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Abstract
In multiple-instance learning (MIL), the existing bag encoding and attention-based pooling approaches assume that the

instances in the bag have no relationship among them. This assumption is unsuited, as the instances in the bags are rarely

independent in diverse MIL applications. In contrast, the instance relationship assumption-based techniques incorporate the

instance relationship information in the classification process. However, in MIL, the bag composition process is com-

plicated, and it may be possible that instances in one bag are related and instances in another bag are not. In present MIL

algorithms, this relationship assumption is not explicitly modeled. The learning algorithm is trained based on one of two

relationship assumptions (whether instances in all bags have a relationship or not). Hence, it is essential to model the

assumption of instance relationships in the bag classification process. This paper proposes a robust approach that generates

vector representation for the bag for both assumptions and the representation selection process to determine whether to

consider the instances related or unrelated in the bag classification process. This process helps to determine the essential

bag representation vector for every individual bag. The proposed method utilizes attention pooling and vision transformer

approaches to generate bag representation vectors. Later, the representation selection subnetwork determines the vector

representation essential for bag classification in an end-to-end trainable manner. The generalization abilities of the pro-

posed framework are demonstrated through extensive experiments on several benchmark datasets. The experiments

demonstrate that the proposed approach outperforms other state-of-the-art MIL approaches in bag classification.

Keywords Multiple-instance learning (MIL) � Vision transformers � Attention-based pooling � Bag representation selection

1 Introduction

The multiple-instance learning (MIL) approach is a case of

weakly supervised learning [1]. This learning approach is

used where labeling cost is a major restriction for anno-

tating every data instance [2]. In MIL, the data are repre-

sented as bags with multiple instances, with only one label

for each bag. Unlike supervised learning, the labels of the

instances are not available in the training process. The

model in MIL is trained using weak bag-wise labels rather

than instance-wise labels. The case of supervised learning

and MIL is shown in Fig. 1a and b, respectively. In MIL,

the primary objective is to develop a model that predicts

the label of the test bag using training bags and corre-

sponding labels. The application of MIL is common in

image segmentation [3], medical image classification [4],

and others [5–7].

The MIL approaches can be categorized based on the

classification granularity: the bag-space level classification

approaches [8], which compute the distance between the

bags or apply maximum margin approach to train the

classifiers; embedding-space classification [9, 10], where

an entire bag is transformed into a fixed-size vector rep-

resentation and applies a simple single instance classifica-

tion algorithms; instance-space classification [11], where

the score for each instance is computed, and the bag label is

obtained based on the instance scores. The studies in

[12, 13] show that the first two categories are robust in bag

classification compared to the last category. However, the

bag-space and embedding-space classification approaches

cannot identify the key instances (the instances that trigger

the bag label) [13]. Identifying key instances in the bag is
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essential as these instances play a vital role in the bag

classification process and model interpretability.

Furthermore, in the context of MIL, the bags consist of

multiple instances, and the goal is to classify the bags

based on their contents. However, the difficulty arises when

the bags in the training set and testing come from a dif-

ferent distribution [14]. Previous MIL studies assume that

the instances of the bag in the training and testing data are

sampled from the same distribution (either related or

independent). However, this assumption is often violated in

real-world tasks [9, 13, 15–19].

For example, the case of MIL image classification is

illustrated in Fig. 2, where the image is considered a bag,

and the extracted patches are considered instances. The

instances related to the Fox concept are positive instances;

instances related to other objects like cars and buildings are

negative instances. Figure 2 illustrates the dissimilarity

between different training bag distributions, where the

training set contains images of the animal of interest in

natural settings. However, some images in the training and

testing set may be captured in a diverse environment or

contain other similar animals.

In such cases, the instances in the bag may or may not

have a relationship, and it can be challenging to ascertain

the presence or absence of any underlying instance rela-

tionships. Therefore, determining the relationship between

the instances in the bag becomes important to model per-

formance, and the presumption of a specific instance

relationship could potentially hinder the performance of the

classification algorithm. In order to obtain better general-

ization, the classifier must distinguish between instances

related to the fox concept, different animal species, other

objects inside the bag, and their relationship. Thus, deter-

mining the relationship or independence of instances in the

bag may enhance the classification process.

MIL algorithms [9, 13, 15–19] are developed based on

one of two assumptions: whether instances have a rela-

tionship or not. However, it is not theoretically guaranteed

that instances in all bags follow the same assumption.

Additionally, existing MIL algorithms do not explicitly

account for the bag-wise relationship assumption. As a

result, their performance could be improved since weak

bag-level labels provide only limited supervision.

For example, to identify the essential instances in the

bags, a weighted average bag pooling operation is proposed

using attention-based deep neural networks (AbDMIL)

[13], where end-to-end trainable architectures are used to

generate attention-based weights for each instance. The

concept of attention pooling is further investigated in Shi

et al. [15] by incorporating the attention loss mechanism.

However, the existing attention-based pooling approaches

[13, 15] and bag encoding strategies [9, 17] are based on

the assumption that instances in the bag are independent

and that no relationship exists between the instances of the

bag. In this assumption, the relationship between the

Fig. 1 Supervised learning (SL) vs Multiple-Instance learning (MIL),

a shows the example of instance classification setup followed in SL,

where every data instance is labeled. The MIL bag classification

approach is shown in b where the instances are grouped in bags, and

the labels are provided at bag level
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instances of the bags is ignored, which may result in

neglecting the information in the bag [20, 21].

On the other hand, the assumption of relationship

between instances is natural and may present a superior

description of the data [22]. Considering the different

image patches as interrelated is more meaningful than

assuming the opposite, specifically in multiple-instance

image classification scenarios. The assumption of instance

relation is also considered for MIL problems by Zhou

et al. [16]. However, these techniques mainly focus on the

structural properties of the bag, and the instance relation-

ships are modeled in terms of graph kernel learning.

Additionally, this process is not end-to-end trainable.

In this paper, we propose the idea of generating bag

representation vectors based on both assumptions and

introduce the bag representation selection process to select

a suitable representation for each bag, which addresses the

limitation of the instance relationship assumption in

existing MIL algorithms.

In the proposed algorithm, we incorporate bag-wise

instance relationship assumption in the classification pro-

cess by considering bags with varying instances as a batch,

and bag representation vectors are generated for each bag

based on the assumption of interaction and independence.

We obtain information about the relationship between

instances in a bag by using a vision transformer architec-

ture to model the dependencies among them. Furthermore,

the representation vectors for independent assumptions are

derived from the mean, max, average, and attention pool-

ing operations [13], which do not consider the relationship

of instances.

In addition, we propose a differentiable representation

selection network to decide whether to consider instance

relationships in the classification process for each bag. We

refer to the proposed approach as a vision transformer-

based instance weighting and representation selection

subnetwork (ViT-IWRS).

The major contributions of the paper are:

• The vision transformer (ViT)-based approach is pro-

posed to model the relationship between the instances

of the bag. This process helps to generate a bag

representation vector by considering the instance

relationship.

• To select informative bag representation from sets of

generated bag representation vectors, a differentiable

representation selection subnetwork (RSN) is proposed.

• The weight-sharing approach is presented for simulta-

neous instance weight learning and bag classification

for ViT. This method helps to strengthen the relation-

ship between the loss and instance weighting processes.

To demonstrate the generalization ability of the proposed

approach, the experiments are performed on multiple types

of data from different MIL application domains. For binary

classification, five benchmark datasets are used: Musk1 and

Musk2 [23] datasets for molecular activity predictions;

Fox, Elephant, and Tiger datasets for image classification.

For multi-class classification two datasets are used: multi-

ple-instance MNIST (MIL-MNIST) [13] dataset for hand-

written digit classification; MIL-based CIFAR-10 datasets

[15] for object recognition. Additionally, the experiments

are also conducted for real-world Colon Cancer detection

histopathology dataset [24].

The remainder of the paper is organized into the fol-

lowing sections: Sect. 2 presents the literature review.

Section 3 explains the proposed methodology for (ViT-

IWRS). The experimental setup is given in Sect. 4. The

Fig. 2 The example of distribution change where the training

examples are from distribution. a Shows the positive training

example captured in different settings, and b presents the negative

testing example. Green boxes mark the positive instances, while the

negative instances are shown in red boxes
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obtained results are discussed in Sect. 5, which follows the

conclusive Sect. 6.

2 Literature review

This section presents a summary of MIL algorithms in the

literature. The MIL algorithms are divided into two cate-

gories: Classical MIL techniques and Neural network-

based techniques. These categories are discussed in detail

in the following subsections.

2.1 Classical MIL techniques

Classical MIL techniques can also be categorized into bag-

space and instance-space algorithms. The instance-space

algorithms classify each instance in the bag individually

and aggregate the instance labels to determine the bag label

[11, 25]. Thus, these algorithms identify the key instances

in the bag (instances that triggered the bag label). However,

the unavailability of instance-level labels complicates the

learning problem.

To tackle the complexity of the learning process,

Andrews et al. [26] proposed two support vector machine

(SVM)-based solutions to solve MIL problems: Mi-SVM

for instance-space classification and MI-SVM for bag-

space classification. Diversity Density (DD) and nearest

neighbor approach for real-valued target in MIL are pro-

posed in Amar et al. [27], and a similar approach com-

bining diversity density and expectation-maximization

(EM) is proposed in Zhang and Goldman [28]. These

algorithms address MIL problems by assigning bag labels

to the instances and training an instance-space model.

However, these methods often fail when a complicated

relationship between instances determines the bag label.

Random subspace clustering and instance selection

approach (RSIS) is proposed in Carbonneau et al. [29],

where key instances are selected from positive bags. The

selected instances are then used in the instance-space

ensemble learning approach. However, the instance selec-

tion procedure in RSIS results in class imbalance problems

and negatively affects performance. The constructive

clustering ensemble (CCE) [30] approach performs

instance clustering to obtain a binary vector representation

for the bag. The bit value in the binary vector determines

the bag link to the clusters. However, the performance of

CCE is comparatively low.

Bag-space techniques do not require access to instance

labels, although they are not as explainable as instance-

level approaches. For example, the graph-based kernel

approach (mi-Graph) [16] transforms the bag into a graph

representation and employs a distance function to compare

bags. Embedding space methods for bag classification

adopt a fixed-size embedding vector used for bag classifi-

cation. For example, Zhou et al. proposed two bag

encoding techniques for MIL using Fisher vector encoding

(miFV) and locally aggregated descriptors (miVLAD) [9].

The miFV and miVLAD keep essential bag-level infor-

mation in generated bag encodings with the help of dic-

tionary learning. However, the bag-space classification

algorithms lack any mechanism to learn appropriate feature

representation. Other conventional MIL algorithms include

semi-supervised SVMs for MIL (MissSVM) [31], MIL

with randomized trees [32], and many others [7].

2.2 Neural network-based MIL techniques

This section introduces the related work based on neural

network (NN) architectures for MIL. Traditionally, neural

networks (NN) for MIL perform instance-level classifica-

tion [33]. The convolution neural networks (CNN) are also

used in MIL for feature extraction through multiple con-

volution layers [34–36]. The best candidate search and

instance positioning with the global max-pooling operation

approach are explored in Hoffman [37]. However, the

max-pooling is not robust enough to find the influential

instance, especially in the bag classification approach [15].

To overcome the limitation of max-pooling, the concept

of Noisy or [38], LSE, and generalized mean are intro-

duced in Shi et al. [39]. However, these operators are non-

trainable. In contrast, the use of an adaptive pooling

approach and a fully connected network is proposed in Liu

et al. [40]. MIL-based pooling approaches, e.g., mean and

max-pooling operations, are proposed in Wang et al. [41],

which is designed to extract features and perform back-

propagation with the support of maximum response of

instance feature extraction layers.

Contrary to the above discussed techniques, the atten-

tion-based pooling approach is considered as a kind of

weighted average of instances in which the weights of the

instances are obtained by trainable attention layers [42].

This technique has been applied in several real-world

problems, such as image classification and captioning [43].

However, limited attention-based studies are available in

the literature related to MIL. Attention-based instance

pooling approach in Ilse [13] proposed two-layer (AbD-

MIL) and three-layer (Gated-AbDMIL) networks to attain

instance weights. This approach focuses on binary classi-

fication problems and uses an additional layer for bag

classification. The loss-based attention (LBA) approach

[15] proposed a weight-sharing approach among fully

connected layers and attention layers. However, the atten-

tion pooling techniques [13, 15] assume no dependence

among instances in the bag. Unlike previous attention-

based techniques, the proposed ViT-IWRS generates sev-

eral bag representations based on both assumptions and
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selects the suitable bag representation for the classification

process.

3 Proposed methodology

The proposed ViT-IWRS consists of four steps. In the first

step, we propose a vision transformer-based approach to

identify the dependencies between the bag instances. This

process transforms input instances into latent representa-

tions using an embedding network and provides the latent

transformation as input to a transformer encoder. The

encoding process involves a multi-head-self-attention pro-

cess that captures the global dependencies between the

instances in the bag. With the output of the encoding

process, we compute the weights for the bag instances in

the second step. The weighting process ensures the

assignment of higher weights to the essential instances in

the bag. The process of instance embedding and trans-

former encoding is shown in Fig. 3a, while the process of

instance weighting is illustrated in Fig. 3b.

The third step of the proposed approach involves gen-

erating bag representation vectors from instance weights

for both instance relationship assumptions using encoder

outputs and latent representations. Weights assigned to

instances determine the composition of the representation

vector and ensure that informative instances are repre-

sented more prominently. Figure 3c illustrates the vector

representation generation process. As a final step, the

representation selection subnetwork (RSN) selects the final

bag representation vector from a set of generated bag

representation vectors. The RSN and bag classification

process function is shown in Fig. 3d. In the following

subsection, we present problem formulation, a brief dis-

cussion of the vision transformer, and each step of the

proposed approach in detail.

3.1 Problem formulation

In binary MIL classification problem, for a given bag Bi ¼
xi;1; xi;2; xi;3; . . .; xi;mi
� �

of mi total instances with d

dimensions, where xi;j represents jth instance of ith bag.

The objective is to predict a bag target label Y i 2 f1; 0g.

The prediction of bag label depends on the corresponding

set of instance-level labels yi;1; yi;2; . . .; yi;m
� �

, where

yi;j 2 f1; 0g. The instance-level labels remain unknown

while the model training and Y i for binary classification is

obtained as:

Y i ¼
0 iff

Pm
j¼1 yi;j ¼ 0

1 otherwise :

�
ð1Þ
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In this paper, we concentrate on bag-level classification for

binary and multi-class MIL applications. Therefore, a

representation vector is generated for the bag of instances

and the model classifies the bag representation vector

instead of individual instances.

Given a bag representation vector and corresponding

bag label, the model generates a K�dimensional vector of

class scores sK , where K represents the number of classes.

In this case, the bag label is determined by:

Y i ¼ argmaxK�1
k¼0 f ðsÞk
� �

; ð2Þ

where f ðsÞi ¼ exp sið ÞPK�1

j¼0
exp sjð Þ

is Softmax function that squashes

the score vector sk in the range between (0, 1) and all the

resulting elements add up to 1 and are interpreted as class

probabilities.

3.2 Vision transformer

The Vision Transformer (ViT) is inspired by the concept of

transformers in language processing models and can be

seen as an alternative to the convolutional neural network

(CNN) [44]. Vision Transformers (ViT) takes 1D patch

embeddings as input. Therefore, the image is transformed

into a sequence of two-dimensional flattened patches, and a

trainable linear projection converts the generated patches to

one-dimensional vectors. The projected image patches are

called patch embeddings. A learnable embedding called

class token is also prepended to patch embeddings. More-

over, the positional embeddings which are added to pre-

serve the positional information of patches in the image.

Transform encoder [45] combines multi-head self-at-

tention (MHSA) blocks with multi-layer perceptrons

(MLP). Before each block, layer normalization (LN) is

applied, and residual connections are used after each block.

There are two layers of MLP and GELU nonlinearity in the

transformer encoder. The details of the transformer encoder

and MHSA process are shown in Fig. 4. Vision transfer

employs one or more stacked transformer encoder blocks

in the encoding generation process. The generated class

token from the last transformer encoder block is then

employed for classification using a classification head. The

classification head consists of MLP with one hidden layer.

3.3 Vision transformer for bag encoding in MIL

In MIL, the objective is classify a given bag Bi ¼
xi;1; xi;2; xi;3; . . .; xi;mi
� �

of mi instances, where xi;j 2 R1�d.

In this case, the ViT can be employed to generate robust

bag embeddings and determine dependencies among the

bag instances. The self-attention in the transformer

encoding process can allow instances in the bag to interact

with each other. It can provide essential details about the

relationship of instances in the bag, which can be used to

generate a robust representation vector for the bag.

At first, each instance xi;jin the bag Bi is transformed

into a latent representation hi;j using an embedding net-

work. The process of instance embedding corresponds to

the patch embedding process in standard ViT settings.

However, the embedding network can consist of multi-

layer perceptron (MLP) or convolution layers, depending

upon the nature of the data. We used a similar design for

the embedding network as previously used by Shi

et al. [15] and Ilse et al. [13]. The details about the

embedding network design are discussed in Sect. 5.9.1. We

refer to the generated latent instance representation hi;j as

instance embeddings. Similarly, the embeddings for all the

instances in the bag Bi are grouped and referred to as bag

embeddings H
½0�
i ¼ hi;1; hi;2; . . .:hi;mi

� �
. Afterward, the

generated bag embeddings are prepended with a learnable

class token hi;0 and denoted by

H
0½0�
i ¼ hi;0; hi;1; hi;2; . . .:hi;mi

� �
.

The class token aggregates global information from the

entire bag, and it allows the model to make high-level

decisions based on the overall content rather than relying

solely on local instance information. The class token is

typically fed into a classification head for image classifi-

cation tasks. In the case of MIL, the class token diversifies

the set of generated vector representations for the bag. The

classification token is learnable embedding and can capture

global dependencies and relationships in the bag. Thus, the

classification token can be used as an additional bag rep-

resentation vector. It can be used as an input for the rep-

resentation selection network.

The generated bag embeddings serve as input to the

encoder. At the start of the training process, the class token

is randomly initialized and learned during the training

process. The length of the class token is the same as the

length of the instance embedding in the bags. The class

token is used in the MHSA process in the same way as

other instance embeddings of the bag and accumulates

information from other instance embeddings [44]. Here,

the positional embeddings are not used as bag representa-

tion follows a permutation invariant structure. The ViT

encodes the given bag embeddings H
0½0�
i as:

bFig. 3 The Proposed ViT-IWRS framework. The top row in this

block represents 3 different input bags (red, green, and blue) with a

different number of instances (3, 4 and 5). Block (a) illustrates

instance embedding and the transformer encoding process. The

instance selection mechanism is shown in (b). The bag representation

generation block is presented in (c). The representation weighting and

bag classification process is shown in (d)
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H
0½0�
i ¼ hi;0; hi;1; hi;2; . . .hi;mi

� �
;

H
0½‘�1�
i ¼ MHSA LN Hl�1

i

� �� �
þH

½‘�1�
i ; ‘ ¼ 1. . .L

H
0½‘�
i ¼ MLP LN H

0½‘�1�
i

� �� �
þH

0½‘�1�
i ; ‘ ¼ 1. . .L

8
>>><

>>>:

ð3Þ

Where ‘ represents the index of the transformer encoder

block, and L denotes the depth or the total number of

encoder blocks. Discussion related to the depth of ViT and

the number of heads in MHSA is presented in Sect. 5.9.4.

Additionally, the generated output of the encoding process

is denoted by H
0½L�
i ¼ h

½L�
i;0 ; h

½L�
i;1 ; h

½L�
i;2. . .::h

½L�
i;mi

h i
where h

½L�
i;j

and h
½L�
i;0 denote the output of the last transformer encoder

block for the corresponding input instance embedding hi;j
and hi;0, respectively.

Later, H
0½L�
i is used to generate bag representation vec-

tors with the assumption of related instances, and H
½0�
i is

used to generate bag representation vectors without

instance relationship assumption, respectively. The process

of instance embedding and bag encoding using ViT is

illustrated in Fig. 3a.

3.4 Instance weight computation

In this step, the weight for each instance in the bag is

computed using the attention approach [13, 15]. This pro-

cess highlights essential instances from the bag and assigns

a higher weight to the informative instance. Later, the

instances in the bag are pooled using a weighted average

operation to obtain representation vectors for the bag. In

this study, the weights of the transformer classification

head are shared to learn instance weight and bag repre-

sentation vector classification simultaneously. This process

helps to enhance the connection between the loss and

instance weighting process.

Let W 2 Rd�K be a weight matrix and b 2 RK be a bias

vector of classification head f( : ). Given the output of the

last transformer encoder block H
0½L�
i the weights for the

instance in the bag Bi are computed as:

8
1� j�mi

ai;j ¼
PK�1

c�0 exp h
½L�
i;j w

c þ bc
� �

Pmi
t¼1

PK�1
c¼0 exp h

½L�
i;t w

c þ bc
� � ; ð4Þ

where wc 2 Rd is cth column vector of W and bc � b is

corresponding bias. The obtained weights are then used to

generate bag representation vectors in the next step. The

process of weight computation is illustrated in Fig. 3b.

Fig. 4 The vision transformer block is shown in (a), while the process of multi-head self-attention [45] is illustrated in (b)
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3.5 Computation of bag representation vectors

After obtaining the weights of the instance in the bag, the

next step is to compute bag representation vectors. This

process transforms the bag with a variable number of

instances to a manageable vector representation and

transforms the MIL problem into a classical supervised

learning problem. To classify the bags, one of the obtained

vectors is selected using the representation selection

subnetwork.

Given H
0½L�
i ¼ h

½L�
i;0; h

½L�
i;1 ; h

½L�
i;2 . . .::h

½L�
i;mi

h i
and weights of

instances ai the representation vector for the bag Bi are

computed as:

wi ¼
Xmi

j¼1

ai;j � h½L�i;j : ð5Þ

The computed bag representations wi involves the output of

the transformer encoder, and h
½L�
i;0 is learned class token.

The learning process of these vectors considers all the

instances in the bag. Thus, these vectors incorporate the

information related to the relationship of instances in the

bag Bi.

Additionally, bag representation vectors without

assuming instance relationship are obtained based on the

bag embeddings H
½0�
i ¼ hi;1; hi;2; . . .hi;mi

� �
as:

xi ¼
Xmi

j¼1

ai;j � h½0�i;j ;

maxi ¼ max
1� j�mi

H
½0�
i

� �
;

li ¼
1

mi

Xmi

j¼1

h
½0�
i;j ;

8
>>>>>>>>>><

>>>>>>>>>>:

ð6Þ

where the xi; li;maxi represent the attention weighted

average [13], mean, and max representation vectors,

respectively. The computation of these representation

vectors does not incorporate any dependencies or rela-

tionships between the instances of the bag. Therefore,

xi; li;maxi are based on the assumption of unrelated

instances of Bi. Figure 3c shows the representation vector

generation process.

3.6 Representation selection subnetwork (RSN)

The instance in the bag can either be related or unrelated.

Therefore, the representation vector generated by a correct

distribution assumption will provide critical information to

the classifier. In this case, RSN aims to select one of the

representation vectors, which is most informative for the

bag classification. RSN performs hard selection using

Gumbel SoftMax in an end-to-end approach [46]. This

process is analogous to computing the softmax over a

stochastically sampled set of points. The Gumbel-Max

Trick separates the deterministic and stochastic parts of the

sampling process using the reparameterization trick

[46, 47]. It computes the log probabilities of given scores in

the distribution and adds some noise to them from the

Gumbel distribution. Finally, the argmax function is

applied to find the class with the maximum value for each

representation vector and generate a one-hot vector for use

by the rest of the neural network.

At First, the previously computed n representation

vectors for the bag Bi are combined to form a representa-

tion matrix R ¼ h
½L�1�
i;cls ;wi; li;maxi;xi

h i
2 Rn�d, where d

denotes the length of representation vectors. Afterward, the

representation matrix R is given as input to RSN (R),

which outputs the score vector r 2 Rn�1 and representation

selection code u ¼ u1; u2; . . .; unð Þ are computed as:

ui ¼
exp

log rið Þþgið Þ
s

� �

Pn
j¼1 exp

log rið Þþgjð Þ
s

	 
 ; ð7Þ

where gi � Gumbel ð0; 1Þ ¼ � logð� logðqÞÞ; q� Uni-

form (0, 1). Additionally, s 2 ð0;1Þ is the temperature

parameter, which determines the degree of approximation

for u in relation to a one-hot vector. A smaller value of s
results in a harder u, whereas a higher s leads to a smoother

u. The obtained u is further used to generate a one-hot

vector as:

iH ¼ arg max
i

uif g;

e	 ¼ OneHot iH
� �

;
ð8Þ

where iH denotes sampled index and e	 represents the one-

hot vector with the iH the element being 1. Afterward, the

bag representation vector for the bag Bi is selected as:

vi ¼ RTe	: ð9Þ

The selected bag representation vector vi is then used to

classify the bag label by classification head f( : ) as

Y i ¼ f við Þ: ð10Þ

Furthermore, the details related to the number of layers in

RSN are discussed in Sect. 5.9.2.

3.7 Loss function

This section presents the loss function for the training of

ViT-IWRS. The proposed loss scheme is derived from the

concept of cross-entropy (CE) loss [15]. CE is a measure of

dissimilarity between the true and predicted label.
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Given a representation vector v for the training bag Bi,

and corresponding label Y i 2 f0; 1; � � � ;K � 1g, where K

denotes the number of classes. Let f( : ) represent a neural

network and zi ¼ f ðvÞ 2 RK be the class score vector for

Bi. The estimated class probability of Bi belonging to the k-

th class can be computed by using softmax function:

qki ¼
exp zki
� �

PK�1
c¼0 exp zcið Þ

; ð11Þ

where expð:Þ represents the exponential function. For

multi-class classification, the loss function can be written

as:

CE ¼ �
XK�1

c¼0

pci log qci ; ð12Þ

where pci 2 f0; 1gK denote the true probability of the bag

Bi belonging to the cth class, and qci is the estimated

probability.

The target vector p is one-hot encodings in multi-class

classification. In this case, if Bi belongs to the k-th class,

there is only one element pki in the target vector which is

not zero. So, only the positive class contributes to the loss

computation process. Discarding the elements of the

summation which are zero due to target labels in equation

(12), the loss function can be written as:

CE ¼ � log
exp zki
� �

Pk�1
c¼0 exp zcið Þ

 !

: ð13Þ

Suppose that the training bag Bi belongs to the kth class. In

this case, given the output of ViT H
0½L�
i ¼

h
½L�
i;0; h

½L�
i;1; h

½L�
i;2 . . .::h

½L�
i;mi

h i
, the weights of instances ai, and

corresponding bag representation vector v, the loss for the

bag Bi is computed as:

L1 ¼ � log
exp vwk þ bk
� �

PK�1
c¼0 exp vwc þ bcð Þ

 !

; ð14Þ

L2 ¼
Xmi

j¼1

� log
exp h

½L�
i;j w

k þ bk
� �

PK�1
c¼0 exp h

½L�
i;cw

c þ bc
� �

0

@

1

Aai;j

0

@

1

A;

ð15Þ

Loss ¼ L1 þ kL2: ð16Þ

where wc 2 Rd is cth column vector of weight matrix W

and bc is corresponding bias for classification head f( : ).

The first term of the loss function focuses on bag clas-

sification loss, while the second one captures the attention

loss, and k is a non-negative hyperparameter to balance

between bag and attention loss. The discussion related to

the impact of k is given in Sect. 5.9.3.

The term L1 ! 0 if any one instance in a bag Bi belongs

to the kth class. However, in this case, it is not theoretically

guaranteed that only one instance belongs to the kth class in

the bag [15]. Therefore, it results in a high false negative

rate for the instances in the positive bags. To address this

issue, the L2 term is added to the objective function. This

term ensures that more than one instance with higher

weights contributes to the label. Furthermore, the L2 term

is inspired by the fact that the weight of instance xi;j
become approximately zero when yi;j 6¼ Y i.

4 Experimental setup

This Section introduces the datasets used for experiments

along with relevant evaluation measures. Additionally, a

comparative analysis of existing methods is also provided.

4.1 Details of datasets and evaluation measure

The performance of ViT-IWRS is evaluated using different

datasets for binary and multi-class classification problems.

These datasets have been used to assess the performance of

MIL algorithms in the literature and cover a range of MIL

application domains, such as molecular activity prediction,

image classification, object detection, and medical image

classification. The details of these datasets are given below.

4.1.1 Benchmark MIL datasets

The experiments are conducted on five MIL datasets rela-

ted to binary classification problems: Musk1, Musk2,

Elephant, Tiger, and Fox. These datasets are related to

binary classification problems. The first two datasets

(Musk1 and Musk2) cover the application of MIL for

molecular drug activity predictions [23]. These datasets are

composed of molecular conformations of multiple shapes.

The bag is formed based on the shape similarity, and the

drug’s effect is observed if one or more conformations are

attached to the targeted bindings. The later three datasets:

Elephant, Tiger, and Fox, are related to image classification

[26]; features of image segments constitute the bags in

these datasets. The positive bags hold one or more

instances related to the animal of interest while the nega-

tive bags contain other animals. The details of these data-

sets are shown in Table 1.

4.1.2 MIL-based MNIST dataset

In addition to the existing benchmark MIL dataset, an

additional dataset for multi-class classification is created

from well-known MNIST digits (MIL-MINST) for digit
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classification [48]. The dataset consists of gray-scale digit

images of size 28 � 28, and the images are randomly

selected to form a bag where each digit represents an

instance. In this problem, we have used a labeling approach

similar to [15], where bags with the target digits {’3’, ’5’,

’9’} are labeled {’1’, ’2’, ’3’} accordingly and if a bag does

not include any of the target digits, it is labeled as ’0’. in

the training process, the model is trained for 50, 100, 150,

200, 300, and 400 generated training bags, respectively,

while the performance is evaluated on 1000 test bags.

4.1.3 MIL-based CIFAR-10 dataset

We construct more challenging MIL datasets for multi-

class classification using images from the CIFAR-10

dataset for object recognition MIL application [49]. The

CIFAR-10 dataset contains 60000 images divided into ten

classes, each image is of size 32 � 32, and classes are

completely mutually exclusive. We employed a similar

approach previously used in Shi et al. [15] to evaluate the

performance of ViT-IWRS on this dataset. The bags are

formed by treating images as instances, and bags are nor-

mally distributed with a mean bag size of 10 and a variance

of 2, respectively. The target classes are set to {’airplane’,

’automobile’, ’bird’}, and associated with the labels {’1’,

’2’, ’3’} accordingly. The bags related to target classes at

most contain images from one of these three classes. The

training sets are built with 500 and 5000 bags, while the

test set is created with 1000 bags.

4.1.4 Colon cancer dataset

Detecting cancerous regions in hematoxylin and eosin (H

&E) stained whole-slide images (WSI) are vital in clinical

settings [50]. These images, also called digital pathology

slides, can occupy several gigabytes of storage space [51].

Presently, supervised approaches require pixel-level

annotations, which demand significant time from patholo-

gists. A successful solution to reduce pathologists’ work-

load is to use weak slide levels. For this study, we

conducted experiments on colon cancer histopathology

images [24] to test the efficiency of ViT-IWRS.

This dataset consists of 100 H&E images belonging to

binary classes. These images feature a range of tissue

appearances, including both normal and malignant regions.

Every image has been marked with the majority of nuclei

for each cell with a total of 22,444 nuclei and class labels

such as epithelial, inflammatory, fibroblast, and miscella-

neous. Every WSI represents a bag with several 27�27

patches. The bag is labeled as positive if it has one or more

nuclei from the epithelial class.

4.1.5 Evaluation measure

We evaluate the performance of the proposed ViT-IWRS

in terms of bag classification accuracy. The experiments on

benchmark datasets are performed using five runs of

10-fold cross-validation, and average performance is

reported. For the MIL-based MNIST dataset, the experi-

ments are performed with 1000 test bags and different

numbers of training bags (50, 100, 150, 200, 300, and 400).

The experiments are repeated 50 times for each train and

test set, and average results are compared with existing

state-of-the-art techniques. Similarly, the experiments are

repeated thirty times with different training and testing data

for MIL-based CIFAR-10 datasets, and average perfor-

mance is reported. On the Colon Cancer dataset, we per-

formed a 5-fold cross-validation, and average results are

presented.

4.2 Methods used for comparative study

The proposed approach is compared with several state-of-

the-art attention-based approaches and other benchmark

bag-level classification techniques. The methods for per-

formance comparison are selected based on good perfor-

mance and the wide range of MIL solutions they offer.

Some of the methods are briefly discussed below.

• MIL NN [41]: This study proposes trainable pooling

operators for MIL. In this work, the bag-level classi-

fication technique (MI-NET) directly produces the bag

label. The instance-level classification technique (mi-

NET) pools instance-level scores to produce the bag

label. The pooling approach based on the residual

connection ( MI-NET RC) is also proposed.

• Ranking Loss-based Simple MIL (ESMIL) [52]: This

paper presents a novel approach to differentiate

Table 1 The details of MIL

benchmark datasets
Datasets Positive bags Negative bags Total bags Total instances

Tiger 100 100 200 1220

Elephant 100 100 200 1391

Fox 100 100 200 1320

Musk1 47 45 92 476

Muks2 63 39 102 6598
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between positive and negative bags by a simple

pairwise bag-level ranking loss function. The proposed

objective function ensures that the model assigns a

higher score to the positive bags. Instead of using a

threshold-based decision function, the proposed

approach penalizes the network when it generates a

lower score for positive bags compared to negative

bags.

• Attention-based Deep MIL (AbDMIL) [13]: This work

proposed an attention approach to identify the weights

of the instances in the bag. The authors proposed two

architectures for attention-based pooling to solve MIL

binary classification problem.

• Loss-based Attention (LBA) [15]: This method extends

the concepts of (AbDMIL) [11] and introduces collab-

orative training for attention and classification layers of

the network.

• Multiple-instance SVM (MI-SVM and mi-SVM) [26]:

In this study, two algorithms mi-SVM and MI-SVM

extend the use of SVM to solve multiple-instance

learning problems. The MI-SVM maximizes the bag

margin while SVM updates the hyper-plane based on

the instance label assignments.

• Classifier Ensemble with constructive clustering (CCE)

[30]: This method represents the entire bag of instances

from a binary vector, employing clustering and adopt-

ing an ensemble learning-based classification approach.

The binary vector entries are set to 1 if any bag instance

is a part of the cluster. Additionally, the clustering and

models are trained on different data representations.

• Multiple instances (Fisher Vector and VLAD) [9]:

These methods are based on bag encoding generation

techniques. These techniques are inspired by the widely

used Fisher vector (FV) and VLAD encoding schemes

for image classification

5 Results and discussion

In this Section, we present the results and discuss the

performance of the proposed (ViT-IWRS )approach. First,

we compare the performance of the proposed approach

with state-of-the-art (SOTA) attention-based pooling

approaches for MIL classification problems, including

AbDMIL [13], Gated-AbDMIL [53], and loss-based

attention (LBA) [15]. Later, the proposed approach is

compared to benchmark bag classification approaches.

5.1 Comparison with SOTA attention-based
pooling approaches

The comparison of the ViT-IWRS with three SOTA

attention techniques LBA [15] and AbDMIL [13] is

depicted in Fig. 5. Similar to the proposed ViT-IWRS, the

algorithms estimate the weights of the instances using the

attention mechanism and generate a representation vector

for the bag. However, these techniques do not consider the

relationship of instances in the bag. These approaches are

implemented, and reproduced results are reported. The

proposed ViT-IWRS achieves better results in all five

datasets. For the Fox dataset, the proposed approach

achieved 62.5% accuracy compared to the 60.5% and

59.5% accuracy achieved by LBA [15] and AbDMIL [13],

respectively. Similarly, the ViT-IWRS approach attained

84.5% accuracy for the Tiger dataset, superior to the pre-

vious results of 83% by LBA [15]. In the case of the

Elephant dataset, the proposed approach attained 87.4%

accuracy.

For Musk1 and Musk2 datasets, the ViT-IWRS

approach achieved 89.5% and 87.6% compared to the

previous best performance of 88.6% and 87.3% accuracy,

respectively. Overall, the performance of ViT-IWRS is

superior to the counterpart attention-based techniques on

all five benchmark datasets. The proposed ViT-IWRS is

robust enough to ascertain the association among the

instances. With the help of the RSN network, it can provide

superior bag encoding.

The experimental results show that the prior assumption

of instance relationship in the bag restricts the performance

of AbDMIL and LBA. On the contrary, the proposed ViT-

IWRS generates several bag representations without prior

assumption of instance selection and simultaneously

selects the informative vector through RSN. This ability

generates a more effective vector representation for the bag

and improves the model’s generalization ability.

5.2 Comparison with benchmark techniques

Performance comparison of ViT-IWRS with benchmark

techniques is given in Table 2. ViT-IWRS outperformed

the performance of existing benchmark techniques on

Elephant, Tiger, and Fox datasets. ViT-IWRS produced

62.5% accuracy for the Fox dataset compared to the

highest 86.2% accuracy by MI-Net [41]. For the Elephant

dataset, 87.4% accuracy outperformed the previous best

accuracy of 62.1% accuracy of miFV [9]. Similarly, the

ViT-IWRS produced 84.5% accuracy on the Tiger dataset

and surpassed the previous best performance of 83.6%

accuracy reported by MI-Net-RC [41].
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In the case of Musk1 and Musk2 datasets, the ViT-

IWRS produced comparable accuracy to several bag clas-

sification approaches. The Musk1 and Musk2 datasets are

composed of molecular conformations with a small number

of bags. It is usually difficult for neural networks to per-

form well as benchmark methods. Additionally, in the

Musk1 and Musk2 datasets, molecular data follow a

structure and can be represented using graphs; therefore,

the graph representation-based techniques [16] are more

suitable for these types of datasets. Thus, the performance

of ViT-IWRS is limited in these datasets. However, in the

case of image datasets, the ViT-IWRS performs consider-

ably better than the benchmark approaches.

5.3 ViT-IWRS VS benchmark MIL techniques

Benchmark MIL techniques such as mi-Net and MI-Net

[41] adopt trainable pooling operations to generate vector

representation for the bag. However, the proposed pooling

operation considers the equal contribution of instances in

the bag. Additionally, these techniques do not account for

the instance relationship information in the pooling pro-

cess. The bag encoding approaches such as miFV and

Fig. 5 The performance analysis of ViT-IWRS with SOTA attention-based MIL techniques, a shows the comparison on Musk1 and Musk2

datasets, while the performance comparison for image-related MIL dataset is given in (b)

Table 2 The performance

comparison of proposed ViT-

IWRS with benchmark MIL

techniques, the best accuracy is

highlighted by boldface and

italicized, while the second-best

performance for each dataset is

marked as simple boldface

Algorithms Accuracy ondDatasets

Elephant Tiger Fox Musk1 Musk2

mi-SVM [26] 82.2 78.4 58.2 87.4 83.6

MI-SVM [26] 81.4 84.0 57.8 77.9 84.3

Simple-MI [9] 80.1 ± (8.2) 77.8 ± (9.2) 54.6 ± (9.3) 83.2 ± (12.3) 85.3 ± (11.1)

EM-DD [28] 77.1 ± (9.8) 73.0 ± (10.1) 60.9 ± (10.1) 84.9 ± (9.8) 86.9 ± (10.8)

MI-Wrapper [54] 82.7 ± (8.8) 77.0 ± (9.2) 58.2 ± (10.2) 84.9 ± (10.6) 79.6 ± (10.6)

CCE [30] 79.3 ± (7.5) 76.0 ± (12.0) 59.9 ± (13.7) 83.1 ± (2.5) 71.3 ± (2.4)

APR [23] 75.19 ± (1.3) 55.8 ± (1.1) 53.2 ± (1.4) 92.4 – (2.7) 89.20 ± (3.0)

Citation-kNN [55] 82.6 ± (1.0) 78.8 ± (1.3) 58.2 ± (1.1) 90.3 ± (1.3) 83.7 ± (2.3)

MI-Graph [16] 85.1 ± (7.0) 81.9 ± (1.6) 61.2 ± (2.8) 90.0 ± (3.8) 90.1 – (3.8)

RSIS [29] 84.6 ± (1.0) 82.5 ± (2.3) 61.1 ± (2.0) 88.8 ± (2.3) 89.5 ± (2.6)

miVLAD [9] 85.0 ± (8.0) 81.0 ± (9.0) 62.0 ± (10.0) 87.1 ± (9.5) 87.2 ± (9.7)

miFV [56] 85.2 ± (8.0) 81.3 ± (7.0) 62.1± (10.0) 90.9 ± (8.0) 88.4 ± (9.0)

mi-Net [41] 85.8 ± (3.6) 82.4 ± (3.7) 61.3 ± (3.5) 88.9 ± (3.9) 85.2 ± (4.5)

MI-NET [41] 86.2 ± (2.5) 83.0 ± (2.2) 62.2 ± (2.2) 88.7 ± (4.1) 85.9 ± (4.5)

ESMIL [52] 82.5 ± (3.0) 82.7 ± (4.0) 61.7± (4.5) 87.8 ± (3.5) 88.2 ± (5.0)

Proposed ViT-IWRS 87.4 – (3.2) 84.5 – (3.5) 62.5 – (4.0) 89.5 – (7.5) 87.6 – (5.9)
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miVLAD [56] are based on dictionary learning techniques

using the instance clustering process and incorporate all the

instances of the bag in the encoding process. However,

these techniques do not incorporate any instance weighting

technique in the encoding process which may affect the

performance of generated encoding. Likewise, Simple-MI

[9] computes the instance-wise mean vector for the bag. In

comparison with these algorithms, ViT-IWRS tackles the

relationship assumption with instance weighing and bag

representation selection process.

RSIS [29] adopts a random subspace hard clustering

approach to select a candidate instance from positive bags

while the instances from negative bags are sampled ran-

domly. The selected instances are classified using an

ensemble learning technique in ambient space. However,

the adopted instance selection process in RSIS results in a

class imbalance problem. Similarly, CCE [30] groups

training instances into c clusters and generates a c�di-

mensional binary vector representation for the bag. The ith

bits in the representation vector are set to one if corre-

sponding bag instances are part of ith cluster. The proposed

ViT-IWRS generates a robust bag representation vector by

incorporating the information presented in all instances of

the bag with different weights. Additionally, the generated

bag representation vector using ViT-IWRS offers more

information in the classification process than the classifi-

cation of instances in ambient space or binary vector

generated by RSIS [29] and CCE [30].

Moreover, ESMIL [52] uses a ranking loss mechanism

to assign a score to each instance in the bags. The proposed

ranking loss function ensures that the highest-scoring

instance in a positive bag receives a higher score than the

highest-scoring instance in a negative bag. ESMIL distin-

guishes between positive and negative bags based on the

highest-scoring instances from the bag of each category,

and this process helps to maximize the AUC score. How-

ever, ESMIL ignores the contribution of other instances in

the bag classification process. Additionally, the adopted

training process lacks the ability to learn an efficient score

function for bag classification. This property is essential for

bag-level classification, and the selection of a suboptimal

scoring function affects the model’s generalization ability.

In contrast, ViT-IWRS assigns higher weights to the

instances in the bag, which induces bag labels and gener-

ates a robust bag representation vector by combining the

instance relationship and weighted impact of the instances.

This ability helps to learn an efficient scoring function for

bag-level classification.

Similarly, Mi-Graph [16] assumes instances of the bag

have a relationship and adopts a graph kernel learning

technique to transform a given bag into an undirected

weighted graph. The nodes in the generated graph represent

instances of the bag, and if the distance between the two

nodes is smaller than a preset threshold, then a weighted

edge is established between the nodes. The weight of the

edge expresses the affinity of the two nodes. This approach

is useful where details of the bag structure play an essential

role in the bag classification process. In contrast, ViT-

IWRS models instance dependencies through the MHSA

process and simultaneously incorporates bag-wise instance

relationship assumption in the classification process.

5.4 Performance comparison on MIL-MNIST
dataset

For the multi-class classification problem, the MIL-

MNIST dataset is generated. We used a bag generation

approach similar to the one used in LBA [15] and AbDMIL

[13]. The performance of the ViT-IWRS is compared with

SOTA attention-based approaches, including LBA [15],

AbDMIL, and Gated-AbDMIL [13]. The two approaches,

AbDMIL and Gated-AbDMIL, were extended with Soft-

max output to support multi-class classification problems.

The bag classification is also performed for max-instance,

mean-instance, max-instance embedding, and mean-in-

stance embedding. The max-embedding and mean-em-

bedding are computed by the output of the previously

discussed embedding network. The bag classification

results in Table 3 show that the proposed ViT-IWRS pro-

duces better performance in most cases, especially in the

case of large training sets of 150, 200, 300, and 400 bags,

respectively.

5.5 Comparison on MIL-based CIFAR-10 dataset

To better evaluate the performance of the proposed ViT-

IWRS, a larger and more challenging dataset is created

Table 3 The performance comparison of ViT-IWRS with SOTA

attention techniques on MIL-MNIST dataset. The best accuracy is

highlighted in boldface and italicized, while the second-best perfor-

mance for each dataset is marked in simple boldface

Accuracy using different training set

Algorithms 50 100 150 200 300 400

Instance-(max) 47.7 75 84.6 88.7 89.2 89.9

Instance-(mean) 58.7 77.4 86.5 91.7 91.9 92.2

Embedding-(max) 63.5 79.6 87.9 91.8 92.5 92.8

Embedding-(mean) 52.8 77.4 86.9 92.0 92.3 92.6

AbDMIL [13] 75.3 87.5 91.8 93.8 94.3 95.5

Gated-AbDMIL [13] 72 86.9 91.1 93 93.8 94.5

LBA [15] 75.9 89.0 91.7 93.9 94.3 95.7

Proposed ViT-IWRS 76.1 88.2 92.5 94.2 95.6 96.5
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based on CIFAR-10. The performance of ViT-IWRS is

compared with SOTA methods, including LBA [15],

AbDMIL [13], and Gated-AbDMIL [13], previously used

for MIL-MNIST. The experiments are conducted for 500,

and 5000 randomly generated training bags. Additionally,

the experimental results of this dataset are presented in

Table 4. The results show that ViT-IWRS surpasses the

previous best performance of LBA and produces 3.1% and

1.5% improved performance on 500 training bags and 5000

bags, respectively. The experimental results indicate that

the proposed ViT-IWRS is robust in determining the

dependencies among the bag instances in complex and

challenging situations involving large datasets.

5.6 Performance comparison on colon cancer
dataset

We have evaluated the performance of ViT-IWRS algo-

rithms on a real-life colon cancer dataset with weak

labeling. Our comparison includes state-of-the-art tech-

niques such as AbDMIL [13], Gated-AbDMIL [13], LBA

[15], and ESMIL [52], as well as instance-level and

embedding level max and mean pooling operations. The

results show the effectiveness of ViT-IWRS on this dataset.

Based on the results shown in Fig. 6, it is evident that the

proposed ViT-IWRS outperforms other state-of-the-art

techniques. ViT-IWRS obtained 92.4% bag-level classifi-

cation accuracy compared to the previous best of 90.3% by

LBA [15]. ViT-IWRS achieves this by effectively

managing Global and Local information about the bag.

Furthermore, the representation selection process ensures

that only the necessary bag representation vector is used in

the classification process.

5.7 Statistical validation

In this work, we evaluate the statistical significance of ViT-

IWRS on MIL benchmark datasets using the Wilcoxon-

signed rank test with a 95% confidence interval [57, 58].

Using statistical analysis, this test determines if there is a

substantial difference between two related groups. This

technique is preferable when the normality or equal vari-

ance assumptions are violated. These methods are tested

using the same train-test distribution as ViT-IWRS.

Table 5 shows the p�values for the Musk1 and Musk2

datasets. A p-value below 0.05 indicates that ViT-IWRS is

statistically better than LBA [15], AbDMIL [13], Gated-

AbDMIL [13], and ESMIL [52]. Likewise, in the case of

the Musk2 dataset, ViT-IWRS is statistically significant

compared to AbDMIL and Gated-AbDMIL. Table 6 shows

the p-values for the Elephant, Tiger, and Fox datasets. The

proposed ViT-IWRS is statistically significant for the Fox

dataset compared to LBA [15], AbDMIL [13], Gated-

AbDMIL [13], and ESMIL [52]. Similarly, for the Tiger

and Elephant datasets, the ViT-IWRS is statistically better

than AbDMIL [13], Gated-AbDMIL [13], and ESMIL [52].

The proposed ViT-IWRS showed statistical significance in

comparison with AbDMI [13] and Gated-AbDMIL [13].

Similarly, ViT-IWRS exhibited statistical significance over

ESMIL [52] and LBA [15] on four and two datasets,

respectively.

We also used the Friedman rank test [59, 60] to assess

the overall performance of various algorithms and compare

their performance across various datasets. This statistical

test is designed to assess whether there are statistically

significant differences among the means of three or more

related groups. It involves ranking the data within each

group and assigning a rank to each algorithm. In this

ranking, the best algorithm is assigned the lowest rank,

while the algorithm with the worst performance is assigned

the highest rank. The rankings of the proposed and com-

pared methods are determined with 95% significance and a

critical distance diagram is plotted to illustrate the results

in Fig. 7. As shown in Fig. 7, the proposed ViT-IWRS

achieved the lowest rank (most important) among all

compared techniques. This indicates that the performance

of ViT-IWRS is superior to the compared methods.

Table 4 The experimental results on MIL-BASED CIFAR-10 dataset.

The best accuracy is highlighted in boldface and italicized, while the

second-best performance for each dataset is marked in simple

boldface

Algorithms Performance in accuracy

500 (Training bags) 5000 (Training bags)

AbDMIL [13] 41.8 51.7

Gated-AbDMIL [13] 39.8 49.1

LBA [15] 45.7 51.9

Proposed ViT-IWRS 49.5 54.8

Fig. 6 The performance analysis of ViT-IWRS with SOTA attention-

based MIL techniques on Colon Cancer histopathology dataset
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5.8 Time efficiency comparison

In this paper, the time efficiency of the proposed ViT-

IWRS is empirically evaluated on five benchmark MIL

datasets. The time costs of training do not include the time

for data preparation. The proposed ViT-IWRS is compared

with state-of-the-art counterparts, including LBA [15],

AbDMIL [13], Gated-AbDMIL [13], and ESMIL [52]. The

algorithms are trained for 100 Epochs, and the average

training time in the log scale is shown in Fig. 8. All the

experiments are conducted on a machine with a Core i7

3.10 GHz CPU, RTX 3060 GPU, and 16GB of main

memory.

Compared to AbDMIL, Gated-AbDMIL, and LBA, the

training process for ViT-IWRS is more time-consuming.

This is because ViT uses a self-attention mechanism with

quadratic complexity, making it more computationally

expensive than traditional attention algorithms. Notably,

Table 5 The obtained p�values of Wilcoxon-signed ranked test for Musk1 and Musk2 datasets

Musk1 Musk2

Is ViT-IWRS statistically significant? (if p\0.05) p-

values

Is ViT-IWRS statistically significant? (if p\0.050) p-

values

Algorithms

AbDMIL Yes 0.0242 Yes 0.0414

Gated-

AbDMIL

Yes 0.0079 Yes 0.0331

LBA Yes 0.0465 No 0.4696

ESMIL Yes 0.0054 No 0.6001

Table 6 The obtained p�values of Wilcoxon-signed ranked test for Elephant, Tiger, and Fox datasets

Fox Tiger Elephant

Is ViT-IWRS

statistically

significant?

(if p\0.05)

p�values Is ViT-IWRS

statistically

significant?

(if p\0.05)

p�values Is ViT-IWRS

statistically

significant?

(if p\0.05)

p�values

Algorithms

AbDMIL Yes 0.003 Yes 0.019 Yes 0.0002

Gated-AbDMIL Yes 0.004 Yes 0.017 Yes 0.0044

LBA Yes 0.009 No 0.125 No 0.0750

ESMIL Yes 0.048 Yes 0.130 Yes 0.0001

Fig. 7 Critical distance diagram comparing the proposed ViT-IWRS

against various MIL algorithms with a 95% confidence interval. The

diagram’s top line shows the algorithm’s average rank, with the most

important rank at the left and the least significant rank at the right.

The two algorithms are not considerably different if they are not

connected by bold line

Neural Computing and Applications (2024) 36:6659–6680 6673

123



ViT-IWRS requires less training time than ESMIL, which

involves a pairwise loss strategy, necessitating the adjust-

ment of network weights across all pairs of positive and

negative bags.

However, ViT-IWRS outperforms state-of-the-art algo-

rithms on all types of datasets in terms of bag classification

performance. This outcome underscores the proposed

approach’s effectiveness and ability to surpass the capa-

bilities of current state-of-the-art techniques.

5.9 Parameter sensitivity analysis

This section discusses the impact of different hyperpa-

rameters related to ViT-IWRS on performance. There are

Fig. 8 The time efficiency analysis of ViT-IWRS with SOTA attention-based MIL techniques. The time comparisons on the Elephant, Tiger, and

Fox datasets are shown in (a–c). The time comparison of the Musk1 and Musk2 datasets is illustrated in (d) and (e), respectively
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several parameters related to ViT-IWRS, such as the size

of the RSN, the number of blocks, and the number of heads

in ViT blocks. These parameters are tuned one at a time.

While tuning one parameter, the other parameters are kept

fixed. Initially, the number of transformer encoder blocks

and layers in RSN is set to two, and the number of heads in

MHSA is fixed to four, respectively. The details of the

hyperparameters related to model training are given in

Table 7. The details of the embedding network are also

presented in this section.

5.9.1 Embedding network

The proposed ViT-IWRS first transforms the bag instance

to a latent representation using an embedding network. We

adopted a similar setting for embedding networks as pre-

viously used in AbDMIL [13] and LBA [15]. The

embedding network for benchmark datasets mainly con-

sists of fully connected layers. In contrast, the MIL-MNIST

and MIL-based CIFAR-10 datasets network comprises

convolution layers with other related operations based on

the LeNet5 architecture [61]. The details of the networks

for the benchmark dataset and MIL-MNIST dataset are

given in Table 8.

5.9.2 Layers in representation selection subnetworks (RSN)

This subnetwork comprises one or more fully connected

layers, whereas the network’s last layer consists of a single

output neuron. The network learns a nonlinear represen-

tation selection function using a continuous output vector

during training and generates a discretized one-hot vector

in the testing. The layers in this subnetwork depend on the

dataset representation diversity. The initial RSN comprises

a fully connected layer with ReLU activation and dropout

operation. Later, the layers to RSN are added with Tanh(:)

followed by the dropout operation. The experiments show

that two subnetwork layers are preferred for Musk1, Ele-

phant, and Tiger datasets. Whereas, for Musk2 and Fox

datasets, tree layer RSN is preferred. However, increasing

the number of layers can result in overfitting. Furthermore,

the number of layers for the MIL-MNIST, MIL-BASED

CIFAR-10, and Colon Cancer datasets is set to one

throughout the experiments. The detailed analysis of RSN

size is given in Table in 9.

5.9.3 Analysis of term k in loss function

The loss function presented in Sect. 3.7 comprises L1 and

L2, where k is a hyperparameter. The value of k plays a

significant role in the model performance and interpreta-

tion. As discussed previously, the L1 term in the loss

function can be decreased to a small value even when only

one instance shares the label with the bag; when k ¼ 0, the

L2 term is removed from the objective, the model only

focuses on the bag loss resulting in a low instance recall

and may negatively affect the classification performance.

We evaluated the impact of k on MIL-MNIST datasets of

50 training and 1000 testing bags, respectively. Figure 9

shows the performance of ViT-IWRS with

k 2 0; 10�3; 10�2; 10�1; 1; 1; 10;½ �. The experiments

demonstrate the effectiveness of k in the loss function. The

positive value of k between 1 and 10 improves the

instances recall and bag classification performance.

5.9.4 Analysis for ViT depth and attention heads

The ViT depth and the number of attention heads are the

essential parameters in the proposed approach. First, we

fixed the number of attention heads to four and the impact

of ViT depth. Later, the best-performing depth is used to

analyze the influence of attention heads. The experiments

show that a depth of 3 is preferred for the Musk1 and

Musk2 datasets, respectively, while the number of heads

Table 7 The details of hyperparameters used in the training of ViT-IWRS

Hyperparameter Benchmark dataset MIL-MNIST dataset MIL CIFAR-10

DATASET

k 2 2 1

Optimizer Adam Adam Adam

Betas (0.9,0.999) (0.9,0.999) (0.9, 0.999)

Learning-rate 0.0005 0.0005 0.01

Epochs 150 100 100

Weight decay 0.0005 0.0001 0.0001

Batch size 1 1 1

Stopping criteria Lowest validation error and loss Lowest validation error and loss Lowest validation error and loss
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from 2 and 4 can produce better performance. This is due

to the nature of the datasets. Additionally, where the

structure information of the instances is important in

addition to the instance relationship, adding ViT blocks and

increasing the number of heads does not improve perfor-

mance. For the fox, tiger, and Elephant datasets, 3, 2 and 3

blocks and 4 heads tend to perform well, respectively. It

shows that these instances inside these datasets are highly

related, and existing SOTA attention-based approaches do

not consider this relation. The analysis of depth is shown in

Fig. 10, and the analysis of the number of heads in MHSA

is illustrated in Fig. 11, respectively. Furthermore, for the

MIL-MNIST dataset, the depth is set to 1 and the number

of heads is set to 4 throughout the experiments.

5.10 Ablation study

The proposed ViT-IWRS consists of two essential pro-

cessing blocks: the transformer encoding and RSN blocks.

These blocks are shown in Fig. 3a and d, respectively. The

contribution of these two blocks to overall model perfor-

mance is validated in the section. The performance of these

two blocks is observed on the Musk1 dataset for binary

classification and the MIL-MNIST dataset for multi-class

Table 8 The details of

embedding network for

benchmark and MIL-MNIST

datasets. The parameters of

convolution layers are

constituted as

Convolution(a,b,c,d), where a,

b, c, and d represent kernel size,

stride, padding and the number

of kernels, respectively

Layer numbers Network Details

Layer details for Benchmark Dataset

1 FC-256 ? Activation() ? Dropuout()

2 FC-128 ? Activation() ? Dropout()

3 FC-64 ? Activation() ?Dropout()

Layer details for MIL-MNIST Dataset

1 Convolution (5,1,0,20) ? Activation()

2 Max-pool (2,2)

3 Convolution (5, 1, 0, 50) ? Activation()

4 Max-pool (2,2)

5 FC-500 ? Activation()

Layer Details for MIL-based CIFAR-10 Dataset

1 Convolution (5, 3, 0, 20) ? Activation()

2 Max-pool (2,2)

3 Convolution (5, 1, 0, 50) ? Activation()

4 Max-pool (2,2)

5 FC-500 ? Activation() ? Dropout()

6 FC-500 ? Activation()

Layer Details for Colon Cancer Dataset

1 Convolution (4, 1, 0, 36) ? Activation()

2 Max-pool (2,2)

3 Convolution (3, 1, 0, 48) ? Activation()

4 Max-pool (2,2)

5 FC-500 ? Activation() ? Dropout()

Table 9 Analysis of layers in RSN

Number of layer Musk1 Musk2 Elephant Fox Tiger

1 87.9 85.7 83.9 50.9 82.5

2 88.5 85.9 85.4 60.5 83.2

3 87.2 86.1 83.9 61.2 82.4

4 86.5 84.3 84.0 59.5 82.5

5 86.3 83.6 84.2 58.0 81.5

The bold value in the table shows the highest performance achieved

on a particular dataset using the corresponding number of layers in

RSN

Fig. 9 The analysis of the term k in loss function
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classification problems. Additionally, the experiments on

the MIL-MNIST dataset are performed 30 times using a

training set of 50 bags and a test set of 1000 bags, and the

average performance is presented.

5.10.1 Effect of RSN block

In order to verify the impact of RSN, we replace this block

with a simple average operation that computes the feature-

wise average of the representation matrix R. Later, the

averaged vector is used for classification. The experimental

results in Table 10 show that the removal of RSN from the

proposed ViT-IWRS results in performance degradation.

Therefore, the use of the RSN block is essential to achieve

improved results.

5.10.2 Effect of transformer encoding

In order to verify the impact of transformer encoding, we

simply apply max and attention pooling on the output of

the embedding network to obtain a bag representation

vector. Afterward, the generated output vector is used for

the classification process. This process is analogous to

existing AbDMIL and LBA algorithms. The experimental

Fig. 10 The analysis of transformer depth. The depth analysis for Musk1, Musk2, Elephant, Fox, and Tiger datasets is illustrated from (a–e),

respectively

Fig. 11 The analysis of the number of MHSA heads in transformer encoder. The analysis of attention heads for Musk1, Musk2, Elephant, Fox,

and Tiger datasets is given from (a–e), respectively

Neural Computing and Applications (2024) 36:6659–6680 6677

123



results in Table 10 show that the removal of Transformer

Encoding and RSN from the proposed ViT-IWRS results in

performance degradation. Therefore, the use of this block

is essential to attain improved results.

6 Conclusion

In this work, we presented the application for a vision

transformer for simultaneous instance weighting and bag

encoding processes for MIL. The existing MIL algorithms

presumed that the instances in the bag are either related or

unrelated. However, this assumption may not apply to all

bags in the dataset.

The proposed approach avoids the instance relationship

assumption in a two-stage process. In the first stage, several

bag representation vectors are generated for both relation-

ship assumptions. In the second stage, the network decides

whether to consider instances to be related or not using the

representation selection module in the classification pro-

cess. The experimental results show that the selection

subnetwork robustly selects bag representation vectors in

the bag classification process in an end-to-end trainable

approach. The experiments are performed on diverse

datasets related to images and molecular activity. The

proposed approach outperformed several state-of-the-art

attention pooling and benchmark bag classification tech-

niques. Additionally, the proposed ViT-IWRS provides

model interpretations for vision transformer architecture

through an attention-based instance weighting approach.

Thus, the proposed approach is suited for image classifi-

cation, object detection, and high-risk MIL applications,

such as computer-aided diagnostic and clinical decision

support.

Although the proposed approach produces promising

results on several datasets related to images, this approach

is less computationally expensive as compared to existing

pooling techniques. Furthermore, the performance of ViT-

IWRS is effective when labels are entirely dependent on

the structural properties of the instances, such as molecular

datasets. The proposed loss function can be further exten-

ded to handle multi-instance multi-target regression prob-

lems, such as Drug Discovery and Environmental

Monitoring. In the future, we intend to explore the appli-

cation of the proposed approach to multiple-instance and

multiple-label learning (MIML) tasks and incorporate the

structural details of the bag into the self-attention process.
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(RSN network block removed from the model, and representation

vectors in R are combined by applying average pooling operation)

87.70 73.90 The model’s performance degrades when the RSN

network is replaced with an average operation.

Effect of Transformer Encoding block. (Transformer encoding block

and RSN network block is removed from the model, and the output

of Embedding network is transformed to a vector representation

using simple Max-pooling)

86.2 63.5 The model’s performance degrades when the RSN

network is replaced with an average operation.

Effect of Transformer Encoding block. (Transformer encoding block

and RSN network block is removed from the model, and the output

of Embedding network is transformed to vector representation using

attention pooling pooling)

88.4 75.3 The model’s performance degrades when the

Transformer encoding and RSN is removed from

model.

Performance of proposed ViT-IWRS with all proposed blocks 89.50 76.10 ViT-IWRS achieves improved performance with all
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51. Dimitriou N, Arandjelović O, Caie PD (2019) Deep learning for

whole slide image analysis: an overview. Front Med 6:264

52. Asif A et al (2019) An embarrassingly simple approach to neural

multiple instance classification. Pattern Recogn Lett 128:474–479

53. Hahn M (2020) Theoretical limitations of self-attention in neural

sequence models. Trans Assoc Comput Linguist 8:156–171

54. Frank E, Xu X (2008) Applying propositional learning algorithms

to multi-instance data. Working paper series, Department of

computer science, The University of Waikato. https://books.goo

gle.com/books?id=5eaGzgEACAAJ

55. Wang J, Zucker J-D (2000) Solving multiple-instance problem: a

lazy learning approach. International Conference on Machine

Learning. 1:1119–1126. https://api.semanticscholar.org/Corpu

sID:13896348

56. Wei X-S, Wu J, Zhou Z-H (2014) Scalable multi-instance

learning. In: 2014 IEEE international conference on data mining,

pp. 1037–1042. IEEE

57. Wilcoxon F (1992) Individual comparisons by ranking methods.

In: Kotz S, Johnson NL (eds) Breakthroughs in statistics:

methodology and distribution. Springer, Berlin, pp 196–202

58. Conover WJ (1999) Practical nonparametric statistics, vol 350.

Wiley, New York
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