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Abstract Semantic-level content analysis is a crucial issue
in achieving efficient content retrieval and management. We
propose a hierarchical approach that models the statistical
characteristics of audio events over a time series to accom-
plish semantic context detection. Two stages, audio event
and semantic context modeling, are devised to bridge the
semantic gap between physical audio features and semantic
concepts. In this work, hidden Markov models (HMMs) are
used to model four representative audio events, i.e., gunshot,
explosion, engine, and car-braking, in action movies. At the
semantic-context level, Gaussian mixture models (GMMs)
and ergodic HMMs are investigated to fuse the character-
istics and correlations between various audio events. They
provide cues for detecting gunplay and car-chasing scenes,
two semantic contexts we focus on in this work. The promis-
ing experimental results demonstrate the effectiveness of
the proposed approach and exhibit that the proposed frame-
work provides a foundation in semantic indexing and re-
trieval. Moreover, the two fusion schemes are compared, and
the relations between audio event and semantic context are
studied.
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1 Introduction

Large amounts of multimedia content have been created,
stored, and disseminated as a result of the rapid advance
in media creation, storage, and compression technologies.
Massive multimedia data present challenges to users in con-
tent browsing and retrieval, thereby diminishing the benefits
brought by digital media. Technologies for effective and ef-
ficient multimedia document indexing are therefore essential
to ease the load of media access.

Many research issues have been investigated to facil-
itate efficient access and usage of multimedia data. Shot
boundary detection algorithms [1, 2] are developed to seg-
ment video clips into shots, each of which presents visual
continuity. The keyframes of each shot are then selected to
summarize a video clip and are applied to video abstraction
[3, 4] and content-based retrieval [5]. On the other hand,
techniques for genre classification are also widely studied.
For audio tracks, classification and segmentation techniques
[6, 7] are proposed to discriminate different types of audio,
such as speech, music, noise, and silence. Additional work
focuses on classifying types of music [8] and automatically
constructing music snippets [9]. For video content, genres
of films [10] and TV programs [11] are automatically clas-
sified. Various features from audio, video, and text [12] are
exploited, and multimodal approaches are proposed to cope
with the access and retrieval issues of multimedia content.

Although the paradigms described above are efficient for
browsing and low-level search, problems do exist in today’s
applications. The first is the apparent gap between low-level
audiovisual features and high-level semantics. Similarities
in low-level features do not always match user perceptions.
The second problem is that, from the viewpoint of end users,
scenes/shots are associated due to semantic meaning rather
than color layouts or other computational features. A tool
that provides semantic-based query is more practical than
tools supporting unlabeled shots or rough genre classifica-
tion.

Recently, there have been two research directions in an-
alyzing multimedia documents from a user’s point of view.
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The first is to build a user attention model [13, 14] to find
user focus on audiovisual streams. Through combining the
impacts of features or events (e.g., color contrast, intensity,
face region, and motion) that may draw user attention, an
integrated saliency map indicates the estimated attention fo-
cus. This work can be widely applied to deliberate video
summarization [13] and user-centric scalable video stream-
ing [15] and was demonstrated to be an efficient approach to
capture user attention through empirical validation [16].

The second direction in usercentric multimedia analy-
sis is to construct semantic indices for multimedia docu-
ments. Studies on semantic indexing can be separated into
two phases: isolated audio/video event detection and se-
mantics identification. Former studies [17, 18] took advan-
tage of HMM-based approaches to tackling event detection.
For example, in [17], several audio highlight events such
as applause, laughter, and cheer are modeled by HMMs.
In the test stage, an audio clip is divided into overlapping
segments, and the audio features of each segment are ex-
tracted to be the input of three event models. Through a log-
likelihood decision algorithm [17], highlighted events in au-
dio clips are detected.

The approaches described above primarily detect audio
events or video objects in audiovisual streams. However, de-
tecting isolated audio/video events is not quite intuitive to
the user. For example, rather than identifying gunshots indi-
vidually in an action movie, we are more likely to recognize
a scene of gunplay, which may consist of a series of gun-
shots, explosions, sounds of jeeps, and screams from sol-
diers. Such a scene conveys a solid semantic meaning and is
at a reasonable granularity for semantic retrieval. Instead of
just modeling isolated events, approaches based on Bayesian
network [19, 20] and support vector machine (SVM) [21]
have been proposed to fuse information from isolated events
and infer the semantic concept of a specific audio/video seg-
ment. Naphade and Huang [19, 20] adopt a probabilistic
framework with the help of factor graphs [22] to model high-
level semantic concepts, such as the scenes with “outdoor”
or “beach.” This framework models the correlations between
different objects/events and provides inference functionali-
ties. It boosts the performance of semantic object detection
by taking inter-object correlations into account.

The framework described above can be applied to fuse
various multimedia objects and to infer objects that are not
easily modeled from low-level features. However, they do
not model semantic contexts involving several multimedia
objects over a time series. In multimedia retrieval, semantic
contexts with a complete and continuous semantic meaning
can often serve as the basic units that users want to retrieve.
Therefore, a fusion scheme that models various audio events
along the temporal axis should be devised to describe the
context of a semantic concept.

In fact, similar ideas have been applied in many other re-
search fields, such as speech recognition [23], data mining
[24], and human–computer interaction [25]. Classifiers for
individual objects or media are first constructed separately.
The impacts of different classification results are viewed as

intermediate features and are used to construct a higher-level
classifier, called metaclassifier, for integrated applications.
In speech recognition [23], a word-level recognizer is con-
structed through combining the results of syllable recogni-
tion. In data mining [24] and machine learning applications,
metalearning provides a unifying and scalable solution when
it is applied to large amounts of data. Moreover, the results
from different modalities such as face and speech could be
considered integrally to facilitate personal memory collec-
tion/retrieval [25]. Motivated by these works, we introduce
the concept of metaclassifier to multimedia indexing and
perform studies on different fusion schemes.

In this paper, an integrated hierarchical framework is
proposed to model contexts of two semantic concepts
(named “semantic contexts” for short in this paper), i.e.,
gunplay and car chase, in action movies. Due to rapid shot
changes and dazzling visual variations in action movies,
our investigation focuses on analyzing audio tracks and ac-
complishes semantic indexing via aural clues. By using the
HMM-based approaches presented in [17, 18], low-level
events, such as gunshot and explosion sounds, are mod-
eled first. Gunplay and car-chasing scenes are then mod-
eled based on the statistical information collected from var-
ious audio event detection results. Two methods are inves-
tigated to fuse this information: Gaussian mixture model
(GMM) and hidden Markov model (HMM). The fusion
work is viewed as a pattern recognition problem, and simi-
lar features (detection result of audio events) would be fused
(clustered) to represent a semantic context. For example,
gunplay scenes share similar gunshot and explosion occur-
rence patterns and can be distinguished from other scenes
by pattern recognition and machine learning techniques.
We discuss how the fusion approaches work and show the
effectiveness of the hierarchical framework for semantic
indexing.

The paper is organized as follows. In Sect. 2, an inte-
grated hierarchical framework consisting of low-level au-
dio event and high-level semantic context modeling is in-
troduced. Essential feature extraction is described in Sect. 3.
Section 4 presents audio event modeling, where the training
issue and confidence evaluation are discussed. In Sects. 5
and 6, GMM and HMM are introduced to fuse informa-
tion from audio event detection, respectively. We compare
the performance of audio event detection and two fusing ap-
proaches in Sect. 7, and conclude this work in Sect. 8.

2 Hierarchical audio models

The semantic indexing process is performed in a hierarchi-
cal manner. Two stages of models, i.e., audio event modeling
and semantic context modeling, are constructed to hierarchi-
cally characterize audio clips. At the audio event level, the
characteristics of each audio event are modeled by an HMM
in terms of the extracted audio features. At the semantic con-
text level, the results from audio event detection are fused by
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using probabilistic models. Two schemes, GMM and HMM,
are investigated to take on semantic context modeling.

2.1 Audio event and semantic context

Audio events are defined as short audio clips that rep-
resent the sound of an object or an event. They can be
characterized by statistical patterns and temporal evolution
of audio features. Therefore, an HMM [26] that accounts for
both local variations and state transition is adopted to model
audio events. Focusing on discovering semantic indices
in action movies, four audio events, gunshot, explosion,
engine, and car-braking, are modeled to capture significant
events. Each audio event is modeled as a complete con-
nected (ergodic) HMM, with continuous Gaussian mixtures
modeling for each state. Given the feature vectors consisting
of the extracted audio features, the HMM parameters are
estimated by using the Baum–Welch algorithm [26].

From the viewpoint of [27], the latest multimedia con-
tent analysis gradually moves from processing on isolated
objects, behaviors, or events to modeling of contexts and
variations that cover spatiotemporal relations between suc-
cessive or related objects/events. A more practical content
analysis system is expected to include the concept of mul-
timedia context in which we take into account the context
of settings and cinematographic practices. Motivated by this
idea, we consider “the context of a semantic concept” for
modeling and detecting. It is called “semantic context” for
short and is an analysis unit that represents more reasonable
granularity for multimedia content usage or access. Instead
of isolated audiovisual events or rough audio/video genres,
a semantic context is a scene representing a solid concept
to facilitate users in realizing video narrative. Typical ex-
amples include gunplay scenes (impressive scenes) in ac-
tion movies and negotiation scenes (key scenes) in drama
movies. The term “context” denotes that we deal with tem-
poral variations or distribution of successive data. The term
“semantic” is introduced because the proposed detection
unit lies between low-level events/objects and high-level se-
mantics/knowledge. In this work, we focus our efforts on
detecting gunplay and car-chasing scenes via aural cues. It
is believed that the concept and granularity of semantic con-
text are more suitable for next-generation multimedia index-
ing and access.

Note that a semantic context may or may not contain all
relevant audio events at every time instant. There is no spe-
cific evolution pattern along the time axis. For example, in
a gunplay scene, one should not expect that explosions al-
ways occur after gunshots. Moreover, silence shots without
relevant audio events can be viewed as part of the gunplay
scene from a human perspective. Figure 1 illustrates the idea
of semantic contexts. The audio clip from t1 to t2 is a typical
gunplay scene that contains mixed relevant audio events. In
contrast, the whole audio segment from t3 to t8 is viewed as
a single scene even if no relevant audio event exists from t4
to t5 and from t6 to t7. Therefore, to model the characteris-
tics of semantic contexts, we develop an approach that takes

Audio

gunplay scene

gunshot explosionAudio Events

gunplay scene

t1 t2 t4 t5t3 t6 t7 t8

Fig. 1 Examples of audio semantic contexts

a series of events along the time axis into account rather than
just the information at a single time instant.

This research aims to index multimedia documents by
detecting high-level semantic contexts. To characterize a se-
mantic context, audio events highly relevant to specific se-
mantic concepts are collected and modeled. In our work,
the occurrence patterns of gunshot and explosion events are
used to characterize “gunplay” scenes, and the patterns of
engine and car-braking events are used to characterize “car-
chasing” scenes.

2.2 Hierarchical framework

The proposed framework consists of two stages: audio event
modeling and semantic context modeling. First, as shown in
Fig. 2a, the input audio stream is divided into overlapped
segments, where audio features are extracted. Each HMM
module takes the extracted features as input, and the For-
ward algorithm [26] is used to compute the log-likelihood
of an audio segment with respect to each audio event. To
determine how a segment is close to an audio event, a con-
fidence metric based on the likelihood ratio test is defined.
We say that the segments with higher confidence scores from
the gunshot audio event model, for example, imply a higher
probability of the occurrence of gunshot sounds.

Feature Extraction

HMM 1 HMM 2 HMM k…

Calculation of
Confidence Scores

Confidence Scores

Semantic Context Labels

(a)

(b)

GMM HMM

Input Audio Stream

Fig. 2 The proposed hierarchical system framework contains a audio
event and b semantic context modelings



Towards semantic indexing and retrieval using hierarchical audio models 573

In the stage of semantic context modeling, the confi-
dence values from event detection constitute pseudoseman-
tic features for characterizing high-level semantic contexts.
Given an audio segment, the confidence values obtained
from different event models are concatenated as a feature
vector, which represents the characteristics of the audio seg-
ment with respect to several audio events. We call them
pseudosemantic features because they characterize the in-
terrelationship of several audio events, which are elements
for users to realize what the segment represents. With these
features, two modeling approaches are investigated to per-
form semantic context modeling, as shown in Fig. 2b. By the
tools for pattern recognition and data classification, GMM
and HMM shed lights on clustering these pseudosemantic
features and facilitate detection processes.

3 Feature extraction

One important factor for pattern recognition is the selection
of suitable features that characterize the original data ade-
quately. To analyze audio sequences, several time and fre-
quency domain audio features are extracted and utilized. In
our experiments, all audio streams are downsampled to the
16-KHz, 16-bit monochannel format. Each audio frame is
comprised of 400 samples (25 ms), with 50% overlaps. Two
types of features, i.e., perceptual features and Mel-frequency
cepstral coefficients (MFCC), are extracted from each audio
frame. The perceptual features include short-time energy,
band energy ratio, zero-crossing rate, frequency centroid,
and bandwidth [12]. These features are shown to be bene-
ficial for audio analysis and are widely adopted [6–9,17].

Short-time energy (STE) is the total spectrum power of
an audio signal at a given time and is also referred to as loud-
ness or volume in the literature. It provides a convenient rep-
resentation of signal amplitude variations over time. To re-
duce the clip level fluctuation of volume mean, we normalize
the volume of a frame based on the maximum volume of the
corresponding audio clip.

To model the characteristics of spectral distribution more
accurately, the band energy ratio (BER) is considered in this
work. The entire frequency spectrum is divided into four
subbands with equal frequency intervals, and the ratio is cal-
culated from the energy of each band divided by the total
energy.

Zero-crossing rate (ZCR) is defined as the average num-
ber of signal sign changes in an audio frame. It gives a
rough estimate of frequency content and has been exten-
sively used in many audio processing applications, such as
voiced and unvoiced components discrimination, endpoint
detection, and audio classification.

After Fourier transformation, frequency centroid (FC)
and bandwidth (BW) are calculated to present the first- and
second-order statistics of the spectrogram. They respectively
represent the “center of gravity” and “variance” of the spec-
trogram, and their reliability and effectiveness in character-
izing the spectral information have been demonstrated in
previous studies [12].

Mel-frequency cepstral coefficients (MFCCs) are the
most widely used features in speech recognition and other
audio applications. They effectively represent human per-
ception because the nonlinear scale property of frequencies
in human hearing system is considered. In this work, based
on the suggestion in [28], an eight-order MFCC is computed
from each frame.

The extracted features from each audio frame are con-
catenated as a 16-dimensional (1(STE) + 4(BER) +1(ZCR)
+1(FC) +1(BW) + 8(MFCC)) feature vector. Details of the
audio feature extraction processes can be found in [12]. Note
that the temporal variations of the adopted features are also
considered. That is, the differences of the features between
adjacent frames are calculated and integrated into the orig-
inal features. Therefore, a 32-dimensional feature vector is
finally generated for each audio frame.

4 Audio event modeling

Audio events are defined as short audio segments that repre-
sent the sound of an object or an event. Audio event model-
ing is crucial to multimedia content analysis and is the foun-
dation of advanced audio-based applications. This section
addresses some issues of audio event modeling, including
the determination of model size, model training process, and
calculation of confidence scores from detection results.

4.1 Model size estimation

We use HMMs to characterize different audio events. The
32-dimensional feature vectors from a specific type of audio
event are segmented into several sets, with each set denoting
one kind of timbre, and are modeled later by one state of an
HMM. Determination of model size is crucial in applying
HMMs. The state number should be large enough to charac-
terize the variations of features while it should be compact
enough for efficient model training. In this work, an adap-
tive sample set construction technique [29] is adopted to es-
timate a reasonable model size. The algorithm is described
as follows:

1. Take the first sample x1 as the representative of the first
cluster: z1 = x1, where z1 is the center of the first cluster.

2. Take the next sample x and compute its distance
di=d(x, zi ) to the means of all existing clusters. Choose
the minimum of di : min {di }.
(a) Assign x to zi if

min{di } ≤ θτ, 0 ≤ θ ≤ 1,

where τ is the membership boundary for a specified
cluster.

(b) A new cluster with center x is created if

min{di } > τ.
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(c) No decision will be made if

θτ < min{di } ≤ τ.

In this case, sample x is in the intermediate region.
(d) Update the mean of each cluster if case (a) or (b) is

satisfied.
3. Repeat step 2 until all samples have been checked once.

Calculate the variances of all the clusters.
4. If the variance is the same as the previous iteration, the

clustering process has converged, go to step 5. Otherwise,
go to step 2 for further iteration.

5. If the ratio of samples in the intermediate region is larger
than a percentage ρ(0 < ρ < 1), adjust θ and τ and go to
step 2 again. Otherwise, the process ends.

The thresholds θ , τ , and ρ are heuristically designated
such that different clusters (states) have distinct differences
and physical meanings. The distance measure d(x, zi ) is
Euclidean distance. As Gaussian mixtures are able to han-
dle the slight differences within each state, we tend to keep
the number of states less than ten by considering the effec-
tiveness and efficiency of the training process.

Through this process, the state number for car-braking
is two, the state number for engine is four, and the state
number for gunshot and explosion is six. These results make
sense because we elaborately collect various kinds of train-
ing sounds for each audio event, and these results represent
the variations of different audio events. For example, the
sounds of rifle, handgun, and machine gun are all collected
as the training data of gunshot. They vary significantly and
should be represented by more states than simpler sounds,
like the sharp but simple car-braking sounds.

4.2 Model training

Two semantic contexts, i.e., gunplay and car-chasing, in ac-
tion movies are modeled in terms of the gunshot, explosion,
engine, and car-braking audio events. For each audio event,
100 short audio clips each 3–10 s in length are selected from
a professional sound-effects library (http://www.sound-
ideas.com) as the training data. Based on the features ex-
tracted from the training data, a complete specification of

Fig. 3 Calculation of a within-distribution fi (x | θ1) and b outside-distribution fi (x | θ0) for audio event i

HMM with two model parameters (model size and number
of mixtures in each state) and three sets of probability mea-
sures, i.e., initial probability, observation probability, and
transition probability, would be determined. The model size
and initial probability could be decided by the clustering al-
gorithm described in the previous subsection, and the num-
ber of mixtures in each state is empirically set as four. The
well-known Baum–Welch algorithm [26] in speech recogni-
tion fields is then applied to estimate the transition proba-
bilities between states and observation probabilities in each
state. Finally, four HMMs are constructed for the audio
events considered. Details of the HMM training process will
be further described in Sect. 6, where HMMs are also used
for semantic context modeling.

4.3 Confidence evaluation

After audio event modeling, for each 1-s audio segment
(0.5-s overlaps with adjacent segments), the log-likelihood
values with respect to each event model are calculated by
the Forward algorithm [26]. However, unlike audio classi-
fication, we cannot simply classify an audio segment as a
specific event according to the highest log-likelihood value.
It does not necessarily belong to any predefined audio event.
In order to evaluate whether an audio segment belongs to a
specific audio event, an approach based on the concept of
likelihood ratio test [30] is applied.

For each type of audio event, two likelihood functions
are constructed. The first function fi (x | θ1) represents
the distribution of the log-likelihood obtained from a spe-
cific audio event model i with respect to the correspond-
ing audio sounds. For example, from the engine model
with engine sounds as inputs, the resulting log-likelihood
values are gathered to form the distribution of the engine
model with respect to engine sounds. We call it “within
distribution” of the engine events, and Fig. 3a illustrates
this construction process. In contrast, the second function
fi (x | θ0) represents the distribution of the log-likelihood
obtained from a specific audio event model with respect to
other audio sounds. Like the previous example, as shown in
Fig. 3b, the “outside distribution” of the engine event is con-
structed from the log-likelihood values gathered from the en-
gine model with gun, explosion, and car-braking sounds as
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Fig. 4 Examples of within and outside distributions, including a
gunshot, b engine, c explosion, and d car-braking

inputs. These two distributions show how log-likelihood val-
ues vary within or outside a specific audio event and help
us discriminate a specific audio event from others. Figure 4
shows some examples of “within” and “outside” distribu-
tions.

In the process of confidence evaluation, the segments
with low average volume and zero-crossing rate are first
marked as silence and the corresponding confidence values
with respect to all audio events are set to zero. From non-
silence segments, the extracted feature vectors are input to
all four HMMs, and the corresponding log-likelihood values
are calculated. For a given audio segment, assuming that the
log-likelihood value from an event model is x, its confidence
score with respect to audio event i is defined as:

ci (x) = fi (x | θ1)

fi (x | θ0)
. (1)

The confidence scores calculated from each audio event
are then considered to characterize an audio segment.
The audio segments with higher confidence scores in the
gunplay-related events, for example, are more likely to con-
vey gunplay concepts. These confidence scores are the input
of high-level modeling and provide important clues to bridge
audio event and semantic context.

5 Gaussian mixture model for semantic context

5.1 Feature preprocessing

In this section, we aim at detecting high-level semantic con-
texts based on the results of audio event detection. The con-
fidence scores for some specific audio events that are highly
relevant to the semantic concept are collected and mod-
eled. To perform model training, 30 gunplay and car-chasing

Confidence scores

………

1s

Audio

Audio

Means of confidence scores

………

5s

………

(a)

(b)

analysis window

texture window

Fig. 5 Pseudosemantic features construction for semantic context
modeling

scenes each 3–5 min in length are manually selected from
10 different Hollywood action movies as a training/testing
dataset.

By the definition in Sect. 2.1, a semantic context often
lasts for a period of time, and not all relevant audio events
exist at every time instant. Therefore, the confidence scores
of consecutive audio segments are considered integrally to
capture the temporal characteristics in a time series [8]. We
define a texture window (Fig. 5b) 5 s long, with 2.5-s over-
laps, to go through the confidence values of 1-s audio seg-
ments (analysis windows in Fig. 5a). The means of confi-
dence values in each texture window are then calculated,
and the pseudosemantic features for each analysis window
are constructed as follows:

1. For each texture window, the mean values of confidence
scores are calculated:

mi = mean(ci,1, ci,2, . . . , ci,N ), i = 1, 2, 3, 4, (2)

where ci, j denotes the confidence score of the jth analysis
window with respect to event i, and N denotes the total
number of analysis windows in a texture window.
By the settings described above, nine analysis windows
(N = 9), with 50% overlapping, construct a texture win-
dow. The corresponding sound effects of events 1 to 4 are
“gunshot,” “explosion,” “engine,” and “car-braking.”

2. Let bi be a binary variable describing the occurrence situ-
ation of event i. The pseudosemantic feature vector vt for
the tth texture window is defined as:

vt = [b1, b2, b3, b4], (3)

where bi = 1 and b j = 1 if the corresponding
mi and m j are the first and the second maximums of
(m1, m2, m3, m4); otherwise, bk = 0.

3. The overall pseudosemantic feature vector V is defined as:

V =




v1
v2
...

vT


 , (4)
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where T is the total number of texture windows in the
audio clip.

Finally, the mean confidence values from all texture win-
dows form the feature vector V for performing semantic
modeling. We study pseudosemantic feature modeling by
applying two statistical techniques: GMM and HMM.

5.2 Gaussian mixture model training

The use of GMM is motivated by the interpretation that
the Gaussian components represent some general semantic-
dependent spectral shapes and the capability of Gaussian
mixtures to model arbitrary densities [31]. The individ-
ual component Gaussians in a GMM-based semantic con-
text model are interpreted as the classes of audio events
corresponding to specific semantic contexts. They reflect
context-dependent configurations that are useful for mod-
eling the characteristics of a specific semantic context.
Furthermore, linear combination of Gaussian basis func-
tions is capable of representing a large class of sample
distributions. In this work, we respectively construct one
four-mixtures GMM for gunplay and car-chasing semantic
contexts.

A Gaussian mixture density is a weighted sum of M com-
ponent densities. That is,

p(
−→x i | λ) =

M∑
i=1

wi bi (
−→x i ), (5)

where −→x i = (V1,i , V2,i , . . . , VN ,i ) is the ith column vector
of V and wi is the weight of the ith mixture. Each component
density bi (

−→x i ) is a D-variate Gaussian function of the form

bi (
−→x i ) = 1

(2π)D/2 | �i |1/2

× exp

{
−1

2
(
−→x i − −→µ i )

′
−1∑
i

(
−→x i − −→µ i )

}
(6)

with mean −→µi and covariance matrix �i , and D is 4 in this
work. The mixture weights have to satisfy the constraint∑M

i=1 wi = 1.
The complete Gaussian mixture density λ = {wi , µi ,

�i }, i = 1, . . . , M , is parameterized by the mixture weights,
the mean vectors, and the covariance matrix of all compo-
nent densities. In model training, the pseudosemantic fea-
tures are computed and the maximum-likelihood (ML) esti-
mation is adopted to determine the model parameters. For
a sequence of T training vectors X = x1, . . . , xT , the
expectation–maximization (EM) algorithm [32] is applied to
guarantee a monotonic increase in likelihood values:

Mixture weights: w̄i = 1

T

T∑
t=1

p(i | −→x t , λ). (7)

Mean update: −→̄
µ i =

∑T
1 p(i | −→x t , λ)

−→x t∑T
1 p(i | −→x t , λ)

. (8)

Variance update: σ̄ 2
i =

∑T
t=1 p(i | −→x t , λ)x2

t∑T
t=1 p(i | −→x t , λ)

− µ̄2
i . (9)

The a posteriori probability for the ith mixture is then given
by

p(i | −→x t , λ) = wi bi (
−→x t )∑M

k=1 wkbk(
−→x t )

. (10)

5.3 Semantic context detection

In semantic context detection, audio event detection is first
applied. On the basis of confidence scores, each texture
window is evaluated by checking the pseudosemantic
features. If all feature elements are located in the “range
of detection,” we say that the audio segment corresponding
to this texture window belongs to the specific semantic
context. As shown in Fig. 6, the range of detection is defined
as [µi −δi ,µi +δi ], where µi and δi denote the mean and the
standard deviation of the ith Gaussian mixture, respectively.
In the case of gunplay scenes, if all the feature elements of
gunshot and explosion events are located in the detection
regions, it is said that the segment conveys the semantics of
gunplay.

Although the relationships between semantic context
and relevant audio events should be decided manually in
the training stage, this work is not time consuming or te-
dious. There have been some movie production rules that
elucidate which basic visual and aural elements can be
synthesized into a complete semantic context [33]. The

Fig. 6 The GMM for modeling semantic contexts
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well-applied production rules, or the so-called media aes-
thetics [34], motivate us to take advantage of repeated
use of certain objects/events to be the clues for detect-
ing some specific semantic contexts. In other words, we
can easily choose some visual/aural elements to be the
primitive components to construct semantic context mod-
els. Then the modeling techniques take charge of repre-
senting the characteristics and relationships of these rel-
evant events. More audio events could be applied to
model semantic contexts more accurately. However, the
experimental results show that these simple but repre-
sentative audio events have achieved promising detection
results.

6 Hidden Markov model for semantic context

The GMM-based fusion scheme constructs a general model
for each semantic context and tackles different combina-
tions of relevant events. However, for describing a sophisti-
cated semantic context, a general model that only covers the
event data distributions may not be enough. It is preferable
to explicitly model the time duration density by introducing
the concept of state transition. For example, the confidence
scores of relevant events do not remain the same at every
time instant. There would be some segments with low con-
fidence scores because the sound effect is unapparent or is
influenced by other environment sounds. On the other hand,
some segments may pose higher confidence because the au-
dio events raise or explosively emerge. A model with more
descriptive capability should consider the variation in time
domain.

HMM is widely applied in speech recognition to model
the spectral variation of acoustic features in time. It cap-
tures the time variation and state transition duration from
training data and provides different likelihood values based
on different given test data. In speech-related applications,
left–right HMMs are considered suitable that only allow that
state index increases (or stays the same) as time goes by.
But in the case of semantic context modeling, there is no
specific consequence that formally represents the time evo-
lution. Therefore, ergodic HMMs, or the so-called fully con-
nected HMMs, are used in our work.

6.1 Hidden Markov model training

A hidden Markov model λ = (A, B, π) consists of the fol-
lowing parameters.

1. N, the number of states in the model. It can be decided by
the algorithm described in Sect. 4.1. The individual states
are labeled 1, 2, . . . , N , and the state at time t is denoted
as qt .

2. M, the number of distinct observation symbols in all
states, i.e., the types of audio events we used. The indi-
vidual symbols are denoted as V = {ν1, ν2, . . . , νM }.

3. The state transition probability distribution A = {ai j },
where

ai j = P[qt+1 = j | qt = i], 1 ≤ i, j ≤ N .

4. The observation probability distribution B = {b j (k)},
where

b j (k) = P[xt = vk | qt = j], 1 ≤ k ≤ M, 1 ≤ j ≤ N .

5. The initial state distribution π = {πi } in which

πi = P[q1 = i], 1 ≤ i ≤ N .

For each semantic context, the parameters of HMM are
estimated from the Baum–Welch algorithm by giving sets
of training data. The state number N is set at four, and the
number of distinct observation symbols M is also four in
our work. After the training process, parameters of two er-
godic HMMs (for gunplay and car-chasing scenes, respec-
tively) are estimated. These models elaborately characterize
the densities of time-variant features and present the struc-
tures of sophisticated semantic contexts.

6.2 Semantic context detection

The detection process is conducted following the same idea
as that of the audio event detection. To evaluate the likeli-
hood of the observation sequence, O = (o1o2 . . . oT ), given
the model λ, the Forward algorithm is applied. Consider the
forward αt (i) defined as

αt (i) = P(o1o2 . . . ot , qt = i | λ).

That is, the probability of the partial observation se-
quence, o1o2 . . . oT , and state i at time t, given the model
λ. The state sequence from time 1 to T is q = (q1q2 . . . qT ).
We can solve for αt (i) inductively, as follows:

Initialization: α1(i) = πi bi (o1), 1 ≤ i ≤ N . (11)

Induction: αt+1( j) =
[

N∑
i=1

αt (i)ai j

]
bi (ot+1),

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N . (12)

Termination: P(O | λ) =
N∑

i=1

αT (i). (13)

Through the Forward algorithm, the log-likelihood value
that represents how likely a semantic context is to occur is
calculated by taking the logarithm of P(O | λ).
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7 Performance evaluation

The training data for audio event modeling are taken
from a professional sound-effects library, i.e., the Soun-
dIdeas Library (http://www.sound-ideas.com). For each au-
dio event, 100 short audio clips, each 3–10 s long, are se-
lected. For semantic context modeling, given that there is no
standard corpus for audio semantic contexts, the evaluation
data are manually selected from Hollywood movies. Thirty
movie clips, each 3–5 min long, from 10 different films are
selected and labeled for each semantic context. In the exper-
iments, fivefold cross validation is applied in semantic con-
text model training. In each time, 24 sequences are randomly
selected as the training dataset, while 6 other sequences are
left for model testing. The average testing results are aver-
aged and reported in Sect. 7.2.

Note that the criteria for selecting training data for au-
dio events and semantic contexts are different. For seman-
tic context modeling, we collected the gunplay and car-
chasing scenes based on the experienced users’ subjective
judgments, no matter how many relevant audio events exist
within the scene. On the other hand, the training data for au-
dio event modeling consist of short audio segments that are
exactly the audio events.

To determine the ground truth of semantic context, we
define the boundary and label of a scene by watching the
movies. Some may argue that we define the ground truth
based on audiovisual streams, but we only exploit aural
information for semantic context detection. However, in the
movies we focused on, the aural information often presents
more consistent characteristics in different action scenes
and ease event/context modeling. If we include visual
information in this framework, variations and uncertainties
would increase greatly. For example, gunplay scenes may
occur in a rainforest or a downtown street, day or night,
where visual characteristics vary significantly. In contrast
to this situation, aural information remains similar in
different gunplay scenes. Furthermore, the mechanism for
producing action movies is often straightforward. It is rare
to have a gunplay concept without gunshot sounds or a
car-chasing concept without engine sounds. Therefore, aural
information is assumed to be more distinguishable than
visual information for gunplay and car chase modeling.

Overall, the detection performance is evaluated at two
levels: audio event detection and semantic context detection.

7.1 Performance of audio event detection

The effectiveness of audio event modeling affects the results
of semantic context detection. In audio event detection, a
“correct detection” is declared if a 1-s segment is evaluated
as an audio event and its corresponding confidence score is
larger than a predefined threshold. The length of an analysis
unit, 1-s segment, is chosen for the tradeoff of the frame-
work’s efficiency and accuracy [17]. It could be set as other
values to adapt to other kinds of audio events or other mod-
eling methodologies.

Fig. 7 Example of audio event detection

7.1.1 Performance of the proposed approach

Figure 7 illustrates a sample result of audio event detec-
tion. This audio clip is extracted from the movie “We Were
Soldiers,” with gunplay scene in the first 30 s. As shown in
this figure, most gunshot and explosion sound effects are de-
tected, while the confidence scores of the other audio events
are zero. The result apparently indicates the clues of the ap-
pearance of a gunplay scene.

The overall detection performance is listed in Table 1.
The average recall is over 70%, and the average precision
is close to 85%. Although the detection accuracy is often
sequence dependent and affected by confused audio effects,
the reported performances sufficiently support effective se-
mantic context modeling. In addition, different audio events
have different evaluation results. Because the car-braking
sounds are often very short (less than 1 s, which is the length
of one basic audio unit used in our work) and are mixed
with other environment sounds, the detection accuracy is
particularly worse than the others. This situation is different
from gunshot sounds because there is often a continuity

Table 1 Overall performance of audio event detection

Audio event Recall Precision

Gun 0.938 0.95
Explosion 0.786 0.917
Brake 0.327 0.571
Engine 0.890 0.951
Average 0.735 0.847
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Table 2 Detection accuracy of different approaches

[35] [17] [36] Our approach

Audio events Acclaim 98% Laughter 82.3% Explosion 86.8% Explosion 91.7%
Whistle 97.3% Applause 87.4% Gun 95%
Commentator speech 92.6% Cheer 92.6% Brake 57.1%
Silence 91.1% Engine 95.1%

of gunshots (the sounds of a machine gun or successive
handgun/rifle shots) in a gunplay scene.

The detection performance is more encouraging if we
neglect the particular case in car-braking detection. For the
other audio events, the average recall is 87% and the average
precision is 94%. On the other hand, because the car-braking
sound is a representative audio cue of car-chasing scenes, we
still consider the detection results of car-braking sounds in
car-chasing context modeling.

As shown in Table 1, the precision rate is generally
larger than the recall rate in audio event detection. This
indicates the high confidence of detection results, which is
especially important in detecting a specific audio event in a
chaotic acoustic condition caused by various sound effects.
Furthermore, some misdetections will be disregarded by
the process of pseudosemantic features, which integrally
takes several overlapping audio segments into account.
Hence, the reported results of audio event detection provide
a promising basis for semantic context modeling.

7.1.2 Performance comparison

To compare the detection performance of various ap-
proaches, some institutes such as TREC Video Retrieval
Evaluation1 have developed corpora for video event evalu-
ation. However, few standard datasets are designed for au-
dio event detection. Most works of audio event detection
(including our work) use privately collected datasets. Di-
rect comparison between different approaches, which use
different datasets and model different events, is not plausi-
ble. However, in order to show that the proposed approach
achieves one of the top performances in detecting various
audio events, we refer to other works that focus on audio
events in sports [35], TV shows [17], and movies [36].

Because not all referred works report precision and re-
call values, we only list the detection accuracy in Table 2
(precision) for fair comparison. In [35], four audio events
including “acclaim,” “whistle,” “commentator speech,” and
“silence” are detected in soccer videos, while the “speech”
and “silence” generally are not viewed as special sound ef-
fects. More than 90% of detection accuracy is achieved. In
[17], the events “laughter,” “applause,” and “cheer” are de-
tected in TV shows. For each event, average precision values
from three test sequences are listed. The most similar work
to ours is [36]. They also introduce a variation of HMM to
model audiovisual features of explosion events. More than
86% of explosion events are correctly detected, while we

1 http://www-nlpir.nist.gov/projects/trecvid/

achieve 91.7% precision. From these results, we can see that
the proposed audio event detection module works at least as
well as other reported approaches and is capable of serving
as a robust basis for higher-level modeling.

7.2 Performance of semantic context detection

In semantic context detection, the models based on GMM
and HMM are evaluated. The metrics of recall and precision
are calculated to show the detection performance, and the
false alarm rate is also examined to show the robustness of
these methods. The basic unit for calculating these metrics
is the texture window, which covers the detection results of
audio events in 5 s. In this section, the relationship between
the event detection and semantic contexts is also investigated
by comparing four test sequences.

To show how likely a texture window matches the tar-
geted semantic concepts, we estimate the “semantic likeli-
hood” to facilitate deciding whether a segment belongs to a
specific concept. For the segments with feature values closer
to the classical patterns, larger semantic likelihood values
would be assigned.

7.2.1 GMM performance

The semantic likelihood value SLi of texture window i is
defined as:

SLi = mean(s1, s2, . . . , s j ), (14a)

s j = p(x j | λ j ) − p(δ j | λ j )

p(µ j | λ j ) − p(δ j | λ j )
, (14b)

where x j is the feature value from the jth audio event and is
considered only when x j ∈ [µ j − δ j , µ j + δ j ] (the range
of detection defined in Sect. 5.3). The term λ j denotes the
jth Gaussian mixture, and µ j and δ j respectively denote its
mean and standard deviation. The value s j identifies how
close the testing data are to the mean value of the jth mix-
ture and is normalized to the range of [0,1] by Eq. 14b. The
overall semantic likelihood value SLi is the mean of the val-
ues from all relevant mixtures. This process gives different
weights to different segments and facilitates possible appli-
cations in ranking the retrieval results and video summariza-
tion. Meanwhile, we consider the segments with semantic
likelihood values larger than zero for calculating the preci-
sion and precision metrics. That is,

S = {Si | (SLi > 0) ∧ (Si ∈ G)},
D = {Si | SLi > 0}, i = 1, 2, . . . , N ,
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Table 3 Performance of semantic context detection by (a) GMM and (b) HMM in different test sequences

Semantic context Recall (a) Precision (a) False alarm Recall (b) Precision (b) False alarm

Gunplay Clip 1 0.553 0.776 0.224 0.511 0.762 0.238
Clip 2 0.220 0.542 0.458 0.668 0.754 0.246
Clip 3 1.0 1.0 0 0.800 0.736 0.264
Clip 4 0.800 0.414 0.586 0.778 0.390 0.610
Clip 5 0.506 0.955 0.045 0.419 0.868 0.132
Clip 6 0.533 0.828 0.172 0.498 0.850 0.150

Average 0.602 0.752 0.248 0.612 0.727 0.273

Car-chasing Clip 7 0.570 0.966 0.034 0.760 0.927 0.073
Clip 8 0.192 0.700 0.300 0.863 0.624 0.376
Clip 9 0.400 0.857 0.143 0.533 0.800 0.200
Clip 10 0.692 0.346 0.654 0.769 0.303 0.697
Clip 11 0.228 0.667 0.333 0.532 0.764 0.236
Clip 12 0.351 0.971 0.029 0.723 0.971 0.029

Average 0.406 0.751 0.249 0.697 0.731 0.269

Precision = | S |
| D | , (15a)

and

Recall = | S |
| G | , (15b)

where S denotes the set of correctly detected segments, D
denotes the set of detected segments, and G denotes the set
of ground truth of a test sequence. The element Si is the ith
testing segment (with length of a texture window) in a test
sequence, and N is the number of segments in it.

The recall and precision rates of semantic context detec-
tion for selected test sequences are shown in Table 3a. We
show six 5-min movie segments (selected from “We Were
Soilders,” “Windtalker,” “The Recruit,” and “Band of Broth-
ers”) for detecting gunplay and six 5-min movie segments
(selected from “Terminator 3,” “Ballistic: Ecks vs. Sever,”
“The Rock,” and “2 Fast 2 Furious”) for detecting car chases.
The average recall for gunplay is 60.2%, and the precision is
75.2%. For car-chasing detection, the average recall and pre-
cision are 40.6% and 75.1%, respectively. The performances
of detecting different semantic contexts are not identical be-
cause different semantic contexts posses different essential
characteristics. The detection performance is also affected
by the results of audio event detection. Therefore, the poorer
performance in car-chasing scenes is due to the slightly
weaker detection of engine and car-braking events. Figure 8
illustrates an example showing both the detection results for
audio events and semantic contexts and demonstrates the
correspondence between these two-level detections.

7.2.2 HMM Performance

The same dataset is applied to the HMM-based approach.
Like the testing process conducted in GMM, every 5-s tex-
ture window is evaluated. The semantic likelihood value is
defined as the logarithm of the likelihood P(O | λ) obtained
by the Forward algorithm:

SLi = log(P(O | λ)). (16)

Fig. 8 Detection of audio events and semantic contexts. a Detection
on relevant events for gunplay scenes. b Gunplay scenes

The texture window with the semantic likelihood value
larger than a threshold is declared as a hit. That is,

S′ = {Si | (SLi > ε) ∧ (Si ∈ G)},
D′ = {Si | SLi > ε}, i = 1, 2, . . . , N ,
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Table 4 Performance evaluation using HMMs with different model
sizes

False
Semantic Context Recall Precision Alarm

Gunplay Four states, four mixtures 0.612 0.727 0.273
Two states, two mixtures 0.612 0.727 0.273

Car-chasing Four states, four mixtures 0.697 0.731 0.269
Two states, two mixtures 0.530 0.722 0.278

Precision = | S′ |
| D′ | , (17a)

and

Recall = | S′ |
| G | , (17b)

where ε is the threshold manually defined for filtering out
the texture window with too small likelihood.

Table 3b shows the performance using the HMM-
based approach for different test sequences. Based on the
HMM-based approach, the average recall of gunplay is
61.2% and the average precision is 72.7%. For car-chasing
scenes, the average recall is 69.7% and the average precision
is 73.1%.

We also evaluate the detection performance with differ-
ent HMM model sizes. The models with four states each
with four Gaussian mixtures and two states each with two
Gaussian mixtures are constructed and tested. From the ex-
perimental results, as shown in Table 4, the models with
larger state numbers work slightly better than simple ones.
This result conforms to the principles of probabilistic mod-
els and leads us to choose appropriate parameters for mod-
eling. However, like the gunplay detection, almost the same
performances are achieved with different parameters. It re-
veals that the pattern of gunplay scenes is relatively station-
ary and is simpler to model.

7.2.3 Discussion

According to the results in Table 3, although the detection
results are sequence dependent, both approaches on average
provide promising detection results either in precision
or recall. In car-chasing detection, the recall rate of the

Table 5 Based on the HMM-base approach, examples of the relation between audio event detection and semantic context detection

Audio event detection Semantic context detection

Test sequences Recall Precision Recall Precision FA

“Ballistic: Ecks vs. Sever” Engine 1 0.955 0.910 0.835 0.165
Brake 0.455 0.556

“The Rock” Engine 1 0.862 0.863 0.624 0.376
Brake 0.385 0.50

“Band of Brother” Gun 1 0.98 0.668 0.754 0.246
Explosion 1 0.921

“Tears of the Sun” Gun 0.529 0.563 0.665 0.436 0.564
Explosion 0.462 0.667

HMM-based approach is generally superior to that of the
GMM-based approach. Because the detection performance
of relevant audio events varies more than that in gunplay
scenes, it is believed that HMMs have greater capability for
modeling variations.

In both approaches, some misdetections exist when mul-
tiple audio events are mixed. Moreover, some false alarms
occur due to similar acoustic characteristics of different au-
dio events. For example, in a violent scene, collisions are
often misdetected as explosions, and some music segments
played with bass drum or contrabass are often misdetected as
explosions or engine sounds. This problem can be fixed by
extracting more-representative audio features in audio event
modeling or considering the cues from visual information.
Moreover, by the emerging techniques of blind source sep-
aration [37], sounds from different sources may be sepa-
rated so that different sound effects could be analyzed sepa-
rately. This idea is reasonable because many sound effects in
movies are imposed in the editing stage rather than in onsite
recording.

We further investigate the relation between audio event
detection and semantic context detection. As shown in
Table 5, four sequences that have significant differences
in audio event detection are deliberately selected to show
the association between the two-stage detections. In both
gunplay and car-chasing detection, the sequence with
better audio event modeling/detection apparently has better
performance in semantic context detection, especially in the
precision and false alarm rates. Although this trend matches
our expectation, this result further shows that semantic
context modeling, with the help of pseudosemantic feature
processing on texture windows, can provide acceptable per-
formance even when the underlying event detection is not
excellent.

To elaborately evaluate the performance of the proposed
methods, we should compare them with other approaches.
Although a few studies [19] have been done to achieve hi-
erarchical semantic indexing, they emphasize visual infor-
mation and do not report detailed experimental results. In
[21], a few results are reported on detecting rocket-launch
scenes based on aural (rocket engine and explosion) and
visual cues. However, because there is no standard dataset
and the performance is highly sequence dependent, we can



582 W.-T. Chu et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

Recall

Pr
ec

is
io

n

HHMM GMM

Fig. 9 Precision–recall curves of gunplay detection by using HMM
and GMM approaches

hardly perform fair comparisons between different methods.
Therefore, to show the effectiveness of the proposed ap-
proaches, we illustrate the overall precision–recall curve of
gunplay detection in Fig. 9. This figure shows the promising
performance and the differences between HMM-based and
GMM-based approaches.

7.2.4 Generalization of the proposed framework

Although the proposed framework is only applied in the
modeling of semantic concepts in action movies, it is as-
sumed to be generalized to other types of videos, as long
as the relationships between targeted semantic concepts and
audiovisual characteristics follow two suggested prerequi-
sites:

1. Concepts match between aural and visual information: for
a given video clip, the concept drawn from aural and vi-
sual information should match consistently so that we can
feel free to exploit extracted aural/visual features to char-
acterize targeted semantic concepts.

2. Characteristic consistency between different sequences:
aural or visual characteristics should be consistent be-
tween different video clips with the same concept.
Otherwise, the high-variance information would burden
modeling work. That is why the visual information is
disregarded in modeling gunplay and car-chasing scenes
within action movies, while both visual and aural infor-
mation may be considered together in modeling important
events within sports videos, for example.

Another encouraging idea to come out of this work is
introducing late fusion for the results of individual classi-
fiers. The merit of late fusion is that individual classifiers
can be trained separately and added adaptively to the fi-
nal metaclassifier. The proposed hierarchical framework can
be generalized to other semantic concepts, as long as the
modeled concepts have consistent visual/aural characteris-
tics over different sequences in the same types of videos.
For example, replacing the audio event models by visual ob-
ject models, visual semantic context such as multispeaker
conversation could be modeled by the same framework.
We can even fuse the preliminary classification results (by
careful design of pseudosemantic feature construction) from

different modalities to construct a multimodal metaclassi-
fier. Therefore, the proposed framework is attractive not only
for its exciting scene detection in action movies, but for its
generality, which facilitates building applications for differ-
ent genres of videos, different types of media, and different
granularities of usage.

8 Summary

We presented a hierarchical approach that bridges the gaps
between low-level features and high-level semantics to facil-
itate semantic indexing and retrieval. The proposed frame-
work hierarchically conducts modeling and detection at two
levels: audio event and semantic context. The audio events
that are highly related to some specific semantics are se-
lected to provide important clues for modeling. After care-
ful selection of audio features, HMMs are applied to model
the characteristics of audio events. According to the produc-
tion rules for action movies, gunshot and explosion sounds
are adopted for detecting gunplay scenes, and car-braking
and engine sounds are adopted for detecting car-chasing
scenes.

At the semantic context level, the proposed fusion
schemes that include pseudosemantic feature construction
and probabilistic modeling take the results of audio event
detection as a basis for characterizing semantic context. The
pseudosemantic features present the interrelationship of sev-
eral audio events and convey the variations of different types
of semantic contexts. Based on the pseudosemantic features,
two probabilistic models, i.e., GMM and HMM, are then
exploited to model semantic contexts. GMM describes the
distributions of different audio events, and HMM further
presents the time duration density to model sophisticated
contexts.

The experimental results demonstrate the effective per-
formance of the fusion schemes and signify that the pro-
posed framework draws a sketch for constructing an efficient
semantic retrieval system. We investigate detection accuracy
and robustness in detecting two semantic contexts and dis-
cuss the relations between audio events and semantics. Gen-
erally, the HMM-based approach achieves slight gains over
the GMM-based method, as this trend is more apparent in
the situation of poor audio event detection.

The proposed framework can be extended to other types
of videos as different audio events and semantic contexts are
modeled. It may be necessary to consider different combi-
nations of events or include visual information according to
the production rules of targeted videos, such as color dis-
tribution in sitcoms or particular spatial layout in games.
One improvement to this framework may include elabo-
rate feature selection from a candidate pool by developing
an automatic feature induction mechanism. Moreover, some
machine learning techniques, such as SVM, are also op-
tions for fusing pseudosemantic features and may engen-
der new issues in video segmentation, discrimination, and
indexing.
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