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Abstract
Orbital tumors are the most common eye tumors that affect people all over the world. Early detection prevents the

progression to other regions of the eye and the body. Also, early identification and treatment could reduce mortality. A

computer-assisted diagnosis (CAD) system to help physicians diagnose tumors is in great demand in ophthalmology. In

recent years, deep learning has demonstrated promising outcomes in computer vision systems. This work proposes a CAD

system for detecting various forms of orbital tumors using convolutional neural networks. The system has three stages:

preprocessing, data augmentation and classification. The proposed system was evaluated on two datasets of magnetic

resonance imaging (MRI) images containing 1404 MRI T1-weighted images and 1560 MRI T2-weighted images. The

results have shown that the system is capable of detecting and classifying the tumor in each image type, and the recognition

rate for the T1-weighted image is 98% and for the T2-weighted image is 97%.
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1 Introduction

The bony cavity known as the orbit contains the eye’s

controlling muscles, nerves, and blood vessels in addition

to enclosing and safeguarding the eyeball. Orbital tumors

are irregular tissue growths in the tissues that surround the

eye [1]. These lesions may be either benign or malignant.

Tumors involving the orbit are divided into primary orbital

tumors and secondary orbital tumors which expand from

other regions into the orbit. Primary intraocular tumors

begin on the inside of the globe. Melanoma, followed by

primary intraocular lymphoma, is the most frequent pri-

mary eye malignancy in adults. Retinoblastoma (cancer

that begins in the retinal cells) is the most frequent primary

intraocular cancer in children, followed by medulloep-

ithelioma (but is still extremely rare). Secondary intraoc-

ular tumors begin outside the globe and spread inside it.

These are not really ‘‘eye cancers,’’ but they are more

common than primary intraocular cancers. Breast and lung

cancers are the most common primaries that send secon-

daries to the eye. The orbital tumor has many symptoms

and various signs; these are depending on the type and the

site of the tumor. Most patients notice bulging of the

eyeball, double or loss of vision, and droopy or swollen

eyelid. In some cases, the patient complains of pain

because of infections and inflammation [2].

Imaging investigations are vital for diagnosing orbital

tumors. Magnetic resonance imaging (MRI) and computed

tomography (CT) scans are used as detection methods.

MRI images are better than CT in detecting soft tissues and

demonstrating the proximity of orbital lesions to the optic

nerve [3]. It can diagnose lesions by providing a clear

image of structures within the orbit. MRI has two image

types: T1-weighted and T2-weighted images to produce

multidirectional images demonstrating structures, tissues

and their anatomical interactions.

The lesion shows a hypointense signal to fat and an

isointense signal to extraocular muscle on T1-weighted

MRI images, while a hyperintense signal to fat on T2-
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weighted MRI images. This feature facilitates the identi-

fication of the type of lesions and increases diagnostic

accuracy. A biopsy could be performed so that the tumor

tissue could be microscopically studied for a conclusive

diagnosis [4].

A vast area of computer science called artificial intelli-

gence (AI) is focused on developing smart machines that

can carry out tasks that would ordinarily need human

intelligence. In the medical industry, machine-learning

models are utilized to explore medical records and provide

insights to enhance patient care and health outcomes. In

both research and clinical contexts, physicians are sup-

ported by AI algorithms and other AI-powered applica-

tions. The most widely used applications of AI in medical

contexts today are clinical decision support and image

analysis. Clinical decision support methods assist doctors

in making decisions regarding treatments, drugs and other

patient requirements by giving rapid access to pertinent

information or research. In medical sciences, AI applica-

tions include patient diagnosis, prognosis, and medication

development. Also, AI techniques are used in image

analysis to examine CT scans, MRIs, X-rays and other

medical images for lesions or other diseases which radi-

ologists could overlook [5].

Computer-aided diagnosis (CAD) is a technology or

application that assists doctors in understanding and

interpreting medical images. CAD has gained popularity as

a useful tool for supporting clinical decisions for several

diseases [6]. Diagnostic imaging modalities such as X-ray,

MRI, endoscopy, and ultrasound generate a large amount

of data that a radiologist or other medical practitioner must

extensively examine, evaluate and interpret in a short

amount of time. CAD systems analyze digital images or

videos for common features and critical aspects, like pos-

sible diseases, and offer feedback to the physician. A fre-

quent sort of application is tumor detection or classification

[7].

In this article, a CAD system has been proposed for the

detection of orbital tumors. Our contribution is developing

a new system using convolutional neural networks (CNN)

to classify orbital tumors from MRI images. Preprocessing

and data augmentation are applied to the images to

improve the performance of the system. Following is how

the paper is organized: The related work is described in

Sect. 2. The background is shown in Sect. 3. The proposed

system is illustrated in detail in Sect. 4. The study’s find-

ings are displayed in Sect. 5. In Sect. 6, the interpretation

of results and discussion is presented. The conclusion and

the scope for further research are presented in Sect. 7.

2 Related works

There are many studies on the classification of eye tumors.

Biswarup et al. [8] demonstrated a technique for detecting

ocular melanoma in medical images. The system is sepa-

rated into three steps: image pre-processing, image label-

ing, and classification. In the first stage, images were

rescaled, cropped showing only the eye image’s middle

section, and enlarged appropriately throughout the prepa-

ration processes. Then, the images were labeled as mela-

noma or non-melanoma by medical experts. CNN is

employed as the classifier in the classification stage. The

CNN model is made up of two convolutional layers, two

sub-sampling layers, and three fully connected layers. The

dataset was gathered from the New York Eye Cancer

Centre database. It has 170 images, 110 of which are ocular

melanoma and 60 are normal. Ophthalmologists validated

the suggested method, which has a 91.76% accuracy rate.

Sheshang et al. [9] developed a system for detecting

ocular melanoma in medical images. Preprocessing, seg-

mentation, and identification are the system’s three stages.

Image preparation techniques such as grayscale transfor-

mation and the median filter were used. Otsu segmentation

was applied as a thresholding method to images during the

segmentation step to convert a gray image to a mono-

chrome which is a standard activity for image cessation.

Otsu process is one of the binarization algorithms. During

the classification stage, CNN is used as a classifier. The

CNN model is made up of four convolutional layers, four

maximum pooling layers, and two fully connected layers.

The dataset was gathered from two publicly accessible

websites, ‘‘Miles Research’’ [10] and ‘‘Eye Cancer’’ [11].

There are 200 images in the collection. The system was

examined on its capacity to correctly detect eye melanoma

which results in a high rate of 92.5%.

Parmod et al. [12] created a classification system for

detecting retinoblastoma in fundus images. The system’s

two stages are segmentation and classification. The Otsu

multi-thresholding approach was applied to segment the

tumors from the fundus images. The next stage was to

categorize the retinoblastoma in fundus images using the

AlexNet and ResNet50 deep learning models. The dataset

was obtained from the MathWorks [13] website which
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contains 278 fundus images. The system recognized

retinoblastoma with an accuracy rate of 93.16% for the

ResNet50 and 88.12% for the AlexNet.

3 Background

Deep learning (DL) is a new methodology that has huge

growth and evolution in medical fields. This opened a new

door for medical image analysis. DL applications in

healthcare tackle a wide range of concerns, including

cancer classification, segmentation, detection, screening

and infection monitoring to individualized therapy rec-

ommendations. Nowadays, a huge amount of raw data is

given at the disposal of physicians in various data forms

such as radiological imaging, genetic sequencing, and

pathological imaging. It offers the possibility of trans-

forming all of this knowledge into usable information. DL

has recently achieved high performance over human per-

formance on tasks such as image classification [14]. In

general, feature extraction is accomplished with better

performance by DL techniques. For that purpose,

researchers focus on using DL approaches to extract dis-

criminative features using the least amount of human effort

and field experience.

A CNN is a deep learning model used to identify

essential features in data with a grid pattern, such as ima-

ges. It has become essential in various computer vision

tasks and is gaining interest in a wide range of fields.

Nowadays, DL is quite popular because of CNN [14]. A

common CNN architecture composes convolution and

pooling layers, followed by single or several fully con-

nected layers. To enhance CNN performance, numerous

regulatory units such as batch normalization and dropout

are added in addition to different mapping functions. A

convolution process with no padding, a size of kernel

3 9 3, and a stride of 1 is illustrated in Fig. 1.

The arrangement of CNN components is critical in

building new architectures, thereby obtaining improved

performance [16]. The initial layer utilized to extract the

various features from the input images is the convolutional

layer. The mathematical process of convolution is executed

between the input and a filter in this layer. Swiping the

filter across the input computes the dot product between the

filter and the regions of the input based on the filter’s size.

This layer produces a feature map, which provides

important image information, such as the edges and cor-

ners. The following layers learn distinctive features from

the input image using this feature map. Convolutional

operations have kernels as a parameter where kernel size,

number of kernels, stride, padding, and activation functions

are hyperparameters [17].

A pooling layer downsamples the feature maps in-plane

to introduce translation invariance to minor shifts and

distortions and to reduce the number of learnable param-

eters. Despite the fact that filter size, padding, and stride

are hyperparameters in pooling operations, similar to

convolution processes, no learnable parameters exist in

pooling layers. The last layer is the fully connected layer,

which transforms the output feature maps into a vector or

one-dimensional array [17]. The model can be connected to

one or more fully connected layers, with a learnable weight

connecting each input to each output. In classification

tasks, this layer transfers the output into probabilities for

each class.

4 The proposed system

This section illustrates the pipeline to implement our pro-

posed system. The pipeline is divided into several stages;

starting with image acquisition, image preprocessing,

image augmentation, model training and ending with

model evaluation. The proposed system pipeline is depic-

ted in Fig. 2.

4.1 Image acquisition

We used two datasets in our experiment. Both types of

images of orbital tumors were collected from Ain Shams

University Hospital, Ophthalmology Department. The

normal images were collected manually from different

articles from a public website [18]. They consist of dif-

ferent MRI images: T1-weighted and T2-weighted images.

The total size of T1-weighted images is 133 MRI images:

20 normal images and 113 orbit tumor images. The total

size of T2-weighted images is 109 MRI images: 24 normal

images and 85 orbit tumor images. The tumor datasets

consist of 30 patients that have different orbital tumor

types. The tumor T1-weighted image dimension is
Fig. 1 A convolution process with a kernel size of 3 9 3, no padding,

and a stride of 1 [15]
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(800 9 600) pixel resolution, and the normal image is

(509 9 400) pixel resolution. The tumor T2-weighted

image dimension is (824 9 800) pixel resolution, and the

normal image is (516 9 471) pixel resolution. Figure 3

shows the different MRI image samples used in the

experiment.

4.2 Image preprocessing

In our work, datasets had small samples that were not

enough to be used in the training phase. In order to prevent

overfitting in the experiment, one of the resampling tech-

niques was applied. First, oversampling technique was

implemented for each type of MRI image (normal and

tumor) to upgrade the number of images that were used in

the classification. Many image processing techniques were

applied including Gaussian blur filter, Median filter,

unsharp mask filter, sharpening filters, edge enhancement,

brightness filter and contrast filter.

Gaussian blur filter is a low pass filter used for reducing

noise (high-frequency components) and blurring regions of

an image and it is calculated by Eq. 1 [19].

G x; yð Þ ¼ 1

2pr2
e�

x2þy2

2r2 ð1Þ

where r is the standard deviation. In the context of filter-

ing, the standard deviation r is a parameter, which deter-

mines the width of the filter.

Median filtering is a nonlinear method used to remove

noise from images. It is widely used as it is very effective

at removing noise while preserving edges. It is particularly

effective at removing ‘salt and pepper’ type noise. The

median filter works by moving through the image pixel by

pixel, replacing each value with the median value of

neighboring pixels. The pattern of neighbors is called the

‘‘window,’’ which slides pixel by pixel, over the entire

image. [19]. The unsharp mask filter is an extremely ver-

satile sharpening tool that improves the definition of fine

detail by removing low-frequency spatial information from

the original image. It involves the subtraction of an unsharp

mask from the specimen image. An unsharp mask is simply

a blurred image produced by spatially filtering the speci-

men image with a Gaussian low-pass filter [20]. The

sharpening filters are a type of image processing that

enhances the contrast between neighboring pixels, making

the edges and details more visible and defined. Sharpening

filters can also reduce the effects of noise, blur, or com-

pression artifacts that degrade the quality of digital images.

Edge enhancement is an image processing filter that

enhances the edge contrast of an image or video in an

attempt to improve its acutance (apparent sharpness). The

filter works by identifying sharp edge boundaries in the

image, such as the edge between a subject and a back-

ground of a contrasting color and increasing the image

contrast in the area immediately around the edge. This has

the effect of creating subtle bright and dark highlights on

either side of any edges in the image, called overshoot and

undershoot, leading the edge to look more defined when

viewed from a typical viewing distance [21]. Brightness is

a relative term defined as the intensity of a pixel relative to

another pixel. To increase the brightness, we need to

increase the intensity of each pixel by a constant and

similarly to darken the image we need to decrease the

intensity of every pixel of the image [22]. Contrast can

simply be explained as the difference between maximum

Image Acquisition Image 
Preprocessing

Image 
Augmentation

Model 
Training

Model 
Evaluation

Fig. 2 The proposed system

pipeline

Normal T2-weighted Image     Orbit tumor T2-weighted Image

Normal T1-weighted Image     
Orbit tumor T1-weighted Image

Fig. 3 Sample of MRI images

(Normal and Orbit tumor)
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and minimum pixel intensity in an image. To change the

contrast of an image we just need to change the value of the

max and min intensity pixels [23].

For normal type, Gaussian blur filter, Median filter,

Unsharp mask filter with radius size (0.5, 1, 2 and 3),

sharpness filter with factor (0.5, 1, 1.5, 2, 3 and 4), EDGE

Enhance Filter, EDGE Enhance More Filter, Brightness

Filter with factor (0.5) and Contrast Filter with factor

(0.5) were applied to images. For tumor type, median

filter, sharpness filter with factors (0.5, 1, 3 and 4) and

Unsharp Mask filter with radius size (1.5) were executed

on images. Figure 4 shows samples for MRI T1-weighted

images after applying the image filter. Figure 5 shows

samples for MRI T2-weighted images after applying the

image filter.

The total number of T1-weighted images is 1404 MRI

images: 702 are normal and 702 are tumor images, and the

total number of T2-weighted images is 1560 MRI images:

780 are normal and 780 are tumor images. Tables 1 and 2

show the total number of MRI images after applying the

image processing techniques.

Second, the datasets in our experiment were split into

training, validation and testing sets with a ratio of 80% and

20% rule; 10% is validation and 10% is testing. The 80–20

split ratio is prevalently used in deep learning and is used

frequently in medical images. This 80–20 split technique is

known as ‘‘image-level approach’’. In this split, each

patient image is included in either the training or validation

set, but not in both and this is known as ‘‘patient-level

method’’ [24].

  Original Image           Gaussian blur Filter          Sharpness filter           Brightness filter              Contrast filter             Edge enhance filter

Normal T1-weighted images

   Original Image                   Median filter                 Sharpness filter

Tumor T1-weighted images

Fig. 4 Sample of MRI T1-weighted images with filter (Normal and Orbit tumor)

Original Image           Gaussian blur Filter          Sharpness filter              Brightness filter               Contrast filter             Edge enhance filter

Normal T2-weighted images

Original Image                   Median filter                    Sharpness filter

Tumor T2-weighted images

Fig. 5 Sample of MRI T2-weighted images with filter (Normal and Orbit tumor)
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4.3 Image augmentation

Many medical imaging collections in clinical settings

suffer from imbalanced data, and it is rare to find a large

amount of data for a specific clinical case. The skewed data

distribution is an essential issue that occurs frequently in

medical image classification problems. One of the methods

to overcome the insufficient amount of data utilized in the

training phase is data augmentation [25]. It is a method of

increasing the dataset size by implementing various

modifications such as rescaling, resizing and rotation of

current data in the runtime to generate new samples while

keeping the same label. Augmenting images increases the

overall amount of images available to the model, permit-

ting it to learn more effectively [26]. Data augmentation

has been deemed as a sort of dataset regularization since it

reduces over-fitting and improves overall performance by

enriching the training dataset itself [27]. Moreover, data

augmentation is used to solve the issue of imbalanced

classification by oversampling the minority class to enlarge

the datasets to make the model perform better on the

training data [28].

In our experiment, the dataset has small samples and we

used data augmentation to increase the amount of data. To

prevent over-fitting in the training phase, we applied some

geometric transformation techniques to the MRI images to

enhance the training phase. First, the images were resized

which changed the width and height to 224 9 224 pixels.

Second, images were rescaled which transformed the pixel

range from [0, 255] to [0, 1]. Third, images were rotated at

40� degrees. Fourth, the width and height of images had

shifted by 20%. Fifth, images were sheared by 20%. Sixth,

images were zoomed in by 20%. Finally, images were

flipped horizontally which reflect the images around the

central horizontal axis.

After applying image augmentation, the total number of

T1-weighted images is 11,232 MRI images and the total

number of T2-weighted images is 12,480 MRI images.

Table 3 shows the total number of MRI images after

applying image augmentation techniques.

4.4 The architecture of the CNN model

Our CNN model is split into fifteen sequence levels. It was

trained with 80 epochs and 64 batch sizes. The optimizer

type of CNN is ‘Adam,’ the loss function is binary cross-

entropy, and the learning rate is 0.01. Figure 6 illustrates

the CNN model architecture.

Layer 1 in our CNN architecture is the convolutional

layer with the ReLu (Rectified Linear Unit) activation

function. This layer obtains the pre-processed image as an

input with a size n*n = 224*224. The convolutional kernel

size (filter size) is f*f = 3*3, there is no padding (p), stride

(s) is 1 and the number of filters (neurons) is 32. We get

feature maps of size 32@222*222 after this convolution

process, where 32 is the number of neurons and 222 is the

Table 1 The total number of T1-weighted MRI images after applying

image processing techniques

Normal T1-

weighted

images

Tumor T1-

weighted

images

Original images 20 133

Gaussian blur filter 40 –

Median filter 60 266

Unsharp mask filter with radius size

(0.5, 1, 2 and 3)

140 399

Sharpness filter with factor (0.5, 1,

1.5, 2, 3 and 4)

462 702

EDGE Enhance Filter 522 –

EDGE Enhance More Filter 582 –

Brightness Filter 642 –

Contrast Filter 702 –

Table 2 The total number of T2-weighted MRI images after applying

image processing techniques

Normal T2-

weighted images

Tumor T2-

weighted

images

Original images 24 85

Gaussian blur filter 48 –

Median filter 72 196

Unsharp mask filter with radius

size (0.5, 1, 2 and 3)

167 337

Sharpness filter with factor (0.5,

1, 1.5, 2, 3 and 4)

386 780

EDGE Enhance Filter 513 –

EDGE Enhance More Filter 640 –

Brightness Filter 710 –

Contrast Filter 780 –

Table 3 The total number of MRI images after applying image augmentation techniques

Original images Resizing Rescaling Rotation Shifting Shearing Zooming Flipping horizontally

T1-weighted images 1404 2808 4212 5616 7020 8424 9828 11,232

T2-weighted images 1560 3120 4680 6240 7800 9360 10,920 12,480
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output of the formula ((n ? 2p-f)/

s) ? 1 = ((224 ? 2*0–3)/1) ? 1 = 222. The output of this

layer recognizes essential characteristics such as straight

edges and corners.

Layer 2 is the subsampling layer which we use as the

max pooling layer. The pooling size is 2*2, padding is 0

and stride is the default value so it is the same as pooling

size 2. We get a feature map of size 32@111*111 after the

max pooling operation, where 32 is the number of neurons

and 111 is the output of the formula ((n ? 2p-f)/

s) ? 1 = ((222 ? 2*0–2)/2) ? 1 = 111. This layer has no

activation function.

Layer 3 is the convolutional layer where the ReLu

activation function is applied. The convolutional filter size

is 3*3, the padding is 0, the stride is 1, and the number of

neurons is 64. After this convolution process, we get fea-

ture maps of size 64@109*109, where 64 is the number of

neurons. The ReLu activation is applied in each feature

map.

Layer 4 is the max pooling layer. The pooling size is

2*2, padding is 0, and stride is 2. We get a feature map of

size 64@54*54 after the max pooling operation, where 64

is the number of neurons. This layer has no activation

function.

Layer 5 is the convolutional layer where the ReLu

activation function is applied. The convolutional filter size

is 3*3, the padding is 0, the stride is 1, and the number of

neurons is 128. After this convolution process, we get

feature maps of size 128@52*52, where 128 is the number

of neurons. The ReLu activation is applied to each feature

map.

Layer 6 is the max pooling layer. The pooling size is

2*2, padding is 0 and stride is 2. We get feature map size

128@26*26 after the max pooling operation, where 128 is

the number of neurons. This layer has no activation

function.

Layer 7 is the convolutional layer where the ReLu

activation function is applied. The convolutional filter size

is 3*3, the padding is 0, the stride is 1, and the number of

neurons is 64. After this convolution process, we get fea-

ture maps of size 64@24*24, where 64 is the number of

neurons. The ReLu activation is applied to each feature

map.

Layer 8 is the max pooling layer. The pooling size is

2*2, padding is 0, and stride is 2. We get a feature map of

size 64@12*12 after the max pooling operation, where 64

is the number of neurons. This layer has no activation

function.

Layer 9 is the convolutional layer where the ReLu

activation function is applied. The convolutional filter size

is 3*3, the padding is 0, the stride is 1, and the number of

neurons is 32. After this convolution process, we get

Fig. 6 The CNN Model Architecture
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feature maps of size 32@10*10, where 32 is the number of

neurons. The ReLu activation is applied to each feature

map.

Layer 10 is the max pooling layer. The pooling size is

2*2, padding is 0, and stride is 2. We get a feature map of

size 32@5*5 after the max pooling operation, where 32 is

the number of neurons. This layer has no activation

function.

Layer 11 is a flattened layer to reshape the previous

layer’s output and produces a one-dimensional vector to be

used as an input to a fully connected layer.

Layer 12 is a dropout layer, a mask that eliminates some

neurons’ contributions to the next layer. It is one of the

regularization techniques to prevent overfitting during the

training phase.

Layer 13 is a fully connected layer. It receives the input

from the flattened layer and outputs a one-dimensional

vector of size 128. Each element in the vector receives the

ReLu activation function.

Layer 14 is a fully connected layer. It receives the input

from the previous layer and outputs a one-dimensional

vector of size 64. Each element in the vector receives the

ReLu activation function.

Layer 15 is the last layer in our CNN architecture. It is

another fully connected layer. It calculates the class scores

for each image to which the class belongs, resulting in a

binary class [0, 1] where the normal image is represented

by 0 and the tumor image is represented by 1. For the final

output, the sigmoid activation function is used.

5 Results

Two MRI datasets were used in the experiment: T1-

weighted and T2-weighted images. The MRI T1-weighted

image has 1404 MRI images: 702 normal and 702 tumor

images. The MRI T2-weighted image has 1560 MRI ima-

ges: 780 normal and 780 tumor images. Each dataset was

split into three groups training, validation and testing. For

this purpose, 80% of all images were allocated to the

training group and the remaining images were divided into

the validation group (10%) and the testing group (10%).

The performance of the developed system was evaluated

and assessed using accuracy, recall, precision and f1-score.

In order to calculate these matrices, we first calculated True

Positive (TP), False Positive (FP), False Negative (FN) and

True Negative (TN) for both MRI T1-weighted images and

MRI T2-weighted images. Figures 7 and 8 show the con-

fusion matrix for MRI T1-weighted images and MRI T2-

weighted images, respectively.

The accuracy, recall, precision, and f1-score of our

proposed system are shown in Table 4. The model training

and validation accuracy and loss results across epochs for

Fig. 7 Confusion Matrix for MRI T1-weighted images

Fig. 8 Confusion Matrix for MRI T2-weighted images

Table 4 The results of our proposed CNN model

T1-weighted images (%) T2-weighted images (%)

Accuracy 98 97

Recall 97 94.8

Precision 99 98

f1-score 99 97
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MRI T1-weighted images are demonstrated in Fig. 9, and

the model training and validation accuracy and loss results

across epochs for MRI T2-weighted images are demon-

strated in Fig. 10.

6 Discussions

This paper proposed a system for orbital tumor identifica-

tion from MRI images. It was trained on private MRI

datasets for orbital tumors of 1404 MRI T1-weighted

images and 1560 MRI T2-weighted images. We applied

different preprocessing techniques to increase the size of

the datasets. Various data augmentation techniques were

applied to enhance the model accuracy in the training

phase. In the experiment, horizontal flip, shifting zooming,

shearing, rescaling, resizing and rotation manipulation

were used as augmentation techniques. This proposed

system used a CNN with five convolutional and pooling

layers. In addition, it contains three fully connected layers

and the final one was modified to have one neuron.

Our classification system’s outcome was evaluated and

analyzed using different evaluation metrics, such as f1-

score, recall, precision and accuracy. The benefit of using

several different evaluation metrics is to ensure our mod-

el’s performance. Furthermore, while separating the data,

two approaches were utilized: shuffling and randomly

splitting the images into training, validation, and testing

sets, which is called the ‘‘image-level approach’’. Also, the

‘‘patient-level method’’ implies that each patient image was

utilized in either the training or validation set, but not both.

To ensure that the splitting data were representative of the

entire distribution of the data, we applied a shuffling

approach when splitting the data into training/validation/

test sets. In addition, shuffling data reduced variance and

ensured that the proposed model remained generic and

overfitting-free. As an additional validation step, the sec-

ond approach was utilized to ensure that our proposed

Fig. 9 The model training and validation accuracy and loss for MRI T1-weighted images

Fig. 10 The model training and validation accuracy and loss for MRI T2-weighted images
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system could categorize fresh patient images which had not

been exposed during the training phase.

To the best of our knowledge, this work is novel as no

previous research has been conducted to classify orbital

tumors; this is the first research on this type of tumor. But

there are previous studies that classified different types of

eye tumors. The results are compared with the existing

technique in terms of performance indices (see Table 5).

CNN architecture achieved promising accuracy in cat-

egorizing the MRI image dataset. Owing to its high reso-

lution for diverse tissues and lack of radiation, MRI is the

most often utilized non-invasive imaging technology for

tumor detection. On the other hand, tumor categorization

utilizing MRI scans is a difficult endeavor due to over-

lapping intensities and unpredictability in orientation, size

and shape. A neural network with sufficient depth, such as

CNN, is appropriate for controlling the variance and

learning the high-level characteristics, in addition to han-

dling noise disturbances and low image contrast [29]. It has

proven to be more capable of handling the variety and

complexity of MRI medical images. Moreover, medical

databases are typically limited and difficult to obtain. Our

system’s use of data augmentation enhanced model accu-

racy by expanding the variety of accessible data without

the requirement for further data collection.

7 Conclusion and future work

Our study demonstrates a new classification system for an

orbital tumor using MRI images. Preprocessing techniques

were applied to increase the size of the dataset. These

techniques include median filter, Gaussian blur, brightness,

contrast and edge enhance filters. Data augmentation

techniques were applied to enhance the performance of the

system, which includes horizontal flip, shifting, zooming,

shearing, rescaling, resizing and rotation manipulation. The

system was trained with two private datasets of MRI

images 1404 T1-weighted and 1560 T2-weighted images.

The recognition rate for the T1-weighted image is 98% and

for the T2-weighted image is 97%. For future work, we aim

to apply this system to different image types, such as

computed tomography, ultrasound and histological images

in addition to other types of eye tumors, such as iris,

conjunctiva, uvea and secondary tumors.
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Table 5 Performance comparison with previous work

Publication Objective Methodology Dataset Performance

Biswarup,

et al. [8]

Classification of eye

melanoma

CNN The dataset contains 170 images;

affected and unaffected

A recognition rate is 91.76%

Sheshang,

et al. [9]

Classification of eye

melanoma

CNN The dataset contains 200 images Accuracy is 92.5%

Parmod

et al. [12]

Identification of

Retinoblastoma from the

fundus images

AlexNet

ResNet50

The dataset contains 278 fundus images Accuracy is 88.12% for AlexNet and

93.16% for ResNet50 algorithms

The

proposed

system

Identification of orbital

tumors from MRI images

CNN The datasets contain 1404 MRI T1-

weighted and 1560 MRI T2-weighted

images

Accuracy is 98% for MRI T1-weighted

and 97% for MRI T2-weighted

images
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