
ORIGINAL ARTICLE

Detecting SQL injection attacks by binary gray wolf optimizer
and machine learning algorithms

Bahman Arasteh1,6 • Babak Aghaei2 • Behnoud Farzad3 • Keyvan Arasteh1 • Farzad Kiani4 •

Mahsa Torkamanian-Afshar5

Received: 27 July 2023 / Accepted: 15 January 2024 / Published online: 27 February 2024
� The Author(s) 2024

Abstract
SQL injection is one of the important security issues in web applications because it allows an attacker to interact with the

application’s database. SQL injection attacks can be detected using machine learning algorithms. The effective features

should be employed in the training stage to develop an optimal classifier with optimal accuracy. Identifying the most

effective features is an NP-complete combinatorial optimization problem. Feature selection is the process of selecting the

training dataset’s smallest and most effective features. The main objective of this study is to enhance the accuracy,

precision, and sensitivity of the SQLi detection method. In this study, an effective method to detect SQL injection attacks

has been proposed. In the first stage, a specific training dataset consisting of 13 features was prepared. In the second stage,

two different binary versions of the Gray-Wolf algorithm were developed to select the most effective features of the

dataset. The created optimal datasets were used by different machine learning algorithms. Creating a new SQLi training

dataset with 13 numeric features, developing two different binary versions of the gray wolf optimizer to optimally select

the features of the dataset, and creating an effective and efficient classifier to detect SQLi attacks are the main contributions

of this study. The results of the conducted tests indicate that the proposed SQL injection detector obtain 99.68% accuracy,

99.40% precision, and 98.72% sensitivity. The proposed method increases the efficiency of attack detection methods by

selecting 20% of the most effective features.

Keywords Software security � SQL injection attacks � Artificial neural network � Feature selection � Binary gray wolf

optimization algorithm � Accuracy

1 Introduction

Software security is one of the major quality metrics of a

software product [1]. SQL injection (SQLi) is one of the

most serious software security concerns that any software

development team should avoid. SQLi is a web security

flaw that allows an attacker to interact with database

queries made by an application. SQL injection attacks are

just malicious queries that change a typical SQL command

into a malicious type. An attacker can directly use SQL

queries to fetch information from databases to receive

unlimited data and unauthorized access. In this attack, an

attacker can alter or remove the data stored in the database

using only a web browser. An attacker can escalate a SQL

injection attack to compromise the underlying server or

other back-end infrastructure or launch a denial-of-service

attack in specific circumstances. Regarding the reports by

& Bahman Arasteh

Bahman.arasteh@istinye.edu.tr

1 Department of Software Engineering, Faculty of Engineering

and Natural Science, Istinye University, Istanbul, Turkey

2 Department of Computer Engineering, Malekan Branch,

Islamic Azad University, Malekan, Iran

3 Department of Computer Engineering, Seraj Institute, Tabriz,

Azarbaijan Province, Iran

4 Data Science Application and Research Center (VEBIM),

Fatih Sultan Mehmet Vakif University, Istanbul, Turkey

5 Computer Engineering Department, Faculty of Engineering,

Istanbul Topkapi University, 34087 Istanbul, Turkey

6 Applied Science Research Center, Applied Science Private

University, Amman, Jordan

123

Neural Computing and Applications (2024) 36:6771–6792
https://doi.org/10.1007/s00521-024-09429-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-5202-6315
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09429-z&domain=pdf
https://doi.org/10.1007/s00521-024-09429-z

the open worldwide application security project (OWASP),

the vulnerability of SQL injection attacks is among the top

10 web application security risks [1–3].

In most web applications, filtering techniques are used

to prevent these types of attacks. However many SQL

injection attacks can bypass data filtering techniques. The

traditional methods used in web applications cannot

effectively defend the database against SQLi attacks.

Therefore, a more effective method is needed to detect and

prevent SQL injection attacks. Machine learning (ML) and

artificial intelligence (AI) methods are used to develop the

SQLi detectors; these detectors (classifiers) are created

using training datasets and a classification algorithm. The

SQLi detectors are classifiers that classify the malicious

and non-malicious SQL queries. Different SQLi classifiers

have been created using different supervised, semi-super-

vised, and unsupervised learning methods on different

training datasets. In the first stage of the methods, an SQLi

classifier is provided using the training dataset. A test

dataset is used to put the classifier that was created during

the training stage to the test. Insufficient accuracy, preci-

sion, error rate, and performance are the main demerits of

the classifiers created by machine learning methods to

detect SQLi attacks.

The variables that are fed into the machine learning

models are referred to as the features of the dataset. To

train an optimal model with optimal accuracy, only the

effective features of the dataset should be used in the

training stage. Finding the most effective features of the

dataset is a combinatorial NP-complete optimization

problem. Feature selection is the process of selecting the

minimal and most effective features of the training dataset.

The number of input variables (features) should be kept to

a minimum to reduce the cost of classification model cre-

ation. Furthermore, reducing the number of features

improves the model’s accuracy and precision. Various

metaheuristic search algorithms were used to select the

optimal features of the dataset. In different feature selec-

tion problems, a metaheuristic algorithm may perform

differently. The main drawbacks of the previous SQLi

methods are:

• The higher error rate of the obtained results.

• Insufficient accuracy of the created SQLi detectors by

the ML algorithms.

• Insufficient precision of the created SQLi detectors in

detecting the SQLi attacks.

• The higher number of selected features is the other

drawback of the metaheuristic algorithms used for

feature selection in the SQLi detectors.

• Lower convergence speed and consequently insufficient

performance of the feature selectors used in the

previously suggested SQLi detectors.

Hence, the main objectives of this study are as follows:

• Enhancing the accuracy of the SQLi detection method.

• Enhancing the precision of the SQLi detection method.

• Enhancing the sensitivity of the SQLi detection

Method.

• Reducing the Error rate of the SQLi detection method.

• Finding the minimum number of most effective features

in the SQLi detection method.

In this paper, an effective method to detect SQLi attacks

is proposed. In this method, firstly, a specific training

dataset consisting of 13 features was prepared. In the sec-

ond stage, due to the unique capabilities of the gray wolf

optimization (GWO) algorithm, two different binary ver-

sions of it (bGWO) were developed to select the most

effective features of the training dataset. The optimal

datasets created by the bGWOs are used by the different

machine learning algorithms to build effective SQLi

detectors. The desired classification model to detect SQLi

was created by the artificial neural networks (ANN) and

decision tree (DT) algorithms. At the final stage, the testing

stage, the performance of the suggested feature selection

method was evaluated by the test data. The main contri-

butions of this study are:

• Creating an effective numeric training dataset that

includes 13 numeric features from the existing SQLi

datasets.

• Developing two different binary versions of the gray

wolf optimization algorithm to optimally select the

features of the dataset.

• Creating an effective and efficient classification model

to detect SQLi attacks.

• Increasing the efficiency of the SQLi detection methods

by selecting 20% of the most effective features.

The rest of the paper structure is as follows; the previ-

ously presented SQLi methods were reviewed in Sect. 2. In

Sect. 3, the proposed SQLi method was explained. In

Sect. 4, the experimental platform and obtained results

were discussed. The paper ends with a conclusion and

future work suggestions.

2 Related works

Some researchers have come up with methods to detect and

prevent SQLi attacks. In this section, the previous works

are summarized in sub-categories:

2.1 Blacklist-based SQLi detection method

Traditional SQLi methods use blacklists to filter unautho-

rized characters. There have been numerous works

6772 Neural Computing and Applications (2024) 36:6771–6792

123

completed in this field. Input validation techniques to avoid

SQLi are divided into whitelist validation and blacklist

validation techniques [4]. In [5], authors used penetration

testing to compensate for the shortcomings of the blacklist

filter defense mechanism. Like the blacklisting method, in

[6], the authors used the Boyer-Moore string-matching

algorithm to calculate how much a string matches the URL

with an injected SQL string to determine the existence of a

SQL attack. In [7], an effective automated tool is presented

to prevent SQLi attacks at run time. In [8], the capabilities

of the latest Blackbox web-based security scanners against

SQL and XSS injection attacks were investigated. Hsiu-

Chuan Huang introduced a new vulnerability scanner for

web applications that uses penetration testing to prevent

SQLi and detect it. In [9], a method called WAVES was

suggested for testing SQLi vulnerabilities in web applica-

tions. It uses a web crawler to find points in a web appli-

cation that can be used for SQLi attacks. The probe then

creates attacks that target such locations based on a specific

list of attack patterns, using machine learning techniques to

improve the method of attack. This solution further

improves penetration testing methods by using machine

learning approaches to guide testing. However, like all

black box testing and penetration testing methods, it cannot

provide a guarantee of completeness. A detection mecha-

nism for SQL injection attacks has been proposed in [10]

that removes the value from a SQL query attribute of web

pages and compares it to a specified value. In this

approach, static and dynamic analysis are merged. The

experiments demonstrate that the suggested strategy is

straightforward and highly successful.

2.2 Static analysis method

One technique for SQL injection prevention is static

analysis of SQL queries in web applications. This method

focuses on validating the type of user input to reduce the

SQLi probability, rather than detecting them. Carl Gould

et al. [11] used the library of Java String Analysis (JSA) to

validate the type of user input and prevent SQLi attacks.

However, it cannot prevent SQLi attacks if the malicious

input data has the correct input type or syntax. Also, the

mentioned library only supported the Java language. In

[12], the static analysis method was combined with auto-

matic reasoning. This method assumes that there is no

tautology in the automatic SQL query generation, and this

assumption is also verified. Thus, it was an effective

method for detecting SQLi attacks, but except for tautol-

ogy, it could not detect other SQLi attacks. Stephen Tho-

mas et al. [13] developed a new SQL query by collecting

simple SQL statements and executing them to validate the

type of user input. The method did not prevent or detect

SQLi attacks directly, but it tried to prevent attacks by

removing vulnerabilities in the way SQL queries were

written. This method was also used for web applications

written in the Java language.

2.3 Dynamic analysis method

The dynamic analysis method examines the web applica-

tion’s response after scanning it. Unlike the static analysis

method, it can find the vulnerability of SQL injection

attacks without any changes to the web application; so, it

has an advantage over the static analysis method. However,

the weaknesses found in the web application pages must be

manually resolved by the developers. Yuji Kasuga et al.

[14] introduced a method called Sania that protects against

SQLi attacks. The approach collects natural queries

between the client and the web application, as well as

between the web application and the database. The authors

of [15] proposed a web scan method with advanced fea-

tures for testing and detecting intrusion into PHP-based

web applications; this method can identify the web appli-

cation’s weak point against SQLi attacks. One disadvan-

tage of this tool is that it only works on PHP-based web

applications and will not be able to detect SQLi attacks in

ASP-based web applications.

2.4 A hybrid analysis method

This method is a combination of static and dynamic anal-

ysis that provides the merits of both methods. Furthermore,

it analyzes web pages and creates SQL queries to evaluate

the results. William et al. [16] proposed a method called

AMNESIA. This method is based on a combination of

static and dynamic analysis. In the static stage, it uses the

static analysis method to build models of different types of

queries that an application can legally generate anywhere it

has access to the database. In the dynamic step, it tracks all

queries before sending them to the database and checks

each query against statistically constructed models. In [17],

Buehrer et al. presented a static and dynamic analysis

called SQL Guard, which compared static and dynamic

SQL queries generated by the user to detect SQLi attacks

using a survey tree. SQLCheck is another attack injection

based method. Both SQLGuard and SQLCheck methods

use a hidden key to determine the user input limit when

analyzed by the runtime controller.

2.5 Query profiling methods

SQLrand, which was developed in [18], is a randomization-

based method of setting an instruction set that allows

developers to use random instructions instead of regular

SQL keywords. As a result, a proxy filter inserts queries

into the database while removing keywords from normal.

Neural Computing and Applications (2024) 36:6771–6792 6773

123

Since the attacker’s SQL-infused code is not made up of

random instruction sets, the injectable commands lead to a

syntactically incorrect query. A query-profile-based tech-

nique that might identify SQLi attacks without altering the

web application was proposed in [18]. However, the web

application had to be re-profiled whenever it changed.

2.6 Machine learning-based methods

Valeur et al. [19] suggested a method based on an intrusion

detection system (IDS) using machine learning algorithms.

To identify SQLi attacks, this technique employs numerous

anomaly identification models. This method as a module is

connected to the link between the database server and web

applications; the queries made by the application are

intercepted and sent to the attack detection system. The

intrusion detection system parses the SQL queries and then

compares them with the generated model during the exe-

cution of the web application to check the differences.

One of the fundamental limitations of learning-based

methods is that they cannot always guarantee success in

their detection abilities. Because it depends on the quality

and method of training used in the presented model, it can

cause many false positives and negative results. Joshi et al.

[20] presented a method called the Naive Bayes algorithm,

which is a classification model in machine learning based

on Bayes’ theorem. This method assumes that the presence

of a feature in a data model is not related to the presence of

other features. This method is very simple to implement

but could not identify several SQL injection attacks;

especially, when a particular type of SQL injection was

used for the first time.

3 Suggested method

An effective strategy for detecting SQLi attacks is pro-

posed in this research. First, a particular training dataset

with 13 features was created for this technique. Due to the

unique characteristics of the gray wolf optimization

(GWO) algorithm, two alternative binary variants of it

(bGWO) were constructed in the second stage to choose

the most effective features of the dataset. The optimal

datasets generated by the bGWOs are employed by various

machine learning methods. The Neural Networks (NN) and

Decision Tree (DT) techniques were used to generate the

appropriate classification model for detecting SQLi. The

performance of the suggested feature selection approach

was assessed by the test data in the last stage, the testing

stage. Figure 1 shows the workflow of the proposed

method.

3.1 Dataset creation

In this section of the paper, the required dataset to train the

supervised machine learning algorithm is explained. As

seen in Fig. 2, the SQL query profiling process is used to

create SQLi dataset.

The experiment system consists of some web applica-

tions with a frontend, HTTP APIs, and MySQL server

backend. The SQLi traffics (normal and SQLi queries)

have been generated using SQL query generation applica-

tion. The resulting MySQL traffic between the web app

server and the database server is captured. These collected

Fig. 1 Workflow of the suggested method

6774 Neural Computing and Applications (2024) 36:6771–6792

123

raw data sets were then processed and correlated to create a

separate dataset containing features (labeled records).

Table 1 shows the structure of the records in the collected

raw dataset. This dataset comprises attacks and normal

queries for a web application. These queries were imple-

mented by different SQL structures and complexities.

There are simple and complex nested queries in the dataset.

Each row in the selected dataset is a normal or malicious

SQL query performed in a database of a real-world web

application. Each record in the dataset consists of SQL

keywords, fragmented text, single quotes, semicolons,

comments, intermediate data, and so on.

The raw dataset was filtered, cleaned, and converted to a

numeric dataset. This study used a dataset that includes

1027 extracted unique SQL queries (normal and malicious)

retrieved from a textual dataset. This dataset includes 1027

records in such a way that each record indicates a SQL

query. In this dataset, 554 records are malicious queries,

and 473 records are normal queries. The labeling of dataset

records is expressed in binary values of 0 (normal SQL

query) or 1 (malicious SQL query). Each row of the orig-

inal dataset consists of two text columns; the first column

includes the source of the SQL query, and the second

column indicates its label.

Creating an effective numeric training dataset that

includes 13 numeric features is the first contribution of this

study. The homogeneity of features in a dataset makes

machine learning algorithms perform better in terms of

accuracy and precision. In the first stage of the proposed

methods, the standard SQLi datasets that include thousands

SQLi queries were analyzed, and 13 numeric effective

features were extracted. In this stage of this study, the

selected original dataset was analyzed, and the 13 features

were extracted from the source code of each query. All

these 13 features are numeric. Twelve features are

independent, and the final feature is dependent and indi-

cates the label of the query. The query is normal when its

label is zero; the malicious queries are labeled by one. All

extracted features have numeric values. Length of query,

number of nested queries, number of constants, number of

punctuations, and number of logical operators are some of

the extracted features. Finally, the created dataset includes

1027 records; each record (each row) includes 13 features

extracted from the source code of the queries. The homo-

geneity of features in a dataset makes machine learning

algorithms perform better in terms of accuracy and preci-

sion. Table 2 shows the structure of the created dataset.

Table 3 describes the features of the created training

dataset.

3.2 Feature selection by gray wolf optimization
algorithm

After creating the scalar (numeric) training dataset, in the

second stage, two different binary versions of the GWO

algorithm were developed. The developed two bGWOs

algorithms were used for feature selection. Indeed, the

optimal features of the training dataset were selected before

creating the desired classification model by the machine

learning algorithms. The gray wolf optimization algorithm

is a metaheuristic algorithm inspired by the hierarchical

structure and social behavior of gray wolves during hunting

[21]. It is an algorithm based on population and is simply

capable of generalizing to large-scale problems. All the

members have a precise hierarchy, and they have certain

tasks. In each group of wolves to hunt, there are four levels,

which are modeled as a pyramidal structure: the leader

wolves are called the alpha (a) group, which can be male or

female. These wolves dominate the flock (group). Beta (b)

wolves are assisted by alpha wolves in the decision-making

Fig. 2 The process of SQLi dataset creation

Table 1 Format of the records in the raw training dataset

select * from customer where cu_id = 1 or ’a’ = ’a’ 1

SELECT * FROM customer UNION SELECT * clear FROM result ORDER BY habit 2

select customer1.cu_id, customer1.name, customer1.family, factor.fact_id, factor.fdate, factor.amount from (select * from customer where

cu_id = @cust_id) as customer1 inner join factor on customer1.cu_id = factor.cust_id;

1

select name, family, tell, sum1 from customer inner join (select cust_id, sum(amount) as sum1 from payment group by cust_id) as payment1

on customer.cu_id = payment1.cust_id where cu_id = @cu_id;

1

Neural Computing and Applications (2024) 36:6771–6792 6775

123

process and are also susceptible to being selected instead.

Delta (d) wolves are lower than beta wolves and include

old predators. Omega (x) wolves have the lowest rank in

the hierarchy pyramid, which is the least right than the rest

of the group; they eat and are not involved in the decision-

making process. GWO algorithm consists of three main

steps: Tracking and Approaching, encircling, and attack-

ing. In the GWO, Eqs. 1 and 2 were used to mathemati-

cally model the encircling behavior of the gray wolves.

D~ ¼ C~ � X~p tð Þ � X~ tð Þ
�
�
�

�
�
� ð1Þ

X
!

t þ 1ð Þ ¼ X
!

p tð Þ � A
!� D! ð2Þ

In Eqs. 1 and 2, t represents the current repetition, and

A
!

and C
!

the coefficient vectors, and X
!

the position vector

of a gray wolf, the A
!

and C
!

vectors are calculated by

Eqs. 3 and 4:

A
!¼ 2 a!� r!1 � a! ð3Þ

C
!¼ 2 � r!2 ð4Þ

In Eqs. 3 and 4, a! vector components are linearly

reduced from 2 to 0 during repetition and r!1 and r!2

vectors are random vectors in the interval 0; 1½ �. To see the

impact of the relationships mentioned above, a two-di-

mensional space with possible locations is shown in Fig. 3.

A gray wolf with a location ðX; YÞ can update its location

according to the position of the prey ðX�;Y�Þ. The loca-

tions of the gray wolves were updated based on the (X*,

Y*). The Algorithm iteratively converges to the best solu-

tion (location of prey). The best solution indicates the

minimum number of attributes of the dataset that have

Table 2 The structure of the created numeric datasets with 13 numeric features

Length Nesting Unionnum Constantnum Orconstant Spacifical

character

Type Andnum ‘‘Num Num Null

num

()

num

Attack

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

30 2 0 4 0 15 1 1 0 0 0 4 NO

Table 3 The structure of the created numeric datasets with 13

numeric features

Feature Description

1 Length of SQL Query

2 Nesting Level Query

3 Num. of union Operator in the SQL Query

4 Num. of Constant Value in the SQL Query

5 Num. of OR Operator in the SQL Query

6 Num. of Specific Character in the SQL Query

7 Type of SQL Query in the SQL Query

8 Num. of AND Operator in the SQL Query

9 Num. of double quotation Character (‘‘) in the SQL Query

10 Num. of double quotation Character (‘) in the SQL Query

11 Num. of Null Value in the SQL Query

12 Num. Parenthesis in the SQL Query

13 Class (Attack or Not Attack)

6776 Neural Computing and Applications (2024) 36:6771–6792

123

maximum effect on the SQLi detection. Consider the

vector A
!

and C
!

values and the current location, different

positions are around the best response. For instance, it is

possible to reach a place ðX� � X; Y�Þ according

to.A
!¼ ð1; 0Þ and C

!¼ 1; 1ð Þ. The two random vectors r!1

and r!2 allow wolves to access all positions. Abstractly, it

can be noted that a gray wolf can randomly update its

position according to the relationships listed around the

prey.

Gray wolves can detect the location of the prey and

surround them. The alpha wolves are often the ones that

hunt; however, beta and delta wolves occasionally join

them. Alpha, beta, and delta wolves are more aware of the

probable location of prey; their locations are updated by

Eqs. 5, 6, and 7. This allows us to mathematically replicate

the hunting behavior of gray wolves. Figure 4 illustrates

how a search agent updates its position according to Alpha,

Beta, and Delta in the two-dimensional search space. The

Pseudo-code of the GWO algorithm is presented in Algo-

rithm 1.

D
!

a ¼ C
!

1 � X
!

a � X
!�

�
�

�
�
�; D
!

b ¼ C
!

2 � X
!

b � X
!�

�
�

�
�
�; D
!

d

¼ C
!

3 � X
!

d � X
!�

�
�

�
�
� ð5Þ

X
!

1 ¼ X
!

a � A
!

1 � D
!

a

� �

; X
!

2 ¼ X
!

b � A
!

2 � D
!

b

� �

; X
!

3

¼ X
!

d � A
!

3 � D
!

d

� �

ð6Þ

X
!

t þ 1ð Þ ¼ X
!

1 þ X
!

2 þ X
!

3

3
ð7Þ

Algorithm 1 Gray Wolf Optimization Pseudo-code

3.3 Binary GWO

The Continuous Gray Wolves Optimization (OGWO)

algorithm constantly shifts their positions to anywhere in

the state space. In some special issues, such as selecting

features, solutions are limited to binary values of zero and

one which creates a binary version [18]. In the method, the

wolf Equation is to update a function of three positional

Fig. 3 Two-dimensional view of position vectors and their next

possible locations [17]

Neural Computing and Applications (2024) 36:6771–6792 6777

123

vectors, namely, X
!

/; X
!

b and X
!

d. It attracts each wolf to

the first of the top three solutions. The set of solutions at

any given time is binary. To update the positions of a given

wolf, following the original gray wolf algorithm, while

keeping binary constraints based on Eq. 7, one of the fol-

lowing two approaches can be used:

First approach: In this approach, Eq. 7 can be formu-

lated as Eq. 8. In Eq. 8, Crossoverð x!1; x
!

2; x
!

3Þ is a suit-

able shift between x, y, and z solutions. The binary vectors

x!1; x
!

2and x!3 effectively move wolves toward alpha,

beta, and delta wolves. The vectors x!1; x
!

2and x!3 are

calculated using Eq. 9.

X
!tþ1

i ¼ Crossoverð x!1; x
!

2; x
!

3Þ ð8Þ

X
!d

1 ¼ 1 if Xd
a þ bstepd

a

� �

� 1

0otherwise

�

ð9Þ

So, the vector X
!d

1 is the position of the alpha wolf and

bstepd
a a binary step in the d dimension. bstepda is calculated

based on Eq. 10. Here, rand is a random number based on

a uniform distribution between zero and one. cstepda is the

step size being a continuous value for d dimension and is

calculated using the Sigmoid function (Eq. 11).

bstepd
a ¼

1 if Xd
a þ cstepd

a

� �

� rand
0 otherwise

�

ð10Þ

cstepd
a ¼

1

1 þ e�10ðAd
1D

d
a�0:5Þ ð11Þ

Ad
1 and Dd

a are calculated using Eqs. 1 and 3. To cal-

culate Xd
2 and Xd

3 which are the positions of beta and delta

wolves, respectively, Eq. 12 is used. So, the X
!d

2 vector

positions are beta wolves and bstepdb a binary step in the d

dimension. bstepdb can be calculated based on Eq. 13.

X~
d

2
1 if Xd

b þ bstepd
b

� �

� 1

0 otherwise

(

ð12Þ

bstepd
b ¼ 1 if Xd

b þ cstepd
b

� �

� rand

0 otherwise

(

ð13Þ

Again, here, rand is a random number based on a uni-

form distribution between zero and one. cstepd
b is the step

size being the continuous value for the d dimension. It is

calculated using the Sigmoid function indicated by Eq. 14.

Here, also, Ad
2 and Dd

b respectively using Eqs. 1 and 3. So

that the X
!d

3 is vector positions of delta wolf (calculated by

Eq. 15) and bstepdd are a binary step in the d dimension.

bstepdbd is calculated based on Eq. 16.

cstepd
b ¼ 1

1 þ e�10ðAd
2D

d
b�0:5Þ ð14Þ

X~
d

3 ¼ 1 if Xd
d þ bstepd

d

� �

� 1

0 otherwise

�

: ð15Þ

bstepd
d ¼

1 if Xd
d þ cstepd

d

� �

� rand
0otherwise

�

ð16Þ

In Eq. 16, a random number rand is based on a uniform

distribution between zero and one and cstepdd the step size

is a continuous value for the d dimension and is calculated

using the Sigmoid function (Eq. 17). In this regard, also,

Ad
3andDd

d are calculated using Eqs. 1 and 3. Xd is calculated

by Eq. 18. In this relationship, ad , bd and cd are binary

values for the first, second, and third parameters in

dimension d. The Xd is the output of Crossover in

dimension d and rand is a random number from a uniform

distribution in the range of zero and one. The pseudocode

of the bGWO1 is explained in Algorithm 2.

cstepdd ¼
1

1 þ e�10ðAd
3D

d
d�0:5Þ ð17Þ

Xd ¼
ad if rand \

1

3

bd if
1

3
� rand� 2

3
cd otherwise

8

>>><

>>>:

ð18Þ

Fig. 4 Updating positions in GWO

6778 Neural Computing and Applications (2024) 36:6771–6792

123

Algorithm 2 The binary gray wolf optimization algorithm–the first approach

Second Approach: To develop the second version of the

bGWO, only the updated gray wolf position vector is

forced to be binary. Equation 9 in the first approach is

replaced by Eq. 19. So a random number rand is between

zero and one. Xtþ1
d is the updated binary position in the

dimension d and in repetition t, as well as the sigmoid

function calculated by Eq. 20. The pseudocode of the

bGWO2 is explained in Algorithm 3.

Xtþ1
d ¼ 1 if sigmoidð x1 þ x2 þ x3

3

� �

� rand

0 otherwise

(

ð19Þ

sigmoidðaÞ ¼ 1

1 þ e�10ðx�0:5Þ ð20Þ

Algorithm 3 The binary gray wolf optimization algorithm - the second approach

3.4 Adaption of binary gray wolf optimizer

In this section, both the first and second approaches of

binary GWO algorithms are adapted in feature selection for

classification problems. According to the multiplication or

permutation principle, for a feature vector of size n, there

are n2n different choices of features, which creates a very

large and tedious space, and all these 2n choices must be

thoroughly explored. Therefore, the binary gray wolf

algorithm is adapted to search the matching feature space

to find the best combination of features. It is remembered

Neural Computing and Applications (2024) 36:6771–6792 6779

123

that the best combination of features is the combination

with maximum classification efficiency and minimal

selection of the number of features. The Fitness Function,

which is used to evaluate the individual positions of gray

wolves in the binary gray wolf algorithm, is obtained by

Eq. 21.

Fitness ¼ acR Dð Þ þ b
C � Rj j
Cj j ð21Þ

In Eq. 21, cR Dð Þ is the classification quality of the set of

features that is determined relative to the decisionD. Also,

C is the total number of features, and R is the number of

selected features, and the ratio
C�Rj j
C is the ratio of unse-

lected features to the total number of features. On the other

hand, a and b are two parameters corresponding to the

importance of classification quality and the number of

selected features so thata 2 0; 1½ �; b ¼ 1 � a. The fitness

function maximizes the classification qualitycR Dð Þ. The

ratio of unselected features to the total number of features

is indicated by
C�Rj j
C . The fitness function is transformed into

a minimization function by substituting the error rate for

the classification quality and using the number of selected

features instead of the number of unselected features

(Eq. 22).

Fitness ¼ aER Dð Þ þ b
Rj j
Cj j ð22Þ

In Eq. 22, ER Dð Þ is the error rate for classifying the

feature set, Rj j is the number of selected features, and Cj j is

the total number of features. Also, a and b are constants to

control the classification accuracy and reduce the number

of selected features, so that;a 2 0; 1½ �; b ¼ 1 � a.

3.5 Creating the classifier

After creating the optimal training dataset that includes

optimal features, artificial neural network (ANN) and

decision tree (DT) algorithms were used to train the

classification model. ANN structures were created from the

biological neural systems and the human brain itself.

Information processing units, which are called artificial

neurons, are the basis of the operation of an ANN. they are

the simplified models of brain cells and biological neurons.

An artificial neuron can have multiple inputs, but only one

output. Artificial neurons used in neural networks are

nonlinear and usually provide continuous outputs. Figure 5

shows the mathematical model of a neuron, which is the

basis for the design of artificial neural networks.

In Fig. 5, multiple input signals from the external

environment are represented by the set x1; x2; x3; . . .; xnf g.

In this study, the input signals are the values of the features

in the training dataset. Also, the weighting performed by

the synaptic connections of the network is implemented on

the artificial neuron as a set of synaptic weights

w1;w2;w3; . . .;wnf g. In the next step, the relevance of each

input of the neuron xif g is calculated by multiplying them

by the corresponding synaptic weight wif g. Input signals

x1; x2; x3; . . .; xnð Þ are signals (dataset features) that come

from the external environment (train dataset). Input signals

were optimized by the bGWO to increase the computa-

tional efficiency of learning algorithms. Synaptic weights

w1;w2;w3; . . .;wnð Þ are used to determine the weight of

each feature in the SQLi dataset. Specifically, each feature

in the dataset xif g at the input of synapse j connected to the

neuron is multiplied by the synaptic weight wif g. Linear

adder (
P

) sums all the weighted input features to produce

an activation voltage.

Activation Threshold or Bias (b) is a variable used to

determine the appropriate threshold. The result produced

by the linear adder has a stimulus value toward the output

of the neuron. The activation function (u) is to limit the

output of the neuron to a suitable range of values. Typi-

cally, the normalized amplitude of the output of a neuron is

written with the closed interval [0,1] or with the closed

interval [- 1,1]. The output signal (y) contains the final

value produced by the neuron by a particular set of input

features that can be used as input to other connected neu-

rons. Equation 23 was used to calculate the amount of

output signal. In this regard, the activation function is such

Fig. 5 Mathematical model of artificial neurons

Table 4 Hardware and software specifications of the implementation

environment

HW/SW Specification

Central processing unit (CPU) Intel Core i7

Frequency 3.4 GHz

RAM 8 GB

Operating system (OS) Microsoft co. Windows 10

Software platform MATLAB 2020b

6780 Neural Computing and Applications (2024) 36:6771–6792

123

that the function is u. u : R ! R in the space of real

numbers and explains the neuronal output. The activation

function in an artificial neuron acts so that the output of the

neuron (y) in a neural network is between special values

(usually between 0 and 1, or between - 1 and 1). The

activation function can be bounded by Eq. 24.

y ¼ uð
Xn

j¼1
wjxj þ bÞ ð23Þ

lim
t!þ1

u tð Þ ¼ mand lim
t!�1

u tð Þ ¼ n m 6¼ nð Þ ð24Þ

A decision tree is a hybrid data structure of the graph

and tree structures; Where the internal node represents the

Fig. 6 A clipping of a dataset including normal and malicious queries

Fig. 7 Part of the converted dataset to the numeric type

Neural Computing and Applications (2024) 36:6771–6792 6781

123

preparation of the feature, and each branch represents the

test result and each leaf node represents the class label.

Also, the paths from the head to the leaves show the

classification rules. Typically for decision analysis, deci-

sion trees are regularly used in data mining to help identify

a strategy that is most likely to achieve a goal.

4 Experiments platform and results

4.1 Experiment platform

To evaluate the proposed method, firstly, the required

scalar (numeric) training dataset was created. Then, the

proposed feature selection bGWO algorithms were imple-

mented in MATLAB. The ANN and DT machine learning

algorithms were implemented in two forms; In the first

form, the machine learning algorithms were implemented

without using selective features. In the second form, the

machine learning algorithms were implemented using

feature selection algorithms. Indeed, in the experiments,

two different classification models were created. In the first

form of implementation, the ANN and DT train the clas-

sification model using the dataset with all features. In the

second implementation, the machine learning algorithms

invoke the bGWO for selecting the optimal features; then,

the machine learning algorithms train the classification

model using the dataset with optimal features. The hard-

ware and software specifications of the implementation

environment are listed in Table 4.

4.2 Datasets

In this study, the SQLi training dataset has been used to

train and test the ANN and DT algorithms.

In this study, 70% of the dataset was used for training

the classification model and 30% of the dataset was used

for testing the created classification model. In the test stage,

a subset (30%) of the training dataset was also used. The

selected training and test datasets have uniform distribution

and consist of normal and malicious queries. Figure 6

shows the raw dataset that includes the source code of the

SQL queries (normal and malicious).

These features are defined based on the important fea-

tures in SQL injection and a weight is assigned to each

feature based on their importance. In this research, nominal

features such as the length (number of words) of the query,

the number of UNION commands, the number of special

characters, the number of AND operators, the number of

parentheses, and other features have been used. To improve

the performance of the classification models, it is more

desirable to use numerical features in the training dataset.

Hence, the extracted nominal features from the raw dataset

were converted into numerical features. Figure 7 shows the

numeric form of the training dataset. As shown in Fig. 7,

features are selected for each query, and each row of the

dataset indicates the numerical features of a query. Also,

the last column of this table indicates that each row (query)

is a normal or malicious query. In this research, the con-

verted dataset has been used to train and test the machine

learning algorithms. Table 5 shows the specifications of the

numeric training dataset.

To implement the proposed method, a program was

implemented in the MATLAB programming environment

version 2020b. Accuracy, precision, and sensitivity are the

classification criteria that were used to evaluate the pro-

posed method; these criteria were applied as a fitness

function of the binary gray wolf algorithm. The parameters

of the developed binary gray wolf algorithm have been

calibrated experimentally during the experiments. Table 6

shows the best values of the bGWO parameters.

4.3 Evaluation criteria and research questions

The proposed algorithm is implemented in two scenarios

named bGWO1 and bGWO2. The scenarios are performed

on a dataset to determine the efficiency criteria for the

neural network and the decision tree algorithms. The

Table 5 Numeric dataset specifications

Dataset type Total number of samples Number of normal samples Number of malicious samples

Healthy and malicious query dataset 1027 473 554

Table 6 The value of the bGWO parameters

Parameter name Value

No. of agents (wolf) 12

Dimension No. of elected features

Iteration 100

a 0.9

b 0.1

6782 Neural Computing and Applications (2024) 36:6771–6792

123

performance criteria that were used in this study are as

follows:

• Accuracy

• Precision

• Sensitivity

• Error Rate

• Number of selected features

These criteria were applied as a fitness function of the

binary gray wolf algorithm. Extensive experiments were

conducted on the created data set that answers the research

questions as follows:

• RQ1: How effective is the use of the proposed first

feature selector (bGWO1) on the accuracy precision

and error rate of the SQLi detectors?

• RQ2: How effective is the use of the proposed second

feature selector (bGWO2) on the accuracy precision

and error rate of the SQLi detectors?

• RQ3: What is the effect of using the proposed feature

selector in reducing the number of features of the

training dataset?

• RQ4: What is the stability of the proposed feature

selectors as a stochastic-based method?

• RQ5: What is the success rate of the proposed feature

selectors in finding the most effective features in the

SQLi dataset?

In this study, two series of ML experiments have been

performed; in the first experiment, the ANN and DT were

applied to the whole dataset (13 features). In the second

experiment, the ANN and DT were applied in the filtered

dataset (with the selective features by the proposed

bGWO). The results of the experiments have been analyzed

to evaluate the effectiveness of the proposed feature

selector in the SQLi detectors’ performance.

4.4 Results and discussion

4.4.1 SQLi detectors without feature selector

In the first series of experiments, the ANN and DT have

been used to create SQLi classifier using the generated

numeric train dataset. In these experiments, all features of

the dataset have been used in the training stage. The results

of ANN and DT efficiency without the proposed features

selector in 3 times executions have been shown in Tables 7

and 8. The average performance of the SQLi classifiers

created by ANN and DT without feature selectors is shown

in Fig. 8. The created SQLi classifier by ANN has higher

performance than the classifier created by the DT algo-

rithms in terms of accuracy, error rate, sensitivity, and

precision.

4.4.2 The effects of bGWO1 on the SQLi detectors (RQ1)

This subsection of the paper is related to the RQ1. An

extensive series of experiments have been conducted to

respond to RQ1. In this experiment, the proposed bGWO1

algorithm was used to select the optimal features in the

created numeric dataset. The filtered training dataset by the

bGWO1 was used to train the ANN and DT; then the

created SQLi classification models were tested by the test

data. Test data were selected from the created numeric train

dataset. Figure 9 shows the effects of the bGWO1 algo-

rithm on the performance of the created SQLi classifier by

ANN and DT. The accuracy of the created SQLi classifier

using the ANN using bGWO1 algorithm, as the feature

selector, is about 0.9783, whereas this figure is about

0.9707. Furthermore, the error rate of the created classifier

by ANN and DT with the bGWO1 are respectively 0.0216

and 0.0292. In contrast, the sensitivity of the DT and

Table 7 Results of ANN without feature selection

ANN accuracy ANN error rate ANN sensitivity ANN precision

0.9708 0.0292 0.9856 0.9514

0.9773 0.0227 0.9867 0.9673

0.9805 0.0195 0.9893 0.9660

Table 8 Results of DT without feature selection

DT accuracy DT error rate DT sensitivity DT precision

0.8939 0.1061 0.8213 0.9440

0.9123 0.0877 0.9346 0.8830

0.9329 0.0671 0.9294 0.9251

Fig. 8 The average performance of different learning algorithms

without feature selection in SQLi detection problem

Neural Computing and Applications (2024) 36:6771–6792 6783

123

bGWO1 is higher than the sensitivity of the ANN and

bGWO1. Table 9 shows the number of features selected by

the bGWO1 algorithm in the best execution (best fitness

value) during 10 times executions. The selected features by

bGWO1 in the ANN are 4, 3, and 4 in three executions; the

number of selected features by bGWO1 are 6, 7, and in

three executions. The lower the number of selected fea-

tures, the higher the performance of the ML algorithms.

Regarding the results shown in Fig. 9 and Table 9, the

performance of the created SQLi detection by ANN and

bGWO1 is higher than the performance of the created

SQLi detector by the DT and bGWO1. The selected fea-

tures by bGWO1 for the ANN and DT have overlapped.

The fitness of the selected features by the bGWO1 was

evaluated using the test stage. The accuracy, error rate,

sensitivity, and precision of the trained model were con-

sidered as the selected feature’s fitness.

4.4.3 The effects of bGWO2 on the SQLi detectors (RQ2)

In this subsection, the second research question (RQ2) is

answered. In the second series of experiments, the devel-

oped bGWO2 was used to select optimal features before

the training step. The developed bGWO2 algorithm was

used along with the ANN and DT for creating SQLi clas-

sifier. Figure 10 shows the effect of the bGWO2 algorithm

a) The accuracy of the created SQLi classifier b) The error rate of the created SQLi classier

c) The sensitivity of the created SQLi classier d) The precision of the created SQLi classifier

0.96

0.965

0.97

0.975

0.98

0.985

Run1 Run2 Run3 AVG

Accuracy

ANN DT

0

0.01

0.02

0.03

0.04

Run1 Run2 Run3 AVG

Error Rate

ANN DT

0.95

0.96

0.97

0.98

0.99

Run1 Run2 Run3 AVG

Sensitivity

ANN DT

0.92

0.94

0.96

0.98

1

Run1 Run2 Run3 AVG

Precision

ANN DT

Fig. 9 The performance of the created SQLi classifier created by ANN and DT using the bGWO1 feature selection algorithm

Table 9 The selected features

by bGWO1 in best fitness value
Number of features Selected features

bGWO1 ? ANN bGWO1 ? DT bGWO1 ? ANN bGWO1 ? DT

Run1 4 6 [3, 4, 8] [1, 3, 4, 8]

Run2 3 7 [3, 4] [3–5, 7, 8]

Run3 4 6 [2, 4] [1, 2, 4, 5, 8]

6784 Neural Computing and Applications (2024) 36:6771–6792

123

on the performance of the ANN and DT in the SQLi

classification. The accuracy of the SQLi detector that was

created by ANN and bGWO2 is about 0.9837; this fig-

ure for the DT and bGWO2 is about 0.9599. The error rate

of the SQLi detector created by bGWO2 and ANN is about

0.0162 which is lower than the error rate of the SQLi

detector created by DT and bGWO2. Similarly, the SQLi

detector created by the ANN and bGWO2 has higher

sensitivity and precision.

4.4.4 The effects of bGWO in reducing the number
of features (RQ3)

Table 10 shows the selected features by bGWO2 in the best

execution (best fitness value) during 10 times executions.

The average number of selected features by bGWO2 is

lower than the average number of selected features by

bGWO1. Figure 11 shows the number of selected features

by bGWO1 and bGWO2 in different runs. The results

indicate that the bGWO2 has higher performance than the

bGWO1 in terms of the number of selected features.

Figure 12 indicates the number of features in the raw

and filtered dataset. The raw training dataset includes 12

features. The developed bGWO1 selects 7 effective

a) The accuracy of the created SQLi classifier b) The error rate of the created SQLi classier

c) The sensitivity of the created SQLi classier d) The precision of the created SQLi classifier

0.92

0.94

0.96

0.98

1

1.02

Run1 Run2 Run3 AVG

Accuracy

ANN DT

0

0.02

0.04

0.06

Run1 Run2 Run3 AVG

Error Rate

ANN DT

0.9

0.92

0.94

0.96

0.98

1

Run1 Run2 Run3 AVG

Sensi�vity

ANN DT

0.9

0.92

0.94

0.96

0.98

1

Run1 Run2 Run3 AVG

Precision

ANN DT

Fig. 10 The performance of the created SQLi classifier created by ANN and DT using the bGWO2 feature selection algorithm

Table 10 The selected features

by bGWO2 in best fitness value
Number of features Selected features

bGWO2 ? ANN bGWO2 ? DT bGWO2 ? ANN bGWO2 ? DT

Run1 2 3 [2, 4] [1, 3, 4]

Run2 3 3 [3, 4] [1, 4]

Run3 2 3 [2, 4] [1, 4, 8]

Neural Computing and Applications (2024) 36:6771–6792 6785

123

features (traits) when combined with the DT algorithm.

The bGWO1 selects 3 features when combined with the

ANN. The minimum number of features was selected by

bGWO2 and ANN. Although the least number of features

selected by the ANN and bGWO2, it has the best perfor-

mance in terms of accuracy, sensitivity, and precision. On

average, by picking 20% of the most efficient traits, the

suggested strategy improves the efficacy of attack detection

systems. Overall, the SQLi detection model created by the

combination of the ANN and bGWO2 has higher perfor-

mance than the other algorithms.

According to the obtained results, the first and second

approaches of the binary GWO algorithm, especially the

second approach of the algorithm, are better than the other

methods in terms of accuracy, sensitivity, and precision

detection. Also, in terms of feature selection takes less

time. Consequently, it minimizes the detection time of SQL

injection attacks. Table 11 shows the selected features by

the bGWO1 and bGWO2 in the best case (fitness).

4.4.5 Evaluating the stability of the proposed method
(RQ4)

The first research question is related to the stability of the

proposed feature-selecting algorithm. The stability of the

Fig. 11 The number of selected

features by the bGWO1 and

bGWO2 in different runs

12 12

7

3 3
2

0

2

4

6

8

10

12

DT ANN bGWO1+ DT bGWO2+DT bGWO1+ ANN bGWO2+ANN

N
um

 o
f F

ea
tu

re
s

Fig. 12 The number of selected

features in the SQLi dataset by

different ML algorithms

Table 11 Evaluation of methods in terms of efficiency and feature

selection in the best case

Methods Features Selected features

DT 12 All

ANN 12 All

bGWO1 ? DT 7 [3–5, 7, 8]

bGWO2 ? DT 3 [1, 4]

bGWO1 ? ANN 3 [3, 4]

bGWO2 ? ANN 2 [2, 4]

6786 Neural Computing and Applications (2024) 36:6771–6792

123

metaheuristic algorithms (stochastic-based algorithms)

should be evaluated based on their best, worst, and average

outputs during different executions. To evaluate the best,

worst, and average outputs of the proposed method, the

proposed bGWO was executed at different times in the

same condition. Figure 13 shows the accuracy of the SQLi

classifier created by different methods in three runs.

Overall, the performance of the DT and ANN without the

proposed features selection is lower than the performance

of the DT and ANN with the proposed features selection.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

AN
N DT

bG
W

O
1+

AN
N

bG
W

O
1+

DT

bG
W

O
2+

AN
N

bG
W

O
2+

DT

AN
N DT

bG
W

O
1+

AN
N

bG
W

O
1+

DT

bG
W

O
2+

AN
N

bG
W

O
2+

DT

AN
N DT

bG
W

O
1+

AN
N

bG
W

O
1+

DT

bG
W

O
2+

AN
N

bG
W

O
2+

DT

Run1 Run2 Run3

Ac
cu

ra
cy

Fig. 13 Accuracy of the SQLi

detector created by different

methods with and without

feature selection during

different runs

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

ANN DT bGWO1+ANN bGWO1+DT bGWO2+ANN bGWO2+ DT

Ac
cu

ra
cy

Best Accuracy Worst Accuracy

Fig. 14 The best and worst

accuracy value of the SQLi

detectors created by different

methods

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ANN DT bGWO1+ANN bGWO1+DT bGWO2+ANN bGWO2+ DT

Se
ns

iti
vi

ty

Best Sensitivity Worst Sensitivity

Fig. 15 The best and worst

sensitivity value of the SQLi

detectors created by different

methods

Neural Computing and Applications (2024) 36:6771–6792 6787

123

The results of experiments confirm that the developed

binary GWO, as feature selection, improves the accuracy

of the created SQLi detector by the DT and ANN. When

using bGWO2 together with the ANN, the accuracy is

higher than the other methods.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

AN
N DT

bG
W

O
1+

AN
N

bG
W

O
1+

DT

bG
W

O
2+

AN
N

bG
W

O
2+

DT

AN
N DT

bG
W

O
1+

AN
N

bG
W

O
1+

DT

bG
W

O
2+

AN
N

bG
W

O
2+

DT

AN
N DT

bG
W

O
1+

AN
N

bG
W

O
1+

DT

bG
W

O
2+

AN
N

bG
W

O
2+

DT

Run1 Run2 Run3

Pr
ec

isi
on

Fig. 16 Precision of the SQLi

detector created by different

methods with and without

feature selection during

different runs

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ANN DT bGWO1+ANN bGWO1+DT bGWO2+ANN bGWO2+ DT

Pr
ec

isi
on

Best Precison Worst Precision

Fig. 17 The best and worst

precision value of the SQLi

detectors created by different

methods

0.9762

0.913

0.9783
0.9707

0.9837

0.9599

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ANN DT bGWO1+ANN bGWO1+DT bGWO2+ANN bGWO2+DT

Av
er

ag
e

Ac
cu

ra
cy

Fig. 18 The average accuracy

of the created SQLi

detectors created by different

methods

6788 Neural Computing and Applications (2024) 36:6771–6792

123

Figure 14 shows the best and worst accuracy of the

SQLi detectors created by different machine learning

algorithms with and without feature selection algorithms.

As shown in Fig. 14, ANN has higher accuracy than the

other methods in worst and best cases. Figure 15 shows the

sensitivity of the created SQLi detector by different algo-

rithms in the best and worst cases. Regarding the results,

ANN has higher sensitivity than the other methods when it

is used along with bGWO2.

Figure 16 shows the precision of the created SQLi

detectors by different algorithms during three runs. As

shown in Fig. 16, ANN has a higher precision when the

training dataset is filtered by bGWO1 and bGWO2. DT, as

a machine learning algorithm, has lower precision than the

other algorithms. The precision of the model created by DT

and bGWO (as feature selector) is higher than the original

DT. Overall, the created model by ANN has higher pre-

cision than the model created by DT. Figure 17 shows the

precision of the feature selector created by different algo-

rithms in the best and worst cases. The best precision of

bGWO1 ? ANN and bGWO2 ? ANN are 0.9932 and

0.9940, respectively; these figures in the worst cases are

0.9750 and 0.9735. Indeed, the created models by the fil-

tered ANN are similar.

The filtered dataset by bGWO1 includes three features,

whereas the filtered dataset by bGWO2 includes two fea-

tures. The lower the number of features, the higher the

performance. Furthermore, using the bGWO algorithm

reduces the difference between the accuracy of the created

classifiers in the best and worst case. Similar results have

been obtained for the accuracy and sensitivity criteria.

Indeed, machine learning algorithms have similar perfor-

mance in different runs and consequently, they have higher

stability. As shown in Figs. 13 and 16, bGWO has a higher

impact on the performance of the ANN than the DT. The

optimal results have been generated by the combination of

ANN and bGWO2 in terms of accuracy and precision.

Overall, in the SQLi classification problem, the combina-

tion of bGWO1 and ANN is superior to the other

algorithms.

Figure 18 shows the average accuracy of the classifi-

cation models created by different algorithms on the raw

and filtered train dataset. The average accuracy of the

created models by the filtered ANN (bGWO2 ? ANN) is

higher than the algorithms. Both proposed feature selection

algorithms (bGWO1 and bGWO2) have higher effects on

the accuracy of the models generated by ANN. Similarly,

the average precision of the classification models generated

by filtered ANN (bGWO and ANN) is higher than the

precision of the created models by the other algorithms.

Figure 19 indicates the average precision of the created

SQLi detection by different training algorithms.

4.4.6 Evaluating the success rate of the proposed method
(RQ5)

To evaluate the success rate of the proposed method.

Another series of experiments have been conducted. In

these experiments, the average accuracy of the created

SQLi detectors by ANN, DT, bGWO1 ? ANN,

bGWO1 ? DT, bGWO2 ? ANN, and bGWO2 ? ANN

have been evaluated. The success rate is the probability of

reaching the optimal solution (highest accuracy in SQLi

detection) in these 10 executions. The probability of

reaching the highest accuracy by the created different SQLi

detectors indicates the success rate of that method.

Table 12 shows the calculated success rate of different

0.9615

0.9173

0.9828

0.957

0.9822

0.9556

0.88

0.9

0.92

0.94

0.96

0.98

1

ANN DT bGWO1+ANN bGWO1+DT bGWO2+ANN bGWO2+DT
Av

er
ag

e
Pr

ec
isi

on

Fig. 19 The average precision

of the created SQLi detectors

created by different training

algorithms

Table 12 The success rate of

different methods
Methods Success rate

DT 0.8795

ANN 0.9866

bGWO1 ? DT 0.9917

bGWO2 ? DT 0.9863

bGWO1 ? ANN 0.991

bGWO2 ? ANN 0.9802

Neural Computing and Applications (2024) 36:6771–6792 6789

123

methods. As shown in Table 12, bGWO1 ? DT and

bGWO1 ? ANN have the higher success rate and DT has

the lowest success rate. Table 13 shows the average run-

ning time of the training stage using DT and ANN using

the dataset with all features (12 features) and the average

running time of the training stage using the dataset with

selective features. The running time of the proposed feature

selectors (bGWO1 and bGWO2) has been shown in

Table 13. Each training stage was executed 10 times, and

the average running time was calculated. The bGWO was

executed 10 times and each execution includes 100

iterations.

The F1 score of each method during 10 executions has

been indicated in Fig. 20. Furthermore, Table 14 shows the

average F1 score of the methods (bGWO1 ? ANN,

bGWO1 ? DT, bGWO2 ? DT and bGWO2 ? ANN)

during 10 times executions.

Table 13 The average running time of the training stage in the SQLi creation with and without feature selectors

Methods Training by the dataset with all

Features

Feature selection using

GWO1

Feature selection using

GWO2

Training by the dataset with selective

features

DT 0.1057 s 9.8611 s 11.6230 s 0.0184 s

ANN 3.6185 s 845.2082s 930.5194 s 1.0520 s

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10

F1
 S

co
re

Executions

bGWO1+ANN bGWO1+DT bGWO2+DT bGWO2+ANNFig. 20 The F1 score of

different SQLi detection

methods during 10 times

executions

Table 14 The average F1 score

of different method during 10

times executions

bGWO1 ? ANN bGWO1 ? DT bGWO2 ? DT bGWO2 ? ANN

0.970588 0.972775 0.96874 0.97606

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

Se
le

ce
tio

n
Ra

te

Features of SQLi Training Dataset

Fig. 21 The selection rate of

the features in the SQLi dataset

by the proposed bGWO during

10 times executions

6790 Neural Computing and Applications (2024) 36:6771–6792

123

Furthermore, Fig. 21 shows the average selection rate of

the features in the SQLi training dataset by the proposed

bGWO during 10 times executions. Features 4, 12, 2, 1, 6

and 3, respectively, are the most selected features by the

bGWO (Fig. 21). Indeed, these features have the highest

effect on the performance of the created SQLi detectors.

These features are as follows:

• Num. of Constant Value in the SQL Query

• Num. Parenthesis in the SQL Query

• Nesting Level Query

• Length of SQL Query

• Num. of Specific Character in the SQL Query

• Num. of union Operator in the SQL Query

• Num. of double quotation Character (‘) in the SQL

Query

5 Conclusion and future works

Machine learning techniques were used to create the SQLi

attack detection models. The performance of machine

learning-based attack detectors depends on the training

dataset and algorithm. An effective strategy for detecting

SQL injection attacks has been provided in this study. To

choose the most effective characteristics of the dataset, two

binary variants of the Gray-Wolf algorithm were con-

structed. The test results show that the suggested SQL

injection detection techniques have 99.68% accuracy,

99.40% precision, and 98.72% sensitivity. By picking 20%

of the most effective traits, the suggested strategy improves

the efficacy of attack detectors. The limited number of

selected effectivefeatures is one of the main merits of the

proposed methods. Obtaining the higher value of accuracy,

precision, and sensitivity is the other merit of the method.

Providing similar results during different executions is the

other advanteg of this study. The machine learning and

heuristic algorithms exploited in [22–26] can be used to

develop effective SQLi detection models. Investigating the

performance of the SQLi detectors using other advanced

learning and deep learning methods [27] is considered as a

future study. Evaluating the chaos based methods [28] in

the performance of the bGWOA is suggested as another

future study. The developed bGWOA can be used in the

resiliency improvement problems [29].

Author contributions The proposed method was designed by BA. The

designed algorithm was implemented and coded by BF and checked

by KA. The implemented method was adapted and benchmarked by

BA and BF. The generation of the raw SQLi dataset was performed

by BA and BA. The data and results analysis were performed by BA

and BA. The manuscript of the paper was written by BA and BA. The

paper was proofread by BA, FK and MT-A.

Funding Open access funding provided by the Scientific and Tech-

nological Research Council of Türkiye (TÜBİTAK).

Data availability The data relating to the current study are available

on Google. drive and can be freely accessed by the follow-

ing link: https://drive.google.com/drive/folders/194tzSPS03D4Ylt1L

30qv21meCwpnG1Jt?usp=sharing.

Declarations

Conflict of interest The authors declare that no funds, grants, or other

support were received during the preparation of this manuscript. The

authors have no relevant financial or non-financial conflict of interest.

Ethical approval The data used in this research do not belong to any

other person or third party and were prepared and generated by the

researchers themselves during the research. The data of this research

will be accessible to other researchers.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Marashdeh, Z, Suwais, K, Alia, M (2021) A Survey on SQL

Injection attacks: detection and challenges. In: Proceedings of the

2021 international conference on information technology (ICIT),

Amman, Jordan, pp 957–962

2. Huang H-C, Zhang Z-K, Cheng H-W, Shieh SW (2017) Web

application security: threats, countermeasures, and pitfalls.

Comput (Long Beach Calif) 50(6):81–85. https://doi.org/10.1109/

MC.2017.183

3. Ibarra-Fiallos S, Higuera JB, Intriago-Pazmino M, Higuera JRB,

Montalvo JAS, Cubo J (2021) Effective filter for common

injection attacks in online web applications. IEEE Access

9:10378–10391. https://doi.org/10.1109/ACCESS.2021.3050566

4. Hu H (2017) Research on the technology of detecting the SQL

injection attack and non-intrusive prevention in WEB system.

AIP Conf Proc. https://doi.org/10.1063/1.4982570

5. Tian W, Yang J-F, Xu J, and Si G-N (2012) Attack model based

penetration test for SQL injection vulnerability. In: 2012 IEEE

36th annual computer software and applications conference

workshops, pp. 589–594. https://doi.org/10.1109/COMPSACW.

2012.108.

6. Buja G, Jalil KBA, Ali FBHM, and Rahman TFA (2015)

Detection model for SQL injection attack: an approach for pre-

venting a web application from the SQL injection attack. In:

ISCAIE 2014-2014 IEEE symposium on computer applications

and industrial electronics, pp 60–64. https://doi.org/10.1109/

ISCAIE.2014.7010210.

Neural Computing and Applications (2024) 36:6771–6792 6791

123

https://drive.google.com/drive/folders/194tzSPS03D4Ylt1L30qv21meCwpnG1Jt?usp=sharing
https://drive.google.com/drive/folders/194tzSPS03D4Ylt1L30qv21meCwpnG1Jt?usp=sharing
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MC.2017.183
https://doi.org/10.1109/MC.2017.183
https://doi.org/10.1109/ACCESS.2021.3050566
https://doi.org/10.1063/1.4982570
https://doi.org/10.1109/COMPSACW.2012.108
https://doi.org/10.1109/COMPSACW.2012.108
https://doi.org/10.1109/ISCAIE.2014.7010210
https://doi.org/10.1109/ISCAIE.2014.7010210

7. Masri W, Sleiman S (2015) SQLPIL: SQL injection prevention

by input labeling. Secur Commun Netw 8(15):2545–2560. https://

doi.org/10.1002/sec.1199

8. Parvez M, Zavarsky P, and Khoury N (2015) Analysis of effec-

tiveness of black-box web application scanners in detection of

stored SQL injection and stored XSS vulnerabilities. In: 2015

10th international conference for internet technology and secured

transactions (ICITST), pp 186–191. https://doi.org/10.1109/

ICITST.2015.7412085.

9. Huang Y-W, Huang S-K, Lin T-P, and Tsai C-H (2003) Web

application security assessment by fault injection and behavior

monitoring. In: Proceedings of the twelfth international confer-

ence on World Wide Web–WWW, p 148. https://doi.org/10.

1145/775152.775174.

10. Lee I, Jeong S, Yeo S, Moon J (2012) A novel method for SQL

injection attack detection based on removing SQL query attribute

values. Math Comput Model 55(1–2):58–68. https://doi.org/10.

1016/j.mcm.2011.01.050

11. Gould C, Su Z, and Devanbu P (2004) JDBC checker: a static

analysis tool for SQL/JDBC applications. In: Proceedings 26th

international conference on software engineering, vol 26,

pp 697–698. https://doi.org/10.1109/ICSE.2004.1317494.

12. Wassermann G and Su Z An analysis framework for security in

Web applications. SAVCBS 2004 Specif. Verif. Component-

Based Syst, p 70

13. Thomas S and Williams L (2007) Using automated fix generation

to secure SQL statements. Softw Eng Secur Syst 2007. SESS ’07

ICSE Work. 2007. Third Int. Work, p 9

14. Kosuga Y, Kono K, Hanaoka M, Hishiyama M, and Takahama Y

(2007) Sania: syntactic and semantic analysis for automated

testing against SQL injection. In: Twenty-third annual computer

security applications conference (ACSAC 2007), pp 107–117.

https://doi.org/10.1109/ACSAC.2007.20.

15. Bashah Mat Ali A, Yaseen Ibrahim Shakhatreh A, Syazwan

Abdullah M, Alostad J (2011) SQL-injection vulnerability scan-

ning tool for automatic creation of SQL-injection attacks. Pro-

cedia Comput Sci 3:453–458. https://doi.org/10.1016/j.procs.

2010.12.076

16. William WG and Orso A (2005) AMNESIA: analysis and mon-

itoring for NEutralizing SQL-injection attacks. In: Proceedings of

the 20th IEEE/ACM international conference on automated

software engineering

17. Buehrer GT, Weide BW, and Sivilotti PAG (2005) Using parse

tree validation to prevent SQL injection attacks. In: Proceedings

of the 5th international workshop on software engineering and

middleware–SEM, p 106. https://doi.org/10.1145/1108473.

1108496.

18. Park JC and Noh BN (2007) SQL injection attack detection:

profiling of web application parameter using the sequence pair-

wise alignment. In: Lecture notes in computer science (including

subseries lecture notes in artificial intelligence and lecture notes

in bioinformatics), vol 4298, pp 74–82. https://doi.org/10.1007/

978-3-540-71093-6_6.

19. Valeur F, Mutz D, and Vigna G (2005) A learning-based

approach to the detection of SQL attacks. Lect Notes Comput Sci

3548. In: Detection of intrusions and malware, and vulnerability

assessment: second international conference, DIMVA 2005.

Proceedings, pp 123–140. doi: https://doi.org/10.1007/11506881_

8.

20. Joshi A and Geetha V (2014) SQL Injection detection using

machine learning. In: 2014 International conference on control,

instrumentation, communication and computational technologies

(ICCICCT), no 2, pp 1111–1115. https://doi.org/10.1109/

ICCICCT.2014.6993127

21. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.

Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.

2013.12.007

22. Keshtgar A, Arasteh B (2017) Enhancing software reliability

against soft-error using minimum redundancy on critical data. Int

J Comput Netw Inf Secure 9:51. https://doi.org/10.5815/ijcnis.

2017.05.03

23. Zadahmad M, Arasteh B, Yousefzadeh Fard P (2011) A pattern-

oriented and web-based architecture to support mobile learning

software development. Procedia Soc Behav Sci 28:194–199.

https://doi.org/10.1016/j.sbspro.2011.11.037

24. Bouyer A, Arasteh B, Movaghar A (2007) A new hybrid model

using case-based reasoning and decision tree methods for

improving speedup and accuracy. In: IADIS international con-

ference of applied computing 2007.

25. Arasteh B, Abdi M, Bouyer A (2022) Program source code

comprehension by module clustering using a combination of

discretized gray wolf and genetic algorithms. Adv Eng Softw

173:103252. https://doi.org/10.1016/j.advengsoft.2022.103252

26. Arasteh B, Pirahesh S, Zakeri A, Arasteh B (2014) Highly

available and dependable e-learning services using grid system.

Procedia-Soc Behav Sci 143:471–476. https://doi.org/10.1016/j.

sbspro.2014.07.519

27. Arasteh B (2022) Clustered design-model generation from a

program source code using chaos-based metaheuristic algorithms.

Neural Comput 1:23. https://doi.org/10.1007/s00521-022-07781-

6

28. Mendonça YVS, Vinueza PG, Diego CP (2022) The role of

technology in the learning process: a decision tree-based model
using machine learning. Emerg Sci J. https://doi.org/10.28991/

ESJ-2022-SIED-020

29. Arasteh B, Miremadi SG, Rahmani AM (2014) Developing

inherently resilient software against soft-errors based on algo-

rithm level inherent features. J Electron Test 30:193–212. https://

doi.org/10.1007/s10836-014-5438-8

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

6792 Neural Computing and Applications (2024) 36:6771–6792

123

https://doi.org/10.1002/sec.1199
https://doi.org/10.1002/sec.1199
https://doi.org/10.1109/ICITST.2015.7412085
https://doi.org/10.1109/ICITST.2015.7412085
https://doi.org/10.1145/775152.775174
https://doi.org/10.1145/775152.775174
https://doi.org/10.1016/j.mcm.2011.01.050
https://doi.org/10.1016/j.mcm.2011.01.050
https://doi.org/10.1109/ICSE.2004.1317494
https://doi.org/10.1109/ACSAC.2007.20
https://doi.org/10.1016/j.procs.2010.12.076
https://doi.org/10.1016/j.procs.2010.12.076
https://doi.org/10.1145/1108473.1108496
https://doi.org/10.1145/1108473.1108496
https://doi.org/10.1007/978-3-540-71093-6_6
https://doi.org/10.1007/978-3-540-71093-6_6
https://doi.org/10.1007/11506881_8
https://doi.org/10.1007/11506881_8
https://doi.org/10.1109/ICCICCT.2014.6993127
https://doi.org/10.1109/ICCICCT.2014.6993127
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.5815/ijcnis.2017.05.03
https://doi.org/10.5815/ijcnis.2017.05.03
https://doi.org/10.1016/j.sbspro.2011.11.037
https://doi.org/10.1016/j.advengsoft.2022.103252
https://doi.org/10.1016/j.sbspro.2014.07.519
https://doi.org/10.1016/j.sbspro.2014.07.519
https://doi.org/10.1007/s00521-022-07781-6
https://doi.org/10.1007/s00521-022-07781-6
https://doi.org/10.28991/ESJ-2022-SIED-020
https://doi.org/10.28991/ESJ-2022-SIED-020
https://doi.org/10.1007/s10836-014-5438-8
https://doi.org/10.1007/s10836-014-5438-8

	Detecting SQL injection attacks by binary gray wolf optimizer and machine learning algorithms
	Abstract
	Introduction
	Related works
	Blacklist-based SQLi detection method
	Static analysis method
	Dynamic analysis method
	A hybrid analysis method
	Query profiling methods
	Machine learning-based methods

	Suggested method
	Dataset creation
	Feature selection by gray wolf optimization algorithm
	Binary GWO
	Adaption of binary gray wolf optimizer
	Creating the classifier

	Experiments platform and results
	Experiment platform
	Datasets
	Evaluation criteria and research questions
	Results and discussion
	SQLi detectors without feature selector
	The effects of bGWO1 on the SQLi detectors (RQ1)
	The effects of bGWO2 on the SQLi detectors (RQ2)
	The effects of bGWO in reducing the number of features (RQ3)
	Evaluating the stability of the proposed method (RQ4)
	Evaluating the success rate of the proposed method (RQ5)

	Conclusion and future works
	Author contributions
	Open Access
	References

