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Abstract
Automatic and accurate recognition of the parts to be picked is the key to realize the intelligent picking of sweet
pepper. However, pepper fruits are always covered by other organs, and small objects like stems and shoots are
di�cult to be recognized by machines or cameras under certain extreme conditions. To accurately segment and
recognize all kinds of objects in sweet pepper images captured at night, three experiments were performed in this
paper, and an enhanced model based on convolutional neural networks (CNNs) was eventually achieved. In
experiment I, several semantic segmentation networks were trained on a small dataset, and the full-resolution
residual network (FRRN) was taken as a primary network. Then, the impact of resolution of input images on the
segmentation effect was investigated in experiment II. In order to strengthen the feature presentation of
inconspicuous objects, the position attention module (PAM) was appended on top of the FRRN in experiment III.
This architecture was further trained to provide more precise segmentation results. The experimental result shows
that the mean intersection over union (IoU) is 78.88%, which is at least 1.94 percentage points higher than other
models, and the mean pixel accuracy (PA) is 97.94% on the test set. The proposed method has higher
generalization performance when facing unforeseen picking situations, meanwhile it is generic and can be
applied to other fruits and vegetables.

1 Introduction
Sweet pepper is one of the most favored vegetables in the world, which has rich nutritive value and edible value
[1]. According to data from internet, the annual production of sweet pepper is more than 10 million tons worldwide
[2]. Since the economic bene�ts of sweet peppers are substantial, it is essential to maximize production e�ciency
[3] and product quality. And now, the automated harvesting of sweet peppers [4, 5] is emerging as a key
instrument to achieve high production e�ciency in precision agriculture.

In practical production, most of the sweet peppers are cultivated in greenhouses, and the high temperature and
humidity in greenhouses make it di�cult to work in them. Replacing human beings with machines for picking
work has been the major trend in modern precision agriculture [6]. With the fast development of robot technology,
the research of greenhouse fruit and vegetable picking robot [7] has become a hot spot. In recent decades, picking
robot technology has developed rapidly, and many countries have made a profound study on this technology and
made some achievements [8]. However, the problems of weak adaptability, slow picking speed, and low
recognition accuracy in the greenhouse environment still need to be solved. In particular, image recognition
technology is essential for robot to identify targets quickly and accurately.

At present, researchers have made numerous researches on image recognition of fruits and vegetables. The main
methods are based on the combination of machine learning algorithms and machine vision techniques. Wang et
al. [9] used an improved Otsu segmentation algorithm to locate the cotton peach region and sampled RGB values
of the pixels in different regions. Thus, the problem of image segmentation was transformed into the problem of
pixel classi�cation. As a result, they trained the ELM classi�cation model and realized accurate segmentation of
the cotton peach images. In the work of Dhingra et al. [10], the recognition of leaf diseases was studied. An
extended segmentation technique based on neutron logic was used to extract the region of interest (ROI) of
leaves. Then several features, including texture, color, and histogram, were employed to detect diseased leaves.
Nine different classi�ers were constructed, and the best classi�cation accuracy of 98.4% was eventually obtained.
To recognize and locate cucumber accurately, Bao et al. [11] proposed a multi-template matching method and
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established a multi-template matching library containing 65 cucumber images. The robot vision system can
utilize the matching library to calculate the normalized correlation coe�cient matrix of the target image one by
one, and judge whether there is a target cucumber in the image. The aforementioned researches prove that image
recognition technology has been widely used in the agricultural �eld to identify and locate vegetables accurately.
However, most of the above methods adopt traditional machine learning, which mainly depends on multiple
feature selection and application under speci�c background. It is di�cult to play a role in the environment of the
greenhouse.

With the development of high-performance computing systems and the sharing of massive datasets, deep
learning has gradually become one of the most important technologies in the �eld of intelligent agriculture. The
basic deep learning tool used in this work is convolutional neural networks (CNNs), which have a strong feature
extraction capability and are suitable for processing a large amount of input images in parallel. Therefore, CNN is
one of the most powerful technologies in the �eld of image recognition, which is widely used in image
classi�cation [12, 13], object detection [14, 15] and image segmentation [16, 17]. In recent years, CNN technology
has been introduced into the �eld of fruit and vegetable image recognition. Zhao et al. [18] proposed an apple
location method based on YOLOv3, which realized apple detection in a complex environment. This work provided
a theoretical basis for the research and development of apple harvesting robot. Fu et al. [19] studied the problem
of fast identi�cation of multiple clusters of Kiwifruit in the �eld. They trained LeNet as a classi�cation model to
identify occluded fruits, overlapping fruits, adjacent fruits, and independent fruits, and �nally achieved an average
recognition rate of more than 85%. In the work presented by Yang et al. [20] based on the Mask-RCNN, Resnet-50
was adopted as a backbone network. On this basis, the feature pyramid network (FPN) architecture was
integrated to construct the feature extraction network. Their method accurately located strawberry picking points,
which was helpful to improve the working performance of strawberry picking robot. The aforementioned
literatures demonstrate that it is feasible to recognize fruit and vegetable by convolutional neural networks
instead of traditional machine learning.

In this paper, an improved CNN architecture based on the FRRN was designed and veri�ed, which was applied to
segment sweet pepper images captured at night greenhouse. Speci�cally, PAM was appended on top of the FRRN
to improve the feature representation, which contributes to more precise segmentation results. Furthermore, the
in�uence of image resolution on segmentation results was explored. This study aimed to provide a theoretical
basis for the development of image recognition performance of picking robot in precision agriculture.

The rest of this paper is organized as follows. The dataset and experiment arrangements were introduced in
Section 2. Section 3 describes the model architecture of the FRRN combined with the PAM in detail. The training
details of the model are listed in Section 4. The experimental results are analyzed and discussed in Section 5. The
conclusions are drawn in Section 6.

2 Materials And Experimental Scheme

2.1 Dataset description
The sweet pepper dataset, used in this paper, was obtained from 4TU. 10 500 greenhouse sweet pepper images
and their corresponding ground truth labels can be obtained at ResearchData (https://data.4tu.nl). These
synthetic images were rendered through Blender based on 21 empirically measured plant properties. They highly
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simulated empirical images, which obtained by sweet pepper harvest robot from different angles at night
greenhouse [21]. Besides, the sweet pepper dataset also contains 50 empirical images of the crop obtained from
a high-tech commercial greenhouse. These empirical images were used in experiment III. The sweet pepper
dataset was publicly released with the intention of comparing the performance of agricultural computer vision
methods. There are 8 classes of segmentation objects in the picture, including background, leaves, peppers,
peduncles, stems, shoots, wires, and cuts for picking pepper. In the labeled images, 8 classes were annotated on a
per-pixel level, corresponding to the color of black, blue, yellow, red, pink, green, white, and light blue. In Fig. 1,
examples of synthetic images are shown.

2.2 Overview of experiment arrangement
To obtain the optimal segmentation model of the sweet pepper image, three main experiments were designed and
carried out in this study. Overview of performed main experiments I through III are shown in Table 1.

Experiments I: A suitable CNN architecture was picked out for sweet pepper segmentation. Since the same
network structure may perform differently on different datasets, in a speci�c task, it is necessary to select the
appropriate network according to the dataset. Existing semantic segmentation network models are mostly applied
to segmentation of street scenes, and rarely used in agricultural scene. In this experiment, several model
structures were applied on the same sweet pepper dataset for training and testing, and the differences in
segmentation performance of different models were analyzed. Each network structure is veri�ed with the same
number of images, 400 images were used as training set, and 100 images were used as validation set and test set
respectively. Since different network con�gurations has different requirements for the size of the input images,
the size of the input images was set to 384×384 to balance the training time and model performance.

Experiments II: The effect of image resolution on segmentation results was investigated. After experiment I, a
suitable model architecture for the sweet pepper segmentation task was obtained. Then the impact of the input
image size on the segmentation performance of the model was further explored. Images with different sizes were
input into the model for training. Unlike experiment I, experiment II was performed on a larger dataset. In this
experiment, 10 500 sweet pepper images were divided into training set, validation set and test set according to
3:1:1, speci�cally, 6 300 images in training set, 2 100 images in validation set and test set respectively.

Experiments III: The self-attention mechanism was introduced into the network to improve the segmentation
performance. The self-attention mechanism can effectively establish dependencies between remote features, and
make the model focus on extracting some key features. In our work, the PAM was used to capture global
dependencies in the spatial dimensions. It was added on top of the FRR. Afterwards, the enhanced model was
trained and tested on our dataset. The size of the input image and the distribution of the dataset in experiment III
were the same as that in experiment II. Finally, the model with the best segmentation performance was further
evaluated on empirical (real) images.
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Table 1
Overview of performed main experiments I through III

Experiment Methods/Architecture Input size/pixel Training set Validation set Test set

I-A ~ I-E Several CNN-based models 384×384 400 100 100

II-A FRRN 384×384 6 300 2 100 2 100

II-B FRRN 512×512 6 300 2 100 2 100

III-A FRRN + PAM 384×384 6 300 2 100 2 100

III-B FRRN + PAM 512×512 6 300 2 100 2 100

3 Segmentation And Recognition Model

3.1 Semantic segmentation network architecture
Semantic segmentation method was used to segment and recognize sweet pepper in this paper. The goal of
semantic segmentation is to segment and parse an image into different image regions associated with semantic
categories (e.g. leaf, sweet pepper, shoot). Semantic segmentation models based on convolutional neural network
have attracted extensive attention since FCNs [22] was proposed, and have made great progress. The existing
depth-based semantic segmentation methods are mainly divided into two kinds: one is based on regional
classi�cation represented by Mask R-CNN [23], the other is based on pixel classi�cation represented by FCNs. The
former method is based on target detection. Firstly, the image is divided into different image patches, then each
pixel in the image block is semantically classi�ed. Finally, semantics segmentation is realized. This kind of
method �rst appeared in R-CNN and gradually evolved into improved algorithms such as Faster R-CNN [24] and
Mask R-CNN. The advantage of this method is that it can accomplish both tasks of target detection and semantic
segmentation at the same time. However, due to the lack of global information of the image, this method is not
effective for small-scale objects and small areas. Therefore, this method was not considered in our experiments.
The semantic segmentation method based on pixel classi�cation is favored by many researchers and has been
widely used. In particular, dilation convolution, as well as atrous spatial pyramid pooling was adopted in the
Deeplab series [25, 26] to embed contextual features of different scales. Moreover, the encoder-decoder structures
can effectively fuse mid-level and high-level semantic features. In experiment I, since the methods based on pixel
classi�cation performed better in �ne segmentation task, we mainly adopted them.

3.2 Full-Resolution Residual Networks
This section brie�y introduces the FRRN, which is the backbone of the improved model in this paper. FRRN is a
novel network structure similar to ResNet [27]. It does not rely on the pre-trained networks and can start training
from scratch. In addition, since FRRN combines two distinct processing streams, it has strong recognition
performance and precise localization capabilities. As shown in Fig. 2, one stream is pooling stream: semantic
information is captured through a sequence of convolution and pooling operations for identi�cation. The other
stream is a residual stream: feature maps at the full image resolution are carried to achieve precise boundary
adherence. Meanwhile, FRRN consists of a series of full resolution residual units (FRRUs). The structure of FRRU
is given in Fig. 3. Each unit includes two inputs and outputs, because they are applied to both streams at the
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same time. If zn−1 is the residual input of the nth FRRU and yn−1 is pooling input. Then the outputs are
computed as: 

zn = zn−1 + H yn−1, zn−1; Wn (1)

yn = G yn−1, zn−1; Wn (2)

where H(·) and G(·) represent residual calculation and pooling operation respectively. Wnis weight matrix.

3.3 Position attention module
The attention mechanism in deep learning is generated by imitating human selective visual attention mechanism.
It has been widely used in image processing [28], speech recognition [29] and natural language [30] in recent
years. The essence of attention mechanism lies in the automatic and e�cient allocation of attention resources,
which contributes to the acquisition of the most critical information to solve the current task. There are many
variants of the attention model, including the soft attention model, the global attention model [31], and the key-
value attention model [32]. PAM can adaptively aggregate long-range context information to improve the feature
representation of semantic segmentation. The implementation details of PAM are shown in Fig. 4. A represents a
local feature, where A ∈ RC × H× W. It is �rst fed into a convolution layer to generate two new feature maps B
and C, respectively, where  {B,C}∈RC×H×W. Then they are reshaped toRC × N, where N = H × W is the number of
pixels. After that, a matrix multiplication is performed between transposed B and C, and a softmax layer is applied
to calculate the spatial attention map M ∈ RN× N:

 (3)

where Mjimeasures ithposition’s impact on jthposition. The more similar feature representations of two positions
contribute to a greater correlation between them.

Meanwhile, feature A is also fed into a convolution layer to generate a new feature map D ∈ RC × H× Wand is
reshaped toRC × N. Then a matrix multiplication is performed between D and M, and the result is reshaped to
RC × H× W. Finally, it is multiplied by a scale parameterα, and an element-wise sum operation is performed
between it and features A to obtain the �nal output Q ∈ RC × H× Was follows: 

 (4)

where αis initialized as 0 and gradually assigned more weight.

3.4 Attention module embedding with full-resolution residual
networks

( )
( )
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It can be inferred from Eq. 4 that the resulting feature Q at each position is a weighted sum of the features across
all positions and original features. Accordingly, the PAM provides a global contextual view and selectively
aggregates contexts according to the spatial attention map. In the sweet pepper images, some ‘stem’ and ‘shoot’
are inconspicuous or incomplete objects because of the in�uence of lighting and view. Those dominated salient
objects (e.g. leaf, sweet pepper) would harm those inconspicuous object labeling. Since the PAM can selectively
aggregate the similar features of inconspicuous objects to highlight their feature representations and avoid the
in�uence of salient objects, we appended the PAM on top of the FRRN. The proposed FRRN-based network
structure for semantic segmentation of the sweet pepper image is shown in Fig. 5.

As illustrated in Fig. 5, FRRN was employed as the backbone. The whole network structure mainly refers to
Encoder-Decoder [33] structure. When the network starts working, the input feature maps are down-sampled
through four pooling layers to extract the deep features in the images. After that, 4 up-sample layers are used to
restore the size of the feature maps. And the mapping relationship between the original image and the label is
obtained. Then the features from the FRRN would be fed into the PAM. Speci�cally, PAM is cascaded behind the
concatenate (fusion) layer. The output features of the attention module are transformed by the convolution layer
and input into the last convolution layer to generate the �nal prediction map. Besides, the notations RU and FRRU
in Fig. 5 refer to the residual unit and the full-resolution residual unit, and the numbers on the lower right corner
represent the number of convolution kernels in the unit, respectively. Also, the number of convolution kernels of
each convolution layer in Fig. 5 is 48, 32, and 8 (number of classes to predict). The sizes of convolution kernels
are 5×5, 1×1, and 1×1, respectively. The model architecture is proposed to contribute to the �eld of agricultural
segmentation task.

4 Model Training

4.1 Experiment platform
The experiments in this work were conducted on the Ubuntu 16.10 LTS 64bit system. All the methods were
implemented based on Tensor�ow, and the TF-Slim library provided main functions for building model
framework. The computer is equipped with 16 GB RAM and Intel Core i7-7700K CPU. Meanwhile, NVIDIA
GTX1080Ti GPU acceleration technology was applied to improve the training speed.

4.2 Implementation Details
The RMSProp optimization algorithm was adopted during the process of training models. For the experiment I,
the base learning rate was set to 1e-4, and the weight decay coe�cient was set to 0.995. For the remaining
experiments, the base learning rate and attenuation coe�cient were set to 1e-5 and 0.995, respectively. Batch size
was only set to 1 for all datasets because of the limitation of GPU memory and computing power. The number of
iterations was set to 300 epochs for the experiment I and 200 epochs for the other experiments. The loss function
used in our study was the softmax cross-entropy function. Besides, the data augmentation technology was not
adopted in the work of this paper.

The mean IoU is the most important segmentation evaluation metric, which is computed as follows:

MIoU =
1

k +1 ∑k
i=0

pii

∑ k
j=0pij+ ∑ k

j=0pji−pii
 (5)
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where k represents different classes, piiis the number of pixels correctly predicted, ∑ k
j=0pij is the number of

pixels in which class i is predicted to be class j.

The precision, recall, and F1 score were introduced as additional evaluation indexes to evaluate the segmentation
effect of sweet pepper images more objectively. In general, the higher and closer the precision and recall, the
better the classi�cation recognition effect. The F1 score is computed based on the mean per-class
precision/recall results as follows:

F1 = 2 ×
precision× recall
precision+recall  (6)

5 Results And Discussion

5.1 Evaluation of experiment I
In experiment I, several existing semantic segmentation methods were evaluated and compared on a small sweet
pepper dataset. The mean pixel accuracy (PA) and mean intersection over union (IoU) of the trained models on
the test set are shown in Table 2. These model architectures achieved good segmentation results when used for
sweet pepper segmentation in this paper. It is worth noting that most of these methods were training from
scratch, rather than based on the pre-trained models. The approach based on pre-trained models was also
adopted in our experiments. The results showed that although the training time of this method was less than
other means, the segmentation effect was far inferior to those methods training from scratch. Consequently, the
results of approach based on pre-trained models were not shown and compared in this paper.

As shown in Table 2, the mean PA and mean IoU of FRRN are 94.3% and 69.18%, respectively. In particular, its
recognition accuracy for sweet peppers reached 93.2%. The segmentation and recognition effect of FRRN is
better than that of other methods. From the perspective of pixel classi�cation, the mean PAs of the �ve methods
are similar, and all of them exceed 90%. It illustrates that the �ve networks have achieved good performance in
pixel classi�cation, especially for salient objects (e.g. leaf, sweet pepper). Meanwhile, the mean PAs of sub-
experiments I-A, I-B, and I-E are slightly higher than that of the other two methods. From Table 2, it can be seen
that the main difference is caused by the small objects, including peduncles, stems, shoots, and wires. The PA of
wires in experiment I-C was 6.30%, while that of peduncle in experiment I-D was only 6.00%. FRRN performs better
than other methods, which veri�es that it is more suitable for small-scale object recognition and �ne
segmentation. Moreover, the effects of several methods can be visualized in Fig. 6. These visualizations show
that the FRRN achieved better segmentation results, both numerically and qualitatively. However, the
segmentation effect of FRRN for sweet pepper needs to be improved, especially for the pixel-level recognition of
inconspicuous objects. Hence, we took experiment II and experiment III.
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Table 2
Results of each category on a small sweet pepper test set

Methods Pixel accuracy/% Mean
IoU

Mean
PA

Background Leaf Pepper Peduncle Stem Shoot Wire Cut

I-A-
MobileUNet
[34]

93.6 93.8 97.5 93.5 46.4 81.1 64.5 73.5 59.6 67.82

I-B-SegNet
[33]

93.7 93.8 96.9 94.1 50.3 80.3 63.5 73.2 63.7 67.33

I-C-BiseNet
[35]

90.7 90.9 96.2 90.8 44.1 73.2 40.9 6.30 54.5 53.78

I-D-ED [33] 92.0 92.3 96.7 88.2 6.00 73.6 55.7 55.5 50.6 55.80

I-E-FRRN 94.3 93.7 97.6 93.2 53.1 81.2 68.3 69.5 67.5 69.18

5.2 Evaluation of experiment II
Semantic segmentation belongs to pixel-level tasks, which need to provide pixel by pixel output. Consequently,
semantic segmentation requires higher resolution and more detailed information. It is supposed that the higher
resolution of the input images, the richer feature information that the convolutional neural network could capture.
High-resolution images help to improve the recognition accuracy and segmentation performance of the model.
Especially for �ne agriculture segmentation, higher image resolution is bene�cial. However, if the resolution is
extremely high, maybe it causes the problem of slow training speed. In this study, the resolution of the original
images in the dataset is 800×600, but the general model cannot directly perform feature analysis and extraction
on such images. To balance the relationships between segmentation effect and computational complexity, the
original image was cropped to 384×384 and 512×512 in experiment II, and train FRRN on images of different
sizes.

With the purpose of verifying the effect of input image resolution on segmentation results, we conducted
experiment II. As shown in Table 3, the higher segmentation performance was achieved by the same model after
inputting high-resolution images. Compared with the input size of 384×384, employing an input image size of
512×512 yielded a result of 76.81% in mean IoU, which bringed 3.14% improvement. This shows that the increase
in resolution contributes to the re�nement of segmentation results. Besides, when the size of the input image is
512×512, the mean PA and the F1 score further improves to 95.47% and 95.57%, respectively. Meanwhile,
although the improvement effect of pixel classi�cation is not signi�cant, the precision and recall have been kept
at a high level and close to each other, which indicates that the classi�cation effect of the model has improved.
Results show that, in a certain range, the higher the resolution of the input images, the better the segmentation
performance of FRRN.
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Table 3
Evaluation and test results of different methods

Method(model) Size of input
image/pixel

Mean
PA/%

Mean
IoU/%

Precision/% Recall/% F1
score/%

FRRN 384×384 95.10 73.67 95.55 95.10 95.22

FRRN 512×512 95.47 76.81 95.97 95.47 95.57

FRRN + PAM 384×384 97.38 76.45 97.64 97.38 97.51

FRRN + PAM 512×512 97.94 78.88 98.20 97.94 98.07

Barth et al. [36] 300×300 - 55.00 - - -

5.3 Evaluation of experiment III
The PAMs were employed on top of the FRRN to capture long-distance dependencies for better feature
presentation. Similarly, two different resolution images were used as input to train the improved network. Various
evaluation indexes achieved by the model on the test set are shown in Table 3. The segmentation performance of
PAM on two different resolution images is shown in Table 3. It is observed that the best performance was
achieved at an input image resolution of 512×512. Compared with the baseline FRRN, the employment of PAM
yielded a result of 78.88% in mean IoU, which brought an improvement of 2.07 percentage points. Also, mean PA
increased by 2.47 percentage points. Meanwhile, the precision, recall, and F1 score have also improved. In
conclusion, results show that attention modules bring bene�ts to sweet pepper segmentation.

Quantitative evaluation is not enough to verify the importance of PAM, thus the effects of PAMs were visualized
in Fig. 7. As expected in Section 3.4, the PAM helps to strengthen the feature presentation of some inconspicuous
objects. It can be observed from Fig. 7 that the employment of PAM makes some segmentation details and object
boundaries clearer. As shown by the red circles in the �rst row, it is challenging to segment small-scale objects in
detail, but under the action of PAM, the segmentation effect of the third column is signi�cantly better than that of
the second column. Speci�cally, in the second row, the FRRN model with PAM is better than the original FRRN
model for the segmentation of small objects such as leaf stems. Therefore, Fig. 7 demonstrates that selective
fusion over local features enhances the discrimination of details and re�nes the segmentation results. Besides,
compared with the research of Barth et al. [36], the accuracy of pepper segmentation has been improved
obviously.

To explore the generalization performance exhibited by a synthetically trained model when faced with similar
data in the same domain, the best performing model (model of experiment III-B) was evaluated on 20 empirical
(real) images. The segmentation results of the proposed model on empirical data are shown in Fig. 8. The model
failed to discriminate and segment all the classes properly. This result con�rms our hypothesis that the
synthetically bootstrapped model could not generalize accurately to empirical data without �ne-tuning. Note that
these empirical images were not used for training or validation. In order to prove our hypothesis, 30 empirical
images were used to �ne-tune the proposed model, and the generalization performance of the model was tested
on 20 empirical photos. As illustrated in Table 4, this practice resulted in increased performance, with a mean IoU
of 59.81%. The result implies �ne-tuning on a synthetically trained network can generalize to similar data in the
same domain (empirical images).
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6 Conclusions
In this paper, CNN was applied to the semantic segmentation of the sweet pepper images. The FRRN model was
improved by combining with attention mechanism. Speci�cally, PAMs were embedded at the top of the network to
capture global dependencies in the spatial dimensions. This new architecture is clean, requires no additional post-
processing, and can be trained from scratch. The proposed network (FRRN + PAM) was trained to segment sweet
pepper images captured at night. Relevant experimental results show that PAMs contribute to providing more
precise segmentation results. Meanwhile, our experiments indicate that proper image resolution bene�ts for
segmentation performance. Besides, the synthetically trained model combined with �ne-tuning can also be well
generalized to the similar data in the same domain (empirical dataset). Our method achieves good performance
on the test set of sweet pepper, with a mean IoU of 78.88%. The proposed method is generic and can be applied

Note that, for the empirical dataset, due to the in�uence of dark regions, some objects that were not manually
annotated in the ground truth would be detected in the images and have a certain impact on the segmented
images. Hence, although these parts were true positive, they were still evaluated as false positives. This
annotation bias resulted in a lower segmentation performance of empirical images. In short, the results of
experiment III show that the proposed optimization model of FRRN combined with PAM is feasible and effective
for the recognition and segmentation of sweet pepper.

Table 4
The evaluation results of the proposed model on empirical

(real) images
model �ne-tuning Mean PA/% Mean IoU/%

FRRN + PAM   73.42 51.63

FRRN + PAM √ 80.56 59.81

5.4 Results compared with other models
We further compared our method with existing methods on the sweet pepper testing set. The results are shown in
Table 5. The FRRN + PAM model performs better than other segmentation methods. It is supposed that these
networks are designed for street scene segmentation tasks, so they maybe not perform well in agricultural
segmentation tasks. Among these methods, in order to achieve real-time performance, only ENet refrained from
using a pre-trained network when designing the structure, so it did not get high scores. Speci�cally, a pre-trained
network was abandoned by our network either, but it outperformed ENet by a large margin. Moreover, it also
surpassed DANet, which uses a complex backbone ResNet-101.

Table 5
IoU scores on sweet pepper test set

Method Mean IoU/%

ENet [37] 65.78

BiseNet [35] 69.75

DANet [38] 76.94

Our method (FRRN + PAM) 78.88
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for other fruits and vegetables. It is hoped that this study can provide a theoretical basis for the development of
image recognition in precision agriculture.
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Figures

Figure 1

Examples of sweet pepper images and their corresponding ground truth labels.
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Figure 2

The structure of full-resolution residual networks (FRRN)

Figure 3

The structure of full-resolution residual unit (FRRU)
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Figure 4

The details of position attention module

Figure 5

Overview of FRRN+PAM architecture

Figure 6

Qualitative comparison on the test set



Page 17/18

Figure 7

Visualization results of position attention module on test set

Figure 8
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Example segmentation results of empirical test set without �ne-tuning (left column) and results of empirical test
set with �ne-tuning (right column). Color images (top row), ground truth (middle row) and classi�cation
segmentation (bottom row) are shown


