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Abstract. Typically searching image collections is based on
features of the images. In most cases the features are based
on the color histogram of the images. Similarity search based
on color histograms is very efficient, but the quality of the
search results is often rather poor. One of the reasons is
that histogram-based systems only support a specific form
of global similarity using the whole histogram as one vec-
tor. But there is more information in a histogram than the
distribution of colors. This paper has two contributions: (1) a
new generalized similarity search method based on a wavelet
transformation of the color histograms and (2) a new effec-
tiveness measure for image similarity search. Our generalized
similarity search method has been developed to allow the user
to search for images with similarities on arbitrary detail lev-
els of the color histogram. We show that our new approach
is more general and more effective than previous approaches
while retaining a competitive performance.

1 Introduction

Among the rapidly increasing amount of information stored
in today’s computer systems, images play an increasingly im-
portant role. People ask for systems allowing them to store,
manage, and retrieve images with good effectivity and effi-
ciency. The task of so-called image retrieval systems is to find
the most similar images for a given query, which can be an
image or a sketch. Well-known examples are retrieval systems
for the WWW [11,13,14], medical databases [37], or CAD
databases [3]. Most commercial systems still use a text-based
search based on captions and only rely on the textual infor-
mation stored together with the images. More sophisticated
systems use features of the images to determine the similar-
ity with respect to the query image. The general process of
a feature-based image similarity search is shown in Fig. 1.
The feature vectors are extracted from the image database and
inserted into a multidimensional index. The feature transfor-
mation is also applied to the query image, and the resulting
feature vector is used to query the multidimensional index to
obtain the query results. The similarity measure used in this
approach is mainly defined by the feature vectors used.
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Fig. 1. The concept of feature-based image similarity search

Color-histogram-based feature vectors are among the most
widely used feature vectors in image retrieval systems. Color
histograms have the advantage that they contain important,
highly aggregated information about the images and are easy
and fast to compute, making them applicable to very large
datasets. But similarity search with histograms based on a
global notion of similarity has a limited effectiveness, as we
show in this paper.

In this article, we focus on improving the widely used
histogram-based image similarity search in order to overcome
the limited effectiveness. We found that it is not enough to
compare histograms as a whole but that a comparison of
smaller subhistograms can improve the quality of similarity
search considerably. Our idea is to define a hierarchy of sim-
ilarity measures that allows the user to search on different
resolutions.

Our article is organized as follows. Section 2 provides a
brief survey on image similarity search. We outline the con-
tribution of our work in Sect. 3. In Sect. 4 we describe and
formally define our new method, and in Sect. 5 we develop
a new effectiveness measure. In Sect. 6, we present the effi-
ciency and effectiveness results.
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2 Image similarity search

The general process of a feature-based image similarity search
is shown in Fig. 1. The feature vectors are extracted from the
image database and inserted into a multidimensional index.
The feature transformation is also applied to the query image,
and the resulting feature vector is used to query the multi-
dimensional index to obtain the query results. The similarity
measure used in this approach is mainly defined by the fea-
ture vectors used. Color-histogram-based feature vectors are
among the most widely used feature vectors in image retrieval
systems. Color histograms have the advantage that they con-
tain important, highly aggregated information about the im-
ages and are easy and fast to compute, making them applicable
to very large databases.

The important question “What is similar?” remains unan-
swered, from both the user’s and the computer’s point of view.
This makes it difficult to design an image retrieval system that
works well in a large range of applications. The reason is
twofold: first, there are many subjective opinions about ““sim-
ilar” and “not similar”. One person sets a high value on some
specific characteristics, whereas another person probably sets
a high value on other, i.e., opposite or complementary, char-
acteristics. Conferring this ambivalence into algorithms is not
straightforward. Relevance feedback is a promising approach.
The situation will get better in a well-defined application do-
main, i.e., a surgeon should have some established criteria
to find similar images showing tumors. The second reason is
closely related to the very nature of similarity search. Search-
ing large databases for similar images is usually based on
extracting and comparing certain features of the images. The
fundamental idea is that similar images have similar features,
i.e., the feature vectors have a small distance with respect to a
given metric. Unfortunately, similar images do not necessarily
imply similar feature vectors and vice versa. As an example,
consider the color histograms describing the distribution of
colors in an image. Figures 2a and 2b show similar images.
Objects in these images contain similar proportions in certain
color ranges, but the corresponding feature vectors are differ-
ent.

2.1 Overview of feature-based image similarity search

Searching large databases for similar images is usually based
on extracting and comparing certain features of the images.
More precisely, image retrieval or image similarity search is
done as follows (Fig. 1).

First, predefined characteristics (also called features) are
extracted from the query image, resulting in a so-called fea-
ture vector. Image scientists have designed a large number
of features to find a meaningful mathematical representation
of important characteristics of an image. Meaningful feature
vectors are an important topic throughout the literature. To
overcome different understandings of similarity and different
retrieval strategies, methods of relevance feedback are applied,
allowing the user to refine the proposed similar images and to
concentrate on some specific characteristics.

Second, the database, which contains the feature vectors
for all images stored, is searched for feature vectors with a
small distance to the query feature vector. This is done on the
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assumption that similar feature vectors (with respect to the
used metric) imply similar images. Database researchers have
developed efficient index structures for the nearest-neighbor
search problem to improve efficiency.

Clearly, the first step directly affects the effectiveness,
whereas the second step directly affects the efficiency of the
image retrieval system. Further on, these two measures inter-
act with each other [17]. The longer the feature representation
is, the better the quality of the retrieval gets, but the larger the
execution costs become. In other words, an improvement in
effectiveness leads to a deterioration of performance and vice
versa.

The significance of effectiveness and efficiency changes
during the process of searching similar images. From a user’s
perspective, searching for images typically involves several
steps. In the first few steps, a user refines his or her query
with the help of relevance feedback until the matches are suffi-
ciently good. In the final step of the search process, the archive
is extensively searched for all relevant images. Obviously, re-
trieval effectiveness in the first few steps is not as important as
retrieval efficiency. In the final step, on the other hand, qual-
ity plays the key role and a user is ready to tolerate longer
response times if more relevant images are retrieved.

One crucial task of image similarity search is the extraction
of feature vectors. The used features directly affect the effec-
tiveness. Not every feature is appropriate for every application
domain, and, conversely, for a particular application domain
only certain specific features are useful. Examples of features
are the color distribution of the pixels in images [9,31], the
shape of objects in images [18,19], the spatial arrangement of
color sets [5], the texture of images [24,40,41], the spatial cor-
relation of colors [16], the degree to which pixels of a color are
members of large similarly-colored regions [22], attributes of
image regions [10,21], etc. There are several possibilities pro-
posed in the literature to involve features in similarity search.
For instance, the feature vector is computed for the overall
image, the image is divided into regions and the feature vec-
tor is computed for each region, or the search is done with a
combination of features.

A number of image retrieval systems have been built that
support the features mentioned above. Many systems are based
on color histograms [7,32,34], others support combinations of
features [7,25,26,32,34]. For example, QBIC [1] combines
color histogram, shape, and texture features. Even others try
to do some partial matching of images, for example WALRUS
[21]. The techniques used in image retrieval are taken from a
number of different areas including pattern matching [30],
information retrieval [2], and computer graphics [28]. A num-
ber of techniques have been developed to speed up the search
process. The developed techniques range from advanced high-
dimensional indexing techniques [4] over fast linear scans of a
compressed version of the feature vectors [38] to paralleliza-
tion techniques [39].

Techniques based on wavelets are used by [28,34,35].
These approaches basically apply an image wavelet transfor-
mation and use specific wavelet coefficients to compute the
feature vector. A discussion of the differences between the
Haar and Daubechies wavelet transformation can be found in
[35].
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2.2 Image similarity search with histograms

In most cases, statistical information about the images serves
as a basis for a similarity measure. This information is usually
given by some form of a histogram, and thus most similarity
search systems are somehow histogram based. In this paper,
we therefore focus on histogram-based techniques, especially
color histogram techniques. Color histograms have a number
of advantages: they contain important information about the
images and are easy and fast to compute, making them appli-
cable to very large databases. An unsolved problem, however,
is the limited effectiveness of current histogram-based image
retrieval systems. For better retrieval quality a notion of sim-
ilarity is needed that is more general than the simple (usually
global) color-based similarity used in most existing systems.

Other scientists have also suggested solutions to improve
the quality of histogram-based techniques. In [8] an image
is divided into regions with homogeneous color distribution,
and for each region a histogram is computed, resulting in a his-
togram family. To determine the similarity between the query
image and a database image, corresponding regions must be
identified. The matching of the histograms and areas occupied
flows into the computation of the similarity value. Another ap-
proach is presented in [23]. The authors point out that simple
color histogram techniques do not reflect the fact that, despite
similar histograms, i.e., similar color distribution, images can
look completely different because the location of pixels with
the same color is not taken into account. For this reason not
only are the pixel’s colors processed but also the pixel’s edge
density, texturedness, gradient magnitude, or rank can be re-
garded, resulting in a multidimensional histogram.

Typically, histograms are compared bin by bin and the dif-
ferences are added up somehow. This does not reflect the fact
that neighboring bins represent a higher similarity than distant
bins. It is possible that images with similar colors may have the
same distance, as opposed to images with completely different
colors. The quadratic form [12,26] considers the similarity of
bins (colors) by incorporating a matrix denoting the similarity
between bins (colors).

Other papers, such as [6,29], deal with a formal analysis
of histograms and their limitations. The authors of [29] dis-
cuss the question of how many distinguishable histograms can
be stored (capacity) and how the average number of returned
images depends on the retrieval threshold (sensitivity). This
is done to enable the user to test the performance of color
histogram indexing via processing a small sample of images.

3 Our contribution

To exemplify the potential of our ideas, consider the following
images. Figure 2 shows two examples of similar images. The
two pictures in Fig. 2a basically show the same object with
the second image showing the object much closer. The corre-
sponding histograms show some similarities but also clearly
indicate the higher frequencies in the darker range for the sec-
ond image because of the relatively larger telephone. There
are similarities of the histogram shapes, but most existing im-
age similarity systems would not be able to discover them due
to the overall differences. This becomes even more obvious
in the second example. Figure 2b shows three images that are

Fig. 2a,b. Similar images and their corresponding luminance his-
tograms. The histograms have similar subhistograms, which corre-
spond to the similarity of the images, but common measures of sim-
ilarity will not detect the similarity. a Telephone. b Countryside

clippings of the same picture. Although there is a clear simi-
larity in the images, the corresponding color histograms seem
to be quite different. When considering them more closely,
however, one may discover some similarities. It is clear that
the similarity of the images is still hidden in the histograms,
but, due to the differences, it cannot be found by a standard
histogram-based similarity search. The color histogram con-
tains important information, i.e., the similar proportions in
specific color ranges, which can be used to determine the sim-
ilarity of the images, regardless of different sizes resp. different
relative frequencies in the histograms.

The question is how to discover those similarities auto-
matically. It is not enough to compare histograms as a whole;
in fact, comparisons of smaller subhistograms can improve
the quality of similarity search considerably. Our basic idea
is to divide the histograms into a number of subhistograms



containing the relative frequencies of certain color nuances.
In general, the range of color nuances of an object is well sep-
arated and the distribution of color nuances is uniform, which
allows us to find similar images in cases as described above
and enables even new similarity measures. In addition to the
subdivision of the histograms, we have to apply a feature trans-
formation such as a simple normalization or a wavelet trans-
formation. Each subdivision together with the chosen trans-
formation results in a different notion of similarity. In other
words, our basic idea is to partition the histograms and to ap-
ply a feature transformation to the subhistograms. This leads
to our generalized notion of similarity.

Besides the subdivision of the histograms we show how
to define a hierarchy of similarity measures that allows the
user to search on different resolutions. We propose a multi-
level approach: histograms are divided in a hierarchical way,
and the user can select a specific level for comparison. We
implemented our ideas using a wavelet transformation of the
color histograms. Wavelet theory provides a nice framework
for a hierarchical decomposition of the color histograms. In
querying the database, any similarity measure defined in the
hierarchy of similarity measures can be used separately or in
combination.

In the context of this article, we aim at similarity search
on color histograms. Our contribution is a generalization of
the similarity measure that considers histograms on various
detail levels. The major difference with other approaches using
histograms is that we present a new similarity measure for
histograms, whereas other work aimed at new features using
histograms.

The experiments show that even for a simple (i.e., global)
similarity measure, our technique is more effective than exist-
ing approaches such as the WBIIS or WISE systems [32,35,
36]. We also show that our technique is more general than ex-
isting approaches and allows one to find images that are classi-
fied as being similar by a human, although their histograms are
rather different. In this context, we also propose a new effec-
tiveness measure that, in contrast to the well-known precision
and recall measures, is independent of the size of the result
set and takes the ordering of the returned images into account.
A performance evaluation shows that our system provides a
competitive performance.

4 Histogram-based image similarity

In this section, we give a formal description of our gener-
alized histogram-based similarity measure. We introduce the
general idea and describe how the generalized similarity can
be implemented using wavelets.

4.1 Overview

A histogram characterizes the distribution of samples. There
are mainly two possibilities for building the color histograms
of an image. First, each pixel of an image is taken as a sample,
resulting in a vector that gives the relative frequency for each
color. Second, one can split the color channels of the color
model used to get the samples and to form one histogram for
each color channel consisting of the intensities of the particular
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Fig. 3. Histogram with subdivision and normalization

channel. We have used the latter method to obtain histograms
for different color models, namely, the RGB and HCL color
models. For the RGB color model we get histograms for the
red-green-blue channels, and for the HCL color model we get
histograms for the hue-chromacity-luminance channels. The
following considerations are made for one histogram, but the
results can be used for the combination of the specific three
histograms as well as for the RGB and HCL color models.

For an effective histogram-based similarity search, it is
important not to just perform a piecewise comparison of the
histogram vectors but to use more complex distance metrics
as, for example, proposed in [26]. Even more effective are ap-
proaches that apply a feature transformation to the histograms
[35]. The feature transformation is chosen to extract certain
characteristics that will be used for a comparison instead of
the original histograms.

Our results show that feature transformations are not
enough to cover a number of obvious similarities. We there-
fore propose a subdivision of the histograms and apply feature
transformations to them. This allows us to define a similarity
measure that significantly improves the effectiveness.

4.2 Generalized histogram-based similarity

To define our generalized image similarity measure, we first
need to give a formal definition of histograms. In the case
of color histograms, the variable is one color channel. A
histogram for one color channel with n bins is denoted by
c¢=(c1,¢9,...,c,)andthec; (1 <14 < n)are the relative fre-
quencies. A subhistogram is a sequence of successive elements
of c. For our purposes, a set of subhistograms should have the
following properties: each c; is covered by one subhistogram,
and the subhistograms do not overlap each other. To model
N subhistograms s; (1 < j < N) of the original histogram
¢, we use a set of subdivision points T = {t1,t2,...tx}
with the property that 1 = ¢; < f2 < ... < txy < n. The
subhistogram s starts at ¢; and ends just before the next sub-
division point t;,1 (or nif j = N): s; = (¢4;,. .., Ct;-1)
with 541 = n + 1. The entire set of subhistograms s; of ¢
is denoted by S(7',c) = (s1,...,s7|). Note that we do not
introduce an index to access the individual elements of s; be-
cause we only refer to the entire s ;. Figure 3 shows a histogram
and subhistograms forn = 16, N = 4,and T = {1,4, 8,12}.
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Next, we define a similarity measure for subhistograms. As
in the case of normal histogram-based similarity, we first apply
an appropriate feature transformation f to the subhistograms
s;. This feature transformation can be a simple normalization
(Fig. 3) or a complex transformation such as a wavelet trans-
formation. The similarity of two subhistograms s; € S(T, ¢)
and s, € S(T, ¢') can then be determined with a distance met-
ric §: the smaller 5(f(s;), f(s})) is, the more similar are the
subhistograms. Given a subdivision 7', a feature transforma-
tion f, and the distance metric ¢, we define the similarity A
of two histograms c and ¢’ by

1T

A(T, f,6) Za s5)).

By introducing a subdivision of the histograms we are able to
describe a more general similarity measure that allows us to
focus the search on the important portions of the color distribu-
tion, corresponding to the characteristic objects in the image.
If the subdivision, the distance metric, and the feature transfor-
mation are chosen appropriately, then we can find similarities
as described in Sect. 3.

4.3 Extension to a hierarchy of similarities

Our generalized similarity allows a specification of a hierarchy
of subdivisions that easily extends to a hierarchy of “coarser”
and “finer” similarity measures independently of the feature
transformation. The definition of a similarity measure using
subdivisions of histograms allows the user to go from a global
comparison of the color distribution to a more local compari-
son. Adding subdivision points to an existing histogram results
in a similarity measure’s relying upon finer color nuances. The
finer the subdivision becomes, the less relevant is the global
color distribution and the more influential are the local prop-
erties of the color distribution. A hierarchy of similarities

(7", f',0)

can be obtained by a sequence of subdivisions ) = T° ¢ T' C
T? C ... C T"and the corresponding feature transformations
f¥ (k = 1,...,1). Using all subdivisions and corresponding
similarity measures allows a search for “finer” or “coarser”
similarities as well as combinations of them. But what is a
good hierarchy of subdivisions and how can the corresponding
similarity measures be calculated easily? The next subsection
answers this question.

ANTO, £0.8), AN(TY, £1,6),... Al

4.4 Wavelet-based instantiation

There are a number of possibilities to instantiate our gener-
alized similarity measure. An instantiation just needs to de-
fine the strategy of choosing the subdivision points and the
corresponding feature transformations. In this subsection, we
present a wavelet-based solution that works efficiently and
effectively and provides new potentials for image similarity
search. By using the multiresolution properties of the Haar
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Fig. 4. Schema of the wavelet transformation

wavelet transformation, we naturally get a hierarchy of sub-
divisions and similarity measures as described in the last sub-
section. More details on the wavelet theory and the multires-
olution analysis can be found in [28].

Our hierarchy of subdivisions ) = T° ¢ T* C T? C
of a histogram ¢ with n bins (n = 2") is the sequence of
subdivisions T (k = 0,...,r — 1) defined as the ordered set

2k _1
T’“:U{ 2k+1} (1)

Jj=0

The j-th subhistogram at the k-th level of the hieraIchy is de-
noted by s . Note that all subhistograms s (k=0,...,r—

,L1<j< \T""‘\) from the set of subhlstograms S(T"”‘, c) gen-
erated by the subdivision T have the same size of 2"~ bins,
whereas the original histogram c is divided into 2* subhis-
tograms.

Now we have to apply the feature transformation f* on
the subhistograms s? (corresponding to the subdivision T*)
according to the definition of our generalized similarity. The
Haar wavelet transformation recursively applies the averaging
matrices A™ and the differencing matrices B according to
Fig. 4. Our feature transformation f* : R"~* — R calculates
the coarsest detail coefficient ¢ when sf is transformed:

ki k Bl-A2~~~AT7ks§ k<r—1 )
f(sj)_ Bl~s§ k=r—1. @
The subhistograms of subdivision 77! only consist of
two values (bins). The transformation only applies matrix
B! to compute the coarser detail coefficient for each subhis-
togram. The next coarser subdivision 7" ~2 obtains subhisto-
grams with four values that will be transformed with B! - A2
The entire Haar wavelet-transformed representation of the four
values of one subhistogram would consist of two finer detail
coefficients and one coarser detail coefficients and the over-
all average. The finer detail coefficients are exactly the coef-
ficients calculated for the subhistograms of the finer subdivi-
sion T" 1. The same can be applied recursively on the coarser
subdivisions. This leads to the following statement: all feature
transformations of the subhistograms resulting from subdivi-
sion T* contain the same information as the detail coefficients
d* of the wavelet-transformed representation of c (Fig. 4).
Therefore, we have

dk :Bk-‘rl -Ak+2-Ak+3~-~AT-C
= (f5(sY), fR(s5), - fE(s50))-
As a result, we can apply the Haar wavelet transformation to

the histogram c and we get all feature-transformed subhis-
tograms together with the wavelet-transformed representation
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Fig. 5. Example of a wavelet transformation of a histogram

(c®,d° d*,...,d"~1). All subdivisions and corresponding
feature transformations are done in one step. An example
wavelet transformation of a histogram is shown in Fig. 5.
Given the sequence of subdivisions 70 ¢ T! C --- C
T7~1 as defined in Eq. 1 and the corresponding feature trans-
formations f* as defined in Eq. 2, our hierarchy of similarity
measures A* (i = 0,...,7 — 1) can now be defined as

ok
ARTR, fR,0) = ST 6(FE, R ). )
j=1

Note that each similarity measure defined by our hierarchy of
similarity measures in Eq. 3 is based on just one subdivision
level. But all subhistogram similarities equally contribute to
the overall similarity. To allow a flexible search, the similarities
defined by different subdivision levels may be combined and
weighted. In the next subsection we discuss this idea.

4.5 Combining detail levels

One advantage of our approach is that it combines the sin-
gle detail level coefficients d°, ..., d"~! into a new general
similarity measure. The combination of multiple detail level
coefficients allows a flexible search, focusing on certain de-
tails while still preserving the global context. There are many
possibilities to combine the detail level coefficients.

The general approach behind the idea of combining de-
tail levels is an arbitrary weighting of the subhistograms on
different detail levels. The weighting allows the user to focus
on certain ranges j of the histograms and arbitrarily combine
different detail levels k. Let T' be the vector of subdivisions
(T9, ..., T"=1) and f the vector of the corresponding feature
transformations (f°,..., f"~1). Then, our extended similar-
ity measure A can be formally defined as

r—1 2%

AT, 1,8) =33 wigd(FF(s8), 1E(sE)), @)

k=0 j=1

where wy,; are user-provided weights. This allows a very gen-
eral similarity search, but there is no general method to deter-
mine the 2" — 1 weights in order to maximize the effectiveness
(precision, recall). An appropriate way to do this is to restrict
the weights, e.g., all weights corresponding to the same detail
level have the same value — either O or 1. This leads the task
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to choose a good combination of detail levels. In Sect. 6 we
will come back to this question.

Focusing on the finer levels, the average coefficients are
neglected, which can be interpreted as an abstraction from the
absolute frequency of the colors. Instead, the similarity mea-
sure focuses on the differences of color frequencies. Figure 8
will justify this theoretical consideration. In most real applica-
tions, the difference of color frequencies directly corresponds
to some characteristic structure in the images, which is the
reason for the effectiveness of our approach.

5 Measures of effectiveness

The most important criterion for an evaluation of our approach
isits effectiveness. But the effectiveness of an image similarity
search system is hard to measure, and confirming the seman-
tical correctness is difficult and subjective.

5.1 Recall and precision

Two well-known measures to determine the effectiveness are
recall (R, /R) and precision (R,./ E) (with R,., R, and E as de-
fined below). To rate the effectiveness of a system, the pairs of
precision and recall (determined for a given number of queries)
are calculated and plotted in a so-called recall-precision dia-
gram. A system gives good performance if many points lie
near the point (1,1), i.e., recall and precision are near 1. The
advantages of recall and precision are that they are well known
and widely used, and that they give an overview of all results.
The disadvantage of recall and precision is that they depend
heavily on the number of returned images and do not account
for their ordering. If more images are returned, then recall and
precision are more likely to obtain more relevant images, but
the precision will decrease. Returning the whole database has
a guaranteed recall of 1.0, but the precision will be almost
Zero.

To compare different similarity search systems, one has
to compare the different precision recall plots. First, this task
is subjective, and second, this is not easy because there is a
tradeoff between precision and recall. Hence it is difficult to
compare the results shown in Fig. 6, where different systems
return a fixed number of query results (especially if parameters
like R, R,, and E vary). To compare the effectiveness despite
that problem, usually plots of the average precision with fixed
values for the recalls are made. But the resulting curves are still
hard to compare since one has to decide whether recall or pre-
cision is more important. Figure 6 shows the recall-precision
plots of the results of several methods tested. Each point rep-
resents one test query. The results show that on average our
approach provides a higher recall than the other approaches
while the precision remains approximately the same.

5.2 A new effectiveness measure

As already mentioned, recall and precision are interdependent.
In addition, the ranking of the returned relevant objects is not
taken into account, which is also very important, even though
in most cases similarity search systems provide a meaningful
ranking of the results.
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To overcome these problems, we introduce an effective-
ness measure that allows a better comparison of the differ-
ent approaches. To define this effectiveness measure, we need
a number of data- and query-dependent parameters such as
the number of relevant images in the database (R), the num-
ber of returned images (E), the number of returned rele-
vant images (R, ), and the number of missed relevant images
(R = R—R,).Thisrequires that for a sample query the com-
plete set of correct similar images must be known. Typically
this is done by selecting the query image and similar images
by hand (Sect. 6). Recently the authors of [27] presented a nice
idea to select the relevant result set, which contains images that
are expected to be similar to the query image: For a given query
image, the result sets of different search systems are combined.
The result of a query is usually a list of images sorted in de-
scending order of similarity. Our effectiveness measure takes
the ranking of results into account and considers the missed
relevant images. Essentially, the quality measure is defined as
the ratio of the sum of ranks of all relevant images SumR,;
and the sum of optimal ranks SumRo,:. Clearly, the optimal
result is where all relevant images occupy the first ranks of the
result list. This gives the value

SumRopt:0+1+...+(R—1):w.

As mentioned, Sum R is the sum of rankings over all returned
relevant images. In order to consider the missed relevant im-
ages, too, we assign theranks E, (E+1),...,(F+ R, —1)
to the R, missing images, i.e., if a relevant image is not in
the result list of the retrieval, we assign best case ranks to
it, assuming that they are following right after all images of
the result list. This is an optimistic but fair assumption. Due
to the fact that the retrieval system retrieves only the top E
images, there is no knowledge about the ranks of the miss-
ing images. Therefore, we assume the best ranks, i.e., right
after the retrieved images. The sum of rankings including the
missed relevant images SumR,;; can therefore be calculated
as

SumRay = SumR+E+ -+ (E+ Ry, — 1).

Now our effectiveness measure can be defined as

SumRopt

eff o SumRall '

Obviously, the better the retrieval, the smaller Sum R and the
greater ef f becomes. But the range of ef f depends on the
number of returned images E and the number of relevant im-
ages R and is given by [%, 1]. The minimum value of
eff is the effectiveness measure where all relevant images
are scored at positions £, F + 1,..., EF + R — 1. Because
R varies for each query, we normalize e f f and finally obtain
the normalized effectiveness measure E'F'F' with a range of
[0,1]. The normalization enables us to combine the quality
measures for different queries with different numbers of rele-
vant images. Finally, the effectiveness of a feature is given by
the average EF'F' of the effectiveness values E'F'F for each
query in the test, which provides insight into the quality of an
algorithm. Using the same database, the same sample queries
and the same value for the number E of objects to return, we

can compare several features and feature combinations based
only on their EF'F values.

Recently [20] introduced an effectiveness measure that
takes rank into account as well. In contrast to our method this
effectiveness measure requires retrieving all relevant images
from the database, i.e., in the worst case a scan over the full
database is required. Our measure is applicable if the num-
ber of images to return is less than the size of the database
and only this number is retrieved. Other ideas to evaluate the
effectiveness that also use rank are discussed in [27].

6 Experimental results

In this section, we provide the results of our experimental
evaluation and compare the effectiveness and efficiency of
our approach to the effectiveness and efficiency of previous
approaches. The test database, which can be downloaded at
[33], contains about 10,000 color images.

The comparisons were done with online image search en-
gines from the universities in Stanford [32] and Munich [25],
which use the same image database. A prototype of the system
proposed in this paper is available on the Web [15]. The effec-
tiveness of all systems were tested with 32 sample queries with
varying content. For each sample query the correct and com-
plete set of similar images is known. Those images can be de-
termined easily due to the organization of the image database
used in our case. The sample queries used and the expected
results can be found at [15]. All tested algorithms had to re-
turn ¥ = 20 potential similar objects. The approaches used
for comparison are

e Adapt: A system that uses quadratic form distance func-
tions for similarity estimation [25,26] (several predefined
similarity matrices can be used; the three best were used).

e WBIIS: A similarity search based on a wavelet transfor-
mation [32,36].

e Color Histogram: A histogram similarity search which
does not use a feature transformation [32].

e Color Layout: A layout-based approach taking the spatial
distribution of colors into account [32].

e Our Approach: Using all Haar wavelet detail information
of the transformed color channel histograms weighted with
the number of coefficients of one detail level. The simi-
larities for each color component are simply combined by
adding them up. The L;-norm was used as distance metric

J.

The results of the comparison are shown in Figs. 6 and 7. As
already mentioned in Sect. 5, Fig. 6 shows the recall-precision
plots for the methods tested. Each point represents one test
query. The plots show that, on average, our approach provides
a higher recall than the other approaches while the precision
remains approximately the same. This is confirmed by the
average recall-precision values, where our method yields the
best effectiveness in recall as well as precision.

Method Recall Precision
Our method HCL 0.65 0.19
Our method RGB 0.62 0.18
Adapt | 0.54 0.16
WBIIS 0.53 0.16
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Fig. 6. Recall-precision plots of different queries for our approach and other systems. Comparing these recall-precision plots is a difficult task
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The usage of the new compact effectiveness measure affirms
this observation. The comparison is shown in Fig. 7. Indepen-
dent of the color model our approach yields a better effective-
ness, whereas using the HCL color model improves the quality
even more.

6.1 Evaluation of the generalized similarity

To demonstrate the advantages of our generalized similarity,
we included a number of additional images into the database.
The additional images are clippings of the original images
such as those shown in Fig. 2. While the similarity of the

clipped images is obvious for the human, the corresponding
histograms do not show much similarity (Fig. 2b), and a sim-
ilarity search based on the full histogram does not provide the
desired results. We computed the similarity based on differ-
ent subdivisions resp. different Haar wavelet coefficients d*
to make the comparison. The generalized similarity as defined
in Sect. 4.4 was used. We compare the results with our search
method used in the above comparison (d*'" = all detail levels)
and with the approach denoted by Adapt I (A I). Because we
were not able to integrate the additional images into the online
database at Stanford, the WBIIS method was not tested here.

Table 1 shows the ranking of the similar images gained
with the different methods. The ranking “1” marks the query
image. For every set of similar images the row of the best
ranking is shown in bold. While the results of the “global”
approach (d*!) does not provide the desired images, we can
always find them if the correct detail level is chosen. Note that
the appropriate level of detail is not the same for all examples.
The table shows that finding similar images — in the sense
of clippings — is robust against the detail level. Trying d°,
d®, d7, and other single levels and then some combinations
will retrieve the expected images. We verified this strategy
for a broad range of images/clippings and both color models.
The results clearly demonstrate the usefulness of our flexible
similarity search. Table 1 presents results yielded with the
RGB color model, but the results with the HCL color model
are still the same.

In addition, the flexibility of our approach allows us to
focus on different aspects in the similarity search. If we use
the lower coefficients in the search, the results provide a high-



Fig. 8. The influence of choosing the level of similarity. The /eft image is the query image; the images on the right side are the results. The
upper row shows similar images found when searching with d*; the lower row shows similar images found when searching with d°

Table 1. Rankings of the similar images (clippings) using several methods
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level color similarity disregarding finer structural differences
in the images. If we use the higher coefficients in the search,
the results disregard the overall color but focus on the nuances
of the color distribution.

In the next experiment, we used images from the Corel
Photo CD database containing GIF files. The 32-bit represen-
tation of the wavelet coefficients of the RGB histograms were
used. Though GIF files use a color palette of at most 256 colors
and thus the histograms are rather sparse, our method works
justas well with full color data. Figure 8 shows the different re-
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average information of the considered subhistograms is not PLIN ¢
contained in the higher detail coefficients, the search on those Used detail levels

coefficients does not consider the color level of the original Fig. 9. Influence of the detail levels on the average effectiveness
histogram frequencies. The coarse subdivision of the details
d" leads to very colorlike images, while the detail coefficients
of d® focuses on the finer nuances of the color distribution.
Using the higher detail levels it is rather likely that pictures
will be obtained that have a similar distribution of the sub-
histograms but do not share the average. As a result, we get
images with different overall color hues but that seem to have
a similar type of texture. The interpretation of the HCL color
model is quite different. Although searching images on dif-
ferent levels with the HCL color model yields better results

model detail level d3, but for the HCL color model detail level
d*, seems to be the most relevant. For the RGB color model one
can see that adding some levels does not improve the result.
Only all detail levels together perform better than d® does.
In contrast, adding d* and d? to d* will improve the result
when the HCL color model is used. But all levels together
(Fig. 9), the results cannot be interpreted the same way as in still perform better. Comparing the color models one can see
Fig. 8. Therefore, the conclusions of this experiment are valid that the HCL model performs b.etter than the RGB .model; n
only for the RGB model. most cases both color quels yield the same gffectlveness or
the HCL model clearly gives better results. This confirms our

observation from Figs. 6 and 7.
Now we come back to the question of choosing an appro-
priate combination of levels. There is no final answer to this

Now we show the average effectiveness FE F'F’ for different
levels of detail and some combinations. The dependencies can
be seen in Fig. 9. The results show that, for the RGB color
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question. We propose to start the search with all levels and
then to discard some levels in order to refine the result. This
approach is justified by Fig. 10. For our set of sample queries
we tried out all combinations of levels and computed the aver-
age effectiveness for each number of the selected levels. One
can see that the effectiveness increases with the number se-
lected levels. Nevertheless, we found that some combinations
with less than eight levels yield a higher effectiveness than all
levels.

The question remains as to which levels to discard after the
initial search. For each single level we compute the average
effectiveness over all combinations that include this level. In
Fig. 11 one can see that combinations that include level d*
and d* yield the highest effectiveness, i.e., those levels are
very important for an effective search. There is no final answer
regarding the best combination of levels, but we have shown
an efficient heuristic for how to get a good one.

Our experiments show that our approach provides a signif-
icantly better effectiveness for a conventional image similarity
search. Figure 12 shows some sample queries. In addition, our
generalized similarity measure supports new types of similar-
ity queries that, to our knowledge, cannot be handled by other
approaches. Example applications include the search for im-
ages that are clippings, extensions, or partially scaled versions
of the desired image and the search for images with a similar
texture even without a direct color similarity.
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The effectiveness of a similarity measure also depends on
the invariances with respect to transformations. Because color
histograms do not contain any spatial information, our ap-
proach is inherently invariant toward translation and rotation.
Invariance with respect to scaling can be achieved by the sub-
histograms and their transformation. The influence of equal-
ly distributed noise was not evaluated, but theoretically this
has no effect on the proportions (like scaling). The robustness
against shifts in color, brightness, saturation, or other features
can be gained by using color models separating those features
(e.g., HCL) and weighting them.

6.2 Efficiency

In addition to a good effectiveness, the efficiency of an ap-
proach is important. In this subsection we therefore show that
our approach provides a competitive performance. Depending
on the speed requirements, our current implementation pro-
vides the choice between different performance levels. Here
we use an approach based on compression similar to the one
reported in [38]. The basic idea is to reduce the number of
bytes used for each coefficient. This allows one to signifi-
cantly improve the performance without a measurable loss of
effectiveness.

In the standard mode the search uses 32 bits for each co-
efficient. Using a finer level of similarity or combining more
levels increases the amount of required space considerably.
The compressed versions of the coefficients use 1, 2, 4, or
8 bits. The values of the compressed coefficients for a given
number of bits are determined as follows:

1 bit = [0, 1]: a threshold s is chosen and the bit is set if the
absolute value is larger than the threshold.

2 bit = [—1, 1]: a threshold s is chosen and the first bit is set
if the absolute value is larger than s and the second bit is
set if the value is positive.

4 bit=[—7,7]: a threshold s is chosen and [—s, s] is mapped
to [—7,7]. We assign —7 or 7 for all other values with an
absolute value below —s resp. over s.

8 bit = [—127,127]: analogous to 4 bit.

Now we show how the number of bits used influences
the time and the effectiveness. The setting of this experiment
is as follows. The number of bits per coefficient is changed
for the following selections of the levels of similarity. First,
we select all detail levels, and second, we select only one
detail level, namely, d® or d*. Figure 13 contains the result-
ing effectiveness measure E F'F'. The experiments show that
a significant compression of the detail coefficients does not
compromise the effectiveness. More interesting: A run with
8-bit coefficients seems to slightly increase the effectiveness.
The observations from Fig. 9 are still valid: When selecting
d?® the RGB color model is more efficient, when selecting d*
the HCL color model is more efficient, and selecting all detail
levels yields the highest effectiveness, whereas the HCL color
model is the better one. In this experiment we found an appro-
priate threshold s as follows: For each setting of detail levels
we tested several values of s and chose the one that gave the
highest average effectiveness over our set of sample queries.

The bytes needed for one data entry and the time for a query
for the RGB color model on our database is shown in Table 2.
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Fig. 12. Example query. The query image is the top left image; returned images are ordered descending row by row from left to right

Clearly, one can see that an increasing number of bits increases
the execution time. Currently we just use a linear scan of the
coefficients to determine the matching data items. For addi-
tional speedup, advanced high-dimensional index structures
with sublinear performance [4] may be used.

The number of bytes needed per image for different com-
binations of detail levels can be calculated with

3 - #used coefficients - #bytes per coefficient.

When using all levels of detail (255 coefficients) with 32 bits
(4 bytes) we need 3060 bytes per images, but using only 2 bits
(0.25 bytes) requires 191.25 bytes.

As shown in the previous section, the effectiveness can be
increased if multiple detail levels are combined. This, how-
ever, decreases the efficiency of the search, and therefore we
have a classical effectiveness-efficiency tradeoff. Our final ex-
periment shows this efficiency-effectiveness tradeoff. Here we
compare the effectiveness of arbitrary combinations of detail
levels and plot them against the number of features needed
for the search, which directly corresponds to the execution
time. Figure 14 shows that there is a clear tradeoff between
execution time and search effectiveness.
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Fig. 13. Average effectiveness measure when changing the compres-
sion factor

7 Summary and conclusion

In this paper we introduce a generalized histogram-based sim-
ilarity measure for an efficient and effective image similarity
search. Our new approach uses a recursive subdivision of the
histograms to allow a flexible search on multiple levels of
color distribution details. The open question of choosing the
appropriated level(s) of detail cannot be answered in general;



Table 2. Query execution time and effectiveness for different numbers
of bits per coefficient

Bytes per datum Time
1 bit 95.63 0.19s
2 bit 19125 0.38s
4 bit 38250 0.75s
8 bit 765.00 1.50s
8 bit d° only 24.00 0.05s
8 bit d* only 48.00 0.05s
32 bit 3060.00  6.00 s
32 bit d® only 96.00 0.19s
32 bit d* only 192.00 0.18s
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Fig. 14. Efficiency-effectiveness tradeoff

it depends on the user and the required kind of similarity. To
choose a subdivision and the levels of detail automatically or
to support the user selection is a subject of further research.
Despite this, our new approach provides a significantly better
effectiveness than existing systems while retaining a compet-
itive performance.
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