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Abstract In recent years, human pose estimation has been widely used in human-
computer interaction, augmented reality, video surveillance, and many other fields,
but the task of pose estimation still faces many challenges. To address the large
number of parameters and complicated calculation in the current mainstream hu-
man pose estimation network, this paper proposes a lightweight pose estimation
network (Lightweight Polarized Network, referred to as LPNet) based on a po-
larized self-attention mechanism. First, ghost convolution is used to reduce the
number of parameters of the feature extraction network; second, by introducing
the polarized self-attention module, the pixel-level regression task can be better
solved, the lack of extracted features due to the decrease in the number of param-
eters can be reduced, and the accuracy of the regression of human keypoints can
be improved; finally, a new coordinate decoding method is designed to reduce the
error in the heatmap decoding process and improve the accuracy of keypoint re-
gression. The method proposed in this paper was evaluated on the human keypoint
detection datasets COCO and MPII, and compared with the current mainstream
methods. The experimental results show that the proposed method greatly reduces
the number of parameters of the model while ensuring a small loss in accuracy.
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1 Introduction

Human pose estimation is an important research direction in the field of computer
vision. Its purpose is to locate the coordinates of human keypoints from video
or image data. This task is the preprocessing step of many visual tasks such as
pose tracking and human action recognition. Currently, conventional human pose
estimation network research is carried out along the direction of deepening the
depth of the network, expanding the resolution of the feature map, and designing
different resolution networks for multi-scale feature fusion and feature extraction.
Such networks need the support of high-performance computing equipment and
face many problems, such as a large number of parameters, long training times, and
difficulties deploying on low-performance computing equipment, and hence they
cannot be implemented in practical applications. Therefore, under the premise of
ensuring little loss in keypoint detection accuracy, further reducing the parameters
of the model is a problem to be solved in the current human pose estimation task.

Human pose estimation approaches based on deep learning can be divided
into top-down and bottom-up methods. The top-down method first performs hu-
man object detection on the input image to obtain human objects with bounding
boxes. Then, the bounding box is cropped to the size of a single human body,
and feature extraction is performed using the pose estimation network to obtain
the coordinates of each keypoint of the human body. In 2016, Wei et al. [25] de-
signed the convolutional pose machine network, which uses convolutional layers to
express texture information and spatial information, and designed a multi-stage
structure to improve the detection performance of single keypoint s. In 2017, Fang
et al. [6] designed the regional multi-person pose estimation network, focusing on
the problems of detection frame positioning error and repeated detection in the
top-down method of target detection algorithms. The human body bounding box
is optimized by the spatial transformation network, which overcomes the influence
of the target detection algorithm error on the subsequent keypoint detection task.
In 2018, Chen et al. [4] designed the CPN (cascaded pyramid network), which
mainly focuses on the difficulty of detecting different types of joint points, and de-
signed two two-stage networks, GlobalNet and RefineNet, which further improve
the accuracy of detection for more difficult keypoints (occluded keypoints). In
2019, Sun et al. designed a more representative network called the HRNet (high-
resolution network) [19], which is characterized by a new parallel multi-resolution
fusion architecture that can better extract high-resolution features and improve
the detection performance for small and medium-sized people. In 2021, Rawal et
al. [11] designed the MIPNet network structure to better cope with the crowding
problem in the pose estimation task.

The bottom-up method first performs global keypoint detection on the input
image to obtain all keypoints in the image. Then, using the positional relationships
of human joints, the joint points are combined into multiple groups of independent
human keypoints using a clustering algorithm. In 2017, Cao et al. [2] proposed
Openpose and designed a classic keypoint clustering algorithm called part affinity
fields that can simultaneously encode the position and direction of joint points
to balance keypoint detection speed and accuracy. In 2018, George et al. [18]
proposed PersonLab, which uses the combination of a heatmap and offset to predict
the position of joint points, which better solves the problem of mutual occlusion
between joint points. In 2020, Cheng et al. [5] designed HigherHRNet, which is
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an improved version of HRNet, and applied it to the bottom-up approach. There
is a performance gap between bottom-up and top-down methods, and hence in
2021, Geng et al. [7] applied adaptive convolution to the keypoint regression part
of the pose estimation task, which further advanced the performance of bottom-up
methods.

Designing a lightweight network not only includes the exploration of network
structure design, but also the application of model compression technologies such
as knowledge distillation and model pruning. Lightweight network design fur-
ther facilitates the application of deep learning technology in mobile terminals
and embedded devices. Lightweight network design refers to further reducing the
amount and complexity of model parameters while maintaining model accuracy.
MobileNet, proposed by Google in 2017 [9], was the first convolutional neural net-
work that is small in size, low in computational complexity, and suitable for mobile
devices. The network mainly relies on deep separable convolution and reasonable
structural design to realize network parameters. In the same year, Zhang et al.
proposed the ShuffleNet [30], which mainly adopts point-by-point convolution and
a channel shuffling structure that greatly reduces the number of calculations of
the model while ensuring its accuracy. In 2020, Kai et al. [8] designed a new net-
work called GhostNet, that can overcome the need for extra parameters caused
by convolution, further improving the model speed and reducing the amount of
computation. In 2021, Yu et al. [28] designed Lite-HRNet, which integrates Shuf-
fleNet into a high-resolution network and reduces the computational complexity
while improving performance. Network models such as MobileNet and ShuffleNet
are designed to make the model smaller and faster by employing a more efficient
network structure rather than compressing or migrating a large trained model.
The advantage of this method is that it can be better applied in in actual vision
tasks.

In summary, the aim of this research is to design an efficient and lightweight
human pose estimation network that can reduce the parameters of the network
while maintaining high detection accuracy. The feature extraction network adopts
a high-resolution network and improves it. Combining the polarized self-attention
(PSA) mechanism and the ghost network structure, a lightweight PSA module is
designed to replace the basic module in the high-resolution network, which reduces
the number of parameters and retains important spatial and channel information to
ensure the accuracy of the model. An unbiased coordinate decoding method is also
proposed in this paper. After the predicted heatmap is obtained from the feature
extraction network, accurate coordinate decoding is performed on the predicted
joint points of the heatmap, and the joint point coordinates of the final regression
are further refined to improve the detection accuracy of the joint points. Finally,
experiments were performed on two mainstream datasets, MPII and COCO, to
verify the effectiveness of the designed network.

2 Related work

2.1 High-Resolution Network

Because high-resolution networks can maintain high-resolution representations
throughout the network, they are widely used in pixel-level regression tasks, such
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Fig. 1 Simplified HRNet structure.The network structure mainly contains features of four
different resolutions, which are 1/4,1/8,1/16,1/32,and features are transferred between fea-
tures of different resolutions. The low-resolution features are transferred by upsampling, the
high-resolution features are transferred by strided convolution, and the features of different
resolutions are fused in the final stage

as semantic segmentation, human pose estimation, and many other visual tasks,
and have achieved remarkable results. Most of the current pose estimation tasks
use high-resolution networks as the backbone network, and the pose estimation
networks proposed in the past two years such as HigherHRNet [5] and DEKR [7]
have also been designed and improved based on this network. A high-resolution
network can improve the extraction of local joint point information, and hence the
commonly used high-resolution network HRNet was selected as the basic network
for the proposed method. Its structure is different from the traditional concate-
nated structure. The feature information of different resolutions cannot be fused
in the form of a connection, resulting in poor joint point regression results. HRNet
uses a parallel method to realize the fusion of information between feature maps of
different resolutions and realizes the fusion of multi-scale features through multi-
ple cross-parallel convolutions to enhance the high-resolution feature information
so that the entire network can maintain a high-resolution representation. This im-
proves the accuracy of joint point regression for human pose estimation tasks. A
brief overview of the HRNet network structure is shown in Fig. 1.

2.2 Ghost Module

To meet the requirements for a lightweight model for the human pose estimation
task, the proposed method uses ghost convolution as the main approach to reduce
the weight of the network. Because deep convolutional neural networks usually
consist of a large number of convolutions, this leads to a large amount of compu-
tational overhead. Although recent approaches such as MobileNet and ShuffleNet
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Fig. 2 Ghost convolution module

have introduced depthwise convolution or shuffling (channel shuffle) operations
to build efficient convolutional neural networks with smaller convolutional filters
(number of floating point operations), the structure of the 1×1 convolution kernels
still occupies a considerable amount of memory and FLOPs.

Like the above two recently proposed convolutional networks , ghost convolu-
tion is divided into two steps. First, the normal convolution calculation is used
to obtain a real feature map with a small number of channels, and then a cheap
operation is used to pass the real features through a linear transform. A similar
feature map is obtained by the transformation. Hence, the real feature map is
identically mapped and the similar feature map is spliced to form a new output.
The ghost convolution module is shown in Fig. 2.

In the specific calculation, it is assumed that the input is X ∈ ℜc×h×w, where
c is the number of input channels, and h and w are the height and width of
the input data, respectively. The operation of generating the feature map by the
convolutional layer is as follows:

Y = X ∗ f + b (1)

where ∗ represents the convolution operation, b is the bias term, Y ∈ ℜh′×w′×n rep-
resents the output feature map of the n dimensional channel, and f ∈ ℜc×k×k×n

represents the convolution filter of this layer. In addition, h′ and w′ are the height
and width of the output data, respectively, and k × k is the kernel size of filter f .
For the convolution operation of the general process, the number of floating-point
operations per second can be calculated by n · h′ ·w′ · c · k · k, because the number
of filters n and the number of channels c are very large, so the calculation results
are usually in the thousands.

As shown in Equation (1), the number of parameters to be optimized (in f

and b) is determined by the dimensions of the input and output feature maps.
There will be redundant feature maps in the output of ordinary convolutional
layers, and some feature maps will be very similar. The process of generating
such feature maps will waste a lot of computation. If this type of feature map is
obtained by linear transformation from part of the real feature map, the amount of
calculation will be significantly reduced. Moreover, such raw features are usually
small and produced by ordinary convolution. Specifically, m original feature maps
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Y ′ ∈ ℜh′×w′×m are generated by one convolution, as follows:

Y
′ = X ∗ f ′ (2)

The filter in Equation (2) is expressed as f ′ ∈ ℜc×k×k×m, where m is less than
the number of convolution kernels n. Other hyperparameters are consistent with
ordinary convolution to ensure the size of the output feature map. To obtain the
required n feature maps, an inexpensive linear transform is applied to the original
features in Y ′, resulting in s phantom features. The specific calculation process is
as follows:

yij = Φi,j

(

y
′
i

)

, ∀i = 1, ...,m, j = 1, ..., s, (3)

where y′i is the i-th original feature map in Y ′. In the above function, Φi,j repre-
sents the j-th linear operation, which is used to generate the j-th phantom feature
map yij , indicating that yij can have one or more phantom feature maps {yij}

s
j=1

.
The role of Φi,s is to preserve the identity mapping of the original feature map. Us-
ing an inexpensive linear operation, n = m · s feature maps Y = [y11, y12, ..., yms]
can be obtained as the output data of the ghost model. Linear operation Φ acts
on each channel, and the amount of calculation is much lower than that of an
ordinary convolution operation.

In terms of computational complexity, the ghost module has an identity map
and m · (s− 1) = n

s
· (s− 1) linear operations, and the average convolution kernel

size in each linear operation is d× d. Ideally, the n · (s− 1) linear operations can
have different shapes and parameters, but limited by the CPU and GPU, online
inference will be hindered. The theoretical acceleration of using ghost convolution
and using ordinary convolution is expressed as follows:

rs =
n · h′ · w′ · c · k · k

n
s
· h′ · w′ · c · k · k + (s− 1) · n

s
· h′ · w′ · d · d

≈
s · c

s+ c− 1
≈ s (4)

In Equation (4), the magnitude of d× d is similar to that of k× k and s ≪ c. The
same parameter compression ratio calculation can be expressed as follows:

rc =
n · c · k · k

n
s
· c · k · k + (s− 1) · n

s
· d · d

≈
s · c

s+ c− 1
≈ s (5)

According to Equations (4) and (5), the parameter compression ratio is ap-
proximately equal to the speedup ratio. Ghost convolution can be easily embedded
into other network models in a plug-and-play manner, but some extracted features
may be lost when reducing the number of parameters and amount of computa-
tion. Therefore, the use of ghost convolution should be considered with respect to
specific requirements, and reducing the number of parameters cannot be blindly
pursued while ignoring the performance of the model.

2.3 Attention Mechanisms

In recent years, attention mechanisms [21, 22] have been widely used in various
computer vision tasks. The main function of an attention mechanism is to improve
the feature extraction network’s ability to extract pixel information in pixel-level
regression tasks, overcome the loss of spatial information in traditional convolution
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operations, and achieve better regression results for subtle joints in pose estimation
tasks.

Attention mechanisms can be roughly divided into two categories: strong at-
tention and soft attention mechanisms. Because strong attention is a random pre-
diction that emphasizes dynamic changes, although its performance is good, its
application is very limited because of its non-differentiable nature. On the con-
trary, soft attention is differentiable everywhere, that is, it can be obtained by
neural network training based on the gradient descent method, so its application
is relatively wide. A soft attention mechanism is divided according to the differ-
ent dimensions of attention. The current mainstream attention mechanism can be
divided into the following three types: channel attention, spatial attention, and
self-attention. For channel attention, the purpose is to model the correlation be-
tween different channels (feature maps), automatically obtain the importance of
each feature channel through network learning, and finally assign different weights
to each channel. Weight coefficients are used to strengthen important features and
suppress non-important features. Representative methods include SENet [10] and
ECANet [23]. For spatial attention, the purpose is to improve the feature expres-
sion of key regions. In essence, the spatial information in the original image is
transformed into another space and the key information is retained through the
spatial transformation module. A weight mask is then generated for each posi-
tion and weighted output, thereby enhancing the specific target regions of interest
while weakening the irrelevant background regions. Representative methods in-
clude CBAM [26] and A2Net [3].

Self-attention is a variant of the attention mechanism whose purpose is to
reduce the dependence on external information and use the inherent information
inside the feature to interact with the attention as much as possible. In the self-
attention mechanism, each input tensor is used to compute an attention tensor,
which is then reweighted by that attention tensor. Following its success in sequence
modeling and generative modeling tasks, self-attention has become a standard
component for capturing long-range interactions. Representative methods include
NLNet [24], GCNet [1], and SCNet [15].

3 Proposed method

The design of the a lightweight PSA pose estimation network (LPNet) in this paper
starts from the problems of the large number of parameters in mainstream network
and the difficulty of real-time detection in the pose estimation task. A lightweight
network can effectively reduce the number of network parameters while improving
the network’s ability to extract features from the two dimensions of channel and
space and reducing the error in the process of heatmap regression to keypoints. In
the human pose estimation task, an optimal balance between parameter quantity
and accuracy is achieved. A lightweight ghost module is introduced and embed-
ded into the feature extraction network to reduce the number of parameters and
amount of computation of the network. The introduction of the PSA module im-
proves the network’s ability to extract channel and spatial features and ensure the
accuracy of heatmap prediction on the premise of a small increase in parameters.
A new coordinate decoding method is proposed to reduce the error in the process
of heatmap regression to keypoints..
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Fig. 3 LPNet network structure.The feature extraction part adopts the improved HRNet,
the blue module represents the Lightweight PSA Module.17 keypoint heatmaps are obtained
by extracting features for prediction, and specific key point coordinates are obtained through
coordinate decoding

3.1 LPNet

Because of the particular characteristics of pixel-level regression tasks, high-resolution
networks perform better on pixel-level regression tasks. Therefore, the design pre-
sented in this paper is based on a high-resolution network. The designed LPNet
network is divided into two main parts (Fig. 3). The first part of the network
extracts the features of the input image and predicts the generation of joint hot
spots. The second part decodes the coordinates of the predicted heatmap to obtain
the joint point coordinates. The first part mainly improves the feature extraction
part, introduces the lightweight method into the feature extraction network, and
uses the designed lightweight PSA module to replace the basic modules in the four
stages to reduce the number of feature extraction network parameters. Moreover,
from the channels, it learns finer pixel-level information in the spatial dimension,
overcomes some shortcomings in traditional convolutional networks, and ensures
the efficiency of the feature extraction process. The second part mainly consists
of a new coordinate decoding method to overcome the error of the traditional
heatmap coordinate decoding process and improve the accuracy of the heatmap
decoding joint point coordinates.

3.2 Self-Attention for Pixel-wise Regression

In the pixel-level regression task, a deep convolutional network mainly learns the
weighted feature map from two types of information: i) the classification of the
pixel from the perspective of the channel and ii) the detected pixel locations be-
longing to the same semantics from the perspective of space. Determining these
two types of information is the main purpose of the current attention mechanism
and they embody its advantages and disadvantages. However, none of the current
existing self-attention methods can achieve a specific weighting of channels and
spaces, which is a challenge in the design of attention mechanisms.

3.2.1 PSA Module

To solve the problem of computational complexity and memory explosion if the
dimension reduction is not performed when modeling channels and spaces simul-
taneously, the PSA mechanism was proposed. The PSA mechanism adopts the
mechanism of polarization filtering, which is similar to the mechanism of an optical



Lightweight Human Pose Estimation Algorithm Based on Polarized Self-Attention 9

Fig. 4 Structure of the PSA module

lens. During photography, all lateral light is reflected and refracted. Polarization
filtering only allow lights orthogonal to the transverse direction to pass through to
improve the contrast of imaging. However, during the filtering process, the total
intensity will be lost, and hence the filtered light usually has a small dynamic
range, so it is necessary to carry out additional amplification to restore the details
in the original scene.

The design of the PSA mechanism (Fig. 4) is based on the above ideas. It
compresses the current features in one direction and improves the intensity range
of the loss, which is divided into the following two main structures: i) the filter-
ing module, which completely collapse the features of one dimension (such as the
channel dimension), while keeping the orthogonal dimension (such as the spatial
dimension) at a higher resolution, and ii) the HDR (high dynamic range) module,
in which the softmax function is used on the smallest features in the attention mod-
ule to increase the attention range and the sigmoid function is used for dynamic
mapping.

As shown in Fig. 4, the PSA module is divided into two branches, the channel
branch and the spatial branch. When the input only passes through the channel
branch, the weight of the channel branch is expressed as Ach(X) ∈ ℜC×1×1, and
the calculation process is as follows:

A
ch(X) = FSG[WZ|θ1

((σ1(Wv(X))× FSM (σ2(Wq(X))))] (6)

Here,Wq ,Wv , and Wz are 1×1 convolutions; σ1 and σ1 represent two-dimensional
changes;FSM (·) is the softmax function; ”×” represents the matrix dot-product



10 Shengjie Liu et al.

operation; FSM (X) =
∑Np

j=1

exj
∑Np

m=1
exm

xj ; and the number of channels between

Wv|Wq and Wz is C/2. The output of the channel dimension-only branch is Zch =
Ach(X)⊙chX ∈ ℜC×H×W , where ⊙ch is the channel multiplication operator.
When the input only passes through the channel branch, 1× 1 convolution is used
to convert the input feature X into Q and V , where the channel of Q is completely
compressed and the channel of V retains its higher dimension (C/2 ). Because the
channel of Q is compressed, based on the idea of the PSA mechanism, information
needs to be converted to HDR, so the softmax function is used to enhance the
information of Q. Then, matrix multiplication is performed between Q and V ,
and 1 × 1 convolution and LayerNorm are used to restore the channel dimension
to C. Finally, the sigmoid function is used to normalize all parameters.

When the input only passes through the spatial branch, the weight of the
spatial branch is expressed as Asp(X) ∈ ℜ1×H×W , and the calculation is as follows:

A
sp(X) = FSG[σ3 ((FSM (σ1(FGP (Wq(X))))× σ2(Wv(X)))] (7)

where Wq and Wv are both standard 1 × 1 convolutions; θ2 denotes the inter-
mediate parameters between convolution channels; σ1,σ2, and σ3 represent the
three-dimensional changes; and FSM (·) is the softmax function. Furthermore, FGP

denotes the global pooling operator, where FGP (X) = 1

H×W

∑H
i=1

∑W
j=1

X (:, i, j),
and ”×” means matrix dot product operation. The output of the spatial dimension-
only branch is Zsp = Asp(X)⊙spX ∈ ℜC×H×W , where ⊙sp is the spatial multi-
plication operator. When the input only passes through the spatial branch, as in
the channel branch, 1× 1 convolution is used to convert the input feature X into
Q and V , and for feature Q, the spatial dimension is compressed by global pooling
and converted to a size of 1 × 1; by contrast, the spatial dimension of feature V
remains high (H ×W ). Because the spatial dimension of Q is compressed, based
on the idea of the PSA mechanism, the softmax function is used to enhance the
information of Q. Then, matrix multiplication is performed between Q and V , a
matrix transform is used to reshape the result, and the sigmoid function is used
to normalize all parameters.

The channel and space branches are combined in parallel as follows:

PSAp(X) = Z
ch + Z

sp = A
ch(X)⊙ch

X +A
sp(X)⊙sp

X (8)

where + represents the element-wise addition operator. In contrast to other self-
attention mechanisms, PSA retains the highest attention resolution in both chan-
nel (C/2) and space ([W,H]), and can capture finer channel-wise and spatial de-
tails when processing pixel-level tasks. In addition, in the single-channel branch
part, softmax re-weighting as well as squeeze and excitation are adopted, and
both SENet(Squeeze-and-Excitation Network) and GCNet(Global Context Net-
work) benefit from this approach. In the single spatial branch part, not only is
the full spatial resolution maintained, but more learnable parameters are retained
internally for nonlinear softmax reweighting, which is a more powerful structure
than existing self-attention mechanisms. Because of these advantages, PSA can
achieve the optimal improvements in performance for pixel-level regression tasks.
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Fig. 5 Lightweight PSA Module

3.3 Lightweight PSA Module

To meet the requirement for a lightweight network for the human pose estimation
task, the ghost network and PSA modules were redesigned, and the results is
called the lightweight PSA module, as shown in Fig. 5. This module is similar to
the BasicBlock module in a high-resolution network, which can extract features
and reduce the number of parameters of the overall network. The lightweight PSA
module is mainly composed of two ghost convolutions and a PSA module. The
first ghost convolution expands the number of channels, and then process the
data through normalization and ReLU functions. The processed data are sent to
the PSA module to capture finer channel-wise features and spatial features while
ensuring high resolution, with almost no increase in the number of parameters
and calculations. The data are then normalized again and fed to the next ghost
convolution. The second ghost convolution restores the channel to the original
number of channels, and finally combines the residual structure principle to sum
the data and the data of the feature map to obtain the final output.

3.4 New coordinate decoding method

The ultimate goal of the human pose estimation task is to obtain the coordinate
positions of each joint point of the human body in the original image. After pre-
dicting the heatmap of human joint points through the pose estimation network,
the corresponding resolution recovery is required to convert the results back to the
original coordinate space. This conversion process is called coordinate decoding.

The traditional coordinate decoding method is designed according to the spe-
cific performance of different models. Specifically, given the heatmap h predicted
by the trained model, the peak (m) and sub-peak (s), which is the location of the
second largest activation value, are determined. The joint point position prediction
is as follows:

p = m+ 0.25
s−m

‖s−m‖
2

(9)
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where ‖·‖
2
represents the size of the vector. Equation (9) indicates that the joint

point position prediction is a shift of 0.25 pixels from the largest activation position
to the second largest activation position in the heatmap space. The final coordinate
prediction calculation in the original image is as follows:

p̂ = λp (10)

where λ is the resolution reduction ratio.

The main purpose of the pixel shift in Equation (9) is to compensate for the
quantization error caused by the downsampling operation. The predicted maxi-
mum activation position in the heatmap is not equal to the exact position of each
joint point in the original coordinate space. Instead, it is only a rough estimate.
Hence, this paper introduces a new decoding strategy.

The new coordinate decoding method mainly focuses on predicting the dis-
tribution structure of the heatmap to infer a more accurate maximum activation
value position. The specific operation is as follows: To accurately locate the sec-
ond largest activation, it is assumed that the predicted heatmap follows a two-
dimensional Gaussian distribution, just as in the real heatmap. Therefore, the
predicted heatmap is expressed as follows:

G
(

x;µ,
∑

)

=
1

(2π) |
∑

|
1

2

exp

(

−
1

2
(x− µ)T

−1
∑

(x− µ)

)

(11)

where x represents the pixel location in the predicted heatmap and µ is the Gaus-
sian mean (center) corresponding to the joint location to be estimated. The co-
variance

∑

is a diagonal matrix, expressed as follows, which is consistent with the
coordinate encoding process:

∑

=

[

σ2 0
0 σ2

]

(12)

where σ is the standard deviation in both directions. A logarithmic transform is
performed on Equation (11), and then the derivative is taken. The specific process
is as follows:

P
(

x;µ,
∑

)

= ln (G) = − ln (2π)−
1

2
ln
(
∣

∣

∣

∑

∣

∣

∣

)

−
1

2
(x− µ)T

−1
∑

(x− µ) (13)

The ultimate goal is to estimate µ. Assuming it is an extreme point in the
distribution, the first derivative at position µ should satisfy the following:

D
′ (x)

∣

∣

x=µ
=

∂PT

∂x

∣

∣

∣

∣

∣

x=µ

= −
−1
∑

(x− µ)

∣

∣

∣

∣

∣

x=µ

= 0 (14)

To continue analyzing this situation, Taylor’s theorem is used. Activation p (µ)
is approximated using a Taylor series (up to the quadratic term), which evaluates
to the following equation at the maximum activation m of the predicted heatmap:

P (µ) = P (m) +D
′ (m) (µ−m) +

1

2
(µ−m)TD′′ (m) (µ−m) (15)
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Here, D′′ (m) represents the second derivative of P evaluated at m, and its specific
form is defined as follows:

D
′ (m) = D

′ (x)
∣

∣

x=m
= −

−1
∑

(16)

The use of m was chosen to approximate µ because m represents the optimal
joint prediction close to µ. Next,P (µ) and P (m) in Equation (15) are both repre-
sented using Gaussian distributions, the constant term is reduced, and we merge
Equations (14) to (16), which yields

µ = m−
(

D
′′ (m)

)−1
D

′ (m) (17)

Here, D′′ (m) and D′ (m) can be effectively estimated from the heatmap. As long
as µ is available, the coordinates in the original image space can be predicted from
Equation (10).

In contrast to standard methods that only consider the second largest acti-
vation in the heatmap, the new coordinate decoding fully explores the heatmap
distribution statistics to reveal potential maxima more accurately. Theoretically,
the method is based on the principled distribution approximation under the as-
sumption of consistent training supervision, that is, the heatmap is a Gaussian
distribution. Hence, this method is very computationally efficient and only needs
to compute the first and second derivatives at one location in each heatmap. There-
fore, the method can be easily integrated into the existing heatmap-based human
pose estimation tasks, which will further reduce the error in the heatmap decoding
process without increasing the number of parameter calculations.

4 Experimental Results and Analysis

The environment of the experiments reported in this paper was an Ubuntu 18.04.6
LTS 64-bit operating system running on a computer equipped with an Intel(R)
Xeon(R) Silver 4216 CPU @2.10GHz; 188.6GiB RAM; GPU RTX3090; and a
CUDA v11.0.207, cuDNN v8.2, PyTorch v1.8.0, and Python v3.6.13 software plat-
form. The pre-trained network parameters were taken from a model trained on the
ImageNet dataset. In the experiment, the optimizer used the Adam optimizer, the
initial learning rate of the model was set to 0.001, and the learning rate decay
coefficient was 0.1. The learning rate was decayed after 170 and 200 epochs, re-
spectively, with decay rates of 10-4 and 10-5. The training process ended after 210
epochs.

Datasets: The MPII dataset is a mainstream human pose estimation dataset
with single/multiple data types. The dataset includes 25,000 annotated images
of more than 40K people, and the image sources are all from YouTube videos.
The test set also includes annotations of data such as body part occlusion, three-
dimensional torsos, and head orientation.

The COCO dataset is a large, rich dataset for object detection, segmenta-
tion, and captioning. This dataset targets environment perception and was mainly
collected from complex daily scenes. The target in the image is calibrated by pre-
cise segmentation. The images include 91 classes of objects, 328,000 images and
2,500,000 labels. By far the largest dataset for semantic segmentation, it includes
80 categories and consists of more than 330,000 images, 200,000 of which are la-
beled. The number of individuals in the entire dataset exceeds 1.5 million.
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4.1 Evaluation Indicators

The MPII dataset uses the PCK (percentage of correct keypoints) index to evaluate
experimental performance. PCK is defined as the proportion of correctly estimated
keypoints, which are keypoints for which the normalized distance between the
detected keypoints and their corresponding real labels is less than a set threshold.
The PCK is calculated as follows:

PCK
k
i =

∑

pδ

(

dpi

d
def
p

≤ Tk

)

∑

p1
(18)

µ = m−
(

D
′′ (m)

)−1
D

′ (m) (19)

Here, i represents the i-th keypoint, k represents the k-th threshold Tk, and p

represents the p-th pedestrian. Furthermore,dpi represents the Euclidean distance
between the predicted value of the i-th keypoint i in the p-th person and the
manually labeled value, and ddefp represents the scale factor of the p-th person.
The methods for calculating this factor differ in different public datasets. The MPII
dataset uses the head diameter of the current person as the scale factor, that is,
the upper left point LT of the head and the lower right point RB. Threshold Tk is
the manually set threshold,Tk ∈ [0 : 0.01 : 0.1] , PCKk

i represents the PCK index
of the i-th keypoint under threshold Tk, and PCKk

mean represents the mean PCK
index for the algorithm under threshold Tk.

The experimental evaluation index of the COCO dataset is the OKS(Object
Keypoint Similarity). The equation for OKS is as follows:

∑

j exp
(

−d2j
/

2s2k2

j

)

δ (vj > 0)
∑

jδ (vj > 0)
(20)

where dj is the Euclidean distance between the detected keypoint coordinates
and the real value, vj indicates whether the keypoints of the human body can be
observed, s is the size of the detection target, and kj is the attenuation coefficient
of each keypoint.

The OKS is used in the experiment to determine the AP 50 (the average pre-
cision when the IoU is equal to 0.5), AP 75 (the average precision when the IoU
is equal to 0.75). Furthermore, mAP (mean average precision) is the average AP

for each category, APM is the average precision for a medium-scale human body,
APL is the average precision for a large-scale human body.

4.2 Analysis of the Results

The LPNet algorithm proposed in this paper is compared with other advanced
pose estimation algorithms proposed in recent years. Table 1 shows the results on
the MPII validation set. The LPNet algorithm uses approximately a quarter of the
parameters used by the baseline network HRNet, but achieves a 0.5 percentage
point improvement in accuracy. Compared with other recent attitude estimation
methods, LPNet is better in parameter quantity and accuracy. Example results
from the MPII validation set are shown in Fig. 6.
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Fig. 6 Example results from the MPII validation set

Table 1 Experimental results on MPII validation set. HM: heatmap-based regression, Reg:
coordinate-based regression

Method BackBone Type Params Head Shoulder Elbow Wrist Hip Knee Ankle Mean

SimpleBaseline [27] ResNet-152 HM 68.6M 97 95.9 90 85 89.2 85.3 81.3 89.6
HRNet [19] HRNet-W32 HM 28.5M 96.9 96 90.6 85.8 88.7 86.6 82.6 90.1

TokenPose [14] L/D24 HM 28.1M 97.1 95.9 90.4 86 89.3 87.1 82.5 90.2
Integral [20] ResNet-101 Reg 45M - - - - - - - 87.3
PRTR [12] HRNet-W32 Reg - 97.3 96 90.6 84.5 89.7 85.5 79 89.5
Poseur [16] HRNet-W32 Reg - - - - - - - - 90.5

Ours LPNet HM 7.5M 97.3 96 90.9 86.8 89.2 87.5 83.1 90.6

Table 2 shows the experimental results on the COCO val2017 dataset. The
results show that when the input resolution is 256×192, the AP value of LPNet is
74.0, which is only 0.4% worse than the baseline network HRNet, but the number
of network parameters is not as high as that of the baseline network. By increasing
the input image scale and the number of input channels, the detection accuracy
can be further improved. When the input resolution is 384×288 and the number of
channels is 48, the best performance is achieved, yielding an AP of 76.4. Moreover,
the number of parameters is still lower than the baseline network with 32 channels.
Compared with other classical pose estimation methods, it performs better with
respect to parameter quantity and average accuracy. In addition, the experimental
results of LPNet were visually evaluated, and example results are shown in Fig. 7.
The joint points are connected in the images, showing that LPNet is more precise
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Table 2 Results of each model on COCO val2017

Method BackBone Input Size Params GFLOPs AP AP 50 AP 75 APM APL AR

8-stage Hourglass [17] Hourglass 256× 192 25.1M 14.3 66.9 - - - - -
CPN [4] ResNet-50 256× 192 27.0M 6.2 68.6 - - - - -

CPN+OHKM [4] ResNet-50 256× 192 27.0M 6.2 69.4 - - - - -
SimpleBaseline [27] ResNet-50 256× 192 34.0M 8.9 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline [27] ResNet-101 256× 192 53.0M 12.4 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline [27] ResNet-152 256× 192 68.6M 15.7 72 89.3 79.8 68.7 78.9 77.8

HRNet-W32 [19] HRNet-W32 256× 192 28.5M 7.1 74.4 90.5 81.9 70.8 81 79.8
HRNet-W48 [19] HRNet-W48 256× 192 28.5M 7.27 75.1 90.6 82.2 71.5 81.8 80.4

DARK [29] HRNet-W48 128× 96 63.6M 3.6 71.9 89.1 79.6 69.2 78 77.9
Our Method W32 LPNet-W32 256× 192 7.5M 1.92 74 91.4 81.3 71.2 78.5 78.2

Our Method W48 LPNet-W48 256× 192 19.3M 4.21 74.8 89.8 81.3 70.6 79.7 78.9

SimpleBaseline [27] ResNet-152 384× 288 68.6M 35.6 74.3 89.6 81.1 70.5 79.7 79.7
HRNet-W32 [19] HRNet-W32 384× 288 28.5M 16 75.8 90.6 82.7 71.9 82.8 81
HRNet-W48 [19] HRNet-W48 384× 288 63.6M 32.9 76.3 90.8 82.9 72.3 83.4 81.2

MSPN [13] 4 × Res-50 384× 288 71.9M 58.7 76.1 93.4 83.8 72.3 81.5 81.6
Our Method W32 LPNet-W32 384× 288 7.5M 3.9 75.8 93.2 84.5 73.5 81.4 80.5

Our Method W48 LPNet-W48 384× 288 19.3M 11.3 76.4 92.6 83.6 72.2 81.7 81.1

Fig. 7 Example results of LPNet and HRNet on the COCO val2017 dataset

and accurate in estimating joint points than HRNet. Moreover, it performs well
in the presence of occlusion.

4.3 Analysis of the Ablation Results

In this study, ablation experiments were performed on the COCO dataset using a
high-resolution network with an input channel of 32 as the backbone network and
an input image size of 256× 192. The ablation experiment gradually replaced the
basic feature extraction module in the four stages in the high-resolution network
with a lightweight PSA module. The experimental results are shown in Table 3.
In Table 3, 0 indicates that no basic modules were replaced, and 1–4 indicate that
basic modules were replaced in each stage.

As shown in Table 3, as the basic modules in the feature extraction network are
replaced stage by stage with the light-weight PSA module in the high-resolution
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Table 3 Results of the COCO dataset ablation experiment

Stage Name Params GFLOPs AP

0 29.1M 7.10 74.4
1 28.4M 6.64 74.4
1 2 21.6M 5.31 74.2
1 2 3 17.4M 3.6 74.1
1 2 3 4 7.5M 1.92 74.0

network, the number of parameters decreases rapidly and the average precision
value decreases. However, thanks to the support of the PSA module, the average
accuracy value is still 74.0. The data in the table show that using the lightweight
PSA module to replace the basic modules in all four stages can achieve the best
performance in terms of network parameter quantity and joint point detection
accuracy

Table 4 Results of the COCO dataset ablation experiment

Method Params GFLOPs AP

HRNet 29.1M 7.10 74.4
LPNet (Ghost) 5.1M 1.45 72.5

LPNet (Ghost+PSA) 7.5M 1.91 73.6
LPNet (Ghost+PSA+NCD) 7.5M 1.92 74.0

Furthermore, ablation experiments were performed on the PSA module and
the new coordinate decoding method. The ghost module, PSA module, and new
decoding method were added to the basic network in turn. The results in Table 4
show that only adding the ghost module leads to a sharp reduction in the number
of parameters and GFLOPs, but it also causes a large loss in the accuracy of the
model. Adding the PSA module improves the accuracy of the network model while
increasing the number of parameters by a small amount. The final experimental
results show that adding both the ghost and PSA modules as well as using the new
coordinate decoding method achieves the best attitude estimation performance.

5 Conclusions

The LPNet proposed in this paper is an improved version of the high-resolution
network. The ghost module was combined with the PSA module to create a
lightweight PSA module to replace the basic module in the feature extraction
network while reducing the number of network parameters and retaining accuracy
of the network model. In the final heatmap decoding part, a new coordinate de-
coding method was introduced that further improves the detection accuracy of
keypoints and refines the coordinate positions of the joint points. The advantage
of this network is that it has a lightweight architecture, is extremely scalable and
easy to use, and provides a new solution and approach to the challenges of current
pose estimation tasks such as complex models and a high number of parameters.
A large number of experimental results on different datasets demonstrate that the
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model has good generalization ability. How to better control the parameters of the
network and deploy the model on embedded devices while substantially improving
the detection accuracy of the joint points will be the focus of future research.
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