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Abstract
Convolutional Neural Networks (CNN) with different architectures have shown promising results in skin cancer diagnosis.

However, CNN has a high computational cost, which makes the need for a light version of CNN a desirable step. This

version can be used on small devices, such as mobile phones or tablets. A light version can be created using pruning

techniques. In this study, iterative magnitude pruning (IMP) is utilized. This method depends on pruning the network

iteratively. The IMP method is applied on AlexNet with transfer learning (TL) and data augmentation. The proposed IMP

AlexNet with TL is applied on three different skin cancer datasets which are PAD-UFES-20, MED-NODE, and PH2

dataset. The datasets used are a combination of smartphone, dermoscopic, and non-dermoscopic images. Different CNN

versions are applied on the same datasets for comparison with IMP AlexNet. The CNNs used are VGG-16, ShuffleNet,

SqueezNet, DarkNet-19, DarkNet-53, and Inception-v3. The proposed IMP AlexNet achieved accuracies of 97.62%,

96.79%, and 96.75%, with accuracy losses of 1.53%, 2.3%, and 2.2%, respectively, compared to the original AlexNet. In

addition, the proposed IMP AlexNet requires less running time and memory usage than the traditional AlexNet. The

average running time for IMP AlexNet is 0.45 min, 0.28 min, and 0.3 min, for PAD-UFES-20, MED-NODE, and PH2

datasets, respectively. The average RAM usage with IMP AlexNet is 1.8 GB, 1.6 GB, and 1.7 GB, respectively. IMP

AlexNet accelerates the average running time by approximately 15 times that of the traditional AlexNet and reduces the

average RAM used by 40%.

Keywords Convolutional neural network � Iterative magnitude pruning � AlexNet � Deep learning � Skin cancer diagnosis �
Transfer learning

1 Introduction

Deep neural networks (DNN) play a major and influential

role in many aspects of scientific research, such as medical

diagnosis [1, 2], remote sensing [3], agriculture [4], and

different fields of research.

Skin cancer diagnosis is one of the DNN applications in

the medical field. Skin cancer incidence is on the rise

dramatically. According to the World Health Organization,

the number of newly diagnosed cases worldwide in 2020 is

324,635 and the number of deaths is 57,043 [5, 6].

According to the official website of the Skin Cancer

Foundation, the number of deaths caused by melanoma is

expected to increase by 4.4 percent in 2023. In addition, it

is estimated that the number of diagnosed cases of mela-

noma will reach 186,680 by the end of 2023 in the USA

[7]. Studies conducted in different hospitals in Africa found

that skin cancer diagnosis accounted for 13% of the total

number of diagnosed malignancies [8].

DNN achieves promising results in skin cancer diag-

nosis in different image types, such as dermoscopic images

[9], smartphone images [10], and non-dermoscopic images

[11]. Researchers have faced a problem with DNN, which

has a high computational cost. Skin cancer applications

using DNN require expensive environments [9, 12]. During
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running, it takes a very long time to obtain results and has

high memory usage.

DNN with its original version cannot be used in small

devices, mobile phones, tablets, or even normal computers

in clinics and hospitals. Therefore, to use a skin cancer

detection application using DNN, some adjustments must

be made to create a light version of the DNN. This light

version can then be used in small devices or in devices

without high capabilities. Using smartphones and tablets

enables us to benefit from computing and communication

features in one device that can be light and easy to carry in

a pocket, allowing easy access and use in times of need.

Creating a light version of DNN directs research toward

pruning techniques. Pruning is the process of eliminating

the least influential parameters from a current network. The

goal of the pruning process is to increase the efficiency of

the network while maintaining its accuracy. Then,

the computational cost required for running the neural

network is reduced.

To the best of our knowledge, there is a shortage of

pruning DNN research on skin cancer detection. Most

previous work on pruning in medical image applications

concentrates on magnetic resonance imaging (MRI),

Computed Tomography (CT), ultrasound images [13],

microscopic images [14], and X-ray images [15].

The proposed technique is Iterative Magnitude Pruning

(IMP), which is applied on AlexNet because it has the

highest performance in skin cancer detection research [16]

and achieves the highest accuracy in the lowest running

time. It is shown that when IMP is applied to AlexNet, the

running time and memory usage are reduced without a

significant loss in accuracy.

The proposed method is tested on three different skin

cancer datasets. The results are compared with those of

traditional AlexNet and six different CNNs. This compar-

ison proves the robustness of IMP AlexNet compared to

other CNNs.

The sections in this paper are arranged as follows:

Sect. 2 discusses previous work on pruning techniques,

Sect. 3 explains the proposed algorithm of IMP AlexNet,

Sect. 4 demonstrates the results and discussions, and the

final section provides the conclusion and future work.

2 Related work

Pruning techniques were used in different applications of

DNN based on previous studies. Some are general research

that uses datasets of different objects. Other previous

studies are interested in specific applications, for example,

remote sensing. Few studies have been conducted in

medical imaging applications.

2.1 Pruning methods used in general
applications:

Studies that use datasets with both general or different

objects such as the method in [17]. An acceleration tech-

nique for CNN has been proposed in this study. Where they

apply pruning on filters in CNN. The pruned filters have

little effect on the accuracy of the output. The method was

applied on VGG-16 and Resnet-110 and achieved accuracy

close to the original on the CIFAR-10 dataset [18].

The research in [19] proposed an asymptotic soft filter

pruning (ASFP) technique. In the first step, the pruned

filters are updated during the retraining phase, then more

filters are pruned asymptotically during the training phase.

The technique is applied on VGGnet and ResNet using

CIFAR-10 [18]. The accuracy of ASFP on VGGnet was

93.37%, while the original net was 93.58%. The accuracy

of ResNet was 93.12%, while the original ResNet was

93.59%.

The method in [20] depends on the iterative pruning

technique that is applied on DenseNet. The method aims to

reduce network complexity by removing nodes and filters

with the lowest value near zero. The average value of

removed parameters is determined by all training samples

used. It was demonstrated that 90% of the parameters can

be deleted without any significant loss in accuracy. The

datasets used are the MNIST [21], CIFAR-10 [18], and

Tiny ImageNet [22].

Mask Soft filter pruning (M-SFP) is the method pro-

posed in [23]. The method is applied to ResNet-56. The

method keeps the weights without zeroing the values. This

is done by creating a mask for the feature map which

corresponds to the features that will be pruned. The method

achieved an accuracy of 93.9% with an accuracy reduction

of 0.17%. The used datasets are CIFAR-10 and CIFAR-100

[18].

A study proposed a model of the pruning method for

ANNs based on iterative magnitude pruning [24]. The

method aims to reduce the epochs number of the inter-

mediate iterations of IMP in the re-training process. The

study applied the method to VGG-19 and used the CIFAR-

10 dataset [18], achieving an accuracy of 90.6%.

A new technique was proposed in [25] for pruning pre-

trained models layer-by-layer with a predefined compres-

sion ratio. The technique involves computing a relevance

measure to identify the most critical units, and then pruning

the channels with less information. The method was

applied to VGG-16, ResNet-20, and ResNet-32, resulting

in an accuracy drop of 0.86%, 0.12%, and 0.02%, respec-

tively, on the CIFAR-10 dataset [18].

A pruning algorithm described in [26] removes weights

from a network based on their gradients and magnitudes

1414 Neural Computing and Applications (2024) 36:1413–1428

123



against the test dataset. The algorithm was applied to

MobileNet and resulted in a 3.8% accuracy drop on the

CIFAR-10 dataset [18].

2.2 Pruning methods in specific applications

The study in [27] proposed a method that uses an ensemble

learning machine to achieve high accuracy in classifying

different hyperspectral images. The method selects classi-

fiers with robust complementarity and adds them iteratively

to the ensemble. The ensemble is then pruned based on the

accuracy array of the ensemble. If the validation accuracy

of the ensemble doesn’t change after several iterations, the

iterations are stopped to save computational time. The

accuracy achieved by the algorithm ranges from 94 to 97%.

In [28], a filter pruning model is proposed for remote

sensing image classification. The method involves remov-

ing filters that cannot learn semantic meanings in propor-

tion to a predefined pruning rate. The study applies the

method on VGG-16, VGG-19, and AlexNet using the UC

Merced dataset [29] and the NWPU-RESISC45 dataset

[30]. The results show a reduction in accuracy by 0.4%,

0.4%, and 0.45%, respectively.

A new method called Iterative Network Pruning with

Uncertainty Regularization for Lifelong Sentiment Classi-

fication (IPRLS) was presented in [31]. The method is an

iterative pruning method that removes frequent parameters

in large deep networks to free up space for new tasks. The

BERT [32] (bidirectional transformers for language

understanding) model is used as the base model for senti-

ment classification, and the method is applied to 16 popular

datasets (books, DVDs, magazines, …etc.). The average

accuracy achieved ranges from 80 to 91%.

The Stack Attention-Pruning method is a technique

proposed in [33] that is applied to Graph Convolutional

Networks (GCN) for image classification in remote sens-

ing. The method involves pruning and removing pixels that

are lowly correlated to each other and constructing a

refined graph of neighborhood-correlated pixels. The

method achieved accuracy ranging from 96.7% to 97.3%

on two public datasets, Indian Pines [34] and Salinas [35].

2.3 Pruning methods in medical applications

Pruning applications in medical diagnosis are limited, but

in this sub-section, some examples of pruning in medical

diagnosis are shown.

In a study on Pap smear image classification, a pruning

technique called adaptive pruning deep transfer learning

was proposed [14]. The model used in the study was

divided into 10 convolutional layers and three fully con-

nected layers. Due to the limited number of images,

transfer learning was applied to use a pre-trained model.

The next step was to prune the convolutional layer by

removing some convolutional kernels that may affect the

target task. The proposed method was tested on 389 cer-

vical Pap smear images and achieved an accuracy of more

than 98%.

The STAMP algorithm is a pruning model that allows

simultaneous training and pruning of a U-Net architecture

for medical image segmentation [13]. The model is based

on filter ranking, where filters are pruned based on their

ranking scores. The model has been shown to improve

network performance while reducing the size of the U-Net

by more than 85% in terms of parameters. The STAMP

algorithm has been applied to various medical image

datasets, including Brain MRI images [36], Cardiac MRI

images [37], Spleen CT images [38], Prostate MRI images

[39], and Brain ultrasound datasets [40].

The proposed algorithm in [41] is based on DNN

deepening and pruning. The model is presented for the

diagnosis of medical images. It is divided into two phases.

The first phase is deepening, in which a DNN is allowed to

grow by adding residual blocks iteratively on top of the

created DNN without ever removing a previously added

block. After reaching a suitable size of DNN the pruning

phase starts. In the pruning phase, redundant parameters

are deleted. The method is applied on ResNet and

approximately maintains the same accuracy as the original

networks. The proposed algorithm achieves 80.4% accu-

racy, while the original networks of ResNet achieve

accuracy ranges from 80.2% to 80.7% when both methods

are applied on the ISIC 2016 dataset [42].

3 Proposed model

The IMP method has been applied to AlexNet, and the

resulting IMP AlexNet has been tested on three different

datasets. The performance of the proposed model has been

compared with different CNN versions using different

optimizers to test its robustness and performance.

3.1 Dataset and pre-processing

The research uses three datasets to compare the model’s

performance on different datasets. The first dataset is PAD-

UFES-20 [43], which is composed of 2298 smartphone

images for six different skin cancer types. In this research,

two classes are used which are naevus and melanoma with

244 and 52 images, respectively.

The second used dataset is the MED-NODE dataset

[44], which consists of 170 non-dermoscopic images

(simple digital images) for two classes. 70 images for the

melanoma class and 100 for the naevus class.
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The third used dataset is the PH2 Dataset [45]. It con-

sists of 200 dermoscopic images, 160 for naevus, and 40

for melanoma. Samples from the used datasets are shown

in Fig. 1.

During the pre-processing phase, it is necessary to resize

all images to a fixed size before inputting them to the

CNN. The input size for each CNN version varies, with

AlexNet and SqueezNet requiring an input size of

227 9 227 9 3, VGG-16 and ShuffleNet requiring

224 9 224 9 3, DarkNet-19 and DarkNet-53 requiring

256 9 256 9 3, and Inception-V3 requiring

299 9 299 9 3.

3.2 Data augmentation

The augmentation methods used are random rotation with

rang [- 5, 5], random x reflection, random y reflection with

50% probability, random x shear with range [- 0.05, 0 05],

random y shear with range [- 0.05, 0.05], random x scale

with range [0.5, 1], random y scale with range [0.5, 1],

random X translation with range [- 5, 5], and random

Y translation with range [- 5, 5], Table 1 shows the change

in number of images for each dataset after applying data

augmentation techniques.

3.3 Transfer learning

Transfer learning is a popular approach in deep learning

that involves reusing a pre-trained model on a new prob-

lem. This approach is useful in situations where a lot of

data is needed to train a neural network from scratch, but

access to that data is not always available. Transfer

learning can train deep neural networks with comparatively

little data, which is very useful in the data science field

since most real-world problems typically do not have

millions of labelled data points to train such complex

models.

By applying transfer learning to a new task, one can

achieve significantly higher performance than training with

only a small amount of data. Transfer learning can save

time and resources from having to train a new model from

scratch for every new task. It can also help with compu-

tational costs by taking the conceivable parts of pre-trained

CNN models and applying these parts to a new task

problem. This is shown in Fig. 2.

In this research, the TL technique is applied to all pre-

trained CNN models used, including IMP AlexNet as used

before in [16]. The pre-trained CNN models are loaded

without the last three layers, which are the fully connected

layer, the SoftMax layer, and the classification layer for

1000 classes. Then, new layers are added on top of the pre-

trained CNNs to adjust them to skin cancer classification

tasks. The new layers include a new fully connected layer,

Fig. 1 Samples of datasets images A, B from PAD-UFES-20, C, D

from MED-NODE and E, F from PH2 dataset

Table 1 Number of images in each dataset after data augmentation

Dataset Melanoma Naevus

PAD-UFES-20 Original data 52 244

Augmented data 104 488

PH2 Original data 40 160

Augmented data 80 320

MED-NODE Original data 70 100

Augmented data 140 200
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a new SoftMax layer, and a new classification layer to

classify two classes, which are melanoma and naevus.

3.4 Iterative magnitude pruning model

The Iterative Magnitude Pruning idea is a method of

pruning neural networks that assign scores to the connec-

tions of the network based on their absolute value, which

corresponds to their relative effect on the trained network

accuracy.

The hierarchy of the IMP AlexNet model is shown in

Fig. 3. The steps of IMP start after pre-processing and

augmenting the input dataset and applying transfer learning

on AlexNet. In the beginning, the importance of each

connection is determined by assigning a score to each one,

and the scores indicate the connection’s relative effect on

the target accuracy. The relative effect for each connection

can be computed by the function dlupdate in Matlab. Then,

these obtained scores are sorted.

A threshold is used in pruning, any connection with

scores less than this threshold is removed. The threshold

can be calculated using the following equation.

Threshold ¼ Iteration Scheme xð Þ � A ð1Þ

The threshold is computed by Eq. 1: The iteration

scheme is an array of points in the range from zero to the

target sparsity value, X is the number of the current itera-

tion of the model, and A is the size of the scores array.

Sparsification is a technique used to identify and remove

unnecessary connections in a neural network without

affecting its accuracy. After several trials, it was found that

a target sparsity value of 0.90 is the optimal value for

achieving high performance.

The iterative process of creating a pruning mask and

removing connections with scores less than the calculated

threshold is repeated until the highest performance is

reached. The number of iterations used is ten, after which

there is no significant change in performance. The pseu-

docode for IMP can be found in Algorithm 1.

Original Labels

Original Model

Original Dataset
(Large data)

Transfer learning

New Labels

New Model

New Dataset
(Small data)

Fig. 2 Transfer learning diagram

Training
dataset

Pre-proces the dataset

Construct AlexNet

Apply transfer learning to 
the last 3 layers

Augment the dataset

Calculate connections 
scores

Rank Connection scores

Calculate the threshold

Create the pruning mask

Apply the pruning 
mask

Classification Output

MelanomaNevus

Calculate connections
scores

Rank Connection scores

Calculate the threshold

Create the pruning mask

Apply the pruning
mask

Classification Output

IM
P

 phase

Fig. 3 Iterative Magnitude Pruning diagram
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Algorithm 1: The pseudocode for IMP AlexNet Figures 4 and 5 show the difference between the origi-

nal network and the pruned network after using dlupdate

function from Matlab.

3.5 Pretrained convolutional neural networks

The study used several CNNs, including VGG-16, Shuf-

fleNet, SqueezNet, DarkNet-19, DarkNet-53, and Incep-

tion-v3, to perform binary classification of melanoma and

naevus. The CNNs followed the same steps, which inclu-

ded pre-processing and data augmentation of the dataset,

constructing the network, and applying transfer learning by

replacing the last three layers with new layers for binary

classification. The processing of CNN models is shown in

Fig. 6.

4 Experimental results and discussions

This section discusses the experimental environment and

results of the proposed IMP AlexNet and the CNNs used in

the comparison. All training options and system specifi-

cations are kept constant.

After several trials with different optimizers, it is found

that the ‘Adam’ optimizer achieves the highest perfor-

mance as shown in Table 3. The training options used with

all optimizers are as follows: the minibatch size used is 32,

the number of epochs is 50, the L2 regularization used

value is 0.01, the initial learning rate used is 0.0001, and

the value used for learn rate drop factor is 0.3.

The proposed IMP AlexNet and the CNNs used are

implemented on MATLAB 2021 64-bit. The system used

has an Intel processor 2.21 GHz with core i7, 16GB RAM,

and a Nvidia Geforce Gtx 1060 graphic card.

Fig. 4 Original network layer connections Fig. 5 Pruned network layer connections

1418 Neural Computing and Applications (2024) 36:1413–1428

123



4.1 IMP AlexNet model evaluation

The performance of the IMP AlexNet model is compared

with other models including traditional AlexNet, VGG-16,

ShuffleNet, SqueezNet, DarkNet-19, DarkNet-53, and

Inception-v3. The comparison is based on classification

accuracy, average running time, and average used RAM.

The performance measures are computed for the testing

dataset using the following equations: accuracy using

Eq. 2, sensitivity (Recall) using Eq. 3, specificity using

Eq. 4, precision using Eq. 5 [46], and F1score using Eq. 6

[47].

Accuracy ¼ tpþ tn

tpþ fpþ fnþ tn
ð2Þ

Sensitivity TPRð Þ ¼ tp

tpþ fn
ð3Þ

Specificity TNRð Þ ¼ tn

fpþ tn
ð4Þ

Precision PPVð Þ ¼ tp

tpþ fp
ð5Þ

F1 Score ¼ 2� Recall � Precisionð Þ
Recall þ Precision

ð6Þ

The variables in the equations mentioned earlier are tp

for true positive, tn for true negative, fp for false positive,

and fn for false negative. The equations use TPR for the

true positive rate, TNR for the true negative rate, and PPV

for the positive prediction value.

The IMP AlexNet model and the CNNs are run by

following a specific process that involves loading the

datasets, dividing them into training and testing sets with

an 80/20 split, resizing the images according to the network

used, applying data augmentation, and then applying the

CNNs with transfer learning. The results of the models are

the average of 10 repetitions of running. The confusion

matrix for the three used datasets is shown in Table 2.

Table 3 presents the evaluation measures (Accuracy,

Sensitivity, specificity, precision, and F1-score) of the

proposed IMP AlexNet (presented in bold) compared to

other CNNs. The traditional AlexNet achieved the best

classification accuracy in the three datasets with 99.15%,

99.13%, and 99% for PAD-UFES-20, MED-NODE, and

PH2 datasets, respectively. The proposed IMP AlexNet
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Fig. 6 Used CNNs diagram

Table 2 Confusion Matrix

Target class

Melanoma Naevus

Output class Mel 20 1

Nev 2 96

PAD-UFES-20

Target class

Melanoma Naevus

Output class Mel 15 1

Nev 1 63

PH2 dataset

Target class

Melanoma Naevus

Output class Mel 27 1

Nev 1 39

MED_NODE dataset
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Table 3 Evaluation measures of the IMP AlexNet model with Adam, Sgdm, and Rmsprop optimizers compared with other CNNs

Dataset CNN Accuracy Sensitivity Specificity precision F1score

Adam optimizer

PAD-UFES-20 AlexNet 99.15 96.364 99.792 99.167 97.661

DarkNet-19 99.1 96.364 99.792 99.167 97.661

IMP AlexNet 97.62 91.82 94.41 95.61 93.59

ShuffleNet 97.05 90.8 98.75 95 91.88

DarkNet-53 97.28 92.728 98.332 93.848 92.764

Inception-V3 96.77 89.092 98.542 93.924 91.095

VGG-16 96.6 86.37 99.38 96.89 90.24

SqueezeNet 95.59 83.41 98.541 93.749 85.104

MED-NODE AlexNet 99.13 97.858 100 100 98.89

DarkNet-19 98.84 97.858 100 100 98.89

IMP AlexNet 96.79 92.144 100 100 95.872

VGG-16 96.78 92.143 100 100 95.843

ShuffleNet 96.48 94.284 98 97.332 95.544

DarkNet-53 96.19 92.144 99 98.572 95.184

Inception-V3 95.89 91.43 98.5 97.86 94.79

SqueezeNet 95.3 91.426 98 97.332 94.006

PH2 dataset AlexNet 99 95 100 100 97.332

DarkNet-19 98.5 92.5 100 100 95.998

IMP AlexNet 96.75 87.5 100 100 90.949

VGG-16 96.5 86.25 100 100 90.282

ShuffleNet 96.29 86.75 99.375 98.182 90.187

DarkNet-53 96 82.5 99.688 98.75 88.82

Inception-V3 95.25 85 97.816 90.713 87.666

Sgdm optimizer

PAD-UFES-20 AlexNet 98.66 95.46 99.79 98.33 96.32

DarkNet-19 98.16 92.73 99.79 99.17 94.71

IMP AlexNet 96.54 89.89 98.33 93.33 90.57

ShuffleNet 96.43 90.91 94.98 90.61 90.63

DarkNet-53 96.26 90 97.71 90.85 89.91

Inception-V3 95.17 84.55 98.34 92.46 86.29

VGG-16 95.58 84.55 98.96 94.67 87.19

SqueezeNet 94.28 0.825 0.9854 0.9375 0.8327

MED-NODE AlexNet 98.84 97.14 100 100 98.52

DarkNet-19 97.96 95.72 99.5 99.29 97.44

IMP AlexNet 96.2 95.71 96.5 95.33 95.28

VGG-16 95.3 88.57 100 100 93.91

ShuffleNet 95.6 89.29 100 100 94.3

DarkNet-53 95.3 90 99 98.57 94.02

Inception-V3 94.51 92.86 95.5 94.7 93.5

SqueezeNet 94.21 91.43 96 95.51 92.98
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achieved 97.62%, 96.79%, and 96.75% for PAD-UFES-20,

MED-NODE, and PH2 datasets, respectively. DarkNet-19

achieved results approximately close to the results of

AlexNet with 99.1%, 98.84%, and 98.5% accuracy, but it

needs more running time and memory usage as shown in

Table 4.

Table 4 presents the performance measures of the

compared CNN models. It shows the average accuracies,

the average number of iterations in each run, the average

running time of 10 repeated runs, the average RAM used

by the models, and the average running time per image.

The performance measures of IMP AlexNet are presented

in bold, it is found that the proposed IMP AlexNet achieves

97.62% in an average running time of 0.45 min and the

average RAM used is 1.8 GB on the PAD-UFES-20

dataset. When the MED-NODE dataset is used with the

proposed IMP AlexNet, the average accuracy is 96.79% in

an average running time of 0.28 min, and the average

RAM used is 1.6 GB. On the PH2 dataset, IMP AlexNet

achieved an average accuracy is 96.75% in an average

running time of 0.3 min and the average RAM used is

1.7 GB.

According to Table 4, AlexNet and IMP AlexNet were

not affected by the size of the dataset, as their running

times with the three datasets were close to each other and

achieved the highest accuracies in the table. However,

Table 3 (continued)

Dataset CNN Accuracy Sensitivity Specificity precision F1score

PH2 dataset AlexNet 98.5 92.5 100 100 95.998

DarkNet-19 97.5 87.5 100 100 93.05

IMP AlexNet 95.79 84.25 99.38 98.18 88.76

VGG-16 95.25 82.5 99.06 95.71 87.05

ShuffleNet 95.5 83.75 100 100 87

DarkNet-53 94.75 76.25 99.69 98.75 84.66

Inception-V3 94 78.75 97.82 90.71 83.72

SqueezeNet 93.75 78.75 98.13 90.83 82.64

rmsprop optimizer

PAD-UFES-20 AlexNet 97.33 91.64 89.684 88.434 84.581

DarkNet-19 97.14 91.82 99.79 99.17 91.61

IMP AlexNet 96.03 88.98 97.92 91.67 89.27

ShuffleNet 95.75 90.91 96.88 87.12 88.94

VGG-16 95.24 83.64 98.75 93.56 86.19

DarkNet-53 94.6 84.09 97.92 90.42 84.62

Inception-V3 93.61 82.27 98.54 92.5 81.24

SqueezeNet 93.26 79.77 97.92 90.83 80.29

MED-NODE AlexNet 96.78 92.14 100 100 95.84

DarkNet-19 96.48 94.29 98 97.14 95.66

IMP AlexNet 95.9 94.28 97 96 94.85

VGG-16 95.3 88.57 100 100 93.91

ShuffleNet 94.51 90.71 97 96.84 93.33

DarkNet-53 93.97 92.86 94.5 93.84 92.95

Inception-V3 93.19 95.72 91 89.96 92.43

SqueezeNet 92.33 90.36 93.5 92.76 91.08

PH2 dataset AlexNet 97 88.75 99.06 96.25 92.25

DarkNet-19 96.5 82.5 100 100 90.28

IMP AlexNet 95.54 83.25 99.38 98.18 88

VGG-16 95 800 100 100 85.36

ShuffleNet 94.5 78.75 100 100 83.72

DarkNet-53 94 71.25 99.69 98.75 82.26

Inception-V3 93.75 77.5 97.82 90.53 82.97

SqueezeNet 92.43 76 96.88 87.5 80.02
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DarkNet-53 and Inception-V3 showed differences in run-

ning times as the size of the dataset varied. When the size

of the dataset increased, the running time increased. Dar-

kNet-53 achieved 50.2, 42.7, and 43.6 min for PAD-UFES-

20, MED-NODE, and PH2 datasets, respectively.

Inception-V3 achieved 20.6, 15.3, and 16 min for the same

datasets.

The running time of different neural networks was

compared with the same number of iterations. For AlexNet

and IMP AlexNet, the average number of iterations with

PAD-UFES-20 was 350, and the running time was 5.7 and

Table 4 Performance measures of the proposed IMP model compared with recent CNN models for different datasets

CNN model Performance measure PAD-UFES-20 MED-NODE PH2 dataset

AlexNet Average accuracy (%) 99.15 99.13 99

Average number of Iterations 350 200 250

Average running time(min.) 5.7 5 5.2

Average used RAM(GB) 2.8 2.2 2.6

Average running Time per image (min.) 0.0096 0.014 0.013

Proposed IMP AlexNet Average accuracy (%) 97.62 96.79 96.75

Average number of Iterations 350 200 200

Average running time(min.) 0.45 0.28 0.3

Average used RAM(GB) 1.8 1.6 1.7

Average running Time per image (min.) 0.00076 0.0008 0.00075

VGG-16 Average accuracy (%) 96.6 96.78 96.5

Average number of Iterations 750 400 500

Average running time(min.) 32 21.3 22.5

Average used RAM(GB) 4.32 4.2 4.4

Average running Time per image (min.) 0.054 0.062 0.056

ShuffleNet Average accuracy (%) 97.05 96.48 96.29

Average number of Iterations 350 200 250

Average running time(min.) 15.1 13.4 14.2

Average used RAM(GB) 2.5 2.3 2.35

Average running Time per image (min.) 0.025 0.039 0.0355

SqueezeNet Average accuracy (%) 95.59 95.3 94.87

Average number of Iterations 350 200 250

Average running time(min.) 16.3 12.1 14

Average used RAM(GB) 3 2.6 2.71

Average running Time per image (min.) 0.027 0.035 0.035

DarkNet-19 Average accuracy (%) 99.1 98.84 98.5

Average number of Iterations 350 200 250

Average running time(min.) 15.2 10.2 11.1

Average used RAM(GB) 3.8 3.1 3.3

Average running Time per image (min.) 0.0256 0.0297 0.0277

DarkNet-53 Average accuracy (%) 97.28 96.19 96

Average number of Iterations 250 200 250

Average running time(min.) 50.2 42.7 43.6

Average used RAM(GB) 2.37 2.1 2.2

Average running Time per image (min.) 0.084 0.125 0.11

Inception-V3 Average accuracy (%) 96.77 95.89 95.25

Average number of Iterations 350 200 250

Average running time(min.) 20.6 15.3 16

Average used RAM(GB) 2.8 2.66 2.7

Average running Time per image (min.) 0.034 0.045 0.04
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0.45 min, respectively. On the other hand, for DarkNet-53,

the number of iterations was 250, but the running time was

50.2 min. The study did not find a significant impact of the

number of iterations on the running time.

The average running time per image is added to fairly

compare the running time between the used CNN models.

It is found that IMP AlexNet keeps the lowest running time

per image and requires less than a second to classify an

image in the three used datasets. Additionally, IMP Alex-

Net had the lowest RAM, making it a good candidate for

transfer to a mobile application in future work.

A comparison between the accuracy achieved is held in

Fig. 7, Group 1 refers to the traditional AlexNet, and

Group 2 refers to the proposed IMP AlexNet. The tradi-

tional AlexNet has the highest accuracy compared to other

CNNs, while the proposed IMP AlexNet results are slightly

lower than the traditional AlexNet results. The accuracy

reduction between the traditional AlexNet and the pro-

posed IMP AlexNet is 1.53, 2.3, and 2.2 for PAD-UFES-

20, MED-NODE, and PH2 datasets, respectively. Addi-

tionally, the running time and memory usage are reduced,

as shown in Figs. 8 and 9.

In Fig. 8, it is observed that the average running time is

reduced from the traditional AlexNet that achieved

5.7 min, 5 min, and 5.2 min to the proposed IMP AlexNet
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Fig. 7 Accuracy comparison between IMP AlexNet and other used CNNs
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that achieved 0.45 min, 0.28 min, and 0.3 min for PAD-

UFES-20, MED-NODE, and PH2 datasets, respectively.

In Fig. 9 the average used RAM is reduced from

2.8 GB, 2.2 GB, and 2.6 GB with traditional AlexNet to

1.8 GB,1.6 GB, and 1.7 GB with the proposed IMP

AlexNet for PAD-UFES-20, MED-NODE, and PH2 data-

sets, respectively.

Table 5 lists the improvements achieved by the proposed

IMP AlexNet compared to other CNNs. The first column

indicates the name of the compared method, the second

column indicates how many times IMP AlexNet acceler-

ates the ordinary methods, and the third column indicates

the average reduction achieved in the used RAM. The first

row shows how the traditional AlexNet is improved. It is

found that the IMP AlexNet accelerates the average run-

ning time by around 15 times of the traditional AlexNet,

and it saves average used RAM by 40%.

4.2 Influence of unbalanced classes

In this study, the unbalanced classes did not significantly

affect the classification accuracy because the difference

between the classes in the used datasets was not huge. On

the other hand, the Isic-2020 dataset has a significant dif-

ference in the number of samples between the two classes,

it is composed of 584 for malignant 32,542 and 32,542 for

benign [48]. When we applied our model to Isic-2020, it

achieved high accuracy (more than 90%) although the

malignant class is sometimes totally misclassified.

The IMP AlexNet model’s confusion matrix shows that

there is no effect of unbalanced classes. In the PAD-UFES-

20 dataset, one image is misclassified in the melanoma

class and two images are misclassified in the naevus class.

In the MED-NODE dataset and PH2 dataset, only one

image is misclassified in each class. Class imbalance can

affect the accuracy of classification models. The confusion

matrix provides more insight into the accuracy of a pre-

dictive model and which classes are being predicted cor-

rectly or incorrectly.

The F1-score is used to detect if the model is a good

predictor or not because the F1-score is a combination of

precision and recall as shown in Eq. (6). Precision com-

putes the correct positive predictions that the model can

make. Recall computes the correct positive samples of the

dataset that the model can identify. A high F1-score indi-

cates that both precision and recall are high, while a low

F1-score indicates that either precision or recall (or both)

are low. Like the case of the Isic-2020 dataset, it achieved

very high accuracy but the F1 score is low. The F1-score is

a useful metric for evaluating model performance, espe-

cially in cases where accuracy may be misleading, such as

imbalanced.
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Fig. 9 Average used RAM comparison between IMP AlexNet and other used CNNs

Table 5 IMP AlexNet improvements

Compared method IMP AlexNet improvements

Average acceleration time RAM reduction %

AlexNet 15 times 40

VGG-16 70 times 58

ShuffleNet 42 times 28

SqueezNet 41 times 38

DarkNet-19 35 times 52

DarkNet-53 134 times 23

Inception-v3 50 times 36
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Table 6 Comparison with the previous work using the same datasets

Used dataset Accuracy Used technique Limitations

[10] A merged dataset of MED-

NODE, 7-Point, PAD-

UFES-20, and PH2-dataset

96% Feed Forward Back

Propagation Network

(FFBPN)

The input image must be converted to a binary

image

Number of hidden neurons varies according to the

size of the dataset which affects the complexity of

the network and running time

No mention of running time, RAM used, and the

number of independent runs

[50] PAD-UFES-20 94.5 Inception-ResNet-v2 CNN Inception-ResNet-v2 contains 164 layers. So, it

needs a higher running time

No mention of running time, RAM used, and the

number of independent runs

AlexNet 99.15 AlexNet with transfer
learning

Needs running time longer than that of IMP
AlexNet

The Proposed
IMP
AlexNet

97.62 Iterative magnitude
pruning AlexNet

–

[51] PH2-dataset 96% Support vector machine

(SVM)

The model accepts HSV images only

The dataset used is dermoscopic images only

F1-score is not in the performance measures

No mention of running time, RAM, and

independent runs

[11] 94.97% New Residual Deep

Convolutional Neural

Network (RDCNN)

RDCNN model contains 56 layers, which makes

the Running time increase

Accuracy is less than our proposed model

[52] 93.167% The DenseNet201

Extraction Model,

combined with the KNN

classifier

DenseNet201 contains 201 layers, which makes the

running time increase

Test on dermoscopic images only

[53] 92.50% Multiple instance learning

(MIL)

The input image must be 128 9 128 pixels

Test on dermoscopic images only

Accuracy less than our proposed model

AlexNet 99 AlexNet with transfer
learning

Needs running time longer than that of IMP
AlexNet

The Proposed
IMP
AlexNet

96.75 Iterative Magnitude
Pruning AlexNet

–

[11] MED-NODE 92% New Residual Deep

Convolutional Neural

Network (RDCNN)

RDCNN model contains 56 layers, which makes

the Running time increase

Accuracy is less than our proposed model

[54] 83.33% Multilayer Neural Network

(MLP)

The input image must be converted to a binary

image

Test on non-dermoscopic images only

No mention of time, RAM, or independent runs

[44] 81% Cluster-Based Adaptive

Metric (CLAM) classifier

Clusters-based algorithms have high time

complexity [55]

Test on dermoscopic images only

no mention of time, RAM, or independent runs

AlexNet 99.13 AlexNet with transfer
learning

Needs running time longer than that of IMP
AlexNet

The Proposed
IMP
AlexNet

96.79 Iterative Magnitude
Pruning AlexNet

–
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So, we can say that the proposed IMP AlexNet is a good

predictor when the melanoma class resembles 18% to 42%

from the used dataset, which is the case in the used datasets.

The melanoma class percentages from the whole dataset are

18%, 20%, and 42% for PAD-UFES-20, PH2, and MED-

NODE respectively. Unlike the case in Isic-2020, the mel-

anoma class percentage from the whole dataset is 2% which

achieved F1-score ranges from 50 to 60%.

In Table 4, with Adam optimizer, you can find that IMP

AlexNet achieved an F1-score greater than 90% for the

three used datasets which are 93.59%, 95.87%, 90.94% for

PAD-UFES-20, MED-NODE, and PH2 datasets, respec-

tively. According to [49], f1-score values greater than 90%

are considered to be very good and this is the case with f1-

scores achieved by the proposed IMP AlexNet. Accuracy

cannot be the only measure for evaluating the model per-

formance, it must be accuracy alongside with f1-score to

correctly evaluate the model.

4.3 Comparison between IMP AlexNet Model
and prior work

In Table 6, a comparison is held between the proposed IMP

AlexNet and the previous studies that use the same datasets

that we used in our study. By looking for the accuracies

achieved before in column 3, it is found that our model still

has the highest classification accuracy among them. The

traditional Alexnet and the proposed IMP AlexNet are

presented in bold.

Our model not only achieved a high accuracy, it is also

outperforming the state of the art. By inspecting the limi-

tations of each study in column 5, you will find that our

model solves these limitations. First, the input image in

some previous model must be a binary image [10, 54],

specific colour space [51], or has low resolution [53].

Unlike the case with the proposed IMP AlexNet, it accepts

coloured images with the input resolution of AlexNet.

Second, some models in prior work are to some extent

complicated. Some of them have a variable number of

neurons [10]. Others have a large number of layers

[11, 50, 52]. Some of them use a cluster-based algorithm

which has high time complexity [44]. Unlike the case in

IMP AlexNet which has eight layers only. This directly

affects the running time of the model.

Third, our model can test different types of skin cancer

images which are dermoscopic (PH2 Dataset), non-der-

moscopic (MED-NODE), and smartphone images (PAD-

UFES-20). This advantage is missing in most previous

studies which test their models with only one type of

dataset like the case in [44, 51–54].

Fourth, the specifications of the model are clearly stated

which are the running time, RAM used, and performance

measures. The model results are average for ten

independent runs, but some previous studies didn’t mention

whether the results are average for several runs or only one

run, and others take the average for a few numbers of

independent runs. Some of them didn’t mention the run-

ning time and RAM used [10, 44, 50, 51, 54]. Others didn’t

mention f1-score in the evaluation measures which is the

indicator of the model efficiency [51].

Finally, we can say that the model in our study is an

integrated step for creating a mobile application system in

future work, able to test a skin lesion in real-time using a

mobile phone camera or any type of skin cancer images.

5 Conclusion and future work

A method called IMP AlexNet has been developed to

create a light version of CNN that can be used on mobile

devices or computers with limited capabilities. The IMP

AlexNet was utilized on three different skin cancer data-

sets, which included smartphone images, dermoscopic

images, and non-dermoscopic images.

To showcase the robustness of the proposed IMP

AlexNet, the results were compared with those of tradi-

tional AlexNet and other CNN models. The comparison

considered three main elements which are classification

accuracy, average running time, and average used RAM.

The proposed IMP AlexNet achieved high accuracies on

three different skin lesion datasets: PAD-UFES-20, MED-

NODE, and PH2. Specifically, the accuracies achieved

were 97.62%, 96.79%, and 96.75%, respectively. These

accuracies were achieved in the lowest average running

time and the lowest average used RAM, which was 0.45,

0.28, and 0.3 min and 1.8, 1.6, and 1.7 GB, respectively.

These results achieved the main goal of the research.

It is concluded that IMP AlexNet achieved its result with

the lowest running time and used RAM. The previous

observation outperforms the state of the art and makes the

IMP AlexNet light version of CNNs that can be used as a

mobile application in future work with accepted classifi-

cation accuracy.

For future work, it is suggested the following: First,

applying IMP AlexNet on datasets with multiclass skin

cancer. Second, applying IMP on different CNNs for

example DarkNet-19 because it achieves accuracy

approximately close to AlexNet. Third, converting IMP

AlexNet to a mobile application. Finally, parallel pro-

cessing can be applied with the proposed IMP AlexNet

which can improve the achieved results of IMP AlexNet.
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standing sensitivity, specificity and predictive values. Vojnosanit

Pregl 71(11):1062–1065. https://doi.org/10.2298/vsp1411062s

47. Adegun AA, Viriri S (2020) FCN-based DenseNet framework for

automated detection and classification of skin lesions in der-

moscopy images. IEEE Access 8:150377–150396. https://doi.org/

10.1109/ACCESS.2020.3016651

48. Retrieved August 22, 2023: https://challenge2020.isic-archive.

com/

49. Retrieved August 20, 2023: https://encord.com/blog/f1-score-in-

machine-learning/

50. Mehr R, Ameri A (2022) Skin cancer detection based on deep

learning. J Biomed Phys Eng 12(6):559. https://doi.org/10.31661/

jbpe.v0i0.2207-1517

51. Waheed Z, Waheed A, Zafar M & Riaz F (2017) An efficient

machine learning approach for the detection of melanoma using

dermoscopic images. In: 2017 International conference on com-

munication, computing and digital systems (C-CODE) (pp

316–319). IEEE. doi:https://doi.org/10.1109/C-CODE.2017.

7918949

52. Rodrigues D, Ivo R, Satapathy S, Wang S, Hemanth J, Reboucas

FP (2020) A new approach for classification skin lesion based on

transfer learning, deep learning, and IoT system. Pattern Recogn

Lett 136:8–15. https://doi.org/10.1016/j.patrec.2020.05.019

53. Astorino A, Fuduli A, Veltri P, Vocaturo E (2020) Melanoma

detection by means of multiple instance learning. Interdiscip Sci:

Comput Life Sci 12:24–31. https://doi.org/10.1007/s12539-019-

00341-y

54. Mukherjee S, Adhikari A, Roy M (2020) Malignant melanoma

detection using multi layer preceptron with visually impercepti-

ble features and PCA components from MED-NODE dataset. Int

J Med Eng Inform 12(2):151–168. https://doi.org/10.1504/IJMEI.

2020.106899

55. Xu D, Tian Y (2015) A comprehensive survey of clustering

algorithms. Ann Data Sci 2:165–193. https://doi.org/10.1007/

s40745-015-0040-1

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1428 Neural Computing and Applications (2024) 36:1413–1428

123

https://doi.org/10.1109/TGRS.2021.3077062
https://doi.org/10.1145/1869790.1869829
https://doi.org/10.1145/1869790.1869829
https://doi.org/10.1109/JPROC.2017.2675998
https://doi.org/10.1109/JPROC.2017.2675998
https://doi.org/10.1145/3404835.3462902
https://doi.org/10.1145/3404835.3462902
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1109/ACCESS.2021.3061489
https://doi.org/10.1109/LGRS.2015.2504449
https://doi.org/10.1109/LGRS.2015.2504449
https://doi.org/10.1109/LGRS.2019.2962768
https://doi.org/10.1109/LGRS.2019.2962768
https://doi.org/10.1016/j.jalz.2014.05.1756
https://doi.org/10.1016/j.jalz.2014.05.1756
https://doi.org/10.1109/TMI.2015.2398818
https://doi.org/10.1016/j.jamcollsurg.2014.12.008
https://doi.org/10.1016/j.jamcollsurg.2014.12.008
https://doi.org/10.1007/978-3-642-33418-4_51
https://doi.org/10.1007/978-3-642-33418-4_51
https://doi.org/10.1016/S0140-6736(14)61490-2
https://doi.org/10.1109/TNNLS.2020.3027308
https://doi.org/10.1109/TNNLS.2020.3027308
http://arxiv.org/abs/1605.01397
https://doi.org/10.48550/arXiv.1605.01397
https://doi.org/10.1016/j.dib.2020.106221
https://doi.org/10.1016/j.dib.2020.106221
https://doi.org/10.1016/j.eswa.2015.04.034
https://doi.org/10.1109/EMBC.2013.6610779
https://doi.org/10.1109/EMBC.2013.6610779
https://doi.org/10.2298/vsp1411062s
https://doi.org/10.1109/ACCESS.2020.3016651
https://doi.org/10.1109/ACCESS.2020.3016651
https://challenge2020.isic-archive.com/
https://challenge2020.isic-archive.com/
https://encord.com/blog/f1-score-in-machine-learning/
https://encord.com/blog/f1-score-in-machine-learning/
https://doi.org/10.31661/jbpe.v0i0.2207-1517
https://doi.org/10.31661/jbpe.v0i0.2207-1517
https://doi.org/10.1109/C-CODE.2017.7918949
https://doi.org/10.1109/C-CODE.2017.7918949
https://doi.org/10.1016/j.patrec.2020.05.019
https://doi.org/10.1007/s12539-019-00341-y
https://doi.org/10.1007/s12539-019-00341-y
https://doi.org/10.1504/IJMEI.2020.106899
https://doi.org/10.1504/IJMEI.2020.106899
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1

	Iterative magnitude pruning-based light-version of AlexNet for skin cancer classification
	Abstract
	Introduction
	Related work
	Pruning methods used in general applications:
	Pruning methods in specific applications
	Pruning methods in medical applications

	Proposed model
	Dataset and pre-processing
	Data augmentation
	Transfer learning
	Iterative magnitude pruning model
	Pretrained convolutional neural networks

	Experimental results and discussions
	IMP AlexNet model evaluation
	Influence of unbalanced classes
	Comparison between IMP AlexNet Model and prior work

	Conclusion and future work
	Funding
	Open Access
	References




