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Abstract. Image authentication is becoming very important
for certifying data integrity. A key issue in image authentica-
tion is the design of a compact signature that contains suffi-
cient information to detect illegal tampering yet is robust un-
der allowable manipulations. In this paper, we recognize that
most permissible operations on images are global distortions
like low-pass filtering and JPEG compression, whereas illegal
data manipulations tend to be localized distortions. To exploit
this observation, we propose an image authentication scheme
where the signature is the result of an extremely low-bit-rate
content-based compression. The content-based compression
is guided by a space-variant weighting function whose values
are higher in the more important and sensitive region. This
spatially dependent weighting function determines a weighted
norm that is particularly sensitive to the localized distortions
induced by illegal tampering. It also gives a better compact-
ness compared to the usual compression schemes that treat
every spatial region as being equally important. In our imple-
mentation, the weighting function is a multifovea weighted
function that resembles the biological foveated vision system.
The foveae are salient points determined in the scale-space
representation of the image. The desirable properties of mul-
tifovea weighted function in the wavelet domains fit nicely into
our scheme. We have implemented our technique and tested
its robustness and sensitivity for several manipulations.
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1. Introduction

With the digitization of media, the question of ownership,
copyrights, and integrity has become an important concern.
There has been intensive research activity in the area of im-
age watermarking [7,11]. In fact, there is a lot of effort in
developing both robust and fragile watermarks. Robust wa-
termarking is geared more toward ownership and copyright
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concerns, while fragile watermarks are designed for image
authentication. Our paper is also concerned with the problem
of authenticating image data, i.e., verification of the genuine-
ness of the data set. Our goal is to develop a reliable image
authentication technique that can be incorporated into all types
of digital cameras and scanners in order to make them trust-
worthy [9]. This is already becoming very critical in certain
areas like medical imaging. For example, given a medical im-
age that depicts a critical condition like a tumor, we do not
want the patient to fraudulently alter the image so that the tu-
mor is removed and thus misrepresent the medical condition
to an insurance company. Similarly, we would not like an un-
scrupulous medical institution to alter the data set in order to
introduce artifacts that represent some abnormality and make a
patient go through unnecessary expensive medical procedures.
In such situations, preserving and checking the veracity of a
data set assumes tremendous importance.

We believe that this problem can be addressed by use of
a content-based digital signature that is robust yet effective.
So the idea is that at the time of image creation a content-
based digital signature is simultaneously created in the cam-
era/scanner itself. For all further authenticity checks, this im-
age can be verified against its digital signature. If there is a
mismatch, then the data are considered unreliable and should
not be used. It is clear that traditional message authentica-
tion techniques like hashing-based digital signatures or cryp-
tographic authentication [23] cannot be used because of their
inherent fragility.We do not propose to use watermarking since
in many applications, such as medical imaging, the distor-
tion of pixel values are not allowed due to legal implications.
Therefore, a separate digital signature is required for verifying
data integrity. In cases where perturbation of pixel values is
allowed, our digital signature can be embedded into the im-
age using a robust invisible watermarking scheme. Thus our
method would be useful for fragile watermarking techniques
as well.

Current image authentication schemes loosely fall into two
groups. In the first group, the highly compressed image or the
quantized image serves as the signature. Usually the image is
divided into equally sized subregions and the signature is a
collection of descriptions of all subregions. For example, in
[19], the signature is the intensity histogram of each image
block. In [14], the invariant relations between the coefficients
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of two randomly selected DCT blocks are used. Because we
can treat the signature as a collection of individual subsigna-
tures, analysis is usually easier for this approach. However,
the drawback is that the signature size is usually large.

In the second group, the content-based signature consists
of features detected by a global process. For example, the
signature is a set of corners, lines, or other representations ob-
tained from highly nonlinear processes. In [3], the features are
the positions of a set of feature points. The signature is very
compact, but the analysis is usually difficult. To illustrate, con-
sider a signature that is the set of corners. A small perturbation
in the spatial domain might cause significant changes in the
configuration of corners.

By comparing the permissible operations and the malefic
tamperings on digital images, we make a critical observation
that most permissible operations are global operations like
resizing, low-pass filtering, and JPEG compression, whereas
malefic tamperings are mostly localized operations like crop-
ping of an important region and alteration of local features.
Based on this observation, we propose the use of a content-
based digital signature that is robust yet effective. The core
idea is that a content-based weighting function is obtained us-
ing a feature-detection routine. This weighting function is then
used to guide a compression process. The highly compressed
image, together with the description of the weighting function,
forms the signature. This signature is further encrypted for se-
curity. For all authenticity checks, the image can be verified
against this signature.

In Sect. 2, we first give the desirable properties of an au-
thentication scheme and discuss the setting in which our pro-
posed scheme fits (Sect. 2.1). Then we give the outline of our
scheme (Sect. 2.2). From Sect. 3.1 to Sect. 4, we discuss the
various components of the method. In Sect. 5, we present the
experimental results. Finally, we conclude the paper in Sect. 6.

2. Background

2.1. Desirable characteristics

As a design goal, it is important to list the ideal desirable
characteristics of a robust content-based digital signature for
images. The term content-based refers to the fact that impor-
tant features of the data (whose integrity we are interested in
certifying) should be somehow incorporated into the digital
signature, the rationale being that if some important content
feature is deleted/modified/added, then the digital signature
should not match the doctored data set. The term robust refers
to the fact that any manipulation that does not change the
significant features should not affect the veracity of the signa-
ture. For such benign operations the digital signature should
indeed authenticate the data set. Common types of operations
on images are scaling, thresholding, cropping, cut-and-replace
a subregion, filtering, addition/removal of noise, and affine
transformations. As long as these operations do not change
the content features, they are considered benign.

We now list the desirable properties of techniques for ro-
bust content-based authentication of images. An authentica-
tion technique can be considered effective if it satisfies the
following requirements:

1. Sensitivity: the authenticator should be sensitive to any
malefic operation such as cropping of a significant feature
of the image.

2. Robustness: the authenticator should be robust against be-
nign operations on the image.

3. Security: the technique should not be easy to forge or ma-
nipulate. An important property is that the authentication
bits should be relatively easy to generate, but inferring the
image from the authentication bits should be impossible.
This is also known as the one-way function property in
cryptography [23].

4. Identification of manipulated regions: the authenticator
should be able to detect the location of altered regions (if
they are localized) and certify other regions as authentic.
This is akin to error detection in coding theory.

5. Recovery capability: the authenticator should have the
ability to recover the lost content (perhaps approximately)
in the manipulated regions. This is similar to the error-
correction capability of some codes.

6. Compactness: the number of authentication bits generated
by a technique should be as small as possible while satis-
fying the other properties.

While the above are the ideal desired characteristics, prac-
tical authentication techniques must be designed with a view
to minimizing false positives (incorrectly flagging an unal-
tered image as fake) and true negatives (authenticating a fake
image).

2.2. Overview of the technique

We will now provide an overall description of the method for
generating the robust content-based digital signature and the
method for authenticating an image using this digital signa-
ture. In the digital signature creation process, a set of feature
points is first extracted. Then a weighting function is con-
structed from the extracted feature points. The original image
data are then lossily compressed under a weighted norm deter-
mined by the weighting function. The highly compressed data
S, together with the description W of the weighting function,
forms the signature (S, W ). This signature can then be further
encrypted. Checking the authenticity involves computing the
distortion between the compressed description of the original
image with the current image under the weighted norm. We
now briefly describe the individual steps.

Feature points and the weighting function. Most imaging sys-
tems use a norm (usually the Euclidean two-norm) to measure
their performance. In real-life data, it is usually possible, either
through user interaction or automated detection, to determine
regions that are more interesting for the application at hand.
For example, through feature detection we can find the signifi-
cant points in an image. In such cases, a space-variant weighted
norm is more appropriate compared to the two-norm, which
treats each pixel uniformly. The weighted norm ‖ · ‖w for the
image I(x, y) with a weighting function w is given by:

‖I‖2
w =

∑
x,y

w(x, y)I(x, y)2,

where w(·, ·) is the weighting function.
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The weighting function indicates how the salient informa-
tion is spatially distributed over the image. In our scheme, the
role of the weighting function is to guide the content-based
compression and to determine how the distortion (difference)
between two images is to be measured.

Because the description of the weighting function is a part
of the signature, it must be as concise as possible. Taking this
requirement into consideration, our approach is to use a set
of feature points that implicitly describe a weighting function.
We have found that the multiscale salient points, together with
the multifovea weighted function, fit well into our framework.
Figure 1b shows the contour plot of a weighting function. This
weighting function is determined from the salient points de-
picted in Fig. 1a. Details of this construction will be discussed
in Sect. 3.

Content-based Compression. A lossy compression amounts
to selectively discarding insignificant information. Normally
compression schemes use a two-norm as a guide in the
compression process. Unlike the two-norm, which treats
each pixel with equal importance, the space-variant weighted
norm places differing emphases on different regions. Thus,
a content-based compression can be achieved by selecting a
weighting function whose weight is higher in the interesting
regions. In our scheme, we use the multifovea weighted func-
tion to do the compression. The resultant highly compressed
image serves as the second part S of the content-based signa-
ture.

Encryption. For additional security, public-key cryptography
[23] is utilized to encrypt the signature derived in the previ-
ous step. This also provides the one-way function property.
Basically, the secret key of the owner of the image is used to
encrypt the signature obtained. For the purpose of authentica-
tion, the public key of the owner can be used to decrypt this
information and the signature thus recovered. Since this step
is well understood, we will not discuss it further in this paper.

Authentication procedure. For authenticating a particular im-
age, the following steps need to be performed: the highly com-
pressed image Ĩ0 is first recovered from the signature. It is then
compared with the image in question I (whose integrity we
would like to verify). The distortion between Ĩ0 and I is com-
puted. If this value falls below a certain threshold, then the
image I is declared to be authentic; otherwise, it is considered
to be untrustworthy. The matching process is guided by the
same weighting function whose description is available from
the signature.

3. Creation of the content-based digital signature

In the next few subsections, we describe in detail the various
steps in the signature creation.

3.1. Scale-space salient points

The salient points of an image I are local maxima in the three-
dimensional scale-space representation [15]. Figure 1a gives
an example.

The scale-space representation P (x, σ) for an image I is
determined by a kernel g : R2 → R. The first variable x
has one-to-one correspondence with a spatial location x in
the image. The second variable σ is known as the scale. The
original image I corresponds to the scale at σ = 0, that is,
P (·, 0) is the image I . The value of P (x, σ) is the inner product
of the image with the shifted kernel centered at x and dilated
by σ. In other words, P (·, σ) is the convolution of the image
with the dilated kernel gσ(·) = (1/σ2)g(·/σ). For example,
if g is Gaussian, then

P (x, σ) = {p � gσ} (x)

=
1

σ22π

∫
p(x − y)e−‖y‖2/(2σ2)dy

The local maxima (over space and scale) of P are the salient
points. The value of P at a salient point is the strength of
the salient point. In general, it is not necessary to take the
Gaussian as the kernel. In our implementation, we use g2 − g
as the kernel, where g is Gaussian and g2 is g dilated by a
factor of 2, that is, g2(·) = (1/4)g(·/2). Furthermore, for
computational efficiency we use a series of spline functions to
approximate gσ for various values of σ.

Each circle in Fig. 1a indicates a salient point. The radius
of the circle corresponds to the scale, and the center is the
spatial location of the salient point. Thus, we can view the
circle as the region of influence. Not indicated in the figure
is the strength of the salient point. Note that a salient point is
parameterized by (x, s, m) where s is its scale, m its strength,
and x its location.

3.2. Construction of the weighted norm

The weighting function for an image is constructed from its
salient points. Figure 1b shows the contour plot of a weight-
ing function obtained from the set of salient points in Fig. 1a.
In the next two subsections, we first give an introduction to
wavelet foveation and then describe how to compose a weight-
ing function from a set of salient points.

3.2.1. Wavelet foveation

Our visual system has a space-variant nature whereby the res-
olution is high at a point (fovea) but falls off as we move
toward the periphery [20]. This distribution of resolution pro-
vides a fast and simple way of reducing information in the
visual field without sacrificing the size of the visual field and
the resolution around the fovea. As the biological visual sys-
tem is highly effective, its space-variant nature has inspired
the design of many computer vision systems that resemble the
biological foveated vision [1,4,21], video conferencing [2,8],
image compression [5], and visualization systems [13].

Figure 2a is a uniform resolution image, whereas Fig. 2b is
a foveated image (with the center of the right eye as the fovea).



124 E.C. Chang et al.: Robust image authentication using content based compression

a

b

Fig. 1. The salient points and weighting function are superimposed
onto the image. (a) The top 30 (in strength) salient points, each dis-
played as a circle. (b) The contour plot of the weighting function.
This function is a mixture of 30 weighting functions, blended using
Eq. 3

The foveated image is obtained from the uniform resolution
image through a space-variant smoothing process where the
width of the smoothing function is small near the fovea but
gradually increases toward the periphery. The process of go-
ing from a uniform image to a foveated image is known as
foveation. In this paper, we use the definition and techniques
in [5]. The foveation of an image I : R2 → R is determined
by a smoothing function g : R2 → R and a weight function
w : R2 → R≥0.

(
T fovI

)
(x) :=

∫
R2

I(t)w(x)g (w(x)‖t − x‖2) dt (1)

The weighting function w depends upon three parameters and
takes the form

w(x) =
(
α‖x − γ‖2 + β

)−1
(2)

We call α the rate as it determines how fast the resolution falls
off as we go away from the foveal location, γ the foveal loca-
tion as it determines the point of highest resolution, and β the

a

b

Fig. 2. Foveation. (a) The uniform resolution image. (b) The foveated
image with fovea at the center of the right eye

foveal resolution as it determines the resolution at the fovea.
Both α and β are nonnegative and the smoothing function g
is normalized so that

∫ ∞
−∞ g(x) dx = 1. In general, we could

replace the weighting function by any nonnegative function.
This generalization is useful when we are interested in images
with multiple foveae. Given two weighting functions w1 and
w2, the blended weighting function w3 is

w3(x) = max{w1(x), w2(x)} (3)

Foveated images can also be treated as the approximation of
an image using a fixed number of bits, using a weighted norm
as the underlying measure. This weighted norm can be derived
from Eq. 1 and has the form

‖I‖w =
∫

w(x)I(x)dx

where the weighting function w is the function in Eq. 2.
Wavelet bases have important applications in mathematics

and signal processing due to their ability to build sparse rep-
resentation for large classes of functions and signals [17]. It is
a natural choice for the foveated images due to their locality
in space and frequency. Note that direct computation of Eq.1
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Fig. 3. The mask M for the weighting function shown in Fig. 1b

is computationally intensive. Fortunately, there is a fast lin-
ear time approximation. This is achieved by multiplying the
discrete wavelet transform DWT of the image I by a prede-
termined mask M followed by the inverse discrete wavelet
transform IDWT. That is,

(T fovI) ≈ IDWT(M DWT(I)) (4)

Figure 3 shows the mask for a multifovea weighted function.
Interestingly, the choice of the weighting function (Eq. 2) gives
a self-similarity across scales, which is illustrated in Fig. 3.
This fast algorithm plays an important role in both the sig-
nature creation and the authentication process. The reader is
referred to [5] for the details of the approximation algorithm.

3.2.2. Using a set of foveae for the weighting function

Recall that in our application, we required a weighting func-
tion with minimal description. Equation 2 has a constant de-
scription and offers a simple yet efficient tradeoff of pixel
resolution and coverage of interesting regions. Observe from
Eq. 2 that a fovea with lower rate α has a larger region of
influence, whereas a fovea with larger foveal resolution β is
less concentrated around γ.

We treat each salient point (x, s, m) as a fovea with foveal
location γ = x, rate α = 1

s , and foveal resolution β = s2

m .
By this choice, a salient point with larger scale has a larger
region of influence but is less concentrated around the fovea.
Also note that a salient point with larger strength m is more
concentrated.

The single fovea weighting function can be generalized to
a multifovea weighted function through the blending function
Eq. 3. Figure 1b gives an example.

Although we can use any nonzero weighting function, the
multifovea weighted function is preferable due to its several
desirable properties. It has a short description, it blends well
with salient points, there is a fast approximation to compute
foveation (Eq. 4), and it provides simplicity in implementation.

Fig. 4. The compressed image using the mask in Fig. 3. This image
requires 4 KB, while the original requires 262 KB

3.3. Extracting the coefficients

Recall that the first part of the signature (S, W ) is the highly
compressed image. To obtain S, one could first compute the
foveation (Eq. 1) with respect to the multifovea weighted func-
tion and then compress the foveated image using a known
lossy or lossless compression technique for uniform images.
Because computing Eq. 1 directly is computationally inten-
sive, we use the approximation Eq. 4. In our implementation,
S is extracted from the image by quantizing the wavelet coef-
ficients M DWT(I) followed by a lossless compression using
gzip written by Gailly and Adler [10]. The (S, W ) can then
be encrypted and stored as the digital signature for that im-
age. Figure 4 shows a lossily compressed image, which can
be treated as the information retained in the signature (S, W ).

Note that gzip uses Lempel-Ziv coding and is a general
lossless compression tool. It does not exploit properties of im-
ages, especially the coherence of wavelet coefficients across
space and scale. Thus it is not the best technique for our appli-
cation. A possible improvement can be made by incorporating
the well-known zero-tree algorithm [22] into our scheme.

4. Authentication

Given an image I and its purported digital signature (S, W ),
we can easily compute and recover the highly compressed
image Ĩ0 of the original image (from the signature). It is an
interesting question as to which distance function is to be used
to measure the distortion of I from Ĩ0. Since most illegal tam-
perings are localized, the usual two-norm ‖ · ‖2 is not a good
choice. To illustrate this point, cropping a 20 × 20 pixel sub-
region from a 512 × 512 pixel image is insignificant under
the ‖ · ‖2 norm since the cropping energy is averaged over the
whole image. On the other hand, the infinity norm ‖ · ‖∞ is
also unsuitable because permissible operations like low-pass
filtering might significantly change the value of a single pixel,
although the overall distortion is low.

A natural tradeoff is achieved by applying the two-norm
locally within a window u : R2 → R followed by an infinity
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Fig. 5. Additive Gaussian white noise. (a) After adding Gaussian
noise (SNR = 13dB). (b) Graph of distortion vs. SNR. The distortion
is normalized (divided by the distortion of the original I0 from Ĩ0).
The thin line is for the image Mandrill, and the dotted line is for the
image Lenna. The smooth thick line is the average of 50 images. The
horizontal line indicates the threshold T at 1.75

norm. Let
U(x, y) = ‖I(x, y)‖u(·−x,·−y)

where u(· − x, · − y) is the window u shifted by x and y. In
other words, U(x, y) is the weighted norm with the shifted g
as the weighting function. Let us define ‖ · ‖u,∞ to be

‖I‖u,∞ = ‖U‖∞

This is equivalent to taking the infinity norm after a convo-
lution of I with the window u. Since we assume the image
content information is available (through the digital signa-
ture), the measurement would be more effective if the win-
dows were wider in the less important regions and narrower in
the important regions. This is equivalent to taking the infinity
norm after a space-variant smoothing is applied. Recall that
the space-variant smoothing process is the foveation operator
Eq. 1. Suppose Ĩ0 is the highly compressed foveated image,
and I is an image; we then define the distortion to be

D(Ĩ0, I) = ‖Ĩ0 − (T fovI)‖∞
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Fig. 6. Ideal low-pass filtering. (a) Mandrill after low-pass filtering
with cutoff frequency at 0.25 (note that cutoff frequency at

√
2π

retains all information). (b) Graph of distortion vs. low-pass filtering
with cutoff frequency

During the detection process, the image in question I is
declared to be authentic if

D(Ĩ0, I)

D(Ĩ0, I0)
< T (5)

where T is a predetermined threshold. Note that D(Ĩ0, I0) is
the distortion of the original image I0 from the compressed
image Ĩ0. We call the left-hand side of Eq. 5 the normalized
distortion. In our experiments, we take T = 1.75. To compute
D(·, ·) efficiently, we can use the fast algorithm described in
Sect. 3.2.1.

An alternative criterion for Eq. 5 takes into consideration
the configuration of the feature points. That is, the salient
points of the image in question are extracted and compared
with the feature points in the signature. Recall that a moti-
vation of our proposed method is to get a tradeoff between
the feature-points-based methods and the compression-based
methods. Incorporating the feature points configuration into
the criterion could be viewed as leaning more toward the
feature-points-based methods. A study of how to obtain the
right tradeoff is an interesting future work.
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Fig. 7. JPEG compression. (a) JPEG compression with rate 0.20 bit
per pixel. (b) Graph of distortion D vs. compression rate in bits per
pixel (bpp)
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Fig. 8. Cropping distortions. (a) Cropping of important region (a
square on the nose). Normalized distortion is 1.81. (b) Cropping of
unimportant region (a square on the right cheek). Normalized distor-
tion is 1.15
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Fig. 9. The distortion in Fig. 8 as the size of the square increases
in both the important and unimportant region. The location of the
square is the same as that in Fig. 8
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Fig. 10. Mandrill after rotating different regions. (a) Rotation of im-
portant region. Distortion is 112.0 (normalized distortion is 2.37).
(b) Rotation of unimportant region. Distortion is 47.3 (normalized
distortion is 1.00)
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Fig. 11. Same as in Fig. 9. Instead of using the proposed weighting
function, in this graph, a constant function is used
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In our current version, we have not implemented the affine
transformation parameter recovery functionality.

5. Experimental results

To test the proposed authentication method, we conducted ex-
periments on a database of 50 512 × 512 grayscale images.
The value of each pixel ranges from 0 to 255. This database
includes the images Mandrill (Fig. 2a), Lena, and other natural
images, for example, Fig. 12a and c. For each image, its key is
generated in the following way. Of all the feature points in the
scale space, we chose the top 30 in strength to construct the
wavelet mask. This is a tradeoff between the authentication
key size and sensitivity to distortions. We used the Villasenor
11/13 biorthogonal wavelet [24] for the wavelet transforma-
tion. After applying the wavelet mask (Fig. 3) to the wavelet
coefficients, we uniformly quantized the coefficients with a
step size of 50. The authentication key was the lossless com-
pression of the quantized coefficients. The average authenti-
cation key size is around 2.1KB. The Mandrill image has the
largest key size at about 4.0KB. Note that fewer/more salient
points can be chosen for a smaller/larger signature. Figure 4
shows the Mandrill after content-based compression.

The first part of the experiments deals with the global dis-
tortions such as addition of white Gaussian noise, low-pass
filtering, and JPEG compression. Figure 5a shows the results
after adding Gaussian noise to the Mandrill. For Gaussian
noise with a resulting signal-to-noise ratio (SNR) as low as
13dB, we can still successfully authenticate this image. This
experiment is repeated for each of the images in the database.
The average distortion is shown in Fig. 5b. Note that for fair
comparison among different images, we use the normalized
distortion (Eq. 5) rather than the absolute distortion. The low-
pass filtering was implemented as ideal low-pass filtering. The
blurred Mandrill image after ideal low-pass filtering with cut-
off frequency at 0.25 can still be authenticated, as shown in
Fig. 6. The experimental results after JPEG compression are
shown in Fig. 7. The image in Fig. 7a is declared to be authentic
by our method.

The second part of the experiments tests the effect of lo-
cal tampering of important content (e.g., main features) and
unimportant content (e.g., background textures). As seen in
Figs. 8 and 10, our method can authenticate the image after
tampering in the unimportant regions while raising an alarm in
case the tampering is done with the important features. After
cropping a 22 × 22 region on the nose, the normalized dis-
tortion is 1.81, while the same operation on the cheek gives
a normalized distortion of 1.15, which is well below the pre-
defined threshold. Figure 9 shows how distortion increases as
the size of the cropping region increases. A rotation of the left
eye by 72o, which makes the Mandrill look angry (Fig. 10a),
results in a normalized distortion value of 2.37. On the other
hand, rotation of a same-sized area in the cheek region gives
a value of only 1.00 (Fig. 10b).

To demonstrate the performance of the proposed content-
based weighting function, an experiment similar to the one in
Fig. 9 is repeated using a method that uses a constant weighting
function. More specifically, this method takes the uniformly
quantized (step size of 150) wavelet coefficients as the signa-
ture. The step size is chosen so that the size of the signature is

a

b (53.7, 2.10).

Fig. 12. The image in (a) is the original image. The image in (b) is
tampered with by adding new fire. The distortion is 53.7, and the
normalized distortion is 2.10. Thus, it is declared to be unauthentic

about 4 KB. Figure 11 shows how distortion increases as the
size of cropping region increases. Unlike Fig. 9, the graphs
for important region and unimportant region are not distinctly
separated. Figure 12 illustrates some more examples of local-
ized tampering.

There is one concern that needs to be discussed. The pro-
cess of signature extraction is not key-dependent. One can
argue that anyone can alter the authenticated image without
having access to the signature data by simply tweaking the
image data while comparing them with the extracted features
using the detection algorithm. As long as the features do not
change, the image can be altered. Thus, it may even be pos-
sible to modify the image to display a completely different
scene, yet it can remain authentic (according to the signature).
Actually, any public watermarking scheme is vulnerable to
this attack, and this was first pointed out in [18]. However,
the analysis and a solution to this was subsequently presented
in [16]. The solution basically consists of randomizing the
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a

b (35.3, 1.95).

Fig. 13. The image in (a) is the original image. The image in (b) is
tampered with. A generator in the center is removed from the original
image. The distortion is 35.3, and the normalized distortion is 1.95.
Thus, it is declared to be unauthentic

detection process. Thus, instead of using public-key cryptog-
raphy, we can use a symmetric key cryptographic scheme (like
AES) to encrypt the signature. Moreover, we need to random-
ize the selection of the feature points, which can depend on
a key. These additional steps should take care of this secu-
rity problem. However, the basic ideas of our scheme remain
unchanged – only additional protocol steps are now required.
These extra steps are probably required of all public water-
marking or authentication schemes to be able to resist this
attack. Of course, in watermarking, the attacker’s goal would
be to remove the watermark while making as slight changes
as possible. But for an authentication scheme, the attacker’s
intention would be to make large changes while keeping the
authentication check valid.

6. Conclusion

We have described a content-based authentication technique
for digital images. Many authentication schemes are known.
Our work’s novelty lies in recognizing that important content
information is not uniformly distributed across the image and
that illegal operations are usually localized while permissible
operations are global in nature. We have developed a scheme
based on a weighting function that exploits this observation.
Through the use of scale-space salient points and borrowing
the idea of foveation from biological vision, we have devel-
oped a scheme that extracts a space-variant content-based sig-
nature for the image. Foveation also provides desirable prop-
erties that allow speeding up the required computation. Taking
into consideration the observation that most illegal operations
are localized, we give a “space-variant” distortion measure-
ment that is sensitive to localized tampering. Again, this mea-
surement fits nicely with the weighting function used in the
signature creation process. The analysis and the experimental
results show that this is a promising technique for verifica-
tion of the genuineness of digital images. Finally, while we
have described the technique for grayscale images in this pa-
per, color images can be similarly handled. The space-variant
foveation technique needs to be applied independently to each
of the channels of the 3D color-space representation, which
could be RGB or HSV or any other color space. Thus, the
technique should work equally well for color images.
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