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Abstract
Animated emoji is a kind of GIF image, which is widely used in online social networks (OSN) for its efficiency in transmitting 
vivid and personalized information. Aiming at realizing covert communication in animated emoji, this paper proposes an 
improved steganography framework in animated emoji. We propose a self-reference algorithm to improve the steganography 
security. Meanwhile, the relations between adjacent frames of the cover GIF image are considered to further improve the 
distortion function. After that we embed the secret message into the GIF image using the popular framework of Syndrome 
Trellis Coding (STC). Experimental results show that the proposed method can provide better security performances than 
state-of-the-art works.
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1  Introduction

Different from the image formats like JPEG or TIFF, the GIF 
(Graphics Interchange Format) image is composed of a color 
palette and a set of index values. For its prevalence in social 
network applications, it is quite suitable for covert commu-
nication by hiding secret data into GIF images. GIF images 
can be divided into two categories, namely, the static GIF 
images and the dynamic GIF images. The dynamic is more 
popular in online social networks (OSN). Animated GIF is 
a type of dynamic GIF, it is often used to enrich people’s 
social expressions and emotional performance. The most 
popular GIF is the animated emoji, which is now widely 
used in OSN like WeChat, Twitter, and Weibo.

Steganography is a method of embedding secret mes-
sages into digital covers without introducing serious distor-
tion [1]. In the early times, there were many steganography 
methods, such as LSB (Least Significant Bits) replacement, 
F5 [2], etc. LSB replacement is the simplest steganogra-
phy method [3]. By modifying the least significant binary 

of pixel to store information, the human eye cannot perceive 
the changes. F5 uses matrix embedding to hide secret mes-
sages into the JPEG images. However, these methods are 
fragile against modern steganography analysis. Recently, 
the Syndrome Trellis Coding (STC) framework is popular 
for steganography [4], which tries to minimize the additive 
distortion between the cover and the stego using a predefined 
distortion function. Generally, the distortion function assigns 
different distortion costs to different elements of cover. For 
the spatial images, HILL (High-pass, Low-pass, and Low-
pass) [5], WOW (Wavelet Obtained Weights) [6], and SUNI-
WARD (Spatial UNIversal Wavelet Relative Distortion) [7, 
8] are widely proposed. Meanwhile, JUNIWARD (JPEG 
UNIversal WAvelet Relative Distortion) [7, 8], UED (UNI-
versal WAvelet Relative Distortion) [9], UERD (Uniform 
Embedding Revisited Distortion) [10] and HDS (Hybrid 
Distortion Steganography) [11] are widely used for JPEG 
images, in which the coefficients of the transfer domain are 
modified according to the distortion costs. Besides, adaptive 
methods are proposed to guide the modification direction of 
the coefficients, which can often improve the security of the 
modified image [12–15].

As an adversary, steganalysis is used to break steganog-
raphy, which analyzes the features of an image to determine 
whether it contains secret messages [16]. The rapid develop-
ment of steganalysis has brought a great challenge to steg-
anography. Generally, the steganalysis is a kind of classifier 
that learns the differences of the features between the cover 
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and the stego [17]. The security of a steganography method 
can be evaluated by observing the accuracy of the classi-
fier. There are many feature extraction methods, e.g., SPAM 
(subtractive pixel adjacency model) [18], SRM (Spatial Rich 
Model) [19], DCTR (Discrete Cosine Transform Residual) 
[20], and GFR (Gabor Filters Residual) [21].

As the GIF images are widely used, researchers are pay-
ing more attention to GIF steganography. In [22], the first 
steganography algorithm is proposed for indexed images 
such as static GIF. The scheme searches for the closest color 
in the palette to reduce the distortion caused by data hid-
ing. In [23], adaptive strategies are proposed to determine 
which pixels should be modified to embed data. To the best 
of our knowledge, the first method of embedding data into 
dynamic GIF images is proposed in [24]. Subsequently, 
more steganography approaches for animated GIF are pro-
posed [25–28]. In [28], the researchers propose a frame-
work to embed data into animated GIF using the difference 
between adjacent pixels in the same frame. In [29], a method 
is proposed to hide data into the animated emoji GIF using 
the STC framework, in which the distortion functions are 
improved to achieve better security.

In this paper, we propose a steganography scheme in ani-
mated emoji using self-reference, in which we integrate the 
data embedding impacts for the intra frames and the inter 
frames. We also provide an algorithm of generating a refer-
ence image for guiding the data embedding. With these algo-
rithms, we can achieve a better performance of countering 
steganalysis. The rest of this paper is organized as follows. 
We introduce the backgrounds of GIF steganography in Sec-
tion II. The proposed framework is described in Section III. 
Section IV shows the experimental results and analysis. Sec-
tion V concludes the whole paper.

2 � Preliminaries

Let there be K frames in an emoji GIF image. Each frame 
is a color index matrix I with the size of M × N . The image 
contains a color palette, in which a limited amount of colors 
are represented, e.g., 256 colors for an 8-bit palette.

The pixels are represented by Iij , where i ∈ {1, 2,… ,M} 
and j ∈ {1, 2,… ,N} . The value of each pixel is rep-
resented by an index l  defined in the palette Cl , where 
l ∈ {0, 1, 2,… , 255} .  Accordingly, an RGB value 
( Rij,Gij,Bij ) can be constructed from the index Iij . Figure 1 
illustrates the composition of an emoji GIF image.

We denote the cover and the stego images as X and Y, 
respectively. The pixels are represented by Xij and Yij . After 
embedding data into any pixel Xij in X, we obtain the pixel 
Yij and the stego Y. The modification is either binary or 
ternary. In ternary embedding, each pixel in the stego is 
Yij ∈

{
Xij + 1,Xij,Xij − 1

}
.

To minimize the change of RGB values caused by data 
modification, the method in [29] proposes a palette sorting 
algorithm. First, it calculates the square sum of the pixel 
values of the RGB channels corresponding to the l-th index 
value in the palette Cl.

After ascendingly sorting the obtained values, we obtain a 
sorted palette C′

l
 . Based on the new palette, we can regener-

ate a new index matrix I′
k
 , where k represent the k-th frame.

Let the embedding costs of ternary embedding be �+
ij
 , �ij 

and �−
ij

 , respectively, where �ij = 0, �+
ij
∈ (0,+∞) , 

�−
ij
∈ (0,+∞) . The generated additive distortion function 

D(�,�) is the sum of the embedding costs of all pixels.

To embed a secret message into cover X, the framework 
of Syndrome Trellis Coding (STC) requires a modification 
probability pij for each pixel. According to [32], the modi-
fication probability pij and embedding cost �ij can be calcu-
lated by (3).

In (3), when the embedding is binary, |I|= 2; and when it 
is ternary, |I|= 3. Because the embedding cost �ij is known, 
pij can be placed in (4) to obtain the parameter λ, where 
the m is the amount of secrete data to be embedded by the 
data-hider.

3 � Proposed framework

The proposed scheme is depicted in Fig. 2. First, after the 
sort the palette, we decompose the animated GIF into sev-
eral frames. For each frame, we retrieve the RGB values of 
every pixel according to the GIF color palette and convert 
each fame I′

k
 into a color image Fk , where k is the frame 

index. Then, we construct a reference frame F̂k for each 
frame. With F̂k we optimize the embedding costs. We fur-
ther improve the inter-frame distortion using the previous 
frame as a reference. After embedding data into each frame, 
we obtain a stego GIF.

A.	 Improved bipolar embedding.

(1)t(l) = R(l)2 + G(l)2 + B(l)2

(2)D(X,Y) =

i=M,j=N∑
i=1,j=1

�ij
(
Xij,Yij

)

(3)p
(I)

ij
=

e−��ij(I)∑
I∈{+1,0,−1} e

−��ij(I)

(4)H(p) = −

i=M,j=N∑
i=1,j=1

pij log pij = m
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Since GIF is a compressed format, it can be regarded as 
a 256-color image compressed from a true-color image. 
Therefore, we can use the original content of the image 
before GIF compression to improve Bipolar Embed-
ding. We convert the GIF fames into the color images 
F =

{
F1,… ,FK

}
 according to the palette, where K 

is the number of frames. For each frame, every pixel 
B = (Rij,Gij,Bij ) has a corresponding pixel A = 

(
R̂ij, Ĝij, B̂ij

)
 

at the same location before GIF compression. It is equiva-
lent to shift the RGB value from point A to point B. Vector 
AB stands for the distortion during compression.

When we embed secret messages into Iij , the pixels are 
either added or subtracted by one. In (5), a refers to the 
Hamming distance between A and B. We also use 
C = (R+

ij
,G+

ij
,B+

ij
 ) or ( R−

ij
,G−

ij
,B−

ij
 ) as the corresponding pixel 

at the same location after embedding. In (6) and (7), the 
Hamming distances caused by + 1 and − 1 operation are 
defined as b+ and b−, respectively.

Subsequently, we define the modification angle between a 
and b+ or b− as �+ or �− in (8) and (9). The operator |⋅| stands 
for the module of vector.

(5)a =
[(
Rij − R̂ij

)
,
(
Gij − Ĝij

)
,
(
Bij − B̂ij

)]

(6)b
+ =

[(
R+
ij
− Rij

)
,
(
G+

ij
− Gij

)
,
(
B+
ij
− Bij

)]

(7)b
− =

[(
R−
ij
− Rij

)
,
(
G−

ij
− Gij

)
,
(
B−
ij
− Bij

)]

(8)�+ = arccos

(
a ⋅ b

+

|a| ⋅ ||b+||

)

(9)�− = arccos

(
a ⋅ b

−

|a| ⋅ |b−|
)

Fig. 1   Illustration of the compo-
sition of an emoji GIF image
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Figure 3 illustrates the cases that the modification angles 
are acute or obtuse, respectively. Vector AB stands for the 
distortion during compression and vector BC stands for the 
distortion caused by data embedding.

In Fig. 3a, when � between the two vectors AB and 
BC is acute, the compression direction is the same as the 
embedding direction. In the other words, the extra error 

would be the embedding error “plus” the compression 
error. In Fig. 3b, when � is an obtuse angle, the compres-
sion direction and embedding direction are the oppo-
site. Then, the extra error would be the embedding error 
“minus” the compression error. We denote the extra error 
AC in Fig. 3 as c+ and c−, in (10).

Fig. 2   Overview of the pro-
posed scheme
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Fig. 3   Pixel modification for GIF where modification angle is: a acute, b obtuse
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In summary, when �+ ∈ (0,�∕2) or �− ∈ (0,�∕2) , |c+| 
or |c−| is larger than each element in 

{|a|, ||b+||, |b−|
}
 . When 

�+ ∈ (�∕2,�) or �− ∈ (�∕2,�) , c+ or c− is smaller than any-
one in 

{|a|, ||b+||, |b−|
}
 . Therefore, when �+ or �− is obtuse, 

|c| would be smaller. Therefore, we prefer the pixel modifi-
cation when the angle �+ or �− be obtuse, and restrict data 
embedding when �+ or �− is acute.

This algorithm reduces the extra error caused by embed-
ding modification and makes the compressed image closer 
to the original image. Thus, it can improve the security of 
steganography effectively.

B.	 Reference construction.

According to the aforementioned analysis, if a data-hider 
have the original content of the image before GIF compres-
sion, a better performance of a security can be achieved by 
modifying the pixel values toward the original values. How-
ever, in most cases, the data hider does not have the original 
content of the images before compression. Therefore, we use 
an algorithm to construct a reference image for each frame.

To achieve a satisfactory performance, the constructed 
reference images should be close to the original image 
before GIF compression. Inspired by [30], we can treat the 
image compression as a procedure of adding noise into the 
original content. To remove this kind of noise, we propose 
to use the DnCNN model proposed in [31] to construct a 
reference image. This model has been proved to be useful in 
many denoising tasks. Different from the existing denoising 
methods that are defined for additive white Gaussian noise 

(10)
{

c+ = a + b
+

c− = a + b
−

at a certain noise level, the DnCNN model is able to handle 
Gaussian denoising with the unknown noise level. Besides, 
this model is able to handle multiple general image denois-
ing tasks, such as Gaussian denoising, single image super-
resolution, and JPEG image deblocking.

Denote the luminance of the original image as YOri and 
the GIF-compressed image as YComp. As shown in Fig. 4, the 
residual image is the difference between the original image 
and compressed image in the luminance channel. We denote 
YRes as the residual image, where YOri = YComp − YRes. In other 
words, the residual image can be regarded as a kind of image 
noise. With a residual learning strategy, the residual image 
can be estimated [31]. DnCNN is trained on the luminance 
channel because human perception is more sensitive to 
changes in brightness than changes in chrominance.

In Fig. 5, an animated emoji is decomposed into several 
frames, then the GIF-compressed images are converted from 
RGB space to the YCbCr space. The DnCNN network is 
trained to detect the residual images from the luminance of 
the color frames. Three different colors represent three types 
of layers. For the first layer, marked in yellow, 64 filters 
are used to generate 64 feature maps. ReLU is nonlinearity 
activation function. For layers 2∼(D − 1), marked in blue, 
64 filters sized 3 × 3 × 64 are used. The batch normalization 
is added between convolution and ReLU. It is incorporated 
to speed up training as well as boost the denoising perfor-
mance. The orange layer is the last layer, in which filters 
sized 3 × 3 × 64 are used to reconstruct the output. D is the 
depth of DnCNN. For an image denoising task, the depth 
of network (the number of convolution layers) is generally 
specified as 20.

With the model of DnCNN, we can reconstruct an undis-
torted version of a compressed frame by subtracting the 

Fig. 4   The generation of residual image
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compressed luminance channel from a residual image, and 
then converts the image back to the RGB color space.

We denote the k-th RGB frame of GIF as Fk , which is 
constructed from I′

k
 and C′

l
 . Let the reference frame be F̂k . 

YF̂k
 and YFk

 are the luminance channel of F̂k and Fk . The 
reference frame YF̂k

 can be calculated by (11)

where Dn_CNN(⋅) represents the DnCNN denoising net-
work. Concatenate the denoised luminance channel YF̂k

 with 
the original chrominance channels to obtain the denoised 
image in the YCbCr space. We further convert the YCbCr 
image to RGB to generate the reference image F̂k . The refer-
ence image F̂k is close to the original image F̃k.

(11)YF̂k
= YFk

− Dn_CNN
(
YFk

)

C.	 Distortion function improvement.

Let �+
ij
 and �−

ij
 be the embedding cost for + 1 and − 1 in the 

in t ra - f rame embedding ,  respec t ive ly,  where 
i ∈ {1,… ,M}, j ∈ {1,… ,N} . In many steganography meth-
ods based on STC, �+

ij
 is identical to �−

ij
 . In the proposed 

method, we improve the embedding cost function according 
to the RGB value ( ̂Rij, Ĝij, B̂ij ) of the reference image F̂.

We first initialize the original costs �ij for the pixels in each 
frame using the traditional distortion functions like HILL [5], 
WOW [6] and UNIWARD [7, 8]. For each pixel, we multiply 
the original cost �ij by a factor α . There are two cases for the 
factor α when performing ± 1 operations, namely, �+ or �− , 
which are depicted in (12) and (13). We adjust the distortion 
function in (14) and (15) by combining three optimization fac-
tors, in which wetCost represents a very large value, e.g., 108 
in the experiments.

On the other hand, during data hiding, there would be dif-
ferences between adjacent frames. Therefore, we must con-
sider the impact of inter-frame embedding. For each frame Fk , 
we use the previous frame Fk−1 as reference. The RGB values 
( Rk−1

ij
,Gk−1

ij
,Bk−1

ij
 ) from Fk−1 is used to guide the modification 

of the current frame. The procedures of inter-frame embedding 
are similar except that a is redefined in (16) and the cost for 
inter-frame embedding are redefined as 

⋅

�+
ij
 and 

⋅

�−
ij
 in (17) and 

(18). Unlike a defined in (5), a redefined in (16) represents the 
change of direction of RGB values at the same position of 
adjacent frames. Then we get �+ and �− by applying (12) and 
(13), and update the distortion function as (17) and (18).

(12)�+ = ||a + b
+||∕

(|a| + ||b+||
)

(13)�− = |a + b
−|∕(|a| + |b−|)

(14)�+
ij
=

⎧
⎪⎨⎪⎩

wetCost if �+ ∈ (0,�∕2)

�ij if �+ = �∕2

�+
⋅ �ij if �+ ∈ (�∕2,�)

(15)�−
ij
=

⎧
⎪⎨⎪⎩

wetCost if �− ∈ (0,�∕2)

�ij if �− = �∕2

�−
⋅ �ij if �− ∈ (�∕2,�)

(16)a =
[(

Rij − Rk−1
ij

)
,
(
Gij − Gk−1

ij

)
,
(
Bij − Bk−1

ij

)]

Fig. 5   The architecture of residual image construction network
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Finally, we combine the cost in intra-frame and inter-
frame embedding, and obtain the final distortion function 
in (19).

D.	 Payload allocation.

For most animated GIF, the patterns on the different frame 
are different. To improve data security of each frame, we 
adaptively allocate different payloads to the frames accord-
ing to their characteristics. We adopt the algorithm proposed 
in [32] for the purpose, in which an m-bit secret message is 
embedded into n covers with a minimized distortion. The 
distortion is calculated in (20),

and the optimization problem is defined in (21),

In this paper, the optimization problem is defined as (22),

where n is the sum of the number of all selected GIF frames, 
�k is the embedding cost of the k-th frame, and pk is the 
embedding possibility of the k-th frame. After calculating 
the distortion function, we input the embedding costs and the 
payloads of all frames into the constraints in (22), and obtain 
the modification probability of each frame. The embedding 
payload of each frame can be calculated by (23)

(17)
⋅

�+
ij
=

⎧
⎪⎨⎪⎩

wetCost if �+ ∈ (0,�∕2)

�ij if �+ = �∕2

�+
⋅ �ij if �+ ∈ (�∕2,�)

(18)
⋅

�−
ij
=

⎧
⎪⎨⎪⎩

wetCost if �− ∈ (0,�∕2)

�ij if �− = �∕2

�−
⋅ �ij if �− ∈ (�∕2,�)

(19)

⎧
⎪⎨⎪⎩

�+
ij
=

⋅

�+
ij
×�+

ij

�−
ij
=

⋅

�−
ij
×�−

ij

(20)Dmin(m, n, �) =

i=M,j=N∑
i=1,j=1

�ijpij

(21)
min
Dmin

Dmin(m, n, �)

subject toH(p) = m

(22)

min
Dmin

Dmin

(
m, n, �

)
=

n∑
k=1

�kpk

subject to

K∑
k=1

H
(
pk
)
= m

4 � Experimental results

To verify the proposed framework, we have conducted many 
experiments on the emoji GIF dataset provided by [29] that 
contains 560 animated GIFs. Several examples are shown in 
Table 1. These GIF images are in 8-bit palette format where 
each image contains 256 colors.

We use binary pseudo-random sequences as the hidden 
data, i.e., the possibilities for zero and one are identical. We 
use the popular HILL, UNIWARD and WOW as initial distor-
tion functions. The reference images are generated by DnCNN. 
We name the proposed steganography based on the improved 
versions of HILL, UNIWARD and WOW as PD-HILL, PD-
UNIWARD and PD-WOW, respectively.

The embedding tasks are done by the STC framework. The 
capacity of secret data embedded in each frame are set as 600, 
700, 800, 900, 1000, and 1100 bits, respectively. Subsequently, 
we also use the payloads of 0.05bpp, 0.1bpp, 0.15bpp, 0.2bpp 
and 0.25bpp for further comparisons.

For steganalysis, we use the ensemble classifier and the 
feature sets of SPAM and SRMQ1. Half of the cover and stego 
are used for training and the others are for testing data. The 
minimal total error PE is used as the criterion to evaluate the 
performances of steganography. In (24), PFA is the false alarm 
rate and PMD is the missed detection rate. The average PE by 10 
random tests is used to evaluate the performance [17].

When testing the security of intro-frame steganogra-
phy, we convert every fame of GIF into a colorful image 
and transform them into gray images. SPAM or SRMQ1 

(23)mk =

n∑
k=1

H
(
pk
)

(24)PE = min
PFA

(
PFA + PMD

2

)

Table 1   Several examples of the dataset
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are used to extract the features. When testing the security 
of inter-frame steganography, we calculate the difference 
between two frames, which is used for the subsequent 
steganalysis.

Table 2 provides the embedding test for an emoji image 
with different payloads and algorithms. The original HILL 
method is not effective in embedding a large payload in GIF 
due to texture simplicity, as obvious pepper and salt noises 
can be found in the smooth areas. While embedding data 
using the method in [29], the pepper and salt noises appear 
on the edges of the image. With our method, there are no 
obvious noises in the edge and texture areas.

To show the effectiveness of the proposed framework, 
we use the same experiment setting as [29]. The proposed 
method PD-HILL, PD-WOW and PD-UNIWARD are used 
to embed the same amount of message into the same dataset. 
Table 3 show the testing errors of the PD-HILL, [29] and 
HILL against SPAM and SRMQ1. The results show that the 
proposed method has better visual quality as well as security.

We further apply larger embedding payloads, i.e., 0.05 
bpp ~ 0.25 bpp. Many GIF images cannot accommodate 
large amounts of secret messages when using HILL. There-
fore, we only compare our method with [29]. In Fig. 6, we 

use different initial distortion functions. The results show 
that the proposed method outperforms [29] in most cases.

Finally, we conduct the inter-frame security experiments, 
which are compared with [29]. We use ensemble classifier 
to calculate the PE between frames. Table 4 shows the inter-
frame testing errors of the PD-HILL and [29]. It can be seen 
that the proposed method has achieved better performance.

5 � Conclusions

In this paper, we propose an improved steganography 
method for animated emoji using self-reference. We first 
construct the reference images by DnCNN network. Guided 
by the reference images, we adaptively modify the pixels 
according to the Hamming distances in RGB color space 
after conducting + 1 and − 1 operations. We further use the 
current frame as a reference to improve the security of steg-
anography between frames. Several typical loss functions 
such as HILL are used and the embedding is done by the 
STC framework. Experimental results show that the security 
performances of the proposed method outperform state-of-
the-art steganography method for animated emoji images.

Table 2   Embedding test for an 
animated GIF under different 
payloads and algorithms

Table 3   Testing errors of the 
PD-HILL, [29] and HILL 
against SPAM and SRMQ1 
under low capacity

 Bold part reflects the advanced nature of the algorithm proposed

Steganography 
algorithm

Feature Capacity (bits)

600 700 800 900 1000 1100

PD-HILL SPAM 0.4736 0.4736 0.4697 0.4687 0.4672 0.4651
SRMQ1 0.3125 0.2982 0.2896 0.2818 0.2703 0.2639

[29]-Hill SPAM 0.3085 0.3089 0.3087 0.3091 0.3081 0.3083
SRMQ1 0.0804 0.0799 0.0785 0.0764 0.0763 0.0762

Hill SPAM 0.1199 0.1027 0.0879 0.0746 0.0644 0.0574
SRMQ1 0.0624 0.0540 0.0453 0.0415 0.0368 0.0329
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Fig. 6   Comparisons using a HILL b WOW and c UNIWARD

Table 4   The testing errors on 
inter-frame of the PD-HILL and 
[29] against SPAM and SRMQ1

 Bold part reflects the advanced nature of the algorithm proposed

Steganography 
algorithm

Feature Capacity (bits)

0.05 0.1 0.15 0.2 0.25

PD-HILL SPAM 0.0746 0.0711 0.0675 0.0681 0.0680
SRMQ1 0.0767 0.0750 0.0751 0.0771 0.0763

[29]-HILL SPAM 0.0305 0.0260 0.0223 0.0200 0.0173
SRMQ1 0.0289 0.0264 0.0257 0.0258 0.0277

http://creativecommons.org/licenses/by/4.0/
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