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Abstract
Activation functions are used to extract meaningful relationships from real-world problems with the help of deep learning

models. Thus, the development of activation functions which affect deep learning models’ performances is of great interest

to researchers. In the literature, mostly, nonlinear activation functions are preferred since linear activation functions limit

the learning performances of the deep learning models. Non-linear activation functions can be classified as fixed-parameter

and trainable activation functions based on whether the activation function parameter is fixed (i.e., user-given) or modified

during the training process of deep learning models. The parameters of the fixed-parameter activation functions should be

specified before the deep learning model training process. However, it takes too much time to determine appropriate

function parameter values and can cause the slow convergence of the deep learning model. In contrast, trainable activation

functions whose parameters are updated in each iteration of deep learning models training process achieve faster and better

convergence by obtaining the most suitable parameter values for the datasets and deep learning architectures. This study

proposes parametric RSigELU (P?RSigELU) trainable activation functions, such as P?RSigELU Single (P?RSigELUS)

and P?RSigELU Double (P?RSigELUD), to improve the performance of fixed-parameter activation function of RSi-

gELU. The performances of the proposed trainable activation functions were evaluated on the benchmark datasets of

MNIST, CIFAR-10, and CIFAR-100 datasets. Results show that the proposed activation functions outperforms PReLU,

PELU, ALISA, P?FELU, PSigmoid, and GELU activation functions found in the literature. To access the codes of the

activation function; https://github.com/serhatklc/P-RsigELU-Activation-Function.

Keywords Deep learning � Parametric activation function (P?RSigELU) � MNIST � CIFAR-10 � CIFAR-100 �
Trainable activation function

1 Introduction

Deep learning models are used in several application

domains because of their outstanding achievements in

object detection, classification, and prediction

[2, 12, 13, 24, 25, 27]. Activation functions are regarded as

one of the key functional components of deep learning

architectures since they play an important role in deter-

mining whether the network will be active by forwarding

inputs to the next network layer [14, 15, 22, 23, 25,

28, 30, 31, 34].

However, finding an efficient and suitable activation

function for deep learning architectures and datasets is a

challenging problem. In the literature, mostly, nonlinear

activation functions are preferred since linear activation

functions limit the learning performance of the deep

learning models. Non-linear activation functions can be

classified as fixed-parameter and trainable activation

functions whether the activation function parameter is fixed

(i.e., user-given) or modified during the training process of

deep learning model. In the literature several fixed-pa-

rameter activation functions are proposed, such as ReLU,

LReLU, ELU, RSigELU, GeLU, FeLU, PReLU, DReLU,
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and PELU [18, 19, 25, 29, 36, 40–42]. However, the

parameters of these activations functions are fixed or user-

given and so their parameter values are not modified during

the training process of the model which leads to the slow

convergence of deep learning models and may not be

suitable for the dataset. In addition, it takes too much time

to determine appropriate function parameter values.

Moreover, some of the fixed-parameter activation functions

can not take derivative if the input value is negative, which

causes the learning process to slow down.

To overcome the limitations of fixed-parameter activa-

tions functions, in the literature, several trainable activation

functions are proposed, such as, ALISA, PELU, PRELU,

Parametric Flatten-T Swish (PFTS), Mexican ReLU

(MeLU), P?FELU, PSigmoid, and GELU [2, 8, 14, 19,

20, 35, 42, 44] (Bawa et al. [5]). In order to achieve optimal

values during model training, the backpropagation tech-

nique in deep learning models is used to update the

weights, bias values, and parameters of the trainable acti-

vation functions in each neuron. That is, in each iteration of

the training process, the parameters of the trainable acti-

vation functions are updated to obtain the most appropriate

weights for each neuron. In this way, trainable activation

functions achieve faster and better convergence by

obtaining suitable parameter values for the datasets and

deep learning architectures.

In this study, parametric RSigELU (P?RSigELU)

trainable activation functions, such as P?RSigELU Single

(P?RSigELUS) and P?RSigELU Double (P?RSigE-

LUD), are proposed to improve the performances of the

learning process of deep learning models. P?RSigELUS

function has single slope parameter to be trained and

P?RSigELUD function has double slope parameters to be

trained. These functions are extended versions of RSigE-

LUS and RSigELUD fixed-parameter activation functions

[25]. The proposed P?RSigELU trainable activation

functions work, actively, on both positive and negative

input values and their parameter values are updated in each

iteration of the model’s training process. They perform the

learning process as soon as possible by determining suit-

able slope parameter values. In addition, thanks to the

constant gradient parameter added to the negative and

positive regions, the flexibility feature of the activation

functions have been gained. Thus, it will continue the

learning process by avoiding the errors that may occur

from the trainable parameters obtained for each neuron.

P?RSigELU trainable activation functions inherit merits

of smooth activation functions (such as Sigmoid and Tanh)

and piecewise activation functions (such as ReLU and its

variants), and avoids their deficiencies. Main contributions

of this study is listed as following.

1. Parametric RSigELU (P?RSigELU) trainable activa-

tion functions, such as P?RSigELUS and P?RSigE-

LUD were proposed.

2. The performances of the proposed P?RSigELU acti-

vation functions have been evaluated on MNIST,

CIFAR-10, and CIFAR-100 benchmark datasets using

a convolutional neural network (CNN) model.

3. The results show that the proposed trainable activation

functions outperform the PReLU, PELU, ALISA,

P?FELU, PSigmoid, and GELU activation functions.

4. The proposed P?RSigELU activation functions works

actively in negative and positive regions and can

overcome the problem of vanishing gradient and

negative region.

5. The proposed P-RSigELU activation function can

adapt very well to the model with little risk of

overfitting.

The organization of this article is as follows. The related

work is presented in Sect. 2. The proposed activation

functions are presented in Sect. 3. The methods and

materials used in the experiments are presented in Sect. 4.

Experimental results and discussion are presented in

Sect. 5. Finally, the conclusion is presented in Sect. 6.

2 Related work

In the literature, several fixed-parameter and trainable

activation functions have been developed to improve the

performance of the training process of the deep learning

models. This study proposes trainable activation functions.

In the literature several fixed-parameter activation

functions are proposed. They can be listed as ReLU,

LReLU, ELU, RSigELU, GeLU, FeLU, PReLU, DReLU,

and PELU [18, 19, 25, 29, 36, 40–42]. ReLU activation

function is proposed to overcome the vanishing gradient

problem by returning negative values to the positive values

[36]. LReLU activation function takes part in training with

negative weights [34]. The ELU activation function has

been proposed as an alternative to the ReLU activation

function to address the issues of vanishing gradient and

negative weights [9]. SELU activation function is proposed

to enhance the training performance of ELU activation

function [29]. The function parameters of fixed-parameter

activation functions are given before the training process of

the deep learning model which leads to the slow conver-

gence of deep learning models. In addition, determining a

suitable parameter values activation function requires

numerous trials which is a time-comsuming process.

In the literature, several trainable activation functions

are proposed, such as, ALISA, PELU, PRELU, Parametric

Flatten-T Swish (PFTS), Mexican ReLU (MeLU),
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P?FELU, PSigmoid, and GELU

[2, 8, 14, 19, 20, 35, 42, 44] (Bawa et al. [5]). The ALISA

activation function has been proposed to address the issues

of vanishing gradient and negative weights (Bawa et al.

[5]). The PELU activation function has been proposed by

adding a trainable scala parameter to the ELU activation

function to handle bias shift problem [42]. PReLU acti-

vation function has been proposed as an alternative to the

ReLU activation function to address the issue of negative

weights [19]. In addition, the PReLU activation function

makes the parameter value defined as constant in the

LReLU activation function trainable [19]. The Parametric

Flatten-T Swish activation function has been proposed as

an alternative to the ReLU activation function to address

the issue of negative weights [8]. The P?FELU activation

function has been proposed to address the issues of van-

ishing gradient and negative weights [2]. Parametric Sig-

moid (PSigmoid) activation function proposed to improve

the Squeeze and Excitation (SE) Networks block [44].

GELU activation function has been proposed as an alter-

native to the ReLU and ELU activation functions and find

performance improvements across all considered computer

vision, natural language processing, and speech tasks [20].

BLU activation function has been proposed as an alterna-

tive to the PReLU and PELU activation function [17].

TanhSoft activation function has been proposed with

learnable parameters [6]. El Jaafari et al. [14] proposed a

parametric rectified nonlinear unit (PRenu) for deep

learning models. In contrast to Relu which returns the same

received gradient for all positive values in its back-propa-

gation, the PRenu multiplies it by values between 1 - a
and 1 depending on the value with which each neuron was

involved. Trainable activation functions improves speed

and convergence of the deep learning models by deter-

mining parameter values.

In the literature, the vanishing gradient problem is

encountered in Sigmoid and Tanh activation functions. To

overcome the vanishing gradient problem, it can be pro-

vided to the ReLU, derivatives, and RSigELU activation

functions. Negative weights are ignored in the ReLU

activation function. Behaviors of activation functions in the

literature are shown in Fig. 1.

RSigELU fixed-parameter activation functions are,

recently, proposed and outperformed exising fixed-param-

eter activation functions. This study extends RSigELU

fixed-parameter activation functions and proposes their

trainable versions. The proposed activation functions

focuse on improving the inputs in both negative and pos-

itive regions and can overcome the problems of the nega-

tive region, bias shift, and vanishing gradient. The trainable

activation function has been developed in order to obtain

the most ideal values for each neuron during training. Thus,

it is ensured that the training process is continuous by

constantly updating the weights suitable for each neuron,

thanks to the back-propagation algorithm. The proposed

activation function works actively on both positive and

negative input values. In addition, thanks to the constant

gradient parameter added to the negative and positive

regions, the flexibility feature of the activation function has

been gained by preventing the errors that occur in the

trainable parameters obtained for each neuron and contin-

uing the learning process.

3 Proposed activation functions

In this study, parametric RSigELU (P?RSigELU) trainable

activation functions, such as P?RSigELU Single

(P?RSigELUS) and P?RSigELU Double (P?RSigE-

LUD), are proposed by extending RSigELU activation

functions [25]. The slope parameter values of RSigELU

functions are fixed. Finding appropriate slope parameter

values require numerous trials and so it is a time-con-

suming process. To overcome this problem, in this study,

the RSigELU activation functions (such as RSigELUS an

RSigELUD) are extended by adding trainable parameters

to the functions. The proposed P?RSigELUS function has

single trainable slope parameter and the proposed

P?RSigELUD function has double trainable parameters.

The proposed activation functions actively operate in lin-

ear, positive, and negative regions. The properties of neg-

ative and positive regions are best captured by functions

with single and double trainable slope parameters. This

represents the slope coefficients of the single and double

parameters ak and bk [25].

The behaviors of the proposed P?RSigELUS and

P?RSigELUD activation functions are shown in Fig. 2. In

the proposed P?RSigELU activation functions, the

Fig. 1 Behaviors of activation functions
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positive and negative region slope parameters of a and b
slope are trainable. The proposed P?RSigELU activation

functions are a hybrid of ReLU [36] and sigmoid [16]

activation functions for the positive region. They act as an

ELU [9] activation function for the negative region and as a

linear activation function for the linear region. The curve

slope is consistent with the P?RSigELU, which ensures

that the new activation functions do not change the accu-

racy advantage of the RSigELU activation functions. The

trainable ak and bk parameters represents the gradient

coefficients. In order to determine the gradient coefficient,

it is determined according to the standard deviation value

with GlorotNormal as the alpha–beta initializers [16].

Thanks to GlorotNormal, the proposed activation functions

reach the global minimum quickly and efficiently. With the

controlled start of the activation function proposed in the

GlorotNormal process, deep learning architectures work

faster and more efficiently [16].

3.1 Proposed P1RSigELUS trainable activation
function

This section presents proposed P?RSigELUS trainable

activation function. Its formulation.

is given in Eq. (1).

f xð Þ ¼
xk � 1

1 þ e�xk

� �
� ak þ xk; if 1\x\1

xk; if 0� x� 1

ak � ex
k � 1

� �
; if �1\x\0

8>>><
>>>:

ð1Þ

The P?RSigELUS trainable function is active in posi-

tive, negative, and linear regions. In the Eq. (1), ak repre-

sents the positive and negative region slope coefficient, xk

represents the input of the activation function, and f xð Þ
represents the output of the activation function. In addition,

k � th is number of channels. The alpha value in activation

functions are determined the k � th channel by the input

signal x and output y. The slope parameter of the

P?RSigELUS activation function is trained together with

the model parameters during the training process of deep

learning models. The proposed P?RSigELUS activation

function behaves as shown in Fig. 2a.

The derivative of the proposed P?RSigELUS trainable

activation function is given in the Eq. (2).

df xð Þ
dx

¼

kxk�1 �ð akþ1
� �

�e2xk þ akxkþakþ2
� �

�exk þ1

ðexk þ1Þ2
; if 1\x\1

k�xk�1; if 0�x�1

ak �kxk�1ex
k
; if �1\x\0

8>>>><
>>>>:

ð2Þ

3.2 Proposed P1RSigELUD trainable activation
function

This section presents proposed P?RSigELUD trainable

activation function. Its formulation.

is given in Eq. (3).

f xð Þ ¼
xk � 1

1 þ e�xk

� �
� ak þ xk; if 1\x\1

xk; if 0� x� 1

bk � ex
k � 1

� �
; if �1\x\0

8>>><
>>>:

ð3Þ

The P?RSigELUD trainable function is active in posi-

tive, negative and linear regions. In the Eq. (3),

Fig. 2 Behaviors of the proposed activation functions a P?RSigELUS and b P?RSigELUD

7598 Neural Computing and Applications (2024) 36:7595–7607

123



akrepresentst he positive region slope coefficient, bk rep-

resent the negative region slope coefficient, xk represents

the input of the activation function, and f xð Þ represents the

output of the activation function. The the ak and bk slope

parameters of the P?RSigELUD activation function are

trained together with the model parameters during the

training process of deep learning models. The proposed

P?RSigELUD activation function behaves as shown in

Fig. 2b.

The derivative of the proposed P?RSigELUD trainable

activation function is given in the Eq. (4).

df xð Þ
dx

¼

kxk�1 �ð akþ1
� �

�e2xk þ akxkþakþ2
� �

�exk þ1

ðexk þ1Þ2
; if 1\x\1

k�xk�1; if 0�x�1

bk �kxk�1ex
k

; if �1\x\0

8>>>><
>>>>:

ð4Þ

In deep learning architectures, backpropagation archi-

tecture is used to update parameters during learning [27].

In addition, it is an important feature that the proposed

activation functions can be derivatived. It is seen that the

proposed activation function is active on both positive and

negative regions after derivative. The additional parameter

ak and bk are learned jointly with the whole model using

classical gradient-based methods with backpropagation

without weight decay to avoid pushing a to zero during the

training. ak and bk are parameters learned during the net-

work training. Also, weights are initialized by randomly

sampling from a normal distribution with appropriate

variance across all layers. Therefore, the value generation

range and steepness of the function are not constant like

logistic sigmoid and tangent hyperbolic, but vary. While

creating the network architecture, architectures are gener-

ally created in 2 different ways with this type of free

parameter functions. The first is the structures in which all

neurons in the network except the last layer have their own

training parameters, and the second is the structures in

which neurons in each hidden layer have common fixed

parameters. In this study, the first method was preferred.

Advantages of the proposed P?RSigELU activation

functions, it updates the slope parameters of the activation

function during training to obtain the optimal values for

each neuron in each iteration. They also overcomes the

problems of vanishing gradient and negative region to

improve the learning process. In addition, proposed

P?RSigELU activation functions provide higher accuracy

and faster convergence than fixed parameter ones. In

addition, the proposed activation function include para-

metric, monotonic, and bounded features.

4 Materials and method

To evaluate the performances of the proposed P?RSigELU

activation functions, several benchmark datasets and VGG-

based CNN architecture have been used. In this section,

first, the benchmark datasets are introduced and then VGG-

based CNN architecture is presented. In the study, exper-

imental evaluations were carried out on the proposed

P?RSigELU activation functions with VGG-CNN con-

sisting of determined architectures and parameters in the

study conducted by Kiliçarslan [22, 23, 25, 39, 43].

4.1 Benchmark datasets

In this study, experimental evaluations were performed on

MNIST, CIFAR-10, and CIFAR-100 benchmark datasets

[25, 32, 33].

The MNIST dataset consists of 70,000 hand written

digits in total [33]. It consists of 10 classes, and each image

is 28 9 28 pixels in size. In this study, 60,000 of the

images contained in the dataset were used for training and

10,000 of the images were used for testing.

The CIFAR-10 dataset consists of 60,000 32 9 32 col-

our images in 10 classes, with 6000 **images per class.

There are 50,000 training images and 10,000 test images

[32].

The CIFAR-100 dataset is a subset of the Tiny Images

dataset and consists of 60,000 32 9 32 color images. The

100 classes in the CIFAR-100 are grouped into 20 super-

classes [32].

4.2 Convolutional neural network

Convolutional neural network (CNN) is widely preferred in

many fields such as signal processing, object identification,

disease detection, classification [7, 21, 27, 37]. Although it

has been used successfully in many fields, it gives better

results in image processing [1, 10]. CNN, developed by

LeCun inspired by the visual center of animals [33]. CNN

architectures consist of convolution, pooling, activation,

dropuout, flatten, fully-connected, and softmax layers. The

main purpose of CNN is to do more efficient learning by

layer-by-layer applying different operations to the input

data [25]. In this study, experimental evaluations of the

proposed P-RSigELU activation functions were made in

VGG-based CNN architecture. The VGG architecture used

in the study is shown in Fig. 3 [25].

In Fig. 3, the VGG-based CNN architecture used in the

experiments consists of four convolution blocks, a flatten

layer, two fully-connected layers, and a softmax layer. To

evaluate the proposed P-RSigELU activation functions, the

MNIST, CIFAR-10 and CIFAR-100 datasets are first
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applied to the convolution operation in the VGG-based

CNN architecture. The filters number, filter size, and steps

number parameters in the convolution process are among

the significant parameters chosen by the designers. The

number of filters is represented by an odd number along

with the filter size. The filter size gives information about

how much the determined filter should move on the data in

each step. In the convolution process, by circulating the

3 9 3 filter determined on the dataset are provided the

discovery of features of data and obtaining the feature map

matrix. After the convolution process, the activation

functions used in the experimental evaluations are included

in the obtained feature map matrix. In this study, PReLU,

PELU, ALISA, GELU, P?FELU, PSigmoid, P?RSigE-

LUS, and P?RSigELUD trainable activation functions

have been used. In the VGG-based CNN architecture, after

activation function block, the normalization method is

utilized to adjust for the erratic distribution in the previ-

ously produced feature map matrix [11, 25, 26, 38]. Then,

the maximum pooling method is applied to the feature map

obtained with the values of pool = 2 and stride = 2. By

halving the size of the feature map during the maximum

pooling process, the model performs better and avoids

delivering inaccurate rote results. In order to prevent over-

learning after the pooling process, the dropout layer was

applied as 0.25. The flatten layer is applied after the con-

volution blocks to obtain the feature vector suitable for the

fully-connected layer. The fully-connected layer architec-

ture is similar to the artificial neural network (ANN)

architecture. Therefore, the obtained feature map matrix is

performed classification by transforming into vector for-

mat. After these processes, a fully connected layer with 512

neurons is applied. Thanks to the fully connected layer, all

units are connected to each other and the classification

process is performed. Finally, the logistic regression-based

softmax layer is used as the output function [3, 4, 12, 13].

The VGG-based CNN architecture used in the study

consists of four CNN blocks in total. The first CNN block

consists of two 32@3 9 3 filters, the second CNN block

consists of two 48@3 9 3 filters, the third CNN block

consists of three 64@3 9 3, and the last CNN block con-

sists of 96@3 9 3 filters. Following the CNN blocks,

experiments are carried out on the VGG architecture by

connecting two 512-neuron fully-connected layers.

5 Results and discussion

In this section, first, experimental evaluations of the pro-

posed P?RSigELUS and P?RSigELUD trainable activa-

tion functions on MNIST, CIFAR-10, and CIFAR-100

datasets and then discussion were presented.

5.1 Experimental evaluation

In the experiments, for comparison, PReLU, PELU,

GELU, P?FELU, PSigmoid and ALISA activation func-

tions were used. Experimental evaluations of the proposed

and other activation functions on the MNIST dataset are

presented in Tables 1, 2, and 3. Tables shows number of

epochs, training loss (Train_Loss), training accuracy

(Train_Acc.), validation loss (Val._Loss), and validation

accuracy (Val._Acc.) for number of repeats or diffrent

activation functions. In the experimental evaluations,

Fig. 3 VGG-based CNN

architecture for evaluating the

proposed activation functions
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datasets were separated as training and testing as stated in

Sect. 4.1. Computationally, the training loss is calculated

by taking the sum of errors for each example in the training

set. The accuracy score in machine learning is a mea-

surement statistic that compares the proportion of accurate

predictions made by a model to all predictions made. We

determine it by dividing the total number of forecasts by

the number of correct guesses. In deep learning, metrics

like accuracy, and loss score are frequently used to assess

the performance of models. Accuracy: This is the ratio of

total forecasts made to total predictions made correctly.

The training loss is a metric used to assess how a deep

learning model fits the training data. In the loss metric (in

Eq. (6)), the m parameter returns the number of training

samples, the i parameter returns the training example in a

dataset, and the yi parameter returns the actual value for the

ith training sample. It’s a straightforward statistic that

provides a general sense of how well a model is doing.

Each metric has a mathematical formula that is given in the

following equations:

Accuracy ¼ Number of correct predictions

Number of total predictions
ð5Þ

loss ¼ � 1

m

Xm
i¼1

yilogðbyiÞ ð6Þ

Tables 1, 2, and 3 present, the experimental results

performed by repeating 5 times on the MNIST dataset. In

the experimental results, it can be seen that the best per-

formance value was obtained by the double parameter

P?RSigELUD trainable activation function. In experi-

mental evaluations, it was observed that an average of

0.9564 validation accuracy and 0.1458 validation loss

values were obtained with P?RSigELUD. In addition to,

for the single parameter P?RSigELUS trainable activation

function, an average of 0.9471 validation accuracy and

0.1805 validation loss values were obtained. Also, it was

observed that the lowest success was achieved with an

average of 0.9335 validation accuracy and 0.2275 valida-

tion loss by ALISA activation function. In addition, the

proposed activation function seems to work faster than

other activation functions during the training process.

Figure 4 shows the average validation accuracy values

(Fig. 4a) and validation loss values (Fig. 4b) of the acti-

vation function results for the MNIST dataset. The pro-

posed P?RSigELUS and P?RSigELUD trainable

activation functions gave the best average performance

values with respect to the other activation functions. Also,

as can be seen in Fig. 4a, the average val_accuracy value of

the proposed P?RSigELUD activation function is bigger

than that of PReLU, PELU, ALISA, GELU, P?FELU,

PSigmoid and P?RSigELUS activation funcitons. In

addition, the average accuracy performances are between

0.9380 and 0.9558 for P?RSigELUS and 0.9453 and

0.9674 for P?RSigELUD. The average loss performances

Table 1 Experimental results of the proposed P?RSigELUS for

MNIST dataset

Repeat Epoch Train_Loss Train_Acc Val._Loss Val._Acc

Repeat 1 40 0.2864 0.9193 0.2160 0.9380

Repeat 2 40 0.1861 0.9429 0.1562 0.9492

Repeat 3 40 0.3235 0.9161 0.2086 0.9444

Repeat 4 40 0.2309 0.9305 0.1745 0.9483

Repeat 5 40 0.2239 0.9347 0.1475 0.9558

Average 0.2501 0.9287 0.1805 0.9471

Table 2 Experimental results of the proposed P?RSigELUD for

MNIST dataset

Repeat Epoch Train_Loss Train_Acc Val._Loss Val._Acc

Repeat 1 40 0.2557 0.9246 0.1923 0.9453

Repeat 2 40 0.2059 0.9335 0.1523 0.9517

Repeat 3 40 0.1594 0.9546 0.1038 0.9674

Repeat 4 40 0.1778 0.9459 0.1176 0.9658

Repeat 5 40 0.2325 0.9314 0.1633 0.9518

Average 0.2062 0.9380 0.1458 0.9564

Table 3 The average success

rates of activation functions for

MNIST dataset

Activation Train_Loss Train_Acc Val._Loss Val._Acc Time (ms)

PReLU 0.2782 0.9139 0.2011 0.9383 1562

PELU 0.2721 0.9187 0.2134 0.9362 1785

ALISA 0.3018 0.9095 0.2275 0.9335 1465

GELU 0.3726 0.8933 0.2203 0.9244 1864

P?FELU 0.3255 0.8941 0.2127 0.9109 1695

PSigmoid 0.2593 0.9009 0.2207 0.9214 2123

Proposed P?RSigELUS 0.2501 0.9287 0.1805 0.9471 1432

Proposed P?RSigELUD 0.2062 0.9380 0.1458 0.9564 1578
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are between 0.1475 and 0.2160 for P?RSigELUS and

0.1038 and 0.1923 for P?RSigELUD. In Fig. 4a, the

lowest values of box plot of P?RSigELUS and P?RSi-

gELUD are above that of the rest of the activation func-

tions. Thus, it is observed that the P?RSigELUD

activation function gives better results than the others. In

Fig. 4, the loss values of the P?RSigELUD activation

function are among the lowest values in the box plot

compared to other box plots. In this case, when the box

plots found in Fig. 4a, b are examined, it can be seen that

the activation function of P?RSigELUD gives more con-

sistent results than the other activation functions. Also, the

lengths of the whiskers to the box plot are close and the

median value is close to the middle of the box plot.

Experimental evaluations of the proposed and other

activation functions on the CIFAR-10 dataset are presented

in Tables 4, 5, and 6.

Tables 4, 5, and 6 present the experimental results

performed on the CIFAR-10 dataset. In the experimental

results, it can be seen that the best performance value was

obtained by the double parameter P?RSigELUD trainable

activation function. In experimental evaluations, it was

observed that an average of 0.8212 validation accuracy and

0.6616 validation loss values were obtained with P?RSi-

gELUD. In addition to, for the single parameter P?RSi-

gELUS trainable activation function, an average of 0.8143

validation accuracy and 0.6839 validation loss values were

obtained. Also, it was observed that the lowest success was

achieved with an average of 0.7762 validation accuracy

and 0.8135 validation loss by ALISA activation function.

In addition, the proposed activation function seems to work

faster than other activation functions during the training

process.

Figure 5 shows the average validation accuracy values

(Fig. 5a) and validation loss values (Fig. 5b) of the acti-

vation function results for the CIFAR-10 dataset. The

proposed P?RSigELUS and P?RSigELUD trainable

activation functions give the best validation accuracy and

validation loss performances from other activation func-

tions. Also, the validation accuracy values are are between

0.8056 and 0.8209 for P?RSigELUS and between 0.8136

and 0.8314 for P?RSigELUD. In addition, the validation

loss values are between 0.6553 and 0.7062 for P?RSigE-

LUS and 0.6314 and 0.6999 for P?RSigELUD. The

highest values of boxes of P?RSigELUD are above that

the of rest of the activation functions. In Fig. 5b, the lowest

loss values of the activation functions other than ALISA

and P?FELU activation functions are close to each other.

Fig. 4 a Average validation accuracy values and b average validation loss values of activation function results for MNIST dataset

Table 4 Experimental results of the proposed P?RSigELUS for

CIFAR-10 dataset

Repeat Epoch Train_Loss Train_Acc Val._Loss Val._Acc

Repeat 1 40 0.5558 0.8548 0.6973 0.8209

Repeat 2 40 0.5317 0.8519 0.6553 0.8165

Repeat 3 40 0.5402 0.8561 0.6835 0.8197

Repeat 4 40 0.5605 0.8509 0.6772 0.8092

Repeat 5 40 0.5541 0.8519 0.7062 0.8056

Average 0.5484 0.8532 0.6839 0.8143

Table 5 Experimental results of the proposed P?RSigELUD for

CIFAR-10 dataset

Repeat Epochs Train_Loss Train_Acc Val._Loss Val._Acc

Repeat 1 40 0.6606 0.8475 0.6999 0.8230

Repeat 2 40 0.5301 0.8510 0.6374 0.8314

Repeat 3 40 0.5451 0.8590 0.6693 0.8246

Repeat 4 40 0.5227 0.8514 0.6702 0.8136

Repeat 5 40 0.5220 0.8401 0.6314 0.8136

Average 0.5561 0.8498 0.6616 0.8212
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In Fig. 5a, b, it can be seen that the ALISA and P?FELU

activation functions have poor success compared to other

activation functions and there is an inconsistency between

the results. In addition, it can be seen that the proposed

P?RSigELUS activation function gives more consistent

results with a smaller box size than the others. Also, the

lengths of the whiskers to the box plot are close and the

median value is close to the middle of the box plot. When

Figs. 5, 6 are examined, it is observed that the activation

functions of PReLU and PELU behave like the proposed

functions. However, when the results of ALISA and

P?FELU activation functions are compared, too much

fluctuation is observed. The reason for this is that there are

too many fluctuations and inconsistencies because not most

Table 6 The average success

rates of activation functions for

CIFAR-10 dataset

Activation Function Train_Loss Train_Acc Val._Loss Val._Acc Time (ms)

PReLU 0.5175 0.8624 0.6815 0.8200 2433

PELU 0.5440 0.8544 0.6814 0.8199 2651

ALISA 0.6093 0.8298 0.8135 0.7762 2502

GELU 0.5460 0.8567 0.6986 0.8132 2713

P?FELU 0.5493 0.8439 0.6957 0.8160 2549

PSigmoid 0.6178 0.8520 0.7789 0.8135 3120

Proposed P?RSigELUS 0.5484 0.8532 0.6839 0.8143 2345

Proposed P?RSigELUD 0.5561 0.8498 0.6616 0.8212 2407

Fig. 5 a Average validation accuracy values and b average validation loss values of activation function results for CIFAR-10 dataset

Fig. 6 a Average validation accuracy values and b average validation loss values of activation function results for CIFAR-100 dataset
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activation functions works in accordance with both the

deep learning architecture and the dataset.Experimental

evaluations of the proposed and other activation functions

on the CIFAR-100 dataset are presented in Tables 7, 8, and

9.

Tables 7, 8, and 9 present the experimental results

performed on the CIFAR-100 dataset. In the experimental

results, it can be seen that the best performance value was

obtained by the double parameter P?RSigELUD trainable

activation function. The average performance results of the

P?RSigELUD activation function were obtained of 0.5462

validation accuracy and 1.9888 validation loss. In addition,

for the single parameter P?RSigELUS, an average of

0.5396 validation accuracy and 1.9952 validation loss

values were obtained. Also, it was observed that the lowest

success was achieved with an average of 0.4861 validation

accuracy and 2.2368 validation loss by ALISA activation

function. In addition, the proposed activation function

seems to work faster than other activation functions during

the training process.

Figure 6 shows the average validation accuracy values

(Fig. 6a) and validation loss values (Fig. 6b) of the acti-

vation function results for the CIFAR-100 dataset. The

proposed P?RSigELUS and P?RSigELUD trainable

activation functions gave the best average validation

accuracy and validation loss performances. The validation

accuracy values are between 0.5329 and 0.5467 for

P?RSigELUS and between 0.5404 and 0.5524 for

P?RSigELUD. In addition, the validation loss values are

between 1.9413 and 2.0330 for P?RSigELUS and between

1.9586 and 2.0193 for P?RSigELUD. In Fig. 6a, the

lowest box plot values of P?RSigELUS and P?RSigE-

LUD are above the that of ALISA and PELU activation

functions and close to that of the rest of the activation

functions. Also, as can be seen in Fig. 6a, b, the box sizes

of the suggested activation functions are smaller than that

of the others. Thus, it is observed that the proposed acti-

vation functions offer more successful and consistent

results than the others. In addition, the lengths of the

whiskers to the box plot are close and the median value is

close to the middle of the box plot. When Table 6 and 9 are

examined, it is observed validation accuracy of the pro-

posed model is better than the other models and so during

the evaluation process, interpretation was made by taking

into account the validation values.

5.2 Discussion

In this study, the P-RSigELU trainable activation functions

are proposed to improve the learning process of deep

learning models. Trainable activation functions update the

slope parameters of the activation function to obtain the

most appropriate values for each neuron during training.

Thus, the weights suitable for each neuron are constantly

Table 7 Experimental results of the proposed P?RSigELUS for

CIFAR-100 dataset

Repeat Epoch Train_Loss Train_Acc Val._Loss Val._Acc

Repeat 1 40 1.3885 0.6531 1.9894 0.5372

Repeat 2 40 1.4114 0.6458 1.9413 0.5467

Repeat 3 40 1.3929 0.6540 1.9804 0.5448

Repeat 4 40 1.3813 0.6563 2.0319 0.5329

Repeat 5 40 1.3729 0.6548 2.0330 0.5368

Average 1.3894 0.6528 1.9952 0.5396

Table 8 Experimental results of the proposed P?RSigELUD for

CIFAR-100 dataset

Repeat Epoch Train_Loss Train_Acc Val._Loss Val._Acc

Repeat 1 40 1.3268 0.6685 1.9586 0.5524

Repeat 2 40 1.3047 0.6732 1.9993 0.5431

Repeat 3 40 1.3299 0.6647 1.9818 0.5463

Repeat 4 40 1.2988 0.6760 2.0193 0.5404

Repeat 5 40 1.3188 0.6689 1.9852 0.5490

Average 1.3158 0.6702 1.9888 0.5462

Table 9 The average success

rates of activation functions for

CIFAR-100 dataset

Activation Function Train_Loss Train_Acc Val._Loss Val._Acc Time (ms)

PReLU 1.3127 0.6717 2.0874 0.5269 2845

PELU 1.4471 0.6341 1.9911 0.5325 3012

ALISA 1.5408 0.6130 2.2368 0.4861 3145

GELU 1.3399 0.6447 2.0215 0.5234 3245

P?FELU 1.3102 0.6763 2.0277 0.5308 3014

PSigmoid 1.4256 0.6574 1.9935 0.5307 3180

Proposed P?RSigELUS 1.3894 0.6528 1.9952 0.5396 2799

Proposed P?RSigELUD 1.3158 0.6702 1.9888 0.5462 3103
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updated by the back propagation algorithm, ensuring that

the training process is continuous. The proposed P?RSi-

gELUS and P?RSigELUD trainable activation functions

gave the best results in experimental results for MNIST,

CIFAR10, and CIFAR-100 datasets as shown in Table 3, 6,

and 9, respectively, when compared to the existing train-

able activation functions. In this study, the proposed

P?RSigELUS and P?RSigELUD trainable activation

functions are effective in the positive, negative, and linear

activation regions. Also, they can overcome the problems

of bias shift, negative region, and vanishing gradient suc-

cessfully. The curve slope is consistent with the PSigELU,

which ensures that the new activation function does not

change the accuracy advantage of the RSigELU. In addi-

tion, the lengths of the whiskers to the box plot are close

and the median value is close to the middle of the box plot.

The lower accuracy value of box plots of the proposed

P?RSigELU is close to the box than that of the other

activation function and upper accuracy values of the pro-

posed P?RSigELU are close to the highest. The proposed

P?RSigELU trainable activation functions provide higher

accuracy and faster convergence than fixed-parameter

activation functions. In addition, when the proposed acti-

vation function is compared with the P?RSigELU activa-

tion functions, it is seen that it does not complete the

training process in a shorter time in all three data sets. All

deep learning architectures has different characteristics and

therefore like the activation functions proposed in the lit-

erature, P?RSigELU may not have consistent result values

for all architectures. In addition, the proposed activation

function include parametric, monotonic, and bounded fea-

tures. However, it does not have the smooth feature. In

addition, it is observed that the proposed P?RSigELU

activation functions gives consistent and stable results on

the datasets in the experiments. In addition, it should be

noted that the activation functions in the literature do not

always give consistent results in all data sets.

6 Conclusion and future work

Activation functions are used to extract meaningful rela-

tionships from real world data with the help of deep neural

network architectures. For this reason, the development of

activation functions to positively affect the performance of

deep neural networks is of great interest to researchers. In

the study, the P-RSigELU trainable activation functions are

proposed to improve the learning process deep learning

models. In trainable activation functions, the slope

parameters of the activation function are updated in each

training iteration of the model in order to obtain the most

appropriate values for each neuron of the model. The

parameters of the proposed P-RSigELU activation

functions (such as P-RSigELUS and P-RSigELUd) are

trained in the training process of the deep learning models

to best fit to the dataset and the models used. The proposed

activation functions include parametric, monotonic, and

bounded features. In general, the trainable activation

functions show better convergence as it can adapt the

datasets faster by learning the parameter from the data.

P?RSigELUS and P?RSigELUD trainable activation

functions proposed, in this study, can successfully over-

come bias shift, negative region, and vanishing gradient

problems. The experimental evaluations conducted on the

benchmark datasets of MNIST, CIFAR-10, and CIFAR-

100 show that the proposed trainable activation functions

outperform existing activation functions and they give

better results than PReLU, PELU, GELU, P?FELU,

PSigmoid, and ALISA activation functions. The proposed

P?RSigELUD trainable activation function presents the

best validation accuracy values and they are 0.9564, 0.8212

and 0.5462 for the MNIST, CIFAR-10 and CIFAR-100

datasets, respectively.

In the future work, we plan to use intelligent optimiza-

tion methods [27] to obtain hyperparameters of deep

learning algorithms and to apply proposed activation

functions on other network structures using different

datasets. To accomplish comparable outcomes, a variety of

alternative activation functions can be used. There is still

considerable research to be done to increase the adapt-

ability of neural networks and their hyper-parameters in

terms of necessary output.
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21. Işık E, Ademović N, Harirchian E, Avcil F, Büyüksaraç A,
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