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Abstract
Unlike deep learning which requires large training datasets, correlation filter-based trackers like Kernelized Correlation 
Filter (KCF) use implicit properties of tracked images (circulant structure) for training in real time. Despite their popularity 
in tracking applications, there exists significant drawbacks of the tracker in cases like occlusions and out-of-view scenarios. 
This paper attempts to address some of these drawbacks with a novel RGB-D Kernel Correlation tracker in target re-detection. 
Our target re-detection framework not only re-detects the target in challenging scenarios but also intelligently adapts to avoid 
any boundary issues. Our results are experimentally evaluated using (a) standard dataset and (b) real time using the Microsoft 
Kinect V2 sensor. We believe this work will set the basis for improvement in the effectiveness of kernel-based correlation 
filter trackers and will further the development of a more robust tracker.

Keywords  Visual tracking · Depth-based tracking · Correlation filters · Kinect sensors

1  Introduction

Visual tracking as a field has seen tremendous progress in 
recent years in robotics and surveillance applications. It is 
trying to address the issues caused by noise, clutter, occlu-
sion, illumination changes, and viewpoints (e.g., in mobile 
or aerial robotics). There have been numerous attempts in 
designing and deploying a robust tracking method. However, 
achieving full tracking accuracy under realistic conditions 
presents various challenging scenarios. Despite the wide-
spread applications of neural network-based architectures, 
recent years have also seen a significant shift in the atten-
tion towards trackers that learn “on the fly” i.e., approaches 
that model how an object varies visually over time, as and 
when new data becomes available. Many discriminative 
Correlation Filter (CF) tracking methods have adopted 

this approach. Though neural network-based architectures 
(or various deep learning extensions) have shown good 
accuracy, they have significant disadvantages in terms of 
cost, training time, and computational power: For example, 
XLNet model [1] costs $61,000 to train, uses 512 TPU v3 
chips with a batch size of 2048 (for comparison, a person 
or a small research lab normally uses a batch size of 32 
with normal compute) and takes 2.5 days to train. These 
issues have encouraged the visual tracking community to 
look for a faster and more competitive alternative to CF-
based trackers. They offer solutions for real-time tracking 
with good real-time performance. Correlation filters have 
gotten significant attention because of their high frame per 
second (FPS), low computation power requirement (they 
work significantly well with CPUs but can be made faster 
with few GPUs), and high efficiency. One such tracker is 
the Kernelized Correlation Filter (KCF) [2] tracker, which 
is a type of correlation filter-based tracker known for its 
ability in handling thousands of sample data yet keep the 
computation load low by exploring tools of kernel trick and 
properties of Circulant Matrices. Despite the progress made 
in tracking robustness, most works like [3–5] mostly focus 
on scale adaptation, occlusion detection, or shape change. A 
big part of long-term tracking is not only detection of occlu-
sion but also re-detection of the target once it is out of the 
occlusion and tracking It in real-time continuously.
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Our work specifically focuses on human targets that are 
occluded by objects (e.g., chairs) or by other humans (e.g. 
a tall person). It discusses the implementation of architec-
ture that can help overcome this challenge. The tracking 
methodology proposed considers a single Kinect RGB-D 
camera, single-target, and is model-free that is applied to 
long-term tracking. The model-free property means that the 
only supervised training example is provided by the bound-
ing box in the first frame. Long-term tracking means that the 
tracker learns to re-detection after the target is lost. i.e., to 
infer the object’s position in the current frame. This paper 
proposes a novel architecture to enable the KCF tracker to be 
more robust during occlusion by utilizing additional depth 
information. A key advantage of the proposed tracker is that 
the depth information used by the tracker is intelligently 
adapted to avoid boundary issues (situations where a target 
may be at the edge of the camera view or about to leave the 
camera view). For initialization, our tracker, similar to KCF, 
uses the Region of Interest (ROI) specified in the first frame. 
However, KCF only uses image features of the RGB image 
within the ROI but our proposed tracker uses both image 
features and depth information within the ROI. Due to the 
inclusion of depth information, this approach can lead to 
boundary issues since the depth data is expected to change 
at the edge when the tracker is in motion, adversely affect-
ing the tracking performance. However, as it will be shown, 
the depth information in the proposed tracker is intelligently 
adapted to incorporate the correct depth information of the 
moving tracker. Our proposed tracker was validated on the 
Princeton RGB-D dataset as well as the real-time dataset 
collected by the author. The results show that the tracker can 
successfully detect when the human target is occluded and 
re-detect it after occlusion.

This paper is divided into five sections. The paper first 
gives a literature review of the RGB and RGB-Depth-based 
trackers in Sect. 3 followed by the details of the algorithm 
in Sect. 4. We discuss our experimental set-up, including 
the description of the dataset in Sect. 5 which is followed by 
results and observations in Sect. 6. We conclude the paper 
in Sect. 7 where we discuss the findings of our proposed 
long-term RGB-D tracker.

2 � Literature review on RGB and RGB‑D 
based trackers

Since the invent of MOSSE [6] in 2010, correlation filter 
(CF) based trackers gained huge popularity owing to their 
speed and accuracy. Correlation Filters are a class of classi-
fiers, which use a designed template to produce sharp peaks 
(strong correlation) in the correlation output. The peaks cor-
respond to the precise localization of the object/target in 
scenes. One of the popular CF-based trackers was proposed 

by Henrique et al. where the authors proposed a kernelized 
version of the CF tracker [7] which benefitted from the cir-
culant structure of the samples. This tracker was studied in 
[8–10] and further improvements were investigated by [11, 
12] who applied a correlation filter to scale space, address-
ing the issue of scale adaptation. Other improvements 
include spatial regularization in SRDCF [13], continuous 
convolution in C-COT [14], max-margin classifiers in [15], 
Spatio-temporal learning [16], and adding robustness using 
part-based features [17, 18].

Overall, several efforts have been made to address where 
challenging issues of visual tracking. However, target 
appearance, if used as the main cue for tracking, is not a 
very reliable feature when the target suffers from challenging 
issues of occlusion, out-of-view, and illumination changes. 
Features like depth data, with its ability to distinguish 
between foreground and background, can help in making 
the tracker more accurate. Trackers have been developed in 
the past which use RGB features augmented with additional 
features like depth. Reference [19] build upon color-only 
KCF tracker and adds depth showing a real-time perfor-
mance of ~ 35 FPS. Reference [20] proposes a distractor-
aware learning method (DLS) with RGB-D data to effec-
tively alleviate the model drift problem. Reference [21] uses 
depth features with RGB to address color camouflage issue.

These recent improvements in RGB-based CF-based 
trackers have come at a cost of speed and real-time per-
formance. For example, the Discriminative Correlation 
Filter (DCF) [13] using HOG features reached ~ 6 FPS as 
compared to some early state-of-arts like KCF [7] which 
attained ~ 170 FPS, and MOSSE [6] which was ~ 700 FPS. 
Similarly adding depth has helped improve accuracy but 
the challenging issues are yet to be resolved. It would be 
interesting to explore an improved CF tracker which can 
address some of the existing issues related to robustness e.g., 
occlusion, model drift, scale changes, color camouflage, etc., 
yet achieves higher accuracy. Few works have attempted to 
address this gap of speed in RGB-D trackers. Reference [4] 
proposes a deep depth-aware long-term tracker that extends 
a deep discriminative correlation tracker (DCF) to embed 
depth information to deep features. It achieves state-of-the-
art RGB-D tracking performance and has better speed per-
formance. Closing the gap between speed and accuracy in 
an RGB-D tracker is an ongoing problem.

3 � Depth augmented target re‑detection

KCF is based on the discriminative method, which formulates 
the tracking problem as a binary classification task and distin-
guishes the target from the background using a discrimina-
tive classifier [22]. Two of the main factors of the efficiency 
of KCF are that it uses augmentation of negative samples to 
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enhance the discriminative ability while also exploring the 
structure of the circulant matrix and performing the computa-
tion in the Fourier domain for high speed. The training and 
detection pipeline of KCF can be seen in (Fig. 1).

KCF algorithms work as follows: Given the initial selection 
of a target (i.e., center position and size), a tracked region is 
created. The tracked region is increased from the target size 
to provide some context. This tracked region is a part of an 
image frame. Various features are extracted from the tracked 
region and each channel is weighted by a cosine window. A 
circulant matrix is used to learn all the possible shifts of the 
target from a base sample. The coefficient �f  encodes (Eq. 1) 
the training samples, consisting of all shifts of a base sample 
in the frequency domain. It is these shifts that provide a large 
number of samples of the training. The fast-learning equation 
is expressed as:

where yf = Fy denotes the Discrete Fourier Transform (DFT) 
ofy . The term kxx

′

f
 denotes the DFT of kxx

′

 ; the kernel correla-
tion function between signals x andx′ . The division repre-
sents an element-wise division and the scalar � is a regulari-
zation term. The training label matrix y is a Gaussian 
function that smoothly decays from the value of one for the 
centered target to zero for other shifts.

The response is computed as the element-wise multiplica-
tion between the learnt �̃f  and the correlation of zf  with the 
learnt model x̃f  at various image patches z . The detection 
response for each location is:
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where r
(
kzx̃
f

)
 is the response, x̃f  and alpha �̃f  are the linear 

interpolations of xf  and �f  at each detection with the selec-
tion of an interpolation factor and ⊙ represents the dot prod-
uct. The readers are directed to [7] for more details. Hence, 
we can increase the computation speed due to: (a) element-
wise multiplication in Fourier Domain and (b) computation 
in high dimensional data using kernel trick. Once we are 
able to locate the target, these target locations can be used 
to interpolate our model to train the data in a new frame (at 
this location). This method can be employed for all subse-
quent frames. Hence, for any instance in the image, with the 
past target location and current features, the target can be 
tracked over time. This type of tracking methodology is 
called tracking-by-detection and has been used in the 
research time and again.

3.1 � Method implementation

As discussed previously, KCF tracker achieves faster 
throughput by replacing convolution actions in the spatial 
domain with element-wise multiplication in the frequency 
domain using RGB color features. However, these color fea-
tures do not encode complete tracking information about 
the target. Depth information can provide additional spatial 
information in the form of distance to the sensor. This addi-
tional information forms the basis of our occlusion detection 
and re-detection framework. This is based on the assumption 
that an occluding object will have a different depth of infor-
mation as compared to the target being occluded.

The target occlusion knowledge is computed using the 
information from around the target’s center. It is so because 
the information at the edges of the bounding box tends to 
include small false information, but the target center is 

Fig. 1   Training and detection pipeline of KCF
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expected to be constant. Since the computation is made on 
a small section (the area around the target center) of the 
target bounding box area, it improves computational effi-
ciency. The RGB information helps the tracker to update the 
model template (updated in the Fourier domain) and depth 
information helps it to decide when to track. Our proposed 
tracker stops tracking at the moment the target is occluded. 
Hence, it adds to the tracker’s robustness as the model and its 
coefficients are interpolated correctly. In any tracking algo-
rithm involving depth data, ensuring that the correct depth 
of the target is included is very important. KCF with depth 
data takes the RGB image features and depth information of 
the target patch using the bounding box used for detection. 
As the target moves and changes its position or scale, there 
is a high probability that the bounding box (of the target) 
starts including more depth data of the background from the 
edges. This would falsely provide higher background depth, 
as compared to (only) target depth, making it harder for the 
model to make the right predictions.

Our tracker proposes a self-adjusting depth patch as a 
solution to this problem. It saves the depth information of 
the previous (target) patch and new (target) patch and locates 
the possible center of these depth patches by taking the area 
around center of the patch (calculated using position coordi-
nates). Figure 2a and b show the difference between a frame 
and a patch. Figure 2c shows how depth patch around the 
center of two patches is extracted.

3.2 � Creating self‑adjusting depth patch

The tracker further computes the difference in the depth 
information of these two parts of patches and looks for any 
high peaks at the edge of this value as shown in Fig. 3. The 
edges are defined as a few columns on the extreme end. For a 
non-occluding object, any abnormally high peak at the edges 
would indicate the inclusion of background depth informa-
tion (which is undesired). This is based on the assumption 
that two depth images in two subsequent frames will have 

(a) Frame (grayscale) (b) Patch from the frame

(c) Depth patch around the center of two patches of two subsequent frames

Fig. 2   Figure shows a grayscale frame, b patch from the grayscale frame, c the depth of the patch around the center of two patches (of two sub-
sequent frames)
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similar depth data around their center, hence their difference 
should be minimal or close to zero.

If there is a high peak, we decrease the size of the depth 
patches from the edges such that abnormally high peaks 
are removed as shown in Fig. 4. After the depth has been 
adjusted, the difference in the depth is minimal ensuring that 
we have correct depth information for the target.

However, in the case of occlusion, even after adjusting 
this difference in depth patch of subsequent frames, peaks 
will exist because the peaks will cover far more than the area 
at extreme edges (with few peaks almost towards the center 
of the patch) as shown in Fig. 5. The existence of these peaks 
helps the tracker identify the occurrence of occlusion in the 
frame.

(Bottom Left) Before depth adjustment: Mesh graph of 
difference of centre depth patch for frame 2 and frame 3 
i.e., 3 ― 2 where x = width, y = height,

 z = depth value

(Bottom Right) After depth adjustment: Mesh graph of 
difference of centre depth patch for frame 2 and frame 

3; x = width, y = height, z = depth value 

Fig. 3   The figure shows how the difference in center depth patch is computed for two subsequent frames when the target is not occluded. The 
image frame and the patch considered here are the same as in Fig. 2
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3.3 � Training, detection, and re‑detection of target 
under occlusion

Our proposed RGB-D tracking with a re-detection algorithm 
builds upon the KCF tracker. KCF uses image data features 
to locate and detect trackers. In our proposed tracker, we 
add depth information to provide the tracker with contextual 
information about the target and the background, for it to be 
able to distinguish between the two. The tracking pipeline 
for the proposed RGB-D tracker is shown in Fig. 6, the sym-
bols of which are defined as follows:

� Standard deviation
� Regularizer
� Learnable parameter
f (z) The response of kernel ridge regression
patchrgb Part of the RGB image which has the target, as 

shown in Fig. 2. b
posi Position of the target defined as {x,y}
^ FFT of a variable

Occlusionstatus Status of the tracker which informs if the tracker is 
occluded (True) or not occluded (False)

A more detailed version can be seen in Algorithm 1 of 
Fig. 7. Readers are to note that Fig. 7 has been split into four 
parts where Fig. 7a–c are components that help define the 
tracking algorithm in Fig. 7d, and hence can help understand 
the tracking algorithm better.

For the first frame, the tracker is provided with the ground 
truth. The tracker trains on this frame using the ground truth 
data (target position) to interpolate this position to the next 
frame. With this knowledge of the target location (from the 
previous frame), the tracker defines its search space around 
this target location, in the new frame. Search space is the 
area in which the tracker will attempt to locate the target as 
shown in Fig. 8.

The tracker extracts all the possible patches from the space. 
The search space is dependent on the width of the tracker. If 
the tracker width is large, the search space is larger, and vice 
versa. If we keep the constant width of the search space, we 
might end up storing a much higher number of patches for 

Frame 2: Grayscale and Depth Frame 3: Grayscale and Depth

(a) 
Centre depth patch:

Depth of the area around target 
patch center) extracted from the 
depth data of the target patch of 

frame 2

(b) 
Centre depth patch:

Depth of the area around target 
patch center) extracted from the 
depth data of the target patch of 

frame 3

(c)
(After depth adjustment) 

Difference for center depth 
patches of two (non-occluding) 
frames (Frame2 and Frame 3). 

We see no peaks in their 
difference after depth 

adjustment.

Fig. 4   The figure shows how the difference in center depth patch changes for two subsequent frames when the target is not occluded
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smaller target sizes and very few target patches for large target 
sizes, making further computations difficult. The search space 
is also limited to the planar movements of the subject since we 
do not expect the target to move vertically in space as shown 
in Fig. 9.

For detection in the new frame, the tracker now correlates 
these patches (with gaussian correlation similar to KCF) 
with the initial target patch, to get all possible correlation 
responses. Mathematically, if z and x represent the features of 
the extracted patch and original target patch respectively, then 
we need to calculate k̂xz and �̂ for fast training as represented 
by Eq. 2 (re-written below):

where �̂ is the model parameter used for model interpola-
tion, obtained, and updated every time at the training stage 
as shown in Fig. 7. For gaussian correlation, we can write 
k̂xz as:

�f (z) = kz�x
f
⊙ �𝛼f ,

where ⊙ is the dot product. f (z) gives us the detection 
response and the maximum peak of this correlation response 
(highest correlation response) is observed as shown in 
Fig. 10.

If the maximum detection response is less than 50%, 
there are two possible scenarios: (a) tracker is partly 
visible (b) tracker is occluded as shown in Fig. 11. To 
confirm the status of the tracker, we compute the differ-
ence between the depth patches at frame n − 1 and n (at 
the target centre), as shown in Fig. 5. If the difference in 
depth is minimal or close to zero, we know that target 
is not occluded, and the tracker will continue to track at 
the updated position computed using the detection score 
(maximum correlation response). However, if the differ-
ence in depth is high, we know the target is occluded. The 
tracker will, hence, stop tracking the target and will keep 
searching for the target in the search space. Once it locates 
the target (when a patch from the search space gives a 

(3)�kxz = FFT(exp
�
−

1

𝜎2

�‖x‖2 + ‖z‖2 − 2F−1
�
�x∗ ⊙�z

���
,

Frame 10: Grayscale and Depth Frame 11: Grayscale and Depth

(a)
Centre depth patch:

Depth of the area around target 
patch center) extracted from the 
depth data of the target patch of 

frame 10

(b)
Centre depth patch:

Depth of the area around target 
patch center) extracted from the 
depth data of the target patch of 

frame 11

(c)
(After depth adjustment) Difference 

for center depth patches of two 
(occluding) Frames (Frame10 and 

Frame 11). Since the depth 
information changes significantly 
towards the center too, we see 

peaks in their difference.

Fig. 5   The figure shows how the difference in center depth patch changes for two subsequent frames when the target is occluded
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correlation response > 50%), it will re-detect the target and 
continue to track it.

4 � Experimental setup

KCF tracker was originally implemented for RGB data. 
Hence, the dataset on which KCF was originally evaluated 
can not be used for testing the proposed RGB-D algorithm. 
Hence, to evaluate our algorithm, we use the Princeton 
RGB-D dataset. The dataset is also very diverse including 
examples of (a), occlusion (b), speed (c) and size (d) deform-
ability which helps test the algorithm over a wide range of 
possible challenges. A sample image with RGB and its depth 
data can be seen in Fig. 12.

Apart from benchmark comparison (on the Princeton 
dataset), we collected our own RGB-D dataset for further 
evaluation. This dataset is collected using Microsoft Kinect 
V2. Figure 16 gives detailed information on the type of 
scenes and their respective samples.

To evaluate our method, we tested on two datasets (a) 
Princeton dataset and (b) the dataset collected by the authors 
using Kinect in real-time. We explain the setup of both the 
scenarios below.

4.1 � Princeton dataset

In the Princeton RGB-D dataset, images are in 16-bit PNG 
format. Values at each pixel are the distance from Kinect to 
the object in mm. A sample image with RGB and its depth 
data can be seen in Fig. 12a and b. We can create a depth 
view of the sample image using the RGB-D data where x, y 
define pixel location and z the distance from the sensor. 
Depth is when an image is viewed as seen from z axis as 
shown in Fig. 12b. Depth view image helps us visualize the 
images as they are seen from the depth sensor.

In this evaluation system, we use the Princeton data 
benchmark [23] to compare our tracker with KCF (our base 
tracker) and other trackers. This dataset uses 95 videos for 
evaluation. These datasets were originally captured using 
standard Microsoft Kinect 1.0. Due to Kinect’s limit on the 

Fig. 6   Flowchart of the training 
and detection pipeline of the 
RGB-D tracker
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Fig. 6   (continued)
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Fig. 7   Figure showing the RGB-D-based tracking algorithm. d Shows the full algorithm which uses modules shown in a the kernel correlation 
computation, b the training using the kernel correlation module, and c detection using the kernel correlation module
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minimum and maximum distance for accurate depth accu-
racy, these videos contain an indoor environment with object 
depth values ranging from 0.5 to 10 m.

This benchmark dataset has high diversity including 
single-tracking subjects like humans, animals, balls, etc. 
Figure 13 shows a few sample images from the Princeton 
dataset.

The various aspects of the dataset which show the diver-
sity of samples are summarised as follows:

Target type: The dataset contains three types of objects: 
humans, animals, and rigid objects (example: toys and 
human faces which have the freedom to translate or rotate). 
Animal movements have out-of-plane rotation and some 
deformation. Tracking difficulty is expected o be slightly 
difficult for humans since the degree of freedom for human 
body motion is very high.

Scene type: Each scene has a different type of back-
ground. Some scenes like that of café and school are more 
complex with a lot of moving people moving around. Others 
like a turtle in a living room have a more static background.

Occlusion: Different possible occlusion scenarios are 
considered like, how long is the target occluded, whether 

target moves while being occluded or is static when it is 
occluded, etc.

Another criterion that was considered was the bounding 
box distribution over all sequences and over time. Hence, 
a target in a sequence does not necessarily be in the center 
but can be anywhere in the frame at any time. Readers are 
directed to [23] for a more detailed analysis of the sequence 
distribution of the dataset.

4.2 � Real‑time Kinect dataset

To further test our tracker, we tested it on the data we col-
lected in real-time. Princeton data has a mix of subjects with 
a difference in scales, and color changes. We collected data 
on less complex scenarios (almost an ideal testing ground) 
with human data, minimal speed, and occlusion cases. Since 
we propose a long-term tracker that is expected to perform 
better in occlusion and out-of-scene scenarios, we focus par-
ticularly on such scenes. To accommodate for diversity in 

Fig. 8   The figure shows the target patch and associate search space of 
the tracking pipeline. Search space is dependent on a the target loca-
tion in the previous frame and b the width of the target

Fig. 9   The figure shows the issue if the search space is kept consistent across different images, it would lead to incorrect search space when the 
target size will vary

Fig. 10   Gaussian correlation of the base patch of the current frame 
with the patch from the previous frame
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Frame 1

Frame 2 Detection response when the target is not occluded 
where the z-axis is the value of ( ) 

Frame 1

Frame 10 Detection response when the target is partly occluded 
where the z-axis is the value of ( )

Frame 1

Frame 12 Correlation response when the target is completely 
occluded where the z-axis is the value of ( )
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Fig. 11   Different detection responses of two subsequent frames with the non-occluding and occluding target. Note the peak value changes from 
0.8 (i.e. 80%) when it is not occluded to 0.4 (40%) when it is partly occluded to 0.3 (i.e. 30%) when it is fully occluded
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the dataset, we choose subjects that have different sizes and 
different types of occluding objects (chair, box, and human).

Data collection and hardware setup: The data is col-
lected using Microsoft Kinect V2 in an indoor home environ-
ment. The subjects vary in size and gender to accommodate 
for diversity in subjects. The objects used for occlusion are 
things like a chair, a large box which is easily found in day-to-
day life. The data collected assumes that the target is moving 
unidirectionally or bidirectionally in the horizontal plane. We 
do not consider scenarios where the target may tend to move 
towards and away from the sensor. They are useful in scenarios 
where the sensors are mounted in hallways (at a height at an 
angle) or mounted on stationary mobile robots which for the 
majority part observe the target moving from left to right or 
right to left. Hence, our data is a fair representation of various 
scenarios which are likely to occur in day-to-day lives. Due to 
COVID-19, there were few restrictions on who we can invite 
as subjects and where can we do the experiments. Despite 

these challenges, we made our best efforts to collect data in a 
reasonable setup. This data was collected using both Kinect for 
Linux and Kinect for MATLAB on Windows to accommodate 
for any software differences. There is a total of ~ 500 scenes 
with these different subjects and scenarios. Figure 14 shows a 
few sample RGB images and their corresponding depth images 
from our dataset.

Data annotation: Data were manually annotated by the 
author to collect the ground truth (GT). Each GT depicts 
tighest fitting bounding box that can be drawn to have the 
target within the box.

5 � Result and observation

We evaluated the performance of our tracker on Prince-
ton Dataset, a standard benbchmark for tracking and make 
observations of the results, in particular how the results are 

Fig. 12   a Sample RGB image from Princeton dataset. b Corresponding depth image, c depth colormap from the depth data

Fig. 13   The figure shows a few sample images with the target to be tracked (in green) from the Princeton Dataset. Best viewed in color
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affected with human targets and theirt size. We also make 
detailed analysis when we test the algorithm on the dataset 
we collect using our own Kinect depth sensors and show that 
our proposed method ourperforms standard KCF tracker by 
a high margin.

5.1 � Princeton dataset

5.1.1 � Evaluation metrics

To evaluate the overall performance, we test it on Prince-
ton data. It does not explicitly provide ground truth bound-
ing box values but provides a script to evaluate results as 
detailed in [23]. We report the success rate provided by 
Princeton data evaluation (criterion used in the [24]) which 
is the ratio of overlap between the outputs and true bound-
ing boxes:

where ROITi is the target bounding box in the i-th frame and 
ROIGi

 is the ground truth bounding box. By setting a mini-
mum overlapping area rt , they calculate the average success 
rate R of each tracker as follows:

ri =

⎧
⎪⎨⎪⎩

area
�
ROITi ∩ ROIGi

�
ifbothROITiandROIGi

exist

+1ifneitherROITiandROIGi
exist

−1otherwise

,

where ui is an indicator denoting whether the output bound-
ing box of the i-th frame is acceptable, N is the number of 
frames, and rt is the minimum overlap area defining whether 
the output is correct. Since some trackers may produce out-
puts that have a small overlap ratio overall frames while 
others give large overlap on some frames and fail completely 
on the rest,rt must be treated as a variable to conduct a fair 
comparison. Table 1 shows the success rate of our tracker 
as compared to KCF and other trackers under different cat-
egorizations on the Princeton dataset.

From the evaluation, we observe that our tracker performs 
best for human targets that are large in size and for scenarios 
where the target is occluded.

When it came to target type, it performs best for humans, 
with a success rate of 41%, close to Dhog (43% success 
rate) and KCF (39.7% success rate). The tracker performs 
worse for animals. One possible explanation is that tracker 
is unable to extract unique features from animals, especially 
since the color features of the animals in the dataset are very 
similar to the background (example: a white rabbit moving 
on a white floor as shown in Fig. 13). These animals are 
also very small making it harder for sufficient features to 
be extracted.

R =
1

N

N∑
i=1

uiwhereui =

{
1ifri > rt
0otherwise

,

Fig. 14   Sample RGB and Depth images were collected for real-time analysis of the proposed long-term tracker
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One of the main objectives of our tracker is to be able to 
track when the target is occluded. Our tracker shows positive 
results in the ‘Occlusion’ category. We observe that, when 
the target is occluded, the success rate of our tracker is sig-
nificantly better than KCF. KCF (RGB tracker) has a success 
rate of 35.2% whereas our tracker (RGB-D tracker) has 47%, 
a jump of approximately 12%, validating our hypothesis that 
depth data can significantly improve our results. Our trackers 
also perform well from a few other RGB-D-based trackers 
like Dhog which has a success rate of 38.4% and PCflow 
with a success rate of 32.4%.

In target size, our tracker performs best for larger targets 
(success rate of 46%) very close to Dhog, another RGB-D 
based tracker (success rate of 47.2%). Both of them are sig-
nificantly better than KCF which uses only image features 
for tracking. When the object is large, not only features are 
easily and sufficiently captured, but the depth information 
is also large enough to track any significant changes in the 
depth of the target. Both these factors combined, make 
depth-based trackers better for larger objects.

It is observed that for ‘Movement’ and ‘Motion Type’, 
depth data can negatively affect the performance depend-
ing on the scenario. Depth information of an object will 
change significantly if an object rotates or move very fast. 
Image features are also adversely affected since (a) fast-
moving objects will be blurry and (b) rotating objects will 
have different features at each frame (relative to the previous 
frame). Also, our tracker is not scale-invariant making the 
false positives even higher than other depth-based trackers 
in both these categories. Due to this reasoning, our current 
implementation of the tracker can not be generalized well on 
rotating objects and fast-moving objects (35% success rate 
as compared to 42% in KCF). Depth does help in identifying 
the target better, however, when the target is hidden or lost, 

the tracker attempts to locate the target in surrounding areas 
adding to a few false positives. For these reasons, during 
passive and active motions of the target, the performance 
of our tracker can be better or poor depending on a scenario 
as can be seen in Table 1. The current state of the art for 
occlusion detection on Princeton dataset is 3D-T [31] which 
provides a success rate of approximately 70% for occlusion 
scenarios and works best for humans (81%) and weakest 
for animals (64%). It uses 3D based detection that exploits 
sparse representation, object parts as well as adaptive parti-
cle sampling and pruning, all in a unified framework.

5.2 � Real‑time Kinect dataset

5.2.1 � Evaluation metrics

With the implementation of a new RGB-D tracker, we aim 
to compare how well does new RGB-D tracker performs as 
compared to the KCF tracker (which only uses RGB). We 
take our inspiration for evaluation metrics from the original 
work of KCF which used average precision as their evalua-
tion metrics. Additionally, we also use confusion matrices 
for two trackers (our RGB-D tracker and KCF RGB tracker) 
to discuss the tracker’s ability to distinguish when the target 
is present (True Positives i.e., TP) and when it is absent 
(True Negatives i.e. TN).

Average precision: The first metric we use for com-
parison is average precision (AP). Precision can be stated 
as ‘when the model guesses, how well does it guess cor-
rectly”. Average Precision (AP) as the name suggests is 
calculated by taking the mean of the precisions (calculated 
for each dataset). If we define n as the number of scenes in 
the dataset (e.g., 5 scenes in our dataset) and s as the num-
ber of samples(images) in each scene in the dataset (e.g., 

Table 1   The table shows the 
success rate (%) of our tracker 
on Princeton dataset

The evaluation compares the performance of our tracker against the KCF tracker and a few other trackers. 
Trackers marked with (*) use RGB and Depth data; others use only RGB data

Target type Target size Movement Occlusion Motion type

Human Animal Rigid Large Small Slow Fast Yes No Passive Active

Ours* 41 37 42 46 40 56 35 47 51 52 46
KCF [7] 39.7 49.4 54.6 40.1 52.5 57.8 42.9 35.2 63.6 56.4 43.7
Dhog* [23] 43.3 48.3 55.9 47.2 50.3 52.7 47.5 38.4 63.5 54.3 46.9
Struck [25] 35.4 47 53.4 45 43.9 58 39 30.4 63.5 54.4 40.6
VTD [26] 30.9 48.8 53.9 38.6 46.2 57.3 37.2 28.3 63.1 54.9 38.5
RGB [23] 26.7 40.9 54.7 31.9 46 50.5 35.7 34.8 46.8 56.2 33.7
CT [27] 31.1 46.7 36.9 39 34.4 48.6 31.5 23.3 54.3 42.1 34.2
PCflow* [23] 35.2 29.1 43.6 42.2 33.2 47.2 33.1 32.4 43.5 41.3 35.5
TLD [28] 0.29 0.35 0.44 0.32 0.38 0.52 0.30 0.34 0.39 0.50 0.31
MIL [29] 32.2 37.2 38.3 36.6 34.6 45.5 31.5 25.6 49 40.4 33.6
SemiB [30] 0.22 0.33 0.33 0.24 0.32 0.38 0.24 0.25 0.33 0.42 0.23
OF [23] 18 11 23 20 17 18 0.19 0.16 0.22 0.23 0.17
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150 samples for scene 1, 180 samples for scene 2, etc.) 
such that total number of test samples is N = n ∗ s , then,

and

where N is the number of samples in the dataset TP is True 
Positive and FP is False Positive.

Confusion matrices: Confusion matrices are a perfor-
mance measure of a classification algorithm. It is a 2D 
array that compares the true labels against the predicted 
labels. It shows how well the predictions are made for any 
category. Confusion matrices can be defined in two ways 
as mentioned below.

Method 1: We can use a method where TP, FP, FN, TP 
are dependent on the actual ‘number’ of classifications 
w.r.t to the total number of classifications. Hence when 
Total = TP + FN + FP + TN , elements of the confusion 
matrix can be defined as shown in Table 2.

This representation though correct would not help much 
in our evaluation because for our base tracker KCF (RGB 
tracker) TN and FN will always be 0. It is because KCF 
can not identify the absence of the target. Intuitively, if the 
tracker does not have the ability to predict the absence of 
a target, our metrics should show that TN and FN can not 
be computed and hence ‘can not be determined’.

Method 2: Motivated by the belief that Method 1 may 
not be adequate, we modify our confusion matrix. We 
know that at any given instance of time, the target will be 
either predicted or not predicted. So, we can look at our 
predictions in every scene to see how well it matches our 

Precision(P) =
TP

TP + FP
,

AveragePrecision(AP) =
1

N

N∑
i=1

P,

ground truth. We can now define our confusion matrix as 
(Table 3):

This metric is also helpful when comparing and discuss-
ing datasets where the number of samples in each data-
set varies. For example, consider the following scenario 
(Table 4):

Method 2 seems to be a fair comparison to answer ‘how 
many false negatives were correctly predicted’ between two 
datasets with varying samples. Given the above motivation, 
we use Method 2 as the correct metric for evaluation and 
discussion.

Hence, for the KCF RGB tracker, TN and FN will always 
be ‘undetermined’. However, if our RGBD tracker performs 
well, including occlusion scenarios, we expect to have TN 
and TP values, both high in number.

Table 5 shows the comparison of average precision (AP) 
computed on our dataset. Figure 15 shows the confusion 

Table 2   The table shows how elements of the confusion matrix (TP, FP, TN, FN) are computed for Method 1

True Positives (TP) False Positives (FP) True Negatives (TN) False Negatives (FN)

The outcome when a model cor-
rectly predicts the positive class 
i.e. models says the target is 
present when the target is present

The outcome when a model incor-
rectly predicts the positive class 
i.e. models says the target is 
present when the target is absent

The outcome when a model cor-
rectly predicts the negative class 
i.e. models says the target is 
absent when the target is absent

The outcome when a model 
incorrectly predicts the nega-
tive class i.e. models says the 
target is absent when the target 
is present

TP(in%) =
TP

Total
FP(in%) =

FP

Total
TP(in%) =

TN

Total
TP(in%) =

FN

Total

Table 3   The table shows how elements of the confusion matrix (TP, FP, TN, FN) are computed for Method 2

For every time the target is predicted in the scene How many times is the prediction correct?
TPnew(in%) =

TP

TP+FP

How many times is the prediction incorrect?
FPnew(in%) =

FP

TP+FP

For every time the target is not predicted in the 
scene

How many times is the prediction incorrect?
FNnew(in%) =

FN

FN+TN

How many times is the prediction correct?
TNnew(in%) =

TN

FN+TN

Table 4   The table shows the usefulness of Method 2 over Method 1 
for two datasets

Total 
no. of 
samples

No. of 
samples 
where the 
target was 
absent

No. of 
samples 
when the 
target was 
predicted 
absent

TN (%) 
(using 
Method 
1)

TN (%) 
(using 
Method 2)

Dataset 1 100 20 20 20% 100%
Dataset 2 200 20 20 10% 100%

Table 5   Table shows the 
comparison of average precision 
(AP) in % when the two trackers 
are evaluated on the dataset

Tracker AP (%)

Ours 66.35
KCF 39.99
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matrix for the test results for KCF RGB tracker and our 
RGB-D tracker. As discussed previously, we consider that 
TP + FP = 100% and FN + TN = 100%. We know that KCF 
RGB tracker gives no TN and FN, and hence, it can not make 
a decision on it. Figure 16 gives a detailed view of the sam-
ples in each scene along with the prediction made on them.

Hence by augmenting image features with the depth 
information, we make our tracker more robust to occlusions. 
It is able to detect occlusions and can also detect the absence 
of the target and stops tracking. This not only increases the 
TN , but also decreases FP . From Fig. 15. we can see that 
TN are 52.7% as compared to KCF where we cannot have 
this value. TP in our tracker is at 92.50% which is signifi-
cantly higher than KCF at 32.54%. Figure 16 shows some 
sample results from our training method. However, we do 
have some failure cases which add to our FP and FN as we 
will now discuss.

5.2.1.1  Computation time  KCF is the fastest with 141 
frame-per-second (FPS) but it leads to less accurate results 
on average. The tracker achieves an average FPS of 10 on a 
PC with Intel i5 3.6 GHz CPU and 16 GB RAM on MAT-
LAB with multi-threading. This is comparable to DS-KCF 
(30–43 FPS) but slightly lower due to the exhaustive search 
strategy we use to make accurate predictions. Our pro-
posed method aims to improve the tracker in its success rate 
(Table 1) and precision of the tracker (Table 5) to make it 
less prone to errors during occlusion. Such trackers are suit-
able for real-time applications typically mobile robotic plat-
forms. We estimate that with the use of GPUs, a higher FPS 
can be achieved due to more available compute resources 
and better processing.

5.2.1.2  Failure cases  Adding depth information to existing 
features makes the tracker very robust to occlusions. How-

ever, when the target is absent, the tracker attempt to locate 
the target in the vicinity. Since the tracker keeps looking in 
the neighboring space, there are locations where it falsely 
predicts the target momentarily adding to False Positives. 
Also, the proposed tracker cannot detect partial appearance. 
Hence, in scenes where the target is coming out of occlu-
sions, there are no clear detections adding to False Nega-
tives. When the target is clearly out of the occlusion, the 
target is tracked again. Figure 17 shows some of the failure 
cases of the proposed tracker.

6 � Discussions and Conclusions

In our proposed implementation, it is shown that depth 
cues when used with image features in KCF tracking can 
significantly improve the performance of the tracker. We 
observe that KCF tracker loses the target information once 
it is occluded adding to its inability to track a subject for 
a long time. Depth information, however, provided an 
additional layer of information that informs the tracker of 
the status of occlusion (true or false). Hence, it can stop 
tracking the target when the target is hidden. Using similar 
information, when the tracker is informed that the target 
is no more hidden, using the sliding window approach, 
it is able to search exhaustively in a large search space 
around the target to relocate the target. We are assuming 
the tracking happens in an indoor environment; hence, the 
nominal walking speed is considered. The experiments 
prove the usefulness of depth information as additional 
information in making the tracker robust. Experiments also 
show a few failure cases showing that at a certain time, the 
model may drift slightly from the expected path, possibly 
in cases (a) when the target is partly hidden (just coming 
of occlusion), (b) failed to correctly estimate the depth 

Fig. 15   Comparison of confusion matrix of test results between our RGB-D tracker and KCF RGB tracker. Note, each row of the confusion 
matrix adds up to 100% i.e. TP + FP = 100% and FN + TN = 100%. See the related section for an explanation
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Fig. 16   Qualitative results for the proposed RGB-D tracker, compared to Kernelized Correlation Filter (KCF) tracker. Images show the tracking 
bounding box on test data. The red color denotes the KCF tracker and the green color denoted our tracker
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information. From our experimental observations, we see 
that the tracking performance of the tracker is improved 
compared to our KCF RGB tracker but also has the poten-
tial to improve even further.
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