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ABSTRACT
Many novel multimedia, home entertainment, visual surveil-
lance and health applications use multiple audio-visual sen-
sors. We present a novel approach for position and pose
calibration of visual sensors, i.e. cameras, in a distributed
network of general purpose computing devices (GPCs). It
complements our work on position calibration of audio sen-
sors and actuators in a distributed computing platform [22].
The approach is suitable for a wide range of possible - even
mobile - setups since (a) synchronization is not required,
(b) it works automatically, (c) only weak restrictions are im-
posed on the positions of the cameras, and (d) no upper limit
on the number of cameras and displays under calibration is
imposed. Corresponding points across different camera im-
ages are established automatically. Cameras do not have
to share one common view. Only a reasonable overlap be-
tween camera subgroups is necessary. The method has been
sucessfully tested in numerous multi-camera environments
with a varying number of cameras and has proven itself to
work extremely accurate. Once all distributed visual sensors
are calibrated, we focus on post-optimizing their poses to in-
crease coverage of the space observed. A linear programming
approach is derived that determines jointly for each camera
the pan and tilt angle that maximizes the coverage of the
space at a given sampling frequency. Experimental results
clearly demonstrate the gain in visual coverage.

1. INTRODUCTION
Today we can find microphones, cameras, loudspeakers

and displays nearly everywhere - in public, at home and at
work. These audio/video sensors and actuators are often a
component of computing and communication devices such
as laptops, PDAs and tablets, which we refer to as General
Purpose Computers (GPCs). Often GPCs are networked us-
ing high-speed wired or wireless connections. The resulting
array of audio/video sensors and actuators along with array
processing algorithms offers a set of new features for mul-

timedia applications such as video conferencing, smart con-
ference rooms, video surveillance, games, e-learning, home
entertainment and image based rendering.
Many of the above mentioned audio-visual array process-
ing algorithms require precise knowledge about the positions
and poses of the sensors and actuators as well as the cover-
age that is achieved by those sensors. This demands a sim-
ple and convenient calibration approach to put all sensors
and actuators into a common time and space. [14] proposes
a means to provide a common time reference to multiple
distributed GPCs. In [22] a method for automatically cal-
ibrating audio sensors and actuators is presented. In this
paper we focus on visual sensors where a room or area is
instrumented with N ≥ 3 static cameras connected to net-
worked GPCs. No precise synchronization of the different
devices is required.
In the first part of this paper we focus on providing a com-
mon space for multiple cameras by actively estimating their
3D positions and poses. We also address the problem of
effortlessly calibrating the intrinsic parameters of multiple
cameras.
In the second part of the paper another important issue in
designing visual sensor arrays is considered: orienting the
visual sensors such that they achieve optimal coverage of a
given space at a predefined ’sampling rate’ (see Section 3 for
a precise definition). We assume that the positions and inital
poses are given. This is reasonable because either cameras
have been already installed (e.g. at an airport), or they are
put up arbitrarily. Currently there exists only few theoret-
ical research on planning visual sensor positions and poses.
Positions and inital poses of the multiple cameras can be
determined automatically by our calibration approach (see
Section 2). Given the fixed positions, we develop a linear
programming model that determines the optimal poses (pan
and tilt angles) with respect to coverage while maintaining
the required resolution (i.e. minimal ’sampling frequency’).
Fig. 1 shows one ineffective setup that we desire to optimize.

Related Work: Camera calibration is a well researched
topic in computer vision. Fundamentally there are two dif-
ferent methods of camera calibration: photogrammetric cal-
ibration and self-calibration [31]. The first method uses a
3D, a 2D (planar), or a virtual calibration object of pre-
cisely known geometry. Important approaches are described
in [31] [11] [28] [4] [27]. Planar methods are very popular
because it is easy to obtain a calibration target by just print-



Figure 1: Example of an inefficient setup we desire
to optimize

ing the pattern and fixing the paper on a flat surface. Al-
though providing good results, the major drawback of these
calibration methods is that they require special equipment
or precise manual measurements. Virtual calibration ob-
jects are constructed over time by tracking an easily iden-
tifiable object through a 3D scene. The cameras usually
have to be synchronized and thus the setup requires spe-
cial equipment. Self calibration techniques ([9] [26] [20]) do
not require any special calibration target. They simultane-
ously process several images from different perspectives of
a scene and are based on point correspondences across the
images. The accuracy of these methods depends on how ac-
curately those point correspondences can be extracted be-
tween images. Point correspondences are extracted auto-
matically from the images by identifying 2D features and
tracking those between the different perspective views. Dif-
ferent feature extraction algorithms exist (see [8] [24] [15]).
There exist also self-calibration approaches using silouettes
or trajectories of moving objects [21] [25]. Multiple cam-
era calibration can be solved globally in one step, or multi-
ple subsets of cameras and displays are calibrated first and
then merged into a global coordinate system. Since the first
method is only suitable if all cameras share a common view,
we follow the second more general approach.
Although a significant amount of research exists in designing
and calibrating video sensor arrays, automated visual sensor
placement and alignment in general has not been addressed
often. There is some work in the area of grid coverage prob-
lems with sensors sensing events that occur within a distance
r (the sensing range of the sensor) [23] [13] [29] [32]. Our
work is based on those approaches, but differs in the sensor
model (since cameras do not posses circular sensing ranges)
as well as the cost function and some constraints. In [5] a
camera placement algorithm based on a binary optimization
technique is proposed. The algorithm aims to find the place-
ment with minimum cost of a camera set such that a given
space is viewed with some minimal spatial resolution. Space
is represented as a occupancy grid and the authors focused
on planar regions. A similar task is considered in [12] and
also solved by linear programming techniques. In [19] the
authors analyze the visibility from static sensors probabilis-
tically and present a solution for maximizing visibility in a
given region of interest. They solve the problem by simu-
lated annealing.

Contributions: The main contributions of the paper are:

• A procedure to automatically calibrate the positions
and poses of sensors without using calibration objects.
Thus no special equipment is required. In addition
the setup does not have to be synchronized. It only

requires to filter out temporally unstable salient points
and keep only stationary features. Our method is sim-
ple and convenient to use and offers mobility of the en-
tire setup. The camera views are assumed to overlap
only partly, i.e. only some cameras share a common
view.

• The usage of an active display as our calibration tar-
get for intrinsic calibration giving us control over the
calibration pattern to be displayed. As a result the
extraction of feature points is easier and more reliable.
The calibration pattern can be made adaptive to the
distance between the camera and the pattern’s image
on the LCD screen.

• The automatic extraction of control points and point
correspondences across images.

• A procedure to determine the optimal poses of the
cameras such that coverage is maximized while main-
taining a minimal resolution.

The rest of the paper is organized as follows. In Section
2 we formulate the calibration problem and present our so-
lution. We describes how point features are extracted and
tracked between images and outline the calibration of the
intrinsic parameters of each camera. The algorithm used to
determine the extrinsic parameters, i.e. the positions and
poses of all cameras in a common coordinate system is pre-
sented. In Section 3 we formulate the optimization problem
of maximizing coverage with multiple cameras by pose vari-
ation. Our solution is presented and results are reported.
The paper concludes with a summary and an outlook in
Section 4.

2. MULITPLE CAMERA CALIBRATION

2.1 Problem Formulation
Given M cameras, the goal is to determine the cameras’

internal parameters and the 3D positions and poses of the
cameras automatically. Therefore we only make the assump-
tion, that we know the number of visual sensors in the net-
work.
In this work we use an enhanced perspective model to de-
scribe our cameras. The mapping performed by a perspec-
tive camera between a 3D point X and its 2D image point
x, both represented by their homogeneous coordinates, is
usually represented by a 3 × 4 matrix, the camera projec-
tive matrix P: x ≃ PX. The matrix P can be written as
P = K[R|t] where K is a 3 × 3 upper triangular matrix
containing the camera intrinsic parameters:

K =

0

@

fx s px

0 fy py

0 0 1

1

A (1)

The parameters fx and fy denote the focal length, px and
py denote the coordinates of the principal point, each in
terms of pixel dimensions. s denotes the skew. For most
commercial cameras, and hence below, the skew is consid-
ered to be zero. The 3 × 3 rotation matrix R and the 3× 1
translation vector t describe the 3D position and pose of
the camera. As some desktop cameras exhibit significant
distortions, this model has to be enriched by some distor-
tion components. The distortion model introduced in [11]
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Figure 2: General calibration problem

accounts for tangential and radial distortions using two co-
efficients. It describes distortions occuring in practice suffi-
ciently precise. In the following discussion we assume that
the distortion parameters of each camera are known and the
effects of those have been removed from all images.

Different views of the same scene are related to each other.
These relations can be used for our multiple camera calibra-
tion task. Therefore we need to determine a set of corre-
sponding points across the different images. Points are said
to correspond if they represent the same scene point in dif-
ferent views. This general calibration problem is illustrated
in Fig. 2.
A set of 3D points Xi is viewed by a set of cameras with
matrices Pj . Let xj

i denote the coordinates of the i-th
point as detected in the j-th camera image. A 3D point
may not be visible in all cameras, thus its corresponding
projected point will not be available in all images. The cal-
ibration problem is then to find the set of camera matrices
Pj and points Xi such that for all image points xj

i ≃ PjXi

holds. However, unless additional constraints are given, it is
in principle only possible to determine the camera matrices
up to a projective ambiguity. Additional constraints arising
from knowledge about the cameras’ parameters and/or the
scene can be used to restrict this ambiguity up to an affine,
metric or Euclidean transformation.

Solution: We solve the camera calibration problem in
two stages. In a first stage we determine the cameras’ intrin-
sic parameters. Intrinsic calibration is done independently
for each camera by using a flat-panel display as the pla-
nar calibration object. In a second stage camera positions
and poses are computed in a common coordinate system
(extrinsic calibration). Their positions and poses can be de-
termined relative to each other up to a global coordinate. In
a typical distributed camera environment each camera can
only see a small volume of the total viewing space and differ-
ent intersecting subsets of cameras share different intersect-
ing views. Hence multiple camera calibrations are performed
by calibrating subsets of cameras and then building a global
coordinate system from individual overlapping views.

2.2 Point Correspondences
2D point correspondences between projections of the same

3D point onto different camera planes can be generally used
to recover the calibration matrices of the cameras. There-

Figure 3: Matched points are visualized by a con-
necting line between images

fore establishing such correspondences is the first step in
determining the cameras parameters. To establish point cor-
respondences each image is at first represented by a set of
features. Each feature describes a specific image point, and
its neighborhood. Subsequently these features are input to
a matching procedure, which identifies features in different
images that correspond to the same point in the observed
scene. There are various approaches for extracting a set of
interest points and features from an image. Our approach
uses the so called SIFT-features proposed in [15]. SIFT-
based feature descriptors were identified in [18] to deliver
the most suitable features in the context of matching points
of a scene under different viewing conditions such as differ-
ent lighting and changes in 3D viewpoint.

SIFT-Features Extraction: The SIFT-feature extrac-
tion method combines a scale invariant region detector and a
descriptor based on the gradient distribution in the detected
regions. In order to compute a set of caracteristic image fea-
tures, first a set of interest points - also called keypoints -
is found by detecting scale-space extremas. Only keypoints
that are stable under a certain amount of additive noise are
preserved. An image location, scale and orientation is as-
signed to each keypoint. This enables the construction of
a repeatable local 2D coordinate system, in which the local
image (pixel and its surrounding region) is described invari-
antly from these parameters. Finally a descriptor for each
keypoint is calculated based upon image gradients in the lo-
cal image. However this approach has its limitations. To
ensure a sufficient number of reliable matching points, the
displacement between the cameras should not exceed 15◦.
The resulting correspondences are within pixel accuracy.

SIFT-Feature Matching: The matching technique used
for the SIFT-features has been proposed in [15]. Point cor-
respondences between two images are established by com-
paring their respective keypoint descriptors. Matching is
performed by first individually measuring the Euclidean dis-
tance of each feature vector (representing a certain keypoint)
of one image to each feature vector of the other image. The
best matching candidate for a specific keypoint is identified
by the keypoint belonging to the feature vector with the min-
imum distance. A match is found in the second image, if the
distance ratio between the nearest and the second nearest
neighbor (closest/second closest) is below a threshold. An
example of matched points between two images is shown in
Fig. 3.

Subpixel Accuracy: The result of SIFT-feature match-
ing is only at pixel accuracy. For position estimation of
multiple cameras experiments have shown that it is essen-
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Figure 4: Matched feature points before and after
the tracking algorithm (points in the top image were
taken as reference and tracked in the bottom image)

tial to keep all computations at a subpixel accuracy level.
So far the approximate positions of the corresponding points
are known. To achieve subpixel precision we use the Affine
Lucas Kanade feature tracker [24]. This tracker assumes an
affine transformation between the viewpoint of both images.
This approximation is valid, if the viewpoints of the differ-
ent cameras are sufficiently close.
The basic optimization problem solved by the feature tracker
is:

min
d,D

ωx
X

x=−ωx

ωy
X

y=−ωy

(I(x+u)− J((D+ I2×2)x+d+u))2 (2)

where I(u), J(u) represent the grey-scale values of the two
images at location u, the vector d = [dx dy ]T is the opti-
cal flow at location u, and the matrix D denotes an affine
deformation matrix characterized by the four coefficients
dxx, dxy, dyx, dyy:

D =

„

dxx dxy

dyx dyy

«

(3)

The objective of affine tracking is then to choose d and D
in a way that minimizes the dissimilarity between feature
windows of size 2ωx + 1 in x and size 2ωy + 1 in y direction
around the point u and v in I and J respectively. v de-
notes the corresponding point to u and can be expressed in
terms of u according to v = u+Du+d. To handle changes
in brightness and contrast a normalization is applied to the
image patches in the iteration process.
An example result obtained by the subpixel feature tracking

algorithm is shown in Fig. 4. The corresponding points ob-
tained by SIFT-feature matching were used to initialize the
algorithm. They are shifted to a slightly different position
by the tracker. The improvement in accuracy is especially
obvious in the region marked with a circle in both images.
SIFT-feature matching in the case of two very close points in
the first image resulted in the same feature in the second im-

age. With this initial guess the feature tracker regains the
two different corresponding points and hence significantly
improves the accuracy of the image matching process.

2.3 Intrinsic Calibration
Intrinsic calibration is done independently for each cam-

era using J.-Y. Bouguets Camera Calibration Toolbox [3] in
OpenCV [2]. The calibration algorithm requires to record
images of a known planar calibration target at a few (at
least two) different orientations for each camera, where the
motion of the different poses needs not to be known. There-
fore the target can be freely moved in front of each camera
separately. As the 2D geometry of the calibration plane
is known with high precision, the camera observes in each
image the projection of a set of control points with known
position in some fixed world coordinate system. The Max-
imum Likelihood estimate of the camera parameters is ob-
tained by minimizing the mean-squared distance between
measured feature points in the image and their theoretical
position with respect to the camera’s intrinsic and extrinsic
parameters, i.e. by minimizing the following error:

ε =
n

X

j=1

m
X

i=1

‖ xj
i − x̂(K, κ1, κ2, ρ1, ρ2,Rj , tj ,Xi) ‖

2 (4)

where n denotes the number of images taken of the model
plane and m denotes the number of corresponding points
each images gives rise to. x̂(K, κ1, κ2, ρ1, ρ2,Rj , tj ,Xi) is
the theoretical position of the projection of point Xi in the
image j including distortion effects described by the distor-
tion coefficients κ1, κ2, ρ1, ρ2. This is a non-linear optimiza-
tion problem which requires a proper initialization. Thus
the complete calibration procedure consists of an initializa-
tion stage, where a closed form solution for the calibration
parameters is computed, followed by a nonlinear refinement
based on the Maximum Likelihood criterion. For more de-
tails on both stages the reader is reffered to [31] and [3].

Control Point Extraction: In the calibration proce-
dure several different perspectives of a planar model object
of known geometry are fed into the calibration routine. We
used the pattern shown in Fig. 6 (right; from [1]) as our
planar model object, since it gives rise to a large number
of SIFT-features. It is displayed on a laptop or any other
screen of known size, whose surface is sufficiently flat. Dif-
ferent images of the model plane from different orientations
are captured by waving the screen in front of the camera.
Some example images of the plane under different orienta-
tions are shown in Fig. 5. Projected pattern points in the
images are determined by matching extracted SIFT-features
from each view with extracted features from the calibration
pattern. Subpixel matching was not necessary to obtain suf-
ficiently accurate results. A matching example between the
calibration pattern and an image of the model plane is illus-
trated in Fig. 6.
Usually in other calibration procedures ([3], [28]) a checker-
board pattern is used as the calibration target requiring
some user interaction to obtain matching points (in this case
corners) between the this object and its (different) image(s).
The use of SIFT-feature matching in combination with a
flat screen displaying a known pattern enables us to easily
and automaticaly detect the subset of image points. Ad-
ditionally feature matching can be performed with images
containing only a partially visible pattern.



Figure 5: Four sample images of the model plane
used for calibration

Figure 6: Matches between calibration pattern
(right) and its imaged version (left)

Experimental Results: In order to evaluate the calibra-
tion routine, the algorithm was applied to a different number
of images of the model plane. The results are shown in Ta-
ble 1. As the number of pattern points extracted varies per
view, only the total number of points used in the calibration
procedure is given for each experiment.
The influence of the number of images used for the cali-
bration with respect to the performance of the optimization
procedure was investigated in [31]. They found that the esti-
mation error decreases with an increasing number of images
of the model plane. This effect can also be observed in Ta-
ble 1. For n ≥ 40 images the estimated intrinsic parameters
are consistent between the experiments, whereas in the case
of only 20 views the calculated values show a relatively large
deviation from these. Compared to algorithms using corner
features, the number of views necessary for reliable calibra-
tion is larger, as corner correspondences can be extracted
more accurately than SIFT feature correspondences. Once
the intrinisc parameters are determined the distortion in the
original images can be corrected as shown in Fig. 7.

2.4 Extrinsic Calibration of Multiple Cameras
The main objective of the algorithm presented in this sec-

tion is to recover the 3D positions and poses of multiple
cameras in a common coordinate system in a fully automatic
manner from the captured images of the different cameras.
The considered situation is illustrated in Fig. 2. The map-
ping of a 3D point Xi to a 2D image point xj

i can be de-
scribed according to (assuming distortion effects have been
removed):

xj
i ≃ PjXi (5)

As a 3D point Xi might only be observed by a subset of
cameras, the corresponding projected point will not appear

# img 20 30 40 50 60
# pnts 2218 3735 5171 6735 8039
fx 818.38 831.29 834.17 836.79 838.16
fy 818.16 830.87 833.64 836.38 837.98
px 305.02 307.19 308.77 307.69 308.51
py 263.87 257.35 255.35 255.32 254.48
κ1 −0.421 −0.432 −0.437 −0.433 −0.436
κ2 0.092 0.108 0.126 0.101 0.111
ρ1 -0.005 -0.003 -0.002 -0.002 -0.002
ρ2 0.004 0.003 0.002 0.003 0.003

Table 1: Results obtained for the intrinsic parame-
ters of a camera

Figure 7: Original and rectified image

in every view. Since we know the intrinsic parameters of all
cameras in the scene, the locations of the projected points
can be given in normalized image coordinates, denoted in
the following with xn

j
i . The normalized image coordinates

xn of a measured point x are derived by removing the effects
of the internal parameters from the measured image point:

xn ≃ K−1x (6)

where K is the calibration matrix of the particular camera.
The mapping between a point Xi to its projected and nor-
malized point xn

j
i in the j-th image is then described by the

normalized camera matrix Pn
j :

xn
j
i ≃ Pn

jXi (7)

where

Pn
j = K−1

j Pj = K−1

j Kj [Rj |tj ] = [Rj |tj ] (8)

The matrix Pn
j only consists of a rotation Rj and a trans-

lation tj , which define the position of the specific camera.
Given a set of image correspondences, represented by their
normalized coordinates xn

j
i our goal is now to find the ap-

propriate set of normalized camera matrices Pn
j and points

Xi such that

xn
j
i ≃ Pn

jXi (9)

As the intrinsic parameters of each camera are known, the
relative position of the cameras is computed uniquely up to
an overall scale factor, i.e. the position of the cameras is
determined up to a metric transformation.

2.4.1 Algorithm
There are several strategies for solving this multiple cam-

era calibration problem. The superior method is bundle ad-
justment. The process of bundle adjustment is an estimation
involving the minimization of the reprojection error, which is
defined as the - summed squared - distance between the the-
oretical image positions of the projections of the estimated
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3D points Xi and the measured image points. Bundle ad-
justment can handle missing correspondences, which appear
if only a subset of cameras shares a common view. However,
it involves a nonlinear optimization process and it does not
have a direct solution. A sufficiently good starting point is
required. We use a hierarchical method to obtain an initial
guess for all camera matrices Pn

j and 3D points Xi. The
method is mainly based on the approach presented in [6].
It partitions the set of cameras into manageable subgroups
that share a common view. A coordinate system is build for
each of these subgroups. Based on points and cameras be-
ing common to different subsets, these different coordinate
frames are merged in a hierarchical fashion in order to build
a global coordinate system from the individual overlapping
systems. The main advantage contributed by a hierarchical
procedure is that the error can be distributed evenly over the
entire set of estimated camera matrices. As in [6], we also
use image triplets as the basic building block. The cameras’
positions in such a basic unit and the structure of the scene
observed by three cameras can be computed automatically
by calculating the associated trifocal tensor from point cor-
respondences across the three views. Then the triplets are
registered into sub-groups, followed by merging these sub-
sets and thus building the entire group. This situation is
illustrated in Fig. 8.
The first step in our algorithm is to segment the set of
cameras into appropriate subgroups and those subsets into
triplets. Consequently neighboring cameras with sufficient
view overlaps have to be determined since camera triplets
are required to share a common view as a reliable trifocal
tensor estimation demandes a sufficient number of point cor-
respondences over the three images. Thus only triplets with
a sufficient number of corresponding points are kept. Cam-
eras will only have point correspondences if they are close
and share a common view. Thus, even in cases where the set
contains many cameras, the number of triplets with a suffi-
cient number of corresponding points will not be large com-
pared to the number of possible camera combinations. Next
the triplets need to be clustered into subgroups. Triplets
in a certain subgroup and also different subgroups need to
share two cameras to enable their registration in a common

coordinate frame. Therefore combinations of the above de-
termined triplets are tested. In a second stage the cameras
in each triplet are calibrated extrinsically. Robust ways of
computing the trifocal tensor and extracting the according
camera matrices based on corresponding image points have
been extensively studied in [10]. To establish point corre-
spondences, one image of a triple is arbitrarily selected to
be the reference image. Two-view point correspondences
between this reference image and each of the other two im-
ages are then determined by SIFT-feature matching. These
correspondences are refined by using them as initializations
for the Affine Lucas Kanade feature tracker. The required
three-view correspondences are derived by joining the two-
view match sets. Features which arise from moving objects
can be simply eliminated by removing all keypoints whose
positions are temporally unstable. However, the observed
3D scene needs to be sufficiently textured in order to ascer-
tain detection and tracking of enough point features from
the acquired images to ensure reliable results in the trifocal
tensor estimation.

Registering all triplets into the same coordinate frame is
done in a hierarchical manner as proposed in [6]. Registra-
tion of triplets and sub-groups is achieved by computing a
homography of 3-space between the different metric struc-
tures. The objective is to obtain a common set of 3D points
and a normalized camera matrix for each view, such that
the reprojection error is minimized.
In the following only the registration of two triplets that
share exactly two cameras is discussed. All registration
problems in the algorithm are analogously solved. In gen-
eral different overlaps are possible, but as our implementa-
tion specifically forces the triplets in a subgroup and the
different subgroups to share two cameras, only this case is
discussed here. For a detailed description and evaluation
of other registration methods the reader is referred to [6].
Given 3D points common in the sets of two different triplets
and the homogeneous representation of these points by Xi

in the frame of the first triplet and X′

i in the second frame
(their inhomogeneous representation is denoted with X̄i,
X̄′

i), their representations in the different metric frames are
related by a 3-space homography H according to

Xi = HX′

i (10)

Equivalently Pn
j = P′

n
j
H−1 holds for the corresponding

normalized camera matrices of both triplets. The homogra-
phy between two metric frames can be described by a metric
transformation:

H =

„

σ · R t
01×3 1

«

(11)

where R denotes a 3 × 3 rotation matrix and t a 3 × 1
translation vector. σ identifies the relative scale between
the structures. Since R can be parametrized by a 3-vector,
the transformation between the two different metric frames
counts 7 unknowns. Two stages are used to derive accurate
estimates for those parameters: first a closed-form solution
is obtained, which is further refined in a nonlinear stage.
In order to compute a direct solution, the first step is to
estimate the relative scale σ via the quotient of the mean
distances of the 3D points X̄i, X̄′

i to their respective cen-



troid (denoted with inhomogeneous coordinates M̄, M̄′):

σ
1

n

Pn
i=1

‖ X̄i − M̄ ‖
1

n

Pn
i=1

‖ X̄′
i − M̄′ ‖

(12)

where ‖ · ‖ denotes the L2-norm and n is the number of com-
mon points. Now the second structure is rescaled according
to

X̄′
si = σX̄′

i (13)

so that Xi = HX′

i becomes

Xi = HsX
′

si (14)

where

Hs =

„

R t
01×3 1

«

(15)

In order to obtain an initial estimate for the coefficients of
R and t the squared distance between the two structures
consisting of points Xi and X′

si, is minimized with respect
to the coefficients of Hs using linear algebraic methods:

min
R,t

X

i

d2(Xi,HsX
′

si) (16)

where d(x,y) denotes the Euclidean distance between the
inhomogeneous points corresponding to x and y.
Finally the derived initial values are refined in a nonlinear
minimization stage where the reprojection error to the orig-
inally measured and normalized image points is minimized
with respect to all parameters of H:

min
σ,R,t

X

ij

d2(Pn
jHX′

i,xn
j
i ) + d2(P′

n

j
H−1Xi,xn

j
i ) (17)

This non-linear minimization is solved using the Levenberg-
Marquardt algorithm.
By registering all triplets hierarchically in one common co-
ordinate frame as described above an initial guess for the
observed 3D structure (represented by 3D points) and all
normalized camera matrices in the entire set of cameras is
obtained. Finally a Maximum Likelihood estimate of the
entire set of camera positions and the 3D-structure is com-
puted via bundle adjustment:

min
Pn

j ,Xi

X

ij

d2(Pj
nXi,xn

j
i ) (18)

Each normalized camera matrix is parameterized by 6 en-
tries, 3 representing the rotation matrix and 3 representing
the translation vector. The dimension of the minimization
problem adds then up to a total number of 6(N −1) param-
eters for the camera matrices, plus a set of 3L parameters
for the coordinates of the L reconstructed 3D points.

2.4.2 Experimental Results
The extrinsic camera calibration algorithm has been im-

plemented for the case of 11 cameras; the size of the sub-
groups was chosen to five cameras. We used cheap web cams
for our experiments. Fig. 10 and Fig. 9 show some of the
images taken from the different viewpoints of the cameras in
two different experiment. The change of viewpoint between
the different locations of the cameras is restriced due to the
matching algorithm. The feature extraction algorithm re-
quires the scene to be sufficiently texured. Sub-pixel match-
ing was required to obtain accurate results in both experi-
ments. We also conducted experiments where we used affine

Figure 9: Example images of the lab scene from dif-
ferent viewpoints (cameras)

Figure 10: Example images of an office desk scene
from different viewpoints (cameras)

invariant feature detectors [17] instead of the SIFT detector,
but those did not improve our results.
The resulting camera positions and scene reconstructions are
shown in Fig. 11 and Fig. 12. Camera positions are marked
with yellow pyramids, reconstructed scene points with blue
dots. In Fig. 13 the final reprojection error is illustrated
for one estimated camera in our lab scene experiment. The
distance between the reprojected points and the measured
image points is very small. Therefore the overall estimation
is highly accurate.

Discussion: In the given examples the implementation per-
forms very well. However experiments with different data
sets have shown that sporadically the accuracy of the al-
gorithm can be severly affected. Thorough analysis showed
that mis-estimations were caused by inaccurately estimated
triplets. If the camera positions and/or the 3D points in one
triplet are estimated inaccurately, the homography estima-
tion to register this triplet in a subgroup fails as well. As a
result the whole subgroup configuration is determined incor-
rectly leading to an initial guess for the entire group too far
away from the actual value. As the optimization problem
of the final bundle adjustment is of very high dimension, a
poor initial guess commonly results in the non-linear opti-
mization to fail completely, i.e. to converge to a suboptimal
solution or to not converge at all.
One source of failure in the triplet estimation may consist
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Figure 11: Two different views of the reconstructed
3D scene points and camera positions for the entire
group of 11 cameras for the lab scene experiment

in corresponding image points that are not extracted suffi-
ciently accurate, due to the performance limits of the fea-
ture extraction and matching algorithm and/or the feature
tracker. Those algorithms are only partly invariant to per-
spective transformations. Another cause of failure arises
from the fact that the intrinsic camera parameters can only
be estimated with a certain accuracy. This may also have an
impact on the noise level in the corresponding normalized
points.

3. OPTIMIZING COVERAGE
In the previous section we have shown how to calibrate all

visual sensors. Now we focus on post-optimizing their poses
to increase coverage. We assume, that the camera positions
in a given space are known. As the calibration procedure
presented in this paper only enables us to determine the rel-
ative positions of the cameras up to a global scale factor, we
need to determine this global scale factor. This can be done
e.g. by placing a known calibration pattern in the scene,
visible by at least two cameras. As the absolute distance of
two points on this pattern is known, the absolute distance
of the two cameras observing the pattern can be calculated
and thus the overall scale factor is determined. Another op-
tion is to place microphones and loudspeakers close to the
cameras and to determine the absolute distance by the al-
gorithm presented in [22].
Starting from this knowledge our aim is to increase the cov-
erage of the space observed by calculating new optimal pan
and tilt angles for each camera such that coverage of the
space at a given sampling frequency is maximized. This op-
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Figure 12: Two different views of the reconstructed
3D scene points and camera positions for the entire
group of 11 cameras for the office desk scene

timization can be done with any type of camera. However,
with pan-tilt cameras we can remotely and automatically
drive the cameras into the right poses. This allows for an
interative optimization approach that can easily handle in-
accuracies in the estimation and control part.
The new poses of the cameras have to be calibrated again,
as the automatic pan-tilt navigation is often imperfect. This
could be done as described in Section 2 or by recording im-
ages during the cameras’ motion and then perform pose and
position calibration, i.e. extrinsic calibration, with those
images similar to the method presented in Section 2.

3.1 Problem Statement
Definitions: In the following the term space denotes a

convex physical three-dimensional room.
A point in that space is covered if that point is captured
with a required minimal resolution. The minimal resolution
is satisfied if the point in space is imaged by at least one pixel
of a camera that does not aggregate more than x cm2 of a
surface parallel to the imaging plane through that point.
x is expressed in terms of the sampling frequency fs and
converted into the field-of-view of a camera. The field −
of − view of a camera is defined as the volume in which a
pixel aggregates no more than 1

f2
s
cm2 of a surface parallel

to the imaging plane. Thus an object that appears in the
camera’s field-of-view is imaged with at least this resolution
assuming the object has a planar surface orthogonal to the
optical axis1. Occlusions are not considered.

1Clearly the resolution is smaller if the surface is not or-
thogonal.
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Problem Statement: Given a space to be covered at a
sampling frequency fs by visual sensors, we are interested
in the following problem: Given a set of cameras and their
current positions and initial poses in space, determine their
new poses, defined by means of pan and tilt angles, such
that coverage is maximized.

3.1.1 Modeling a Camera’s Field-Of-View
We consider a simple model for our cameras. Since each

camera is assumed to be able to pan and tilt, the possible
camera motion is modeled as two idealized rotations around
the origin. This simple pan-tilt motion model is shown in
Fig. 14 (a). A rotation around the x-axis and then around
the y-axis correspond to tilt and pan, respectively. Our sim-
ple model assumes that the pan and tilt axes are orthogonal,
aligned with the image plane, and through the cameras op-
tical center. The field-of-view can then be described by a
pyramid. The parameters of this pyramid can be easily cal-
culated given the intrinsic camera parameters and the sam-
pling frequency fs using well known geometric relations.
Defining the field-of-view by a pyramid enables us to de-

scribe the area covered by a camera at position (cx, cy , cz)
in the world coordinate system and pose (R, α, β) linearly.
R denotes here the inital pose of the camera, α and β denote
the variable tilt and pan angles that are varied to optimize
the coverage. It should be mentioned that bold letter de-
notes vectors such as X and x the first component of that
vector.
To define our field-of-view, we express the coordinate vec-
tors of points in the final camera coordinate system C as a
function of the coordinate vectors of the same points in the
world coordinate system A, i.e. we transform points from
the world coordinate system to the camera coordinate sys-
tem (see Fig. 14 (b)). Therefore we first transform the point
to the inital camera coordinate system B (without pan and
tilt) and from there to C, the final camera coordinate system
including pan and tilt angle. We denote by F X the coordi-
nate vector of the point X in the frame F . According to [7],
the transformation of a point from a coordinate system A
to another coordinate system B is expressed by :

BX =B
A RAX +B OA (19)

Figure 14: Deriving the model of a camera’s field-
of-view

where BOA denotes the origin of the world coordinate sys-
tem A in coordinate system B, i.e.:

BOA = −t =

0

@

−cx

−cy

−cz

1

A (20)

The frames B and C are seperated by pure rotation. This
rotation models the motion of a pan-tilt camera. The coor-
dinate system attached to the cameras origin rotates around
the x- and y-axis, by α and β respectively:

CX =C
B RBX (21)

where

C
BR = RyRx (22)

and

Rx =

0

@

1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)

1

A (23)

Ry =

0

@

cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)

1

A (24)

Concatenating the transformation gives the coordinates of
a point in the world coordinate system transformed to its
coordintates in the final camera coordinate system:

CX =C
B RB

ARAX −C
B R · t (25)

The resulting area covered by the field-of-view of a certain



camera can now be defined by five equations (see Fig. 14 (c)):

zc ≤ d (26)

yc ≤
a

2d
· zc (27)

yc ≥ −
a

2d
· zc (28)

xc ≤
b

2d
· zc (29)

xc ≥ −
b

2d
· zc (30)

3.1.2 Modeling Space
We only consider convex spaces without obstacles con-

stricting the field-of-view of our visual sensors. In order to
define coverage, we sample the space by means of regular
grid points. The minimum distance ∆ between two grid
points in the x-, y- and z- direction is determined by the
spatial sampling frequency fa: ∆ = 1/fa. With that our
problem turns into a grid coverage problem. In order to opti-
mize coverage, we determine the camera poses that cover the
largest percentage of grid points in the space. For fa → ∞
our approximated solution converges to the continuous-case
solution.
If some parts of the room are known to be more important,
e.g. at doors, a higher weighting can be given to those parts
by sampling here with a higher frequency, whereas e.g. parts
that are less likely interesting might be sampled with a lower
frequency.
In the ideal case cameras’ poses are continuously in the
space, i.e. the variables α and β that define a camera’s
pan and tilt are continuous variables. As we are not able to
solve our problem for the continuous case we approximate
the continuous case by sampling the poses. Cameras can
only adopt those discrete poses.

3.2 Linear Programming
Considering N cameras that are calibrated, i.e. their

fields-of-view as well as positions in the space are known,
we formulate our camera positioning problem in terms of
maximizing the coverage. We assume for notational conve-
nience, that our space consists of sx,sy and sz grid points in
the x− and y− and z−dimension respectively2. Similarily
we discretize the angles α and β defining a camera’s tilt and
pan to sα and sβ different angles only. A camera at posi-
tion (cx, cy , cz) with orientation R and pan and tilt α and β
respectively covers a grid point (x, y, z) if and only if Eq. 26
to 30 are satisfied.
Thus, we can state the optimization problem as follows:
Given a set of grid points and camera models, maximize
the coverage by optimally assigning pan and tilt angles to
cameras.
In the following we derive an binary integer programming
(BIP) model to solve this problem. Our approach is based
on the algorithm presented in [13]. First we define some
binary variables. Let a binary variable cijk be defined by:

cijk =

8

<

:

1 if grid point (i, j, k) is covered by a minimum
of M cameras

0 otherwise

(31)

2Given a rectangular space sx,sy and sz can be easily calcu-
lated given the room’s dimensions and the spatial sampling
rate fa.

where M ≥ 1 denotes the minimum number of cameras that
should cover each grid point. This variable will be usually
chosen to 1, but can be easily changed to e.g. two cameras
or more. This is e.g. usefull for the case that an object
at a certain grid point should be exactly located in depth.
This is only possible if the object is viewed by at least two
cameras. Then the position of the object can be calculated
by triangulation.
The total number Nb of covered sample points is then given
by

Nb =

sx−1
X

i=0

sy−1
X

j=0

sz−1
X

k=0

cijk (32)

We define two further binary variables xnαβ and gn(α, β, i, j, k):

xnαβ =

8

<

:

1 if camera n at point (cx, cy, cz) with initial
orientation R has tilt α and pan β

0 otherwise

(33)

gn(α, β, i, j, k) =

8

>

>

>

<

>

>

>

:

1 if a camera at point (cx, cy , cz)
with intial orientation R
and tilt α and pan β, covers
grid point (i, j, k)

0 otherwise
(34)

gn(α, β, i, j, k) can be calculated in advance for each camera
and stored in a table.
We now need to express the variables that define coverage in
terms of the other above defined variables. This is done as
shown below. Since cijk = 1, if and only if at least M cam-
eras cover the grid point (i, j, k) we introduce the following
inequality for each grid point:

cijk · (
X

n,α,β

xnαβ · gn(α, β, i, j, k) − M) ≥ 0 (35)

The constraint 35 involves a product of binary variables,
thus it is nonlinear. In order to linearize the inequality, we
introduce a new binary variable for the appearance of this
nonlinear term, as well as two additional constraints [30].
Therefore we replace cijk·xnαβ by the binary variable vijknαβ

and introduce the following constraints:

cijk + xnαβ ≥ 2 · vijknαβ (36)

cijk + xnαβ − 1 ≤ vijknαβ (37)

To ensure that exactly one pan-tilt combination is assigned
to each camera, we also need for each camera the constraint:

X

α,β

xnαβ = 1 (38)

Our sensor deployment problem can now be formulated as
an BIP model:

max

sx−1
X

i=0

sy−1
X

j=0

sz−1
X

k=0

cijk (39)

subject to the constraints:

cijk + xnαβ ≥ 2 · vijknαβ (40)

cijk + xnαβ − 1 ≤ vijknαβ (41)

for 0 ≤ i ≤ (sx−1), 0 ≤ j ≤ (sy−1), 0 ≤ k ≤ (sz−1),



Figure 15: Results obtained for the 2D case: (a)
start configuration (coverage=34.69% ); (b) opti-
mized configuration (coverage= 49.98%)

1 ≤ n ≤ N, 0 ≤ α ≤ (sα − 1), 0 ≤ β ≤ (sβ − 1)

X

n,α,β

vijknαβ · gn(α, β, i, j, k) − cijk · M) ≥ 0 (42)

for 0 ≤ i ≤ (sx−1), 0 ≤ j ≤ (sy−1), 0 ≤ k ≤ (sz −1)

X

α,β

xnαβ = 1 (43)

for 1 ≤ n ≤ N

cijk, vijknαβ , xnαβ ∈ {0, 1} (44)

for 0 ≤ i ≤ (sx−1), 0 ≤ j ≤ (sy−1), 0 ≤ k ≤ (sz−1),

1 ≤ n ≤ N, 0 ≤ α ≤ (sα − 1), 0 ≤ β ≤ (sβ − 1)

The number of variables and constraints depends on the
number of grid points and samples. Thus, if we increase the
number of grid points and possible pan-tilt configurations
to achieve a better approximation of the continuous case,
the number of variables and constraints in our BIP model
increases accordingly.

3.3 Experimental Results
The above presented linear programming approach has

been implemented in C++ using the lpsolve package [16].
However for better visualization we first present results ob-
tained in the 2D case and subsequently we report our results
for 3D.
Fig. 15 illustrates a result for one configuration obtained by
solving our implemented BIP model in the 2D case. On
the left side, the initial configuration is shown, while on the
right side the optimized configuration is depicted. Red dots
mark camera positions, blue and red triangles illustrate the
cameras’ field-of-views. Light-blue dots mark covered grid
points. The coverage of the space increases in this experi-
ment from 34.69% to 49.98%. We restricted the pan and tilt
angle α and β to be sampled in the range of ±45◦, as this
seems a realistic range for pan-tilt cameras.
Table 2 shows results obtained with our optimization algo-
rithm in 3D for different parameter settings. The number of
cameras has been set to three in all experiments. The x- and
y-dimension of the considered space are set to 4 units, the
z-dimension to 2 units. The intial configuration of the cam-
eras is shown in Fig. 16. Yellow pyramids mark the initial

N 3 3 3 3
fa 0.5 0.5 0.8 1.0

sα/β 5 7 5 3
% of space covered
before optimization 33.33 33.33 37.50 34.67
% of space covered
after optimization 55.56 61.11 65.69 52.00

Table 2: Results obtained for different parameter
settings by solving our BIP model in 3D
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Figure 16: Example result obtained by solving our
BIP model in 3D

cameras’ position and orientation, red pyramids mark the
optimized cameras’ poses for fa = 0.8, sα/β = 5. For better
visualization the cameras’ field-of-views are not shown. In
our optimization we restriced the pan and tilt angles to be
sampled in the range of ±45◦. The results clearly demon-
strate the gain in coverage in every experiment.
The above presented BIP problem is practically solvable for
only a small number of grid points. For a large number
appropriate solutions need to be developed.

4. CONCLUSION
In this paper we have presented a flexible and easy way

to calibrate multiple cameras in a distributed platform of
GPCs. Our method needs minimal user intervention. Hence
the proposed method can be used in a variety of places rang-
ing from single desktop cameras to multi-camera lab setups.
All stages of the calibration algorithms have been imple-
mented and experimental results on real data showed that
the presented methods work very well. As the change in
viewpoint between the different cameras is restricted, fu-
ture work is needed to improve the automatic extraction of
point correspondences between images.
We have also derived an LP approach for post-optimizing
the camera poses to increase coverage of the space observed.
Our experimental results demonstrate the gain in coverage.
Future work on this topic will include the investigation of
how to handle large numbers of grid points.
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