2D-3D correspondences and the 2D

center point of the bounding boxes. If at least four com-

ponents are found, then those correspondences and center

points are utilized by Solve-PnP to calculate a pose for the

aircraft. The ablation study is conducted by training mul-

tiple neural networks from the same set of images; different

labeling techniques are used to train the multiple neural

networks.

In the ablation study, the labeling techniques can be

grouped into two main categories: visibility and perspec-

tive correction. For visibility, neural networks are trained

from labels created either from only visible points or both

visible and occluded points using ‘‘x-ray’’ vision, which

was conceptually created via simulation and perfect truth

data. For perspective correction, neural networks are

trained either from labels created from data which corrects

the perspective distortion in the bounding box centers or

from data which does not. The metrics used to compare
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these neural networks are the average center point error (in

pixels) for each bounding box in an image, the true and

false positives a network identifies, and the position and

orientation of the 3D model prediction.

4.2 Data generation

To train a CNN and assess the system, labeled imagery

must be generated. This data consists of images, a label

truth file for each image, and a pose truth file for each data

set. This data is generated with AftrBurner [1, 26, 30], a 3D

graphics engine maintained by a team at the Air Force

Institute of Technology. AftrBurner imports a ‘‘.stl’’ file

defining an aircraft model, renders that model, imports

point clouds defining 3D components of the previously

imported model file, saves rendered scenes as images, and

saves the associated truth files. All aircraft model files used

were publicly available files purchased and customized for

this application; no official Air Force information or files

were utilized. The images are sized at 640x480 pixels, with

56� horizontal field of view, and a perfect camera cali-

bration is assumed.

To create 2D bounding boxes, the 3D model required a

file defining the components on the aircraft. This was

accomplished by creating point clouds on the aircraft by

identifying the points on the skin of the 3D model in the

model’s coordinate system. Each of these point clouds is

named accordingly with the component they resemble on

the aircraft; 50 were created. These 3D model points

defining the components are projected to the image in order

to create bounding boxes for each component. At this

point, occlusion checks are able to be made or omitted.

Additionally, the perspective distortion which causes the

center point from the 2D bounding box to misalign with the

3D component’s geometric center point projection can be

corrected during this process.

See Figs. 1 and 2 for an example point cloud of dots,

with the red, or off-color, dot indicating the 3D compo-

nent’s correct center point projection on the image and a

small green crosshair indicating the uncorrected bounding

box center. Figure 3 includes an example of expanding the

bounding box to correct for the perspective distortion. This

example had approximately 9 pixels between misaligned

and corrected bounding box centers.

The occlusion data allow filtering of point clouds to

control generating bounding boxes based on either the

visible portion or the entire component. At least 25% of a

component’s points must be visible to consider it visible

and its center point must be visible. The process for the

center point correction utilized in this study was to project

the 3D geometric center point, Truex and Truey, to the

screen then expand the bounding boxes via taking the new

correct center point and expanding the width and height.

The process is shown in Algorithm 1

The result of these labeling strategies is 4 label files

being generated for each image, with the resulting trained

networks being named with the following convention:

1. Vs_CC - only visible points with center point

correction

2. Vs_Nc - only visible points with NO center point

correction

3. Xr_CC - All points regardless of occlusions with center

point correction

4. Xr_Nc2 - All points regardless of occlusions with NO

center point correction

To robustly train the neural network, various attributes

were randomized within the AftrBurner engine to generate

the data set. The orientation of the receiving aircraft was

randomly rotated up to 5� in the roll, pitch, and yaw. The

position was randomly set between 7.5 and 35 m from the

tanker camera in such a way to ensure the center of the

aircraft was in the viewing frustum of the camera. Images

without aircraft were used 5% of the time. The background

Fig. 1 Non-corrected bounding box and component point cloud

2 The abbreviation ‘‘XR’’ was inspired by the concept of ‘‘x-ray’’

vision, which was conceptually created via simulation and perfect

truth data.
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sky box, orientation of the camera versus the ground, and

lighting positioning was also randomly set for each image.

Finally, the position of the refueling boom was randomly

set in each image, causing potential occlusions to the air-

craft in the image. Examples of these images are seen in

Fig. 4.

4.3 Neural network training

The main experiment utilized the randomization of ima-

gery attributes mentioned in the Data Generation section,

40,000 images, and the associated truth data. The first

30,000 images were used for training, and a further 5000

for validation during training to track and utilize early

stopping criteria of 20 epochs. The last 5000 images were

used for testing and comparing each of the trained models

across the metrics mentioned in the Introduction sec-

tion. When training, 1000 epochs was chosen as a top limit

for the number of epochs to be used, with 20 epochs as the

patience criteria for early stopping.

In addition to the data augmentation detailed in the Data

Generation section, training time data augmentation was

also utilized. This includes randomizing up to 70% satu-

ration, 1.5% hue, 40% value, 3� rotation, 10% mixup, 10%

translation, mosaic, and 90% scale for each training image.

This is according to recommended defaults by the

YOLOv5 team [19], with the exception of left-right flip-

ping of the image; this was excluded because the object

being detected is nearly left-right symmetrical, with few

identifying symbols on each side and the components being

predicted are respective of the side of the aircraft. An

additional three networks were trained with different

hyperparameters for training in order to explore the best

method of teaching perspective distortion of a 3D object

within an image, further detailed in Sect. 4.5. Each of these

additional networks were trained with labeling of all

components in the image regardless of occlusions and with

center point correction enabled.

The YOLOv5 team has various pre-trained models

available for transfer learning, with larger models being

more accurate, but slower. The YOLOv5 small model,

YOLOv5s, was chosen for transfer learning for this project

due to the precision, accuracy, and speed it was able to

provide. Other relevant parameters used for training were a

batch size of 32, 0.0005 weight decay, a learning rate of

0.01, and 0.937 momentum. The two visible networks

stopped from the early stopping criteria while the other

Xr_CC and Xr_Nc networks trained for the full 1000

epochs; details of all networks trained are in Fig. 8.

4.4 Neural network execution

The object detection neural network is able to utilize var-

ious parameters to choose the precision versus recall nee-

ded, maximizing true positives and minimizing false

positives. The main parameter to be modified is the

objectiveness confidence. The confidence factor chosen for

the experiments here was 0.85 because that was the max-

imum before a precipitous drop in F1 score by many of the

networks used. This chosen value allowed no false

Fig. 2 Example bounding box without correction

Fig. 3 Example bounding box with correction

Fig. 4 Variability in training data for CNN: synthetic image examples

Neural Computing and Applications (2024) 36:1261–1281 1267

123



positives when there was no aircraft in the image and

allowed adequate correspondences for Solve-PnP. Further

fine tuning of the confidence could be beneficial for a

future deployed system.

In this experiment it is assumed that only one of each

component may appear in each image, allowing us to

choose the largest confidence result for each component as

the method to remove duplicates. In a deployed system,

techniques like masking, clipping, or segmentation may be

required in concert with the system proposed here to

remove observations from other aircraft in an image.

4.5 Data augmentation training hyperparameter
optimization

To address perspective distortion, an experiment was

designed to explore which data augmentation to use during

training because the typical data augmentation used for

training CNNs for object detection utilize methods that

could make learning perspective distortion difficult.

Some of the potentially troublesome techniques are

mosaic, translation, and scale. Mosaic takes patches of four

images and stitches them into one, essentially making the

position of components in the image change. Translation

also moves components within an image. These two

techniques will matter greatly if the network is learning

based on the position in the image, but will not if the

network is learning based on the distinct appearance of the

item as the indicator of perspective distortion. In addition,

the distance an object is away from the camera changes the

proportional amount of distortion, therefore scaling the

image directly affects the perspective distortion.

The analysis of how perspective affects the appearance

of objects in imagery led to the training of an additional

three networks. The Xr_CC network mentioned previously

is trained with complete knowledge of occluded compo-

nents, center point correction, and with the data augmen-

tation hyperparameters as outlined above. Each of the other

networks were also trained with complete knowledge of

occluded components and center point correction enabled.

The Xr_CC_nS was trained like the Xr_CC but without

scale augmentation; nM_nT was trained without mosaic

and without translation; and nM_nT_nS was trained with-

out mosaic, translation, or scale. These four models were

used to assess the best technique with which to train in light

of perspective distortion requiring correction.

1. Xr_CC - Default hyperparameters, no left to right flip

2. Xr_CC_nS - Same hyperparameters as Xr_CC, no

modification to scale

3. nM_nT - Same hyperparameters as Xr_CC, no mosaic

or translation

4. nM_nT_nS - Same hyperparameters as Xr_CC, no

mosaic, translation, or scale

4.6 Latent space perspective distortion
investigation

To further explore how the neural network was learning to

correct for perspective distortion in the center points,

another experiment was designed. To correct the position

of a 3D object’s center point, a neural network could learn

based on two potential measures: the 2D location in the

image, and/or the distinct appearance and proportions of

the object due to the distance and orientation from the

camera.

To assess the impact of position in the image, test

images were superimposed onto a larger image of the

virtual sky for analysis. This test took 520 images from the

test data set of 640x480 sized images and superimposed

them onto nine different positions of a 4096x3072 sized

image, creating 9 more sets of images for testing. These

positions included the combinations of top, bottom, middle,

left, and right; a notional example is in Fig. 5. No black

boxes are used in actual test images, rather there would be

sky in those locations; it is only used here to show possible

positions. Then inference was run with the Xr_CC_nS

model on each set of images for comparison; this model is

defined in the hyperparameter study. The comparison

conducted here was for the average center point error and

the true/false positives; the 3D error was not assessed as

part of this comparison.

4.7 Solve-PnP error characterization

The usage of a CNN to detect individual components of an

aircraft requires truth label files to be created, which allows

for error characterization of the truth data itself. The truth

label data for each of the labeling techniques was utilized

as inputs to the Solve-PnP algorithm to characterize Solve-

PnP and the system. The intent of this was to show the

behavior of Solve-PnP across the ablation study. This

allowed the limiting of error analysis to images for which

the truth data would allow solutions. The Error from Truth

Labels section of the results shows the 3D error when

utilizing the truth labels and the number of images with

valid results for further comparison.

5 Results and discussion

This section is composed of four subsections detailing the

results of the various experiments and discussing what

those results could indicate. The first is an examination of

1268 Neural Computing and Applications (2024) 36:1261–1281

123



the truth values from the different labeling techniques and

how Solve-PnP performs given those perfect truth values.

The next section is an analysis of the ablation experiment

with results from entire system using each of the different

labeling techniques. Then details on the experiment where

different training time data augmentation parameters were

used and which performs the best with regard to perspec-

tive distortion is provided. Finally, there is a discussion on

the experiment designed to test if the neural network was

learning to correct for perspective distortion through the

position in the image or the distinctive appearance of

object. This last experiment led to a potential cause of false

positives that is also discussed at the end of the section.

5.1 Error from truth labels

In order to evaluate the error of the overall system, the

results of each labeling scheme using their truth labels was

analyzed. These truth labels were used to directly make

Solve-PnP predictions and limit the further analysis to that

of the images in which solutions are possible. This was

useful in characterizing the potential of the system. Fig-

ures 6 and 7 show each of the labeling techniques and their

associated errors for position and orientation magnitudes of

error. Each plot contains a dashed line representing the

error threshold for the system of 7 cm and 1�, respectively.
Table 1 explicitly presents the mean and standard deviation

error of the Xr_CC labeling technique with center point

correction.

The Vs_CC labeling technique exhibited outliers in

rotation and position, which can be attributed to the sen-

sitivity or fragility of the Solve-PnP algorithm when given

only 4 points. To address this, a threshold of 6 components

was established and is used in Fig. 8 to distinguish between

good and poor amounts of components. Additionally, when

Solve-PnP utilizes 6 points, it allows for direct linear

transformations, enabling an estimate of the camera’s

intrinsic matrix and further refinement of the results.

Importantly, when there are less than 6 components found

in an image, the system does still make a prediction and the

various figures and metrics all include such results.

The label data analysis revealed that predictions were

possible for 4729 of the images. This occurred because,

intentionally, 5% of the images in both the training and test

data sets were generated without any aircraft, aligning with

best practices. Consequently, these images lacked any

aircraft presence. Interestingly, none of the trained models

generated false positives when using a confidence threshold

of 0.85 for the images without aircraft.

The XR_CC labeling strategy proved effective in pro-

viding sufficient truth labels, enabling the application of

the Solve-PnP algorithm to make predictions for all 4729

images when provided truth data. In contrast, when using a

labeling technique restricted to visible components, pre-

dictions were possible for 4586 images (96.98% of pre-

dictable images) in the case of images with center point

correction and 4715 images (99.70% of predictable im-

ages) for images without center point correction. The dif-

ference in performance between these two visible labeling

techniques can be attributed to the center point correction

technique’s requirement for the center point to be visible,

resulting in slightly fewer visible points compared to the

data without center point correction.

This analysis yields two interesting concepts. First is

that a neural network trained on data without center point

correction is unlikely to reliably predict under the desired

error threshold. The next item is that the position error

through the system is potentially 8% of the threshold in the

best case, observed through Table 1. This exemplifies the

difficulty of the problem space. This error is likely due to

compounding of numerical precision issues between the

simulation, various truth files, and limits on floating point

variables respective of the scale at which the simulation

Fig. 5 Notional example superimposed images Fig. 6 Solve-PnP position error from truth labels
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was running. It is left to future work to optimize this aspect

of the system.

The next interesting observation is that the orientation

predictions were fairly accurate, even for the data sets

without center point correction. This is likely due to the

nature of Solve-PnP with RANSAC minimizing the error

from the data it is sent. Additionally, when only provided 4

features Solve-PnP cannot use multiple samples to reduce

the error, hence is more likely to produce a spurious output

even when provided very good data. This is an indication

that the Solve-PnP part of the pipeline is robust to some

error, but it is vital to provide adequate amounts of data in

order to allow it to perform the processes which make it

robust. For Solve-PnP, when provided 6 or more points it

can potentially even correct for intrinsic errors of the

camera.

Overall, this initial analysis shows that the labeling

scheme of center point correction is able to meet the error

thresholds. While also showing that not using center point

correction causes the error thresholds to typically be

exceeded by Solve-PnP. Thus, a system designed with this

approach should have sufficiently low 6D error if able to

predict these labels with sufficient precision.

5.2 Labeling strategy ablation study

This subsection details the results of the ablation study,

examining the effects of training a network with knowl-

edge of occluded components or not, and correcting for

perspective distortion in the centers of the bounding boxes

or not. First the performance of models which were trained

with and without knowledge of occluded features are

compared. Then, the ability of the model to learn per-

spective distortion is shown via discussion of the amount of

error and amount of correction required.

5.2.1 Training without regard to occlusions

The first comparison is between the models trained with

knowledge of occluded components and trained without

that knowledge. For this part of the analysis, the center

point corrected models were used. Figure 8 shows box and

whisker plots comparing the two networks. The dotted line

indicates 6 points being detected. That is a significant

number because it is the threshold for Solve-PnP to utilize

direct linear transformations and conduct iterations to

reduce error from noise in the measurements.

Figure 8 reveals the labeling technique has a large effect

on the number of features that can possibly be observed.

The technique used with XR_CC found nearly three times

as many components on average. This is significant

because it allows the Solve-PnP algorithm more opportu-

nity to reduce error and potentially even correct for camera

calibration issues. This is also an indication of the difficult

nature of labeling components on a 3D object. Labeling

3-dimensional components situated on an object makes it

difficult to meet the visibility threshold, even when using a

small threshold of 25% for an item to be considered visible.

Furthermore, this is the first indicator that the neural net-

work is able to precisely identify components it is trained

on even if many of those features are less than 25% visible;

a full comparison of the neural networks’ metrics is pro-

vided in Appendix 1 for typical CNN metrics like

precision.

Outlined in Table 2, the occlusion labeling strategy

resulted in observable differences in the number of Solve-

Fig. 7 Solve-PnP rotation error from truth labels

Table 1 Error from best truth data

Mean 0.36 cm 0.0017�

Standard deviation 0.23 cm 0.0009�

Fig. 8 Visibility comparison of true positives
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PnP observations between the two. The Xr_CC network

was able to make predictions on 99.6% of images whereas

the Vs_CC network achieved only 88.3%, a 29x increase.

The more important factor was that the Xr_CC network

was able to make predictions under the error threshold 15%

more often than the network trained on only visible com-

ponents; this was a substantial increase in ability. The box

and whisker plots for these can be observed in Figs. 9 and

10, with detailed metrics in Table 3 and Appendix 1;

outlier counts are included in Table 9.

When reporting 3D error it was determined that an

observation would be an outlier if more than 10 m or 5�

from truth. This approach is reasonable because Solve-PnP

can behave poorly at times; when it does the system would

be expected to detect and discard those observations. The

system could detect poor observations for multiple reasons.

First, if the orientation is multiple degrees in error, the

aircraft would be expected to be flying away quickly. If the

position has a large error, the aircraft may not be in the

region for which the visual algorithm is supposed to make

observations. Also, in a deployed system, there would be a

time ordering to the observations, hence if the observation

was too different than the previous few it could be dis-

carded; it is expected the aircraft will only move approx-

imately 10 cm max between frames during these

operations.

The next interesting metric was the pixel error of the

Vs_CC versus Xr_CC trained networks on finding the 3D

geometric center of components. Table 4 details the find-

ings. The network trained on only visible components had

less error. This showed statistical significance via a Wil-

coxon Rank-Sum test with an alpha of 0.01 and P-values

significantly less than 0.001. While statistically significant,

the amount was a very small fraction of a pixel difference.

While the center point pixel error is lower, the system

with a model trained on only visible components per-

formed significantly worse. The Vs_CC model was worse

in both the 3D position and orientation error, shown in

Figs. 9 and 10 and Table 3, as well as number of obser-

vations under the threshold, evidenced in Table 2. While

this use case is slightly unique due to the predicting com-

ponents of a larger rigid object, for this case it is recom-

mended to train on the full set of components of that object

regardless of occlusions in an image.
To summarise this analysis of training without regard

for occlusions, a neural network should be trained without

regard for occlusions. There is a slight degradation to

average 2D pixel-precision, however the massive increase

in quantity of observations allows Solve-PnP to be more

performant. This was in terms of both 6D Euclidean dis-

tance as well as total images which predictions were pos-

sible for.

Table 2 Visibility predictions comparison

Total predictions Under threshold

Xr_CC 4712 99.6% 3767 79.7%

Vs_CC 4174 88.3% 3061 64.7%

Fig. 9 Center point correction - position error

Fig. 10 Center point correction - RPY error

Table 3 Visibility pose error comparison

All data Under 10 m & 5�

Xr_CC Mean 6.61 cm 0.27� 5.64 cm 0.15�

Median 2.22 cm 0.08� 2.22 cm 0.08�

Std dev 57.8 cm 5.86� 10.38 cm 0.20�

Vs_CC Mean 23.76 cm 0.98� 6.56 cm 0.19�

Median 3.19 cm 0.12� 3.18 cm 0.12�

Std dev 313 cm 13.53� 10.86 cm 0.25�
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5.2.2 Correcting for perspective distortion labeling
comparison

It is easily observable through Figs. 9 and 10 that the

analysis on the truth data was confirmed. The usage of

neural networks trained without correcting for perspective

distortion are not able to meet the error threshold when

used in the overall system. This was confirmed as statisti-

cally significant with Wilcoxon Rank-Sum tests being

performed, with alpha of 0.01 and P-values significantly

less than 0.001 being attained. If anything, it is impressive

the Solve-PnP algorithm was able to perform so well given

distorted points.

The interesting result of examining the correction made

by perspective distortion is the amount the networks are

capable of learning. In Fig. 11, each network’s center point

error is shown where that error was calculated against the

labeling strategy each was trained against. This showed

that the underlying neural network was able to learn both

methods with similarly low error, under a pixel of error on

average. Figure 12 is used to show the amount of correc-

tion the networks are applying; here the XR_CC model was

evaluated against labels that were corrected and uncor-

rected, with the error being shown in the figure. This

reveals that the models are measurably correcting for the

perspective distortion, arguably indicating that perspective

distortion can be learned and corrected for by a neural

network.

5.2.3 Ablation study summary

In conclusion, the ablation study of neural network models

had a clear result. The four models came from varying the

training data to respect occlusions and if the bounding box

should be corrected for perspective distortion. The Xr_CC

model performed the best, this was the model trained

without regard for occlusions and with perspective distor-

tion corrected. Thus, showing that perspective distortion

was measurable, correctable, and learnable by a neural

network. The initial analysis quantitatively showed center

point correction is required to perform within the error

threshold when using object detection. Additionally, this

result showed that training without regard for occlusions

could improve the overall performance of the system by

vastly increasing the number of observable components.

This leads to other questions, such as how to best augment

training data for training to correct for perspective distor-

tion and how the network is learning to correct for the

distortion.

5.3 Training data augmentation optimization

This section explores the results of assessing neural net-

works trained with different data augmentation parameters.

The number of true positives was improved with the

Xr_CC_nS model versus the Xr_CC model, but was

degraded for the models trained without mosaic and

translation. These data sets did show statistical significance

in the comparison of their true positives versus Xr_CC

model. The Appendix 1 table also shows that the typical

CNN metrics like F1, accuracy, precision, and recall were

consistently degraded for the models trained without

mosaic or translation, and were improved for the

Xr_CC_nS model. The Xr_CC_nS model was significantly

better than Xr_CC for all but the average number of false

positives. For the use case here a small increase in false

positives is acceptable. This is acceptable due to Solve-

PnP’s ability to maintain accuracy with false positives as

well as due to observations that are made during the next

and final experiment.

The model that performed the best for average 2D center

point error was the one using the original hyperparameters,

but without scale, Xr_CC_nS, with average values

showning this improvement in Table 5. The difference was

statistically significant when compared between the origi-

nal model and each of the others, as well as between the

Xr_CC_nS model and others; significance was shown via

Wilcoxon Rank-Sum test with an alpha of 0.01, and all

P-values significantly less than 0.001.

The Wilcoxon Rank-Sum tests also showed statistical

significance for the improvement to the 3D position and

Table 4 Center point error (pixels)

Mean Median Std dev

Xr_CC 0.54 0.42 0.35

Vs_CC 0.37 0.31 0.22 Fig. 11 Example of ability of networks to learn uncorrected and

corrected bounding boxes
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orientation, with alpha of 0.01 and all P-values signifi-

cantly less than 0.001. The Xr_CC_nS model showed

improvement over that of the original settings for the 6D

localization estimates and degradation for the other net-

works, evidenced in Table 5. These results indicate that the

scale is the primary factor which should not be varied

during training. It also showed that the mosaic and trans-

lation being removed did not show any improvement, but

did degrade the detection and classification metrics, hence

training should use mosaic and translation for CNNs being

used for 6D pose localization.

5.4 Latent space perspective distortion
experiment

With the best performing model, Xr_CC_nS, we can now

examine how it is learning to correct for the error. In this

experiment, there was an improvement when making pre-

dictions further away from the edge or with fewer edges for

both the 2D center point error as well as a reduced number

of false positives. Figures 13 and 14 show plots of the error

for running the inference against the various data sets with

their means detailed in Table 6; the abbreviations indicate

the positions top (T), bottom (B), middle (M), left (L), and

right (R) respective of the notional example in Fig. 5. The

‘orig’ annotation indicates the original 520 images sized at

640x480. In average 2D center point error case, the

improvement showed statistical significance from a Wil-

coxon Rank-Sum test with an alpha of 0.01 and all P-values

significantly less than 0.001.

We needed to find that the error was not made worse by

moving around the image to conclude that the network was

learning the distinct appearance of an object versus the

position in an image to correct for perspective distortion. In

fact, in every case in Table 6, the false positives decreased

and the 2D center point error decreased. This indicates the

neural network is learning to correct for the perspective

distortion by the distinct appearance an object has,

regardless of the location in the image. Additionally, this

leads to an insight about the few false positives that there

are.

5.5 False positive analysis

The implication of the previous observation is that the false

positives are not actually false positives. The component is

there, but its center point is slightly off the edge of the

image, causing it be labeled as absent in the truth data.

These false positives did not have a large negative effect

due to Solve-PnP with RANSAC being robust to outliers

when provided enough points. This was indicated and

confirmed in multiple ways.

First, the latent space experiment made the false posi-

tives disappear when there were pixels in existence to

provide negative feedback, i.e., if an object was barely off

the edge of the image and the neural network saw the sky

background there and not the component, then it was given

evidence the component was not there and made the

decision to not identify it. Second, an interactive 3D plot

was utilized in Python to view the position in 3D space

Fig. 12 Pixel amount corrected by network

Table 5 Hyperparameter average errors comparison

Position Orientation Center

(cm) (�) Point (pixels)

Xr_CC 5.64 0.15 0.54

Xr_CC_nS 5.08 0.13 0.48

nM_nT 5.95 0.17 0.57

nM_nT_nS 6.84 0.18 0.61

Fig. 13 Average center point error vs image location
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where the false positives occurred. They all occurred when

the aircraft was near the edge of the image.

Finally, this was confirmed with a manual verification of

the points which were falsely positive. In Fig. 15 a 2D

version of that 3D interactive plot was included; this is a

plot of the location of the geometric center of the aircraft

and where it is in the image for the entire data set, not just

the latent space analysis data set. The false positives that

appear towards the middle in Fig. 15 are from instances

where the aircraft was near the camera, hence the geo-

metric center of the aircraft was near the center while its

components may have been near the edge. Overall, this is

merely an interesting observation that may lead to future

work, it does not detract from the experiments original

result demonstrating the model learned the distinct

appearance of the aircraft due to perspective geometry.

5.6 Running time

For 640x480 input images, the algorithm runs at 65fps on a

desktop, which is more than efficient for real-time pose

estimation. The desktop utilized an AMD 7950X CPU,

32GB DDR5 6400MHz Ram, a RTX 3080 GPU, and

CUDA 11.7 with inference from ONNX files via OpenCV

C?? API. Specifically, this implementation on average

across the 5000 image test data took 3.4ms for reading an

image file in, 1.4ms to size and pre-process the data, 6.8ms

for forward propagation, 0.26ms for post processing the

results, and 0.21ms for Solve-PnP.

6 Conclusions and future work

In summary, this study illustrated critical insights within

the field of computer vision and 6D object localization. The

three experiments underscored the paramount importance

of correcting perspective distortion, the importance of

training without regard for occlusions, the degradation of

performance from image scale augmentation during train-

ing, and demonstrated translational equivariance. Thus,

underscoring the need for the computer vision, robotics,

and neural network communities to consider perspective

geometry and distortions created by flat image sensors,

essentially creating distinct appearances of objects based

on their location and orientation respective to a camera.

The issue in typical object detection is the mismatch

caused with the bounding box 2D center and projection of

the 3D geometric center of an item being observed. This

mismatch is caused by two concepts in the typical approach

in object detection. The first is labeling only the visible

portion of an object and the second is the perspective

distortion. Each of these cause a mismatch and lead to

imprecise 6D localizations. Correcting for these two items

was explored in the first study.

Fig. 14 Average false positive count vs image location

Table 6 Average center point errors and false positives

Position Average center Average false

Point error(pixels) Positives

TL 0.516 0.056

TR 0.526 0.081

TM 0.465 0.031

ML 0.382 0.033

MM 0.329 0.000

MR 0.387 0.046

BM 0.527 0.062

BL 0.570 0.085

BR 0.581 0.112

Orig 0.756 0.162

Fig. 15 False positive counts vs location on image
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The first study showed that the technique of expanding a

bounding box was necessary for the performance of the

Solve-PnP algorithm, was learnable with near-pixel preci-

sion by the neural network, and that occluded features of

the aircraft should be utilized. While their pixel-precision

was slightly worse, using the occluded features ultimately

resulted in a massive increase in quantity of observations

and improved the 6D estimate. The second study demon-

strated the training time data augmentation strategy of scale

augmentation should not be used, as augmenting scale

decreased the true positives found and increased the 2D

error, resulting in worse 6D estimation. This study also

confirmed mosaic and translation should be utilized. The

final study found the model to be translationally equivari-

ant, indicating that the distinct appearance of the item due

to perspective was being learned to correct for the distor-

tion, enforcing the Background section theory on how

perspective behaves.

These results suggest that future studies could be useful

to fully round out these concepts. First, the false positive

analysis revealed a potential to extend the concepts fea-

tured here to the training of future neural networks by also

allowing knowledge of features off the image. Future

systems could also investigate other center point correction

strategies like shifting the bounding boxes instead of

expanding them. Those could provide additional insights to

larger computer vision systems that may be able to utilize

the width and height data for extremely occluded predic-

tions or filtering of spurious results, each of which may

operate better with different perspective distortion correc-

tion strategies. An eventual system could even potentially

generate occlusion metrics to be used as weighting factors

to create confidence, or filters for individual components’

2D precision.

For the purposes of this study, it was beneficial to use

purely synthetic data. The synthetic data allowed for

meticulous sub-pixel labeling, ample data sets, and extre-

mely precise error assessments. However, these may prove

to be limitations for real-world applications as such precise

labels and error metrics are extremely difficult with real

imagery. Additionally, if being deployed for a fleet of

aircraft there is likely to be variations of textures, paint

schemes, and configurations of the aircraft. This is com-

pounded by operating aircraft not being truly rigid objects;

their wings flex and control surfaces manipulate. Each of

these limitations presents opportunities for future research

in synthetic environments as well as with real world

imagery.

While the approach shown in this article is not likely to

solve issues of certifiability of a neural network for aircraft,

the approach here exemplifies many of those traits: mod-

ularity, understandability, and individual testability. The

system was designed with the neural network predicting

human readable components of an aircraft and a separate

process predicting the 6D localization. Each of the sys-

tem’s processes were individually assessed and the system

was assessed as a whole, resulting in a system able to meet

the original goal of predicting a 6D localization to less than

1� and 7 cm.

In conclusion, this study underscores the significance of

considering perspective distortion in training neural net-

works. To optimize an object detector’s performance for

usage by Solve-PnP it is crucial to correct for perspective

distortion, train with knowledge of occluded components,

and refrain from augmenting image scale. These findings

shed light on how a neural network can precisely learn and

perform best in concert with Solve-PnP when armed with

comprehensive knowledge, ultimately benefiting a wide

array of applications in computer vision and object

localization.

7 Supplementary content

This paper has an accompanying video which can be found

at [5].

Appendix A: CNN Details

As a reminder of the notation used in this article, Table 7 is

provided as a reference for readers summarizing the nota-

tions introduced. The abbreviation ‘‘XR’’ was inspired by

Table 7 List of notations
Notation Description

Vs_CC Only visible points with center point correction

Vs_Nc Only visible points with NO center point correction

Xr_Nc All points regardless of occlusions with NO center point correction

Xr_CC All points regardless of occlusions with center point correction

Xr_CC_nS Same hyperparameters as Xr_CC, no modification to scale

nM_nT Same hyperparameters as Xr_CC, no mosaic or translation

nM_nT_nS Same hyperparameters as Xr_CC, no mosaic, translation, or scale
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the concept of ‘‘x-ray’’ vision, which was conceptually

created via simulation and perfect truth data.

Metrics provided here allow comparison across all of

the networks simultaneously, whereas in the body of the

document only relevant information for the specific topic

at hand was presented. Table 8 presents the top level val-

idation metrics and training epochs before early stopping

of 20 epochs was met. Table 9 details the various aspects

of performance of these networks relevant to this

application.

Appendix B: Perspective distortion

To further enable readers to develop their own intuition

about how perspective distortion behaves, various figures,

tables, and equations are presented here specific to a simple

use case of a line segment being projected to an image

plane, all in 2 dimensions. First a few scenarios are

graphically examined with associated tables exploring the

behavior of the center point mismatch due to perspective

distortion. Then, a figure is used to define the variables

relevant to these scenarios. Additional tables are then used

to demonstrate the development of the equations used for

calculating the error between the 2D image center and the

3D geometric center’s projection onto the image.

The first scenario examines the line segment object

moving away from the camera; only the distance from the

camera increases. Figure 16 shows the entire scenario,

with Fig. 17 showing a zoomed in view of the image plane.

Here the colors match between the figures to identify the

same aspects between the figures. This shows the propor-

tion of distortion decreases as distance increases, with

values presented in Table 10.

The next scenario examines the behavior of perspective

from camera rotation. Figure 18 shows how an object’s

angle changes versus the image plane due to camera

rotation, which vastly changing the center point mismatch,

but hardly changes the size of the object on the image.

Table 8 Training of networks

Data set Epochs mAP0:5 : 0:95

Vs_CC 238 0.74

Vs_Nc 382 0.57

Xr_CC 1000 0.75

Xr_Nc 1000 0.72

Xr_CC_nS 1000 0.78

nM_nT 322 0.71

nM_nT_nS 385 0.71
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Values are provided in Table 11. This is interesting

because a human eye rotating will not experience this

effect due to the curve of the retina.

The last scenario examines how an object’s distortion

will flip sides and changes based on where it appears in the

image. This is shown in Fig. 19 with a feature moving in

world space from one side of the image to the other and the

mismatch switching from one side to the other.

Fig. 16 Example of depth translation effect on perspective correction

Fig. 17 Closeup of image plane and center point for close/far

projections

Table 10 Distance effect on perspective distortion

Feature Length Mismatch Mismatch

(pixels) (pixels) (percent of length)

Near 168.95 13.47 7.97%

Far 106.91 5.68 5.31%

Fig. 18 Example of camera rotation effect on perspective correction

Table 11 Camera rotation effect on perspective distortion

Feature Length Mismatch Mismatch

(pixels) (pixels) (percent of length)

Left 258.29 32.83 12.71%

Right 263.62 9.87 3.74%

Fig. 19 Example of lateral translation effect on perspective correction

Fig. 20 Detailed diagram of potential variables for perspective

distortion
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Figure 20 presents the variables graphically for what

they represent and Table 12 provides their descriptions as

well as other variables with relation to those defined in the

figure. Table 13 presents the fundamental equations for

how the error or mismatch of the center points can be

calculated. Table 14 presents a couple of the cases where

the functions are minimized. The remaining figures and

tables are examples of how perspective distortion and

center point mismatch behaves.

Perspective distortion examples are available for reader

interaction at: Fig. 16 - https://www.geogebra.org/calcu

lator/ztsqzf5y, Fig. 18 - https://www.geogebra.org/

Table 12 Image features,

variables, and symbol

descriptions

FN Left/near edge of feature

Fx X value for FT

Fy Y value for FT

FF Right/Far edge of Feature

FT True geometric center of Feature

f Focal length in pixels, distance of optical center to image plane

f Points on feature projection to image plane which is denoted by thick line

fN Projection of FN onto image plane

f F Projection of FF onto image plane

f T Projection of FT onto image plane

fM Calculated mid point of projection on image plane: f Nþf F

2

a Angle Feature is rotated towards/away respective of image plane

h Angle FT is from principle axis or Y-axis

d Distance FT is from the optical center

‘ Length of the feature being examined

ECpC Error or mismatch in 2D center and 3D geometric center’s projection

Table 13 Perspective distortion

equations describing error for

center point mismatch

F x ¼ dsinðhÞ X value for F T respective of h

F y ¼ dcosðhÞ Y value for FT respective of h

f F ¼ f Fxþ‘
2
cosðaÞð Þ

Fyþ‘
2
sinðaÞ

f F respective of Fx and Fy

f F ¼ fdsinðhÞþf‘
2
cosðaÞ

dcosðhÞþ‘
2
sinðaÞ

f F respective of distance and h

f N ¼ fðFx�‘
2
cosðaÞÞ

Fy�‘
2
sinðaÞ

f N respective of Fx and Fy

f N ¼ fdsinðhÞ�f‘
2
cosðaÞ

dcosðhÞ�‘
2
sinðaÞ

f N respective of distance and h

f M ¼ fNþfF

2
2D mid-point equation

f T ¼ftanðhÞ True mid-point projection equation respective of h

f T ¼ fFX

FY
True mid-point projection equation respective of Fx and Fy

ECpC ¼
�
�
�
�
�

fNþfF

2
� fT

�
�
�
�
�

Base error in center point mis-match equation

ECpC ¼
�
�
�
�
�

fFxFysin
2ðaÞ�fcosðaÞsinðaÞ

4
F2y

‘2
�sin2ðaÞ

�
�
�
�
�

ECpC respective of Fx and Fy

ECpC ¼
�
�
�
�
�

ftanðhÞsin2ðaÞ�fcosðaÞsinðaÞ
4d

2

‘2
cos2ðhÞ�sin2ðaÞ

�
�
�
�
�

ECpC respective of distance and h
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calculator/heseykpt, and Fig. 19 - https://www.geogebra.

org/calculator/ptxpmdmc.
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