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Abstract
Due to the growing demand for clean and sustainable energy sources, there has been an increasing interest in solar cells and

photovoltaic panels. Nevertheless, determining the right design parameters to achieve the most efficient energy output that

aligns with the energy system’s needs can be quite challenging. This complexity arises from the intricate models and the

inherent inaccuracies in the available information. To tackle this challenge, this paper introduces the adaptive sine–cosine

particle swarm optimization algorithm (ASCA-PSO) as a method for estimating the parameters of solar cells and pho-

tovoltaic modules. The ASCA-PSO approach combines the strengths of the SCA and PSO algorithms in a two-tier process.

In this process, SCA search agents explore the search space, while the PSO search agents leverage the outcomes derived

from SCA exploration. This study evaluates the effectiveness of ASCA-PSO in accurately estimating the parameters of

single- and double-diode models using data from two commercial solar cells. The findings are compared with those of

cutting-edge methods. It is demonstrated that ASCA-PSO can identify global solutions for multifaceted and intricate

objective functions. Furthermore, it proves to be a viable option for designing solar cells even in the presence of noise.
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1 Introduction

Based on recent research, it is projected that by 2050, 85%

of the global population will live in urban areas, creating a

significant need for specialized services to be available

around the clock. [1]. Approximately 75% of the world’s

energy production is consumed by cities, and they are

responsible for generating 80% of greenhouse gas emis-

sions [1, 2]. To address the issue of pollution, it is

necessary to develop new environmentally friendly energy

sources [2]. In recent years, there has been a growing

global concern for environmental protection policies that

aim to promote the development of clean fuel technology

[3]. Solar energy is one of the most lucrative renewable

sources being explored today, as it can help meet the

increasing demand for energy supplies [4]. Solar energy is

recognized for its quiet operation, ease of deployment, and

lack of pollutants [5].

Photovoltaic modules (PVs), consisting of solar cells

(SCs), can convert solar energy into electricity without the

need for any additional intervention. Thismeans that both SC

andPVmodulesmust be capable of functioning in conditions

that are influenced by weather [6], in addition, the mainte-

nance of SC and PV modules should be cost-effective [7].

Meeting these objectives requires rigorous design of both SC

and PV modules. Before a PV system is installed, its effi-

ciencymust be optimized, and its capacitymust be evaluated

using a reliable and effective simulator [8].

The design of SCs involves the use of mathematical

models to estimate the parameters that define the cell.

These models are utilized to simulate the internal variables
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that govern the behavior of the SC and establish the rela-

tionship between current and voltage (I–V). Two models

are commonly employed for this task: the single-diode

(SD) model and the double-diode (DD) model. In [9], the

essential concepts of single- and double-diode modeling of

PV solar cells are described.

The single-diode (SD) and double-diode (DD) models

are electronic circuits used to depict the nonlinear behavior

of SC. In the SD and DD models, various factors are

considered, including the photo-generated current, diode

saturation current, series resistance, and diode ideality

factor. The configuration of these elements precisely

reflects the performance of the SC or PV modules. The SD

model employs five parameters to describe the SC, while

the DD model uses seven. To achieve a precise balance

between current and voltage (I–V) and obtain current

estimates that closely match the measured values, it is

essential to accurately estimate these parameters.

Several approaches have been proposed in recent years

to optimize the estimation of SC model parameters [9, 10].

The methods for estimating SC model parameters can be

categorized into three types: numerical techniques, ana-

lytical techniques, and soft-computing techniques.

Numerical techniques employ nonlinear optimization

approaches, such as the Newton–Raphson technique [11],

the Levenberg–Marquardt algorithm [12], and the con-

ductivity method for estimating the parameters of SC [13].

One of the main disadvantages of numerical techniques is

their sensitivity to the initialization of parameters. This can

result in becoming trapped in local minima, as the nature of

the SC parameter estimation problem is multimodal [14].

Several attempts have been made to estimate parameters

using analytical methods, such as employing elementary

functions [15] and Lambert W-function [16], and there is a

review of the common methods used in [9] that shows the

advantages and drawbacks of each method. The main issue

with analytical methods is that they require more approx-

imations due to the large number of parameters to be

estimated (five for a single diode and seven for a double

diode), which can lead to increased computation time for

solving the system [9]. That is clear in [17] when the

number of parameters was reduced from seven to four to be

solved analytically. Another drawback of analytical meth-

ods is that they require additional coefficients, and their

values may not be readily available in the datasheets [9].

As a result, analytical methods may provide less accurate

parameter estimates for PV solar cells due to the approxi-

mations required and the lack of available data [18].

Soft computing is a third approach that aims to overcome

the disadvantages of numerical and analyticalmethods. Soft-

computing techniques typically utilize meta-heuristic algo-

rithms (MAs), which search for optimal global solutions

based on a search strategy that imitates natural behavior.

Meta-heuristic algorithms employ different metaphors, such

as the genetic algorithm (GA), to achieve this goal [19] and

differential evolution (DE) [20], which is based on the evo-

lutionary theory. Meanwhile, physics-based algorithms

include methods such as the sine–cosine algorithm (SCA)

[21] and the gravitational search algorithm (GSA) [22].

There also exists another group of methods based on animals

and insects like particle swarm optimization (PSO) [23],

artificial bee colony (ABC) [24, 25], or moth-flame opti-

mization (MFO) [26]. MA succeeded in optimizing many

applications such as the optimization of radiative transfer

function [27], induction motor design [28], Handwritten

Arabic Manuscript Image Binarization [29], feature selec-

tion [30], PID controller tuning parameters [31], and multi-

ple sequence alignment [32].

Meta-heuristic algorithms can explore complex and

multimodal search spaces using various operators to find

the optimal solution. In the context of estimating SC

parameters using MA, the root-mean-square error (RMSE)

is commonly used as an objective function. The RMSE

compares the values obtained from the dataset with the

parameters calculated by the diode models. There are

several different types of MA discussed in the literature.

For example, in [33], the GA is used to increase the

accuracy of the parameters estimated by the DD. The PSO

is applied to estimate the parameters of solar cells using SD

and DD models [34–38] and in another development of

PSO using chaos theory to increase exploration [39].

Besides, PSO was used for solar fabrication with the aid of

neural networks [40]. PSO also succeeded in estimating the

parameters of solar cells but in a more complex model of

the circuit where it modeled as three diodes [41].

Another interesting approach uses simulated annealing

(SA) to compute the values of the SD and DD [42],

according to the authors, the results obtained using simu-

lated annealing (SA) were superior to those obtained using

other approaches that were compared. More recently, a

new method called cat swarm optimization (CSO) has been

proposed for determining the optimal parameters of SC

using both the SD and DD models [43]. Moreover, the CSO

has also been compared with different methods to verify

the quality of the solutions. In Rajasekar [44], the bacterial

foraging algorithm (BFA) is introduced as an alternative to

accurately model the characteristics of an SC using a new

equation proposed by the authors. In the same context, in

Askarzadeh and Rezazadeh [45], various versions of the

harmony search (HS) algorithm have been proposed for

identifying unknown parameters in both single- and dou-

ble-diode models of solar cells. While these methods are

generally efficient, they may still suffer from accuracy

issues. In real-world scenarios, such as PV or SC model

identification, it is crucial to have accurate outputs to

minimize the costs associated with energy systems [46].
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Other related works are the pattern search (PS) [47] and the

bird-mating optimizer [48].

In Das et al. [49], a hybrid scheme between PSO and DE

[20]. This technique involves integrating particle swarm

optimization (PSO) with differential evolution (DE) for the

optimization of digital filter circuits. The primary advan-

tage of this integration is that it enhances the exploration

scheme of PSO, thereby reducing the likelihood of

becoming trapped in local optima. This is achieved by

adding a new term in the estimation of particle velocity,

which is the percentage difference in distances between

two random particles. This promotes greater exploration of

the particles. Additionally, particles are moved to new

positions if they provide better fitness than their previous

positions. However, the main drawback of this technique is

its slow convergence, and it may provide low accuracy for

optimizing mathematical benchmark functions.

The no-free-lunch (NFL) theorem states that there is no

single optimization technique that is universally suit-

able for all optimization problems. In other words, different

optimization techniques may perform better or worse

depending on the specific problem being addressed. It

emphasizes the importance of selecting an appropriate

optimization technique based on the characteristics of the

problem at hand [50]. Given the NFL theorem, this paper

proposes the use of a hybrid optimization algorithm that

combines the best features of two different methods.

Specifically, it introduces the use of a recently proposed

method called the sine–cosine algorithm, which is known

for its simplicity and efficiency. By combining the sine–

cosine algorithm with other optimization techniques, the

proposed hybrid algorithm aims to achieve better perfor-

mance than either method alone [21] with the PSO [23].

This method is called an adaptive sine–cosine optimization

algorithm integrated with particle swarm optimization

(ASCA-PSO), and it has two optimization layers [51]. The

proposed hybrid optimization algorithm consists of two

layers. The first layer uses particle swarm optimization

(PSO) to exploit the most prominent regions of the search

space. Meanwhile, the second layer employs the sine–

cosine algorithm (SCA) to explore different sections of the

same space using its unique operators. By combining these

two methods, the proposed ASCA-PSO algorithm aims to

achieve a better balance between exploration and

exploitation of the search space, thereby improving the

overall performance compared to either method alone. The

ASCA-PSO algorithm has demonstrated its capabilities for

solving complex optimization problems such as local

sequence alignment.

The primary advantage of ASCA-PSO is its ability to

perform both exploitation and exploration processes in par-

allel, which speeds up the convergence of the best solution

and improves the quality of the solutions by combining the

benefits of SCA for exploring the search space with the

accurate tuning provided by PSO for exploitation. This

makes it an ideal algorithm for enhancing the estimation of

parameters for PV solar cells, which typically involve

numerous parameters that must be accurately tuned. By

efficiently exploring the search space, ASCA-PSO can find

optimal solutions in multidimensional search spaces while

achieving a high degree of convergence.

ASCA-PSO is executed in two layers, with SCA in the

bottom layer and PSO in the upper layer, which helps to

increase the accuracy of the search process. This is

achieved through the combination of operators and the co-

evolutionary learning scheme, which guides the algorithm

toward optimal solutions. However, due to the nonlinearity

of the parameter estimation problem for solar cells, SCA

may produce poor results when used alone, in comparison

to PSO. This is because PSO can exploit the search space to

find the best solution, while SCA explores the search space.

The objective function used in ASCA-PSO is the root-

mean-square error (RMSE), which measures the differ-

ences between a dataset and the values estimated using the

optimal diode models (SD and DD).

Thus, this paper’s primary contributions are outlined as

follows: firstly, introducing a reliable and precise tool for

identifying PV solar cell parameters through a hybrid

method of PSO and SCA. Secondly, it showcases the

ability of ASCA-PSO to simultaneously conduct explo-

ration and exploitation processes, thereby improving the

accuracy of SC parameters. Thirdly, applying ASCO-PSO

to estimate parameters for two SC models, namely the SD

and DD circuit models. Finally, the paper compares the

performance of ASCA-PSO with other algorithms used for

estimating PV solar cell parameters.

The organization of this paper considers the following

sections: Sect. 2 presents the diode models used for SC and

how the parameter estimation can be formulated as an

optimization problem. In Sect. 3, the preliminaries of

ASCA-PSO are presented. Section 4 describes the experi-

mental methodology and presents the results. Meanwhile,

Sect. 5 includes some conclusions and future work.

2 Formulation of PV parameter estimation
problem

In photovoltaic (PV) systems, diodes are used to manage

the flow of electrical current. There are two common types

of diodes used in PV systems: single diodes and double

diodes. A single diode, also known as a bypass diode or

blocking diode, is a basic diode component used in PV

modules. Its primary function is to prevent reverse current

flow through a specific cell or group of cells in a PV

module when they are shaded or operating under low-light
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conditions. When a solar cell is shaded, it can act as a

resistor and impede the flow of current, potentially reduc-

ing the overall performance of the module. The single

diode is connected in parallel to the shaded cell or group of

cells. When the voltage across the shaded cell(s) becomes

negative (due to shading), the diode becomes forward

biased and allows the current to flow through it, by passing

the shaded cells.

A double-diode configuration is a more advanced setup

used in some high-efficiency PV modules. It includes both

a forward-biased diode (like the single diode) and a

reverse-biased diode. The forward-biased diode functions

as described for the single diode, allowing current to

bypass shaded cells. However, the additional reverse-bi-

ased diode offers extra protection and performance bene-

fits. The reverse-biased diode is connected in series with

the PV cell or string of cells and helps reduce losses caused

by voltage drop and thermal effects. It prevents current

from flowing in the reverse direction, which can improve

the overall efficiency and reliability of the PV module.

The choice between single- and double-diode configu-

rations depends on the specific design and requirements of

the PV system. Double-diode configurations are typically

found in high-end, high-efficiency solar modules, while

single diodes are more common in standard PV modules.

The use of diodes in PV systems is crucial to maximizing

energy harvest and protecting the cells from damage under

various operating conditions.

In this section, the basic concepts of the general two

solar cell models, the single diode (SD) and the double

diode (DD) are discussed.

2.1 Single-diode circuit model

The model depicted in Fig. 1 employs a single diode to

shunt the photogenerated current source, with the diode

serving as the rectifier in the circuit. Typically, the SD

model requires the estimation of five parameters, as the

configuration has a significant impact on the model’s

output.

In general, the SC current (It) is calculated using the

following equation:

It ¼ Iph � Id � Ish ð1Þ

where Ish, It, Id, and Iph are the shunt resistor current, the

terminal, the diode, and the photogenerated, respectively. If

the internal parameters of the diode are adjusted based on

the equivalent Shockley diode equation to achieve high-

performance output, Eq. (1) can be expressed as:

It ¼ Iph � Isd exp
q V t þ Rs:Itð Þ

n:k:T

� �
� 1

� �
� V t þ Rs:It

Rsh

ð2Þ

where V t, Isd, Rsh; and Rs represent the terminal voltage,

the diode saturation currents, the shunt, and the series

resistances, respectively. The variable n is the non-physical

ideality factor. Also, q ¼ 1:602� 10�19 C (coulombs)

represents the magnitude of the charge on an electron.

Meanwhile, k ¼1:380� 10�23 J=K is the Boltzmann con-

stant, and T is the cell temperature in Kelvin (K).

2.2 Double-diode circuit model

This section presents a description of the DD model, which

is represented by a rectifier employing one diode. The

second diode is utilized to design the recombination current

and other non-idealities of the SC. Figure 2 illustrates the

DD model. Based on Eq. (1) can be rewritten as follows:

It ¼ Iph � Id1 � Id2 � Ish ð3Þ

where Id1, Id2, and are the currents of the first and second

diode, respectively. The Shockley equivalence is used to

update the internal configuration of the diodes given in

Eq. (3) to become the following:

It ¼ Iph � Isd1 exp
q V t þ Rs:Itð Þ

n1:k:T

� �
� 1

� �

� Isd2 exp
q V t þ Rs:Itð Þ

n2:k:T

� �
� 1

� �
� Vt þ Rs:It

Rsh
: ð4Þ

where Isd1, and Isd2 represent the diffusion and saturation

current for the d1 and d2 diodes, respectively. n1 and n2 are

the diffusion and recombination diode ideality factors,

respectively. From Eq. (4), the DD circuit contains seven

undefined parameters (i.e.,Rs, Rsh, Iph, Isd1, Isd2, n1; and n2Þ
needed to be estimated as their parameters.

Fig. 1 The equivalent circuit of the SD model
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Both single- and double-diode configurations in photo-

voltaic (PV) systems have their advantages, but they also

come with limitations.

SD’s limitations such as:

• Limited shading mitigation: Single diodes are effective

at mitigating shading issues for small-scale shading

scenarios. However, in cases of complex or partial

shading, where multiple cells or strings are affected,

single diodes may not be as effective in maximizing

power output.

• Voltage drop: Single diodes can introduce some voltage

drop when they are being conducted. This voltage drop

can lead to energy losses, especially in systems where

minimizing losses is crucial.

• Temperature sensitivity: Single diodes can be sensitive

to temperature variations. The forward voltage drop

across a diode decreases as temperature increases,

which can impact its effectiveness in different environ-

mental conditions.

DD’s limitations such as:

• Complexity: Double-diode configurations are more

complex and can be costlier to implement compared

to single diodes. They require additional components

and wiring.

• Added resistance: The presence of an additional diode

in the circuit can introduce additional electrical resis-

tance, potentially leading to minor energy losses.

• Niche application: Double-diode configurations are

typically used in high-efficiency or advanced PV

modules, making them less common in standard PV

installations. They may not be necessary for all

applications.

• Maintenance and reliability: With more components

comes an increased potential for maintenance issues

and reliability concerns. Double diode configurations

require proper design and quality control to ensure they

function as intended over the long term.

3 Adaptive sine–cosine and particle swarm
optimization algorithm

This section is divided into two parts, the first subsection

introduces the basics of particle swarm optimization (PSO)

and the sine–cosine algorithm (SCA). The second part

explains all the steps of the adaptive sine–cosine and par-

ticle swarm optimization algorithm (ASCA-PSO).

3.1 Preliminaries

3.1.1 Particle swarm optimization

The particle swarm optimization (PSO) [26] mimics the

behavior of birds flocking. It is a search strategy based on

global communication between the particles (search

agents) where the particles adapt their movements toward

the particle that finds the best solution. Its movement is

adapted according to Eqs. (5) and (6) toward the particles

Pgbest and Pi
best which represents the best global position

between all particles and the best local position that par-

ticle I passed during the previous iterations.

vi t þ 1ð Þ ¼ w � vi tð Þ þ c1rand Pbest
i � Pi tð Þ

� �
þ c2rand Pgbest � Pi tð Þ

� �
ð5Þ

Pi t þ 1ð Þ ¼ Pi tð Þ þ vi t þ 1ð Þ ð6Þ

where vi is the velocity of the ith particle, Pi is the position

of particle i, t is the iteration number, and rand is a uni-

formly distributed random variable in the range [0–1]. c1
and c2 are the best local and global positions weight

coefficients in order. w is the inertia coefficient that con-

trols the effect of the previous velocity on the new velocity.

Pi
best is the best local position (solution) found by particle

I, and Pgbest is the best global solution found by all

particles.

3.1.2 Sine–cosine algorithm

The sine–cosine algorithm (SCA) [23] is an optimization

algorithm that uses sine and cosine operators to adapt the

movements of search agents to explore the search space for

the best solution. The movements of particles are con-

trolled toward the best solution found according to Eq. (7).

Fig. 2 The equivalent circuit of the SD model
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Pi
tþ1 ¼ Pi

t þ r1sin r2ð Þ r3Pgbest � Pi
t

�� ��r4\0:5

Pi
t þ r1cos r2ð Þ r3Pgbest � Pi

t
�� ��r4 � 0:5

	 

ð7Þ

where Pi denotes the position of search agent i and Pgbest is

the best global solution between all search agents. r1
determines how far the next solution is from the current one

and determines the exploration scale through the search

space. r2 determines the direction of the next movement

toward or outward the best solution, and r3 controls the

effect of destination (Pgbest) on current movement. r4 is used

to balance the usage of sine and cosine functions as in

Eq. (7). Values of r1, r2, r3, and r4 are modified during each

iteration to increase the diversity of solutions. Equation (8)

is used for balancing exploitation and exploration by

updating the value of r1 according to the iteration number

where t is the current iteration, T is the maximum number of

iterations, and a is a constant that should be set by the coder.

r1 ¼ a 1� t

T

� �
ð8Þ

3.2 The ASCA-PSO

The adaptive sine–cosine and particle swarm optimization

algorithm (ASCA-PSO) [51] enhanced the convergence

and the quality of solutions produced by the standard SCA.

The two algorithms are merged in two layers as in Fig. 3,

the bottom layer has groups of search agents that update its

movements based on SCA represented as (xij), where i = 1,

2, 3, …, M, and j = 1, 2, 3, …,N. While, i and j represent

the index of solutions in the top and bottom layer,

respectively. The top layer consists of search agents con-

trolled by PSO and each agent represents the global solu-

tion found by the agents in the corresponding bottom layer.

Each search agent of the top layer is represented by (yi).

(best) represents the best solution found among the particles

of PSO in the top layer. This classification of hybridization

of meta-heuristics belongs to the high-level and Co-evo-

lutionary hybrid meta-heuristics [43].

SCA updates the movements of the search agents toward

the best solution found by (yi) according to Eq. (9). The

search agents of the top layer update their movements

based on PSO toward the best solution (ypbesti) from all

search agents of the top and bottom layers. The movements

are updated using Eqs. (10) and (11) where (ypbesti) repre-

sents the best solution that yi of particle I have over all

previous iterations. ygbest is the best global solution

between whole search agents in the top and bottom layers.

xij
tþ1 ¼ xij

t þ r1sin r2ð Þ r3yit � xij
t

�� ��r4\0:5

xij
t þ r1cos r2ð Þ r3yit � xij

t
�� ��r4 � 0:5

	
ð8Þ

vi
tþ1 ¼ w � vit þ c1rand yi

pbest � yi
t

� �
þ c2rand ygbest � yi

t
� �

ð9Þ

yi
tþ1 ¼ yi

t þ vi
t ð10Þ

Each search agent of the bottom layer (xij) is influenced

by the best solution of the group in the top layer (yi).

Moreover, each search agent of the top layer (yi) is also

influenced by the best solution found (ygbest) between the

whole set of search agents which increases the diversity of

solutions found in the search space. In addition, performing

exploration besides exploitation in the same iteration raises

the chance of finding the global optimum solution with a

higher convergence speed than SCA while avoiding being

trapped in local minima. Figure 4 shows the flowchart of

the proposed ASCA-PSO algorithm.

4 Parameter estimation of PV cell using
ASCA-PSO

This section presents the implementation of the ASCA-PSO

for parameter estimation of PV cells. The algorithm and

problem could be adapted to accurately estimate the best

solutions. The optimization problem is defined

as minimizing the RMSE Xð Þ that depends on the variables of
each diode model. In the ASCA-PSO, the population X con-

tains the candidate solutions defined asX ¼ x1; x2; :::; xN½ � and
each element is constructed as xi ¼ xi;1; xi;2; :::; xi;d

 �
where

d 2 5; 7½ �: The variable d corresponds to the dimension of the

problem and depends on the parameters to estimate using the

diode models for that reason its value could be five or seven.

The set of solutions is randomly initialized and then evaluated

in the objective functions defined by the root-mean-square

error (RMSE). TheASCA-PSO then starts the iterative search

process. Here is important to mention that to compute the

RMSEfirst is necessary to test the set of parameters (candidate

solution) on the model of the solar cells to compute the output

current of the circuit. Algorithm 1 describes the details for

computing the parameters of a diode model.

Fig. 3 The two-layer structure of ASCA-PSO
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Fig. 4 Flowchart of ASCA-PSO

1:  Initialize Nsca search agents (number of search agents in each group in the bottom 

layer)

2:  Initialize Npso search agents (number of search agents in top layer)

3:  Initialize the global best solution

5:  Evaluate RMSE for each agent in the bottom layer and assign it as the best solution 

(RMSEgbest ) if it finds better RMSE then update the value of the head of this group 

toward  RMSEgbest based on updating equation of PSO algorithm. 

6:  Update the search agents in each group in the bottom layer using the updating

equation of the SCA algorithm toward the best solution of the group (head of the 

group in the top layer). 

7:   During step 6, compute RMSE for each agent if it finds better RMSE then assign it a

a solution to RMSEgbest and update the value of the head of this group toward  

RMSEgbest used on the updating equation of PSO algorithm.

8:   Update the positions of the search agents in each group in the top layer using the 

update equation of the PSO algorithm toward the global best solution RMSEgbest, if 

finds a better RMSE then assign it as a solution to  RMSEgbest

9: Repeat from 6 to 8 for T iterations

10:  Output the parameters of the PV cell represented by the global best solution that 

achieves the best RMSE found RMSEgbest

Algorithm 1 Parameter estimation of PV cell using ASCA-PSO algorithm
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5 Experimental results

This section discusses the verification of the performance

and efficiency of the ASCA-PSO approach for estimating

the parameters of the PV solar cell design. The evaluation

criteria were used for testing the performance of the opti-

mization technique as follows:

• Statistical mean: is the average of solutions (Si) that are

produced by executing the optimization algorithm for

M times and is calculated according to Eq. (12).

Table 1 The used ranges of PV cell parameters in the SD model [39]

Parameter Lower bound Upper bound

Iph (A) 0 1

Isd (A) 0 1

n 1 2

Rs (X) 0 0.5

Rp (X) 0 100

Table 2 Statistics of the RMSE

values, achieved by different

optimization algorithms for SD

using the R.T.C module

ASCA-PSO PSO SCA GA BSA PS

Max 0.000995 0.129 0.0104 0.01516 0.00278 0.00205

Min 0.000987 0.0029 0.00272 0.004102 0.00144 0.00205

Mean 0.000989 0.082 0.00540 0.009877 0.00581 0.00205

Std 0.0000146 0.029 0.00206 0.002719 0.00972 0

Newton GOTLBO LETLBO TLABC GBABC PCE

Max 0.0097 0.00198 0.00112 1.039 9 10–3 0.001284 0.0009860

Min 0.0097 0.00984 0.00098 9.860 9 10–4 0.000988 0.0009860

Mean 0.0097 0.001334 0.00101 9.985 9 10–4 0.001044 0.0009860

Std 0 0.000299 0.00031 1.860 9 10–5 0.000070 3.05 9 10–12

Table 3 Circuit model parameters for the SD model are achieved by different optimization algorithms

ASCA-PSO PSO SCA GA BSA PS GOTLBO

Iph (A) 0.766 0.708 0.767 0.766535 0.761 0.761 0.7607

Isd (A) 3.07 9 10–7 2.14 9 10–7 2.31 9 10–7 7.45 9 10–7 4.79 9 10–7 9.80 9 10–7 0.331

n 1.58 1.51 1.50 1.570175 1.52 1.60 1.483

Rs (X) 0.035 0.0363 0.037 0.031438 0.034 0.031 0.036

Rsh (X) 50 49.5 19.3 29.482993 79.59 100.0 54.11

RMSE 0.000989 0.082 0.00540 0.00410 0.00144 0.00295 0.00134

PCE DE Newton HS CSO GGHS TLABC

Iph (A) 0.760776 0.7608 0.7608 0.7607 0.7607 0.7609 0.7607

Isd (A) 0.323021 3.23 9 10–7 3.22 9 10–7 3.04 9 10–7 3.23 9 10–7 3.26 9 10–7 0.3230

n 1.481074 1.4806 1.4837 1.4753 1.481 1.482 1.4811

Rs (X) 0.036377 0.0364 0.0364 0.0366 0.036 0.0363 0.0363

Rsh (X) 53.718525 53.71 53.7634 53.59 53.71 53.06 53.716

RMSE 0.000982 0.0234 0.00970 0.000994 0.000986 0.000949 0.000985

Table 4 The ranges of PV cell parameters in the DD circuit model

[39]

Parameter Lower bound Upper bound

Iph (A) 0 1

Isd1 (A) 0 1

Isd2 (A) 0 1

n1 1 2

n2 1 2

Rs (X) 0 0.5

Rsh (X) 0 100
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Mean ¼ 1

M

XM
i¼1

Si ð11Þ

where Si is the obtained solution of the run time i.

• Statistical standard deviation (Std): is an indicator of

the variation of the best fitness values found for running

the optimization algorithm for M run times. Also, it

represents robustness and stability. It is computed as in

Eq. (13):

Std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XM
i¼1

ðSi �MeanÞ2
vuut ð12Þ

• Root-mean-square error (RMSE): it represents a stan-

dard deviation of the difference between measured (Im)

and estimated (Ic) values. It is computed using the

following formula:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðIm � IcÞ2

N

s
ð13Þ

The RMSE is used as an objective function that

verifies if the model with the parameters estimated

can properly perform the output of the SC.

• Absolute error (Eabs): It is the absolute difference

between the measured values (Im) and estimated values

(Ic) as in Eq. (15).

Eabs ¼ Im � Icj j ð14Þ

The Eabs are used to measure how close the Ic is from

the ideal (measured) current. In this implementation,

it helps to verify if the current value computed by the

ASCA-PSO is better than the measured current.

Two commercial solar cell modules are used for veri-

fication which are the R.T.C module and the STM6-40/36

module with 36 mono-crystalline cells. In the experimental

testing of ASCA-PSO in comparison with standard SCA

and PSO. The following parameters are used which are

chosen within the allowed range specified by the authors of

algorithms and by several runs each parameter is tuned

individually to deliver the best results:

• The number of search agents was 1600 and the number

of iterations was set to 100.

• For PSO, c1 and c2 had a value of 2 and 0.2 for w.

• For SCA, a and r3 had a value of 2 and 1, respectively.

• For ASCA-PSO, c1 and c2 had a value of 0.5. w has a

value of 0.2. a and r3 have values of 10 and 2

respectively.

• For SCA and ASCA-PSO r2 and r4 were randomized

each iteration and r1 was updated according to Eq. (8).

Fig. 5 The convergence curve of ASCA-PSO for SD model of R.T.C

France module

Table 5 Circuit model

parameters for the DD circuit

model achieved by different

optimization algorithms

ASCA-PSO PSO SCA BSA PS PCE

Max 0.0017 0.5598 0.0444 0.00286 0.00816 0.001025

Min 0.000177 0.0087 0.0011 0.0011 0.00816 0.000982

Mean 0.000997 0.1985 0.0094 0.00466 0.00816 0.000986

Std 0.0012 0.12 0.0123 0.000835 0 5.99 9 10–7

GA GOTLBO LETLBO TLABC GBABC

Max 0.0144 0.001787 0.00157 0.001504 0.001272

Min 0.00592 0.000983 0.000985 0.000984 0.0009907

Mean 0.00861 0.001243 0.001083 0.001055 0.001052

Std 0.0018 0.000209 0.000126 0.000155 7.00 9 10–5
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All experimental tests were performed using Matlab

software on a machine with a 64-bit Intel Dual Core pro-

cessor with 2.0 GHz and 4GB RAM.

The performance of the proposed algorithm is evaluated

by analyzing the complexity and measuring the processing

time. The complexity of the ASCA-PSO algorithm is

OðT �M � N � ðCSCA þ CPSOÞÞ where M and N are the

size of search agents in the top and bottom layer in order

and CSCA and CPSO is the time cost of updating all one

search agent per one iteration for SCA and PSO in order,

and T is the number of iterations. The time complexity of

SCA and PSO respectively is O( T � N� CSCA) and

O(T � N� CPSO). According to the previous setting

parameters values the program coded in ASCA-PSO, SCA,

and PSO for estimating the parameters is run 30 times. The

average time for estimating the parameters consumes

16.4 s by ASCA-PSO, while SCA consumes 9.3 s and PSO

executes 10.5 s.

5.1 Experimental series 1: parameter estimation
of solar cells for RTC France silicon solar cell
at 33 �C and full irradiation (1000 w/m2)

5.1.1 Single-diode (SD) circuit model

This subsection shows the estimation of the parameters of

the SD circuit model of R.T.C (with 26 data samples of

experimental measurement of currents versus voltage)

using ASCA-PSO and compared with other related work

such as backtracking search algorithm (BSA) [52],

gravitational search algorithm (GSA) [53], PS, Newton

algorithm [47], SA [42], DE [18], HS and Grouping-based

Global Harmony Search (GGHS) [45], CSO [43],

GOTLBO [54], Teaching–learning-based optimization

with learning experience of other learners (LETLBO) [54],

Teaching–Learning–Based Artificial Bee Colony (TLABC)

[55], Population Classification Evolution Algorithm (PCE)

[56] and Gaussian Bare-bones Artificial Bee Colony

(GBABC) [57].

The range of five decision parameters of the SD circuit

model for the R.T.C module is listed in Table 1 [39].

In Table 2, the estimated current (Ic) using the ASCA-

PSO method is shown in comparison with PSO and SCA

besides the absolute error between the estimated current

using optimization techniques and the measured current

experimentally. In this case, the value of Ic is computed by

using Eq. (2), the value of the measured voltage (Vm), and

the parameters estimated by the ASCA-PSO. The absolute

error (Eabs) is obtained by the difference between Ic and the

measured current (Im). ASCA-PSO technique produces an

absolute error smaller than that produced using SCA and

PSO. This reflects the efficiency of ASCA-PSO for finding

the values of parameters that produce current approximated

to the measured current experimentally better than SCA or

PSO separately.

From Tables 3 and 4, it is observed that the ASCA-PSO

outperforms all the algorithms by delivering a mean RMSE

that is less than that delivered using most of the related

work. ASCA-PSO delivers RMSE near that delivered using

HS, CSO, and GGHS. In addition, a minimum standard

Table 6 Circuit model

parameters for the DD circuit

model are achieved by different

optimization algorithms

ASCA-PSO PSO SCA BSA PS GOTLBO PCE

Iph (A) 0.761 0.88148 0.761545 0.767 0.763 0.7607 0.760781

Isd1 (A) 1.03 9 10–6 4.45 9 10–7 3.1 9 10–7 4 9 10–7 2.8 9 10–7 0.8001 0.226015

Isd2(A) 9.87 9 10–8 7.78 9 10–8 5.2 9 10–8 1 9 10–12 1 9 10–12 0.2204 0.749340

n1 1.838 1.878855 1.833986 1.47 1.00 1.9999 1.450923

n2 1.388 1.340615 1.320963 2 1.00 1.4489 2

Rs (X) 0.037 0.047286 0.044317 0.0353 0.0586 0.0367 0.03674

Rp (X) 55.93 58.64958 58.20994 54.45 18.21 56.075 55.483160

RMSE 0.000997 0.1985 0.00940 0.0112 0.00820 0.001243 0.000986

GA SA HS GGHS CSO TLABC

Iph (A) 0.768 0.7623 0.7617 0.7605 0.7607 0.7608

Isd1 (A) 6.60 9 10–7 4.767 9 10–7 1.2 9 10–7 3 9 10–7 2.2 9 10–7 0.4239

Isd2(A) 4.57 9 10–7 0.100 9 10–7 2.5 9 10–7 1 9 10–7 7.27 9 10–7 0.2401

n1 1.60 1.517 1.494 1.496 1.451 1.9075

n2 1.62 2.00 1.499 1.929 1.997 1.4567

Rs (X) 0.0291 0.0345 0.0354 0.0356 0.0367 0.0366

Rsh (X) 51.11 43.10 46.82 62.78 55.38 54.667

RMSE 0.00591 0.0166 0.00126 0.00107 0.000982 0.001243
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deviation reflects the stability and robustness of the ASCA-

PSO technique. Moreover, Fig. 5 indicates that the ASCA-

PSO method converges after a few iterations for reaching

the optimum RMSE which reflects the quick convergence

rate performance of ASCA-PSO. Hence, the statistical test

for the SD circuit model of the R.T.C module shows the

efficiency of ASCA-PSO for delivering accurate results in

terms of quality of solution and convergence speed with

efficient robustness.

In Fig. 5, the convergence curve of the ASCA-PSO is

plotted along the iterative process for searching the best

parameters of the SD model. Here, the data from the R.T.C

France module are used. From this figure, it can be seen

that the algorithm converges in approximately less than 30

iterations after small adjustments. This is the behavior of

the combination of SCA and PSO. Such behavior can be

interpreted as follows. During the first iterations, the

algorithm performs exploration and after it reaches an

optimal solution, the exploitation starts working trying to

reach more precise solutions.

From Table 2, it can be observed that the lower the

value the mean RMSE is reached by the ASCA-PSO. The

second-best algorithm is the GA followed in third place by

the TLABC. The worst algorithm according to the meaning

of the RMSE is the PSO. In the same context, the standard

deviation of ASCAPSO is lower in comparison to similar

approaches.

Table 3 presents the parameters estimated for the SD

model using different methods. From such results, it can be

analyzed the differences between the elements that permit

obtaining the total current of the SC.

5.1.2 Double-diode (DD) circuit model

In this section, the DD circuit model of the R.T.C PV solar

cell was used to ensure the verification of the performance

of the ASCA-PSO. The estimated parameters are seven

which increase the complexity of the problem. The range

of values of parameters are as listed in Table 4 [39].

From Table 5, it is indicated that the ASCA-PSO

method keeps its robustness with minimum standard

deviation despite the increased number of parameters.

Table 7 presents the estimated parameters using ASCA-

PSO computed at best RMSE better than most of the

related work except CSO which produces similar RMSE

approximately. The power of ASCA-PSO appears with an

increasing number of parameters for the DD model where

it preserves the same efficiency as in the SD model where

algorithms like HS and GGHS perform better for the SD

model circuit.

An analysis of the mean value of the RMSE from

Table 6 indicates that for the ASCA-PSO such value is

lower, followed by the GBABC and the TLABC. More-

over, the Std provided evidence of the stability of the

ASCA-PSO during the iterations.

From Table 6, evidence of the quality of the parameter is

given. From such results, it is possible to see that the best

solution is obtained by the ASCA-PSO. Here are also

presented the differences between all the parameters used

in the DD model. On the other hand, Fig. 6 shows a plotted

graph of estimated current using the ASCA-PSO technique

versus measured voltages in comparison with PSO, SCA,

and measured current experimentally for SD and DD cir-

cuit models. From the figure, it is concluded that ASCA-

PSO estimates current approximately like measured current

better than SCA. However, PSO produces the worst results

which reflect the ability of SCA to raise the performance of

PSO by hybridization.

The reason behind the multimodal nature of PV model

estimation is the large range of values from each

Fig. 6 Measured voltage versus current computed by using ASCA-

PSO, SCA, and PSO for a SD b DD R.T.C models
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parameter. In addition, several parameters increase the

dimensionality of the search space. Thus, using algorithms

with exploitation advantages is better for improving the

quality of the solution. Hence, the meta-heuristic algo-

rithms that have a good balance between exploration and

exploitation generate better results. Hence, performing

(a) (b)

Fig. 7 Measured voltage versus current computed by using ASCA-PSO for different temperatures for a SD and b DD models

(a) (b)

Fig. 8 Measured voltage versus current computed by using ASCA-PSO for different irradiation for a SD and b DD models

Table 7 The used ranges of PV cell parameters in the SD model for

the STM6-40/36 module [59]

Parameter Lower bound Upper bound

Iph (A) 1 2

Isd (A) 0 10–6

N 0 100

Rs (X) 0 1

Rp (X) 300 800

Table 8 Statistics of the RMSE values, achieved by different opti-

mization algorithms

ASCA-PSO PSO SCA BSA ABC

Max 0.0024 0.0484 0.0457 0.0094 0.0035

Min 0.0020 0.0138 0.0081 0.0036 0.0023

Mean 0.0023 0.0295 0.0241 0.0060 0.0035

Std 0.000057 0.0107 0.0104 0.0014 0.00077

For the SD circuit model of STM6-40/36 model
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exploration (SCA) side with exploitation (PSO) like

ASCA-PSO will present results better than using each one

separately. Also, the power-voltage analysis is presented in

Fig. 7 for SD and DD models.

Figures 7 and 8 present the temperature and irradiation

analysis effects respectively at different operating condi-

tions. In these figures, it is graphically shown the differ-

ences between the PSO, SCA, and ASCA-PSO. The

proposed approach then can find the configuration of

parameters that better fits the data provided. Figure 8

presents a comparative study that concerns irradiation.

Here, the algorithm proposed maintains its performance

under different values.

5.2 Experimental series 2: results using STM6-
40/36 module at 51 �C and irradiation
of 1000 W/m2

In this experimental series, the STM6-40/36 (36

monocrystalline photovoltaic cells aligned in series) was

used to ensure testing of the performance and efficiency of

the ASCA-PSO approach. The experimental data (mea-

sured voltage versus current) has been extracted at full

radiation and T = 51 �C. The tests were performed on the

single- and double-diode circuits model in the following

sections. The ASCA-PSO is compared with SCA, PSO, and

other related work such as BSA and ABC [58].

5.2.1 SD circuit model

The results of applying the ASCA-PSO technique for

estimating the parameters of the SD circuit model of the

STM6-40/36 module are presented and analyzed. In

Table 9 Circuit model

parameters for the SD circuit

model of STM6-40/36 module

estimated by ASCA-PSO in

comparison with other works

ASCA-PSO PSO SCA BSA ABC

Iph (A) 1.668 1.64 1.74 1.65 1.67

Isd(A) 4.00 9 10–7 1.51 9 10–7 2.52 9 10–7 6.33 9 10–7 4.65 9 10–7

n 55.42 52.82 54.51 51.76 50.47

Rs (X) 0.521 0.28 0.86 0.52 0.5

Rsh (X) 400.54 200.94 100.52 723.39 495.52

RMSE 0.0023 0.0295 0.0241 0.0061 0.0023

Fig. 9 The convergence curve of ASCA-PSO for the SD circuit

model of STM6-40/36 module

Fig. 10 Measured voltage versus current computed by using ASCA-

PSO, SCA, and PSO for a SD and b DD circuit models
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Table 7, the limits of values of the five parameters of the

SD circuit model that were used in the tests are listed.

Table 8 presents a comparison between ASCA-PSO,

SCA, and PSO for estimating the currents at different

operating voltages and provides the absolute error relative

to the experimentally measured current.

Table 8 shows the efficiency of ASCA-PSO over other

algorithms for delivering RMSE smaller than most of the

related work except ABC which has approximately a

similar RMSE. However, ASCA-PSO has the minimum

standard deviations which ensure the robustness and sta-

bility of ASCA-PSO over various PV modules. In a com-

parative study of the mean value of RMSE, it is possible to

see that the ASCA-PSO is first ranked with a lower value,

then the second is the ABC and the third is the BSA. The

worst is PSO.

The estimated parameters of the SD circuit model using

the ASCA-PSO technique in comparison with other related

work are presented in Table 9. Here are shown the differ-

ences in the parameters that permit to obtain better

performance.

For measuring the convergence of the rate of ASCA-

PSO using the measurements of the STM6-40/36 module

Fig. 9 shows that after a few iterations, the curve is con-

verged at the optimum RMSE which reflects the quick

performance rate of the convergence of ASCA-PSO. In

Fig. 10, the curve shows that the algorithm converges after

5 iterations and then just adjusts the value. It is expected

from the coevolutionary behavior of the ASCA-PSO.

5.2.2 DD circuit model

The limits of values of the seven parameters of the DD

circuit model of the STM6-40/36 module are listed in

Table 10. ASCA-PSO ensures its capability for enhancing

the performance of PSO and SCA by decreasing absolute

errors despite the increasing number of estimated

parameters.

From Table 11, ASCA-PSO provides the minimum

RMSE although ABC provides an RMSE smaller than that

delivered in the SD circuit model. Also, ASCA-PSO keeps

its superiority for the minimum standard deviation in

comparison with other related works; it represents that the

proposed approach is more stable. In this context, the mean

value of the RMSE is also lower for the ASCA-PSO.

Meanwhile, the worst value is forming the BSA.

Table 12 provides the optimal values for the parameters

of the solar cell using a DD model. The RMSE is lower

than the similar approaches, and it is also possible to see

the differences between the values. The parameters then

could be applied over the model and generate similar

output to the dataset used in the iterative process.

The curves that are shown in Fig. 10 prove the effi-

ciency of ASCA-PSO for estimating the parameters of SD

and DD circuit models that produce approximately similar

currents to the measured currents experimentally. Fig-

ure shows the power versus voltage analysis of ASCA-PSO

Table 10 The ranges of PV cell parameters in the DD circuit model

STM6-40/36 module [59]

Parameter Lower bound Upper bound

Iph (A) 1 2

Isd1(A) 10–12 10–6

Isd2(A) 10–12 10–6

n1 0 100

n2 0 100

Rs (X) 0.01 1

Rsh (X) 300 800

Table 11 Statistics of the RMSE values, achieved by different opti-

mization algorithms

ASCA-PSO PSO SCA BSA ABC

Max 0.0046 0.1595 0.0221 0.00911 0.0053

Min 0.0022 0.0194 0.0046 0.00430 0.0020

Mean 0.0028 0.0681 0.0126 0.0066 0.0034

Std 9.12 9 10–5 0.0368 0 0.0014 0.00081

For DD circuit model STM6-40/36 module

Table 12 Circuit model

parameters for the DD circuit

model of STM6-40/36 module

estimated by ASCA-PSO in

comparison with related works

ASCA-PSO PSO SCA BSA ABC

Iph (A) 1.661 1.791 1.68 1.66 1.66

Isd1(A) 8.31 9 10–8 3.35 9 10–7 2.66 9 10–8 1.198 9 10–6 8.9 9 10–6

Isd2(A) 1.54 9 10–7 7.84 9 10–8 6.14 9 10–6 8.91 9 10–6 1 9 10–12

n1 55.53 53.07 46.98 100 71.46

n2 50.63 57.07 68.54 52.874 27.79

Rs (X) 0.69 0.79 0.49 0.5000 1.23

Rsh (X) 508 316 603 924.81 938

RMSE 0.0028 0.0681 0.0126 0.0066 0.00334
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in comparison with PSO, SCA, and the measured power.

From the plotted results, it can be concluded that ASCA-

PSO provides estimated currents more approximated to the

measured current experimentally better than PSO and SCA.

Figures 11 and 12 show the temperature and irradiation

effects on the parameter values estimated using ASCA-

PSO at different operating conditions of the STM6-40/36

module. The use of different temperatures and irradiances

is useful to verify that the proposed model (estimated by

the ASCA-PSO) can work under different environmental

conditions. It is expected that the values obtained allow the

SC to be adapted and follow a similar response.

6 Conclusions

This paper examines the effectiveness of ASCA-PSO, a

recently developed optimization algorithm, in estimating

the parameters of photovoltaic cells for both single- and

double-circuit models. The proposed algorithm employs a

(a) (b)

Fig. 11 Measured voltage versus current computed by using ASCA-PSO for different temperatures for a SD and b DD circuit models on the

STM6-40/36 module

(a) (b)

Fig. 12 Measured voltage versus current computed by using ASCA-PSO for different temperatures for a SD and b DD circuit models ON THE

STM6-40/36 MODULE
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two-layer structure, with the top layer consisting of search

agents controlled by PSO, each representing the global

solution found by the agents in the corresponding bottom

layer. The bottom layer comprises groups of search agents

that update their movements based on SCA. This combi-

nation allows for simultaneous exploration and exploitation

of the search space in the same iteration, thus enhancing

the convergence rate and solution quality. The performance

of ASCA-PSO is evaluated using two commercial photo-

voltaic modules, the R.T.C module and the STM6-40/36

module, each with 36 mono-crystalline cells and employ-

ing both single- and double-circuit models. The experi-

mental results are compared to other related works and

demonstrate the ability of ASCA-PSO to find global

solutions for multimodal and complex objective functions

with greater precision and stability, even in the presence of

noise. The proposed model has the potential for application

in more types of solar cells and more complex problems in

the future.
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