
Vol.:(0123456789)1 3

Multimedia Systems (2023) 29:401–420
https://doi.org/10.1007/s00530-022-00996-6

REGULAR PAPER

DATaR: Depth Augmented Target Redetection using Kernelized
Correlation Filter

Srishti Yadav1 · Shahram Payandeh1

Received: 6 January 2022 / Accepted: 17 August 2022 / Published online: 6 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Unlike deep learning which requires large training datasets, correlation filter-based trackers like Kernelized Correlation
Filter (KCF) use implicit properties of tracked images (circulant structure) for training in real time. Despite their popularity
in tracking applications, there exists significant drawbacks of the tracker in cases like occlusions and out-of-view scenarios.
This paper attempts to address some of these drawbacks with a novel RGB-D Kernel Correlation tracker in target re-detection.
Our target re-detection framework not only re-detects the target in challenging scenarios but also intelligently adapts to avoid
any boundary issues. Our results are experimentally evaluated using (a) standard dataset and (b) real time using the Microsoft
Kinect V2 sensor. We believe this work will set the basis for improvement in the effectiveness of kernel-based correlation
filter trackers and will further the development of a more robust tracker.

Keywords  Visual tracking · Depth-based tracking · Correlation filters · Kinect sensors

1  Introduction

Visual tracking as a field has seen tremendous progress in
recent years in robotics and surveillance applications. It is
trying to address the issues caused by noise, clutter, occlu-
sion, illumination changes, and viewpoints (e.g., in mobile
or aerial robotics). There have been numerous attempts in
designing and deploying a robust tracking method. However,
achieving full tracking accuracy under realistic conditions
presents various challenging scenarios. Despite the wide-
spread applications of neural network-based architectures,
recent years have also seen a significant shift in the atten-
tion towards trackers that learn “on the fly” i.e., approaches
that model how an object varies visually over time, as and
when new data becomes available. Many discriminative
Correlation Filter (CF) tracking methods have adopted

this approach. Though neural network-based architectures
(or various deep learning extensions) have shown good
accuracy, they have significant disadvantages in terms of
cost, training time, and computational power: For example,
XLNet model [1] costs $61,000 to train, uses 512 TPU v3
chips with a batch size of 2048 (for comparison, a person
or a small research lab normally uses a batch size of 32
with normal compute) and takes 2.5 days to train. These
issues have encouraged the visual tracking community to
look for a faster and more competitive alternative to CF-
based trackers. They offer solutions for real-time tracking
with good real-time performance. Correlation filters have
gotten significant attention because of their high frame per
second (FPS), low computation power requirement (they
work significantly well with CPUs but can be made faster
with few GPUs), and high efficiency. One such tracker is
the Kernelized Correlation Filter (KCF) [2] tracker, which
is a type of correlation filter-based tracker known for its
ability in handling thousands of sample data yet keep the
computation load low by exploring tools of kernel trick and
properties of Circulant Matrices. Despite the progress made
in tracking robustness, most works like [3–5] mostly focus
on scale adaptation, occlusion detection, or shape change. A
big part of long-term tracking is not only detection of occlu-
sion but also re-detection of the target once it is out of the
occlusion and tracking It in real-time continuously.

Communicated by R. Huang.

 *	 Srishti Yadav
	 srishtiy@sfu.ca

	 Shahram Payandeh
	 payandeh@sfu.ca

1	 Networked Robotics and Sensing Laboratory, School
of Engineering Science, Simon Fraser University, Burnaby,
Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-022-00996-6&domain=pdf

402	 S. Yadav, S. Payandeh

1 3

Our work specifically focuses on human targets that are
occluded by objects (e.g., chairs) or by other humans (e.g.
a tall person). It discusses the implementation of architec-
ture that can help overcome this challenge. The tracking
methodology proposed considers a single Kinect RGB-D
camera, single-target, and is model-free that is applied to
long-term tracking. The model-free property means that the
only supervised training example is provided by the bound-
ing box in the first frame. Long-term tracking means that the
tracker learns to re-detection after the target is lost. i.e., to
infer the object’s position in the current frame. This paper
proposes a novel architecture to enable the KCF tracker to be
more robust during occlusion by utilizing additional depth
information. A key advantage of the proposed tracker is that
the depth information used by the tracker is intelligently
adapted to avoid boundary issues (situations where a target
may be at the edge of the camera view or about to leave the
camera view). For initialization, our tracker, similar to KCF,
uses the Region of Interest (ROI) specified in the first frame.
However, KCF only uses image features of the RGB image
within the ROI but our proposed tracker uses both image
features and depth information within the ROI. Due to the
inclusion of depth information, this approach can lead to
boundary issues since the depth data is expected to change
at the edge when the tracker is in motion, adversely affect-
ing the tracking performance. However, as it will be shown,
the depth information in the proposed tracker is intelligently
adapted to incorporate the correct depth information of the
moving tracker. Our proposed tracker was validated on the
Princeton RGB-D dataset as well as the real-time dataset
collected by the author. The results show that the tracker can
successfully detect when the human target is occluded and
re-detect it after occlusion.

This paper is divided into five sections. The paper first
gives a literature review of the RGB and RGB-Depth-based
trackers in Sect. 3 followed by the details of the algorithm
in Sect. 4. We discuss our experimental set-up, including
the description of the dataset in Sect. 5 which is followed by
results and observations in Sect. 6. We conclude the paper
in Sect. 7 where we discuss the findings of our proposed
long-term RGB-D tracker.

2 � Literature review on RGB and RGB‑D
based trackers

Since the invent of MOSSE [6] in 2010, correlation filter
(CF) based trackers gained huge popularity owing to their
speed and accuracy. Correlation Filters are a class of classi-
fiers, which use a designed template to produce sharp peaks
(strong correlation) in the correlation output. The peaks cor-
respond to the precise localization of the object/target in
scenes. One of the popular CF-based trackers was proposed

by Henrique et al. where the authors proposed a kernelized
version of the CF tracker [7] which benefitted from the cir-
culant structure of the samples. This tracker was studied in
[8–10] and further improvements were investigated by [11,
12] who applied a correlation filter to scale space, address-
ing the issue of scale adaptation. Other improvements
include spatial regularization in SRDCF [13], continuous
convolution in C-COT [14], max-margin classifiers in [15],
Spatio-temporal learning [16], and adding robustness using
part-based features [17, 18].

Overall, several efforts have been made to address where
challenging issues of visual tracking. However, target
appearance, if used as the main cue for tracking, is not a
very reliable feature when the target suffers from challenging
issues of occlusion, out-of-view, and illumination changes.
Features like depth data, with its ability to distinguish
between foreground and background, can help in making
the tracker more accurate. Trackers have been developed in
the past which use RGB features augmented with additional
features like depth. Reference [19] build upon color-only
KCF tracker and adds depth showing a real-time perfor-
mance of ~ 35 FPS. Reference [20] proposes a distractor-
aware learning method (DLS) with RGB-D data to effec-
tively alleviate the model drift problem. Reference [21] uses
depth features with RGB to address color camouflage issue.

These recent improvements in RGB-based CF-based
trackers have come at a cost of speed and real-time per-
formance. For example, the Discriminative Correlation
Filter (DCF) [13] using HOG features reached ~ 6 FPS as
compared to some early state-of-arts like KCF [7] which
attained ~ 170 FPS, and MOSSE [6] which was ~ 700 FPS.
Similarly adding depth has helped improve accuracy but
the challenging issues are yet to be resolved. It would be
interesting to explore an improved CF tracker which can
address some of the existing issues related to robustness e.g.,
occlusion, model drift, scale changes, color camouflage, etc.,
yet achieves higher accuracy. Few works have attempted to
address this gap of speed in RGB-D trackers. Reference [4]
proposes a deep depth-aware long-term tracker that extends
a deep discriminative correlation tracker (DCF) to embed
depth information to deep features. It achieves state-of-the-
art RGB-D tracking performance and has better speed per-
formance. Closing the gap between speed and accuracy in
an RGB-D tracker is an ongoing problem.

3 � Depth augmented target re‑detection

KCF is based on the discriminative method, which formulates
the tracking problem as a binary classification task and distin-
guishes the target from the background using a discrimina-
tive classifier [22]. Two of the main factors of the efficiency
of KCF are that it uses augmentation of negative samples to

403DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

enhance the discriminative ability while also exploring the
structure of the circulant matrix and performing the computa-
tion in the Fourier domain for high speed. The training and
detection pipeline of KCF can be seen in (Fig. 1).

KCF algorithms work as follows: Given the initial selection
of a target (i.e., center position and size), a tracked region is
created. The tracked region is increased from the target size
to provide some context. This tracked region is a part of an
image frame. Various features are extracted from the tracked
region and each channel is weighted by a cosine window. A
circulant matrix is used to learn all the possible shifts of the
target from a base sample. The coefficient �f encodes (Eq. 1)
the training samples, consisting of all shifts of a base sample
in the frequency domain. It is these shifts that provide a large
number of samples of the training. The fast-learning equation
is expressed as:

where yf = Fy denotes the Discrete Fourier Transform (DFT)
ofy . The term kxx

′

f
 denotes the DFT of kxx

′

 ; the kernel correla-
tion function between signals x andx′ . The division repre-
sents an element-wise division and the scalar � is a regulari-
zation term. The training label matrix y is a Gaussian
function that smoothly decays from the value of one for the
centered target to zero for other shifts.

The response is computed as the element-wise multiplica-
tion between the learnt �̃f and the correlation of zf with the
learnt model x̃f at various image patches z . The detection
response for each location is:

(1)�f =
yf

kxx
�

f
+ �

,

(2)r
(
kz�x
f

)
= F−1

(
kz�x
f
⊙ �𝛼f

)
,

where r
(
kzx̃
f

)
 is the response, x̃f and alpha �̃f are the linear

interpolations of xf and �f at each detection with the selec-
tion of an interpolation factor and ⊙ represents the dot prod-
uct. The readers are directed to [7] for more details. Hence,
we can increase the computation speed due to: (a) element-
wise multiplication in Fourier Domain and (b) computation
in high dimensional data using kernel trick. Once we are
able to locate the target, these target locations can be used
to interpolate our model to train the data in a new frame (at
this location). This method can be employed for all subse-
quent frames. Hence, for any instance in the image, with the
past target location and current features, the target can be
tracked over time. This type of tracking methodology is
called tracking-by-detection and has been used in the
research time and again.

3.1 � Method implementation

As discussed previously, KCF tracker achieves faster
throughput by replacing convolution actions in the spatial
domain with element-wise multiplication in the frequency
domain using RGB color features. However, these color fea-
tures do not encode complete tracking information about
the target. Depth information can provide additional spatial
information in the form of distance to the sensor. This addi-
tional information forms the basis of our occlusion detection
and re-detection framework. This is based on the assumption
that an occluding object will have a different depth of infor-
mation as compared to the target being occluded.

The target occlusion knowledge is computed using the
information from around the target’s center. It is so because
the information at the edges of the bounding box tends to
include small false information, but the target center is

Fig. 1   Training and detection pipeline of KCF

404	 S. Yadav, S. Payandeh

1 3

expected to be constant. Since the computation is made on
a small section (the area around the target center) of the
target bounding box area, it improves computational effi-
ciency. The RGB information helps the tracker to update the
model template (updated in the Fourier domain) and depth
information helps it to decide when to track. Our proposed
tracker stops tracking at the moment the target is occluded.
Hence, it adds to the tracker’s robustness as the model and its
coefficients are interpolated correctly. In any tracking algo-
rithm involving depth data, ensuring that the correct depth
of the target is included is very important. KCF with depth
data takes the RGB image features and depth information of
the target patch using the bounding box used for detection.
As the target moves and changes its position or scale, there
is a high probability that the bounding box (of the target)
starts including more depth data of the background from the
edges. This would falsely provide higher background depth,
as compared to (only) target depth, making it harder for the
model to make the right predictions.

Our tracker proposes a self-adjusting depth patch as a
solution to this problem. It saves the depth information of
the previous (target) patch and new (target) patch and locates
the possible center of these depth patches by taking the area
around center of the patch (calculated using position coordi-
nates). Figure 2a and b show the difference between a frame
and a patch. Figure 2c shows how depth patch around the
center of two patches is extracted.

3.2 � Creating self‑adjusting depth patch

The tracker further computes the difference in the depth
information of these two parts of patches and looks for any
high peaks at the edge of this value as shown in Fig. 3. The
edges are defined as a few columns on the extreme end. For a
non-occluding object, any abnormally high peak at the edges
would indicate the inclusion of background depth informa-
tion (which is undesired). This is based on the assumption
that two depth images in two subsequent frames will have

(a) Frame (grayscale) (b) Patch from the frame

(c) Depth patch around the center of two patches of two subsequent frames

Fig. 2   Figure shows a grayscale frame, b patch from the grayscale frame, c the depth of the patch around the center of two patches (of two sub-
sequent frames)

405DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

similar depth data around their center, hence their difference
should be minimal or close to zero.

If there is a high peak, we decrease the size of the depth
patches from the edges such that abnormally high peaks
are removed as shown in Fig. 4. After the depth has been
adjusted, the difference in the depth is minimal ensuring that
we have correct depth information for the target.

However, in the case of occlusion, even after adjusting
this difference in depth patch of subsequent frames, peaks
will exist because the peaks will cover far more than the area
at extreme edges (with few peaks almost towards the center
of the patch) as shown in Fig. 5. The existence of these peaks
helps the tracker identify the occurrence of occlusion in the
frame.

(Bottom Left) Before depth adjustment: Mesh graph of
difference of centre depth patch for frame 2 and frame 3
i.e., 3 ― 2 where x = width, y = height,

 z = depth value

(Bottom Right) After depth adjustment: Mesh graph of
difference of centre depth patch for frame 2 and frame

3; x = width, y = height, z = depth value

Fig. 3   The figure shows how the difference in center depth patch is computed for two subsequent frames when the target is not occluded. The
image frame and the patch considered here are the same as in Fig. 2

406	 S. Yadav, S. Payandeh

1 3

3.3 � Training, detection, and re‑detection of target
under occlusion

Our proposed RGB-D tracking with a re-detection algorithm
builds upon the KCF tracker. KCF uses image data features
to locate and detect trackers. In our proposed tracker, we
add depth information to provide the tracker with contextual
information about the target and the background, for it to be
able to distinguish between the two. The tracking pipeline
for the proposed RGB-D tracker is shown in Fig. 6, the sym-
bols of which are defined as follows:

� Standard deviation
� Regularizer
� Learnable parameter
f (z) The response of kernel ridge regression
patchrgb Part of the RGB image which has the target, as

shown in Fig. 2. b
posi Position of the target defined as {x,y}
^ FFT of a variable

Occlusionstatus Status of the tracker which informs if the tracker is
occluded (True) or not occluded (False)

A more detailed version can be seen in Algorithm 1 of
Fig. 7. Readers are to note that Fig. 7 has been split into four
parts where Fig. 7a–c are components that help define the
tracking algorithm in Fig. 7d, and hence can help understand
the tracking algorithm better.

For the first frame, the tracker is provided with the ground
truth. The tracker trains on this frame using the ground truth
data (target position) to interpolate this position to the next
frame. With this knowledge of the target location (from the
previous frame), the tracker defines its search space around
this target location, in the new frame. Search space is the
area in which the tracker will attempt to locate the target as
shown in Fig. 8.

The tracker extracts all the possible patches from the space.
The search space is dependent on the width of the tracker. If
the tracker width is large, the search space is larger, and vice
versa. If we keep the constant width of the search space, we
might end up storing a much higher number of patches for

Frame 2: Grayscale and Depth Frame 3: Grayscale and Depth

(a)
Centre depth patch:

Depth of the area around target
patch center) extracted from the
depth data of the target patch of

frame 2

(b)
Centre depth patch:

Depth of the area around target
patch center) extracted from the
depth data of the target patch of

frame 3

(c)
(After depth adjustment)

Difference for center depth
patches of two (non-occluding)
frames (Frame2 and Frame 3).

We see no peaks in their
difference after depth

adjustment.

Fig. 4   The figure shows how the difference in center depth patch changes for two subsequent frames when the target is not occluded

407DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

smaller target sizes and very few target patches for large target
sizes, making further computations difficult. The search space
is also limited to the planar movements of the subject since we
do not expect the target to move vertically in space as shown
in Fig. 9.

For detection in the new frame, the tracker now correlates
these patches (with gaussian correlation similar to KCF)
with the initial target patch, to get all possible correlation
responses. Mathematically, if z and x represent the features of
the extracted patch and original target patch respectively, then
we need to calculate k̂xz and �̂ for fast training as represented
by Eq. 2 (re-written below):

where �̂ is the model parameter used for model interpola-
tion, obtained, and updated every time at the training stage
as shown in Fig. 7. For gaussian correlation, we can write
k̂xz as:

�f (z) = kz�x
f
⊙ �𝛼f ,

where ⊙ is the dot product. f (z) gives us the detection
response and the maximum peak of this correlation response
(highest correlation response) is observed as shown in
Fig. 10.

If the maximum detection response is less than 50%,
there are two possible scenarios: (a) tracker is partly
visible (b) tracker is occluded as shown in Fig. 11. To
confirm the status of the tracker, we compute the differ-
ence between the depth patches at frame n − 1 and n (at
the target centre), as shown in Fig. 5. If the difference in
depth is minimal or close to zero, we know that target
is not occluded, and the tracker will continue to track at
the updated position computed using the detection score
(maximum correlation response). However, if the differ-
ence in depth is high, we know the target is occluded. The
tracker will, hence, stop tracking the target and will keep
searching for the target in the search space. Once it locates
the target (when a patch from the search space gives a

(3)�kxz = FFT(exp
�
−

1

𝜎2

�‖x‖2 + ‖z‖2 − 2F−1
�
�x∗ ⊙�z

���
,

Frame 10: Grayscale and Depth Frame 11: Grayscale and Depth

(a)
Centre depth patch:

Depth of the area around target
patch center) extracted from the
depth data of the target patch of

frame 10

(b)
Centre depth patch:

Depth of the area around target
patch center) extracted from the
depth data of the target patch of

frame 11

(c)
(After depth adjustment) Difference

for center depth patches of two
(occluding) Frames (Frame10 and

Frame 11). Since the depth
information changes significantly
towards the center too, we see

peaks in their difference.

Fig. 5   The figure shows how the difference in center depth patch changes for two subsequent frames when the target is occluded

408	 S. Yadav, S. Payandeh

1 3

correlation response > 50%), it will re-detect the target and
continue to track it.

4 � Experimental setup

KCF tracker was originally implemented for RGB data.
Hence, the dataset on which KCF was originally evaluated
can not be used for testing the proposed RGB-D algorithm.
Hence, to evaluate our algorithm, we use the Princeton
RGB-D dataset. The dataset is also very diverse including
examples of (a), occlusion (b), speed (c) and size (d) deform-
ability which helps test the algorithm over a wide range of
possible challenges. A sample image with RGB and its depth
data can be seen in Fig. 12.

Apart from benchmark comparison (on the Princeton
dataset), we collected our own RGB-D dataset for further
evaluation. This dataset is collected using Microsoft Kinect
V2. Figure 16 gives detailed information on the type of
scenes and their respective samples.

To evaluate our method, we tested on two datasets (a)
Princeton dataset and (b) the dataset collected by the authors
using Kinect in real-time. We explain the setup of both the
scenarios below.

4.1 � Princeton dataset

In the Princeton RGB-D dataset, images are in 16-bit PNG
format. Values at each pixel are the distance from Kinect to
the object in mm. A sample image with RGB and its depth
data can be seen in Fig. 12a and b. We can create a depth
view of the sample image using the RGB-D data where x, y
define pixel location and z the distance from the sensor.
Depth is when an image is viewed as seen from z axis as
shown in Fig. 12b. Depth view image helps us visualize the
images as they are seen from the depth sensor.

In this evaluation system, we use the Princeton data
benchmark [23] to compare our tracker with KCF (our base
tracker) and other trackers. This dataset uses 95 videos for
evaluation. These datasets were originally captured using
standard Microsoft Kinect 1.0. Due to Kinect’s limit on the

Fig. 6   Flowchart of the training
and detection pipeline of the
RGB-D tracker

409DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

Fig. 6   (continued)

410	 S. Yadav, S. Payandeh

1 3

Fig. 7   Figure showing the RGB-D-based tracking algorithm. d Shows the full algorithm which uses modules shown in a the kernel correlation
computation, b the training using the kernel correlation module, and c detection using the kernel correlation module

411DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

minimum and maximum distance for accurate depth accu-
racy, these videos contain an indoor environment with object
depth values ranging from 0.5 to 10 m.

This benchmark dataset has high diversity including
single-tracking subjects like humans, animals, balls, etc.
Figure 13 shows a few sample images from the Princeton
dataset.

The various aspects of the dataset which show the diver-
sity of samples are summarised as follows:

Target type: The dataset contains three types of objects:
humans, animals, and rigid objects (example: toys and
human faces which have the freedom to translate or rotate).
Animal movements have out-of-plane rotation and some
deformation. Tracking difficulty is expected o be slightly
difficult for humans since the degree of freedom for human
body motion is very high.

Scene type: Each scene has a different type of back-
ground. Some scenes like that of café and school are more
complex with a lot of moving people moving around. Others
like a turtle in a living room have a more static background.

Occlusion: Different possible occlusion scenarios are
considered like, how long is the target occluded, whether

target moves while being occluded or is static when it is
occluded, etc.

Another criterion that was considered was the bounding
box distribution over all sequences and over time. Hence,
a target in a sequence does not necessarily be in the center
but can be anywhere in the frame at any time. Readers are
directed to [23] for a more detailed analysis of the sequence
distribution of the dataset.

4.2 � Real‑time Kinect dataset

To further test our tracker, we tested it on the data we col-
lected in real-time. Princeton data has a mix of subjects with
a difference in scales, and color changes. We collected data
on less complex scenarios (almost an ideal testing ground)
with human data, minimal speed, and occlusion cases. Since
we propose a long-term tracker that is expected to perform
better in occlusion and out-of-scene scenarios, we focus par-
ticularly on such scenes. To accommodate for diversity in

Fig. 8   The figure shows the target patch and associate search space of
the tracking pipeline. Search space is dependent on a the target loca-
tion in the previous frame and b the width of the target

Fig. 9   The figure shows the issue if the search space is kept consistent across different images, it would lead to incorrect search space when the
target size will vary

Fig. 10   Gaussian correlation of the base patch of the current frame
with the patch from the previous frame

412	 S. Yadav, S. Payandeh

1 3

Frame 1

Frame 2 Detection response when the target is not occluded
where the z-axis is the value of ()

Frame 1

Frame 10 Detection response when the target is partly occluded
where the z-axis is the value of ()

Frame 1

Frame 12 Correlation response when the target is completely
occluded where the z-axis is the value of ()

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

Fig. 11   Different detection responses of two subsequent frames with the non-occluding and occluding target. Note the peak value changes from
0.8 (i.e. 80%) when it is not occluded to 0.4 (40%) when it is partly occluded to 0.3 (i.e. 30%) when it is fully occluded

413DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

the dataset, we choose subjects that have different sizes and
different types of occluding objects (chair, box, and human).

Data collection and hardware setup: The data is col-
lected using Microsoft Kinect V2 in an indoor home environ-
ment. The subjects vary in size and gender to accommodate
for diversity in subjects. The objects used for occlusion are
things like a chair, a large box which is easily found in day-to-
day life. The data collected assumes that the target is moving
unidirectionally or bidirectionally in the horizontal plane. We
do not consider scenarios where the target may tend to move
towards and away from the sensor. They are useful in scenarios
where the sensors are mounted in hallways (at a height at an
angle) or mounted on stationary mobile robots which for the
majority part observe the target moving from left to right or
right to left. Hence, our data is a fair representation of various
scenarios which are likely to occur in day-to-day lives. Due to
COVID-19, there were few restrictions on who we can invite
as subjects and where can we do the experiments. Despite

these challenges, we made our best efforts to collect data in a
reasonable setup. This data was collected using both Kinect for
Linux and Kinect for MATLAB on Windows to accommodate
for any software differences. There is a total of ~ 500 scenes
with these different subjects and scenarios. Figure 14 shows a
few sample RGB images and their corresponding depth images
from our dataset.

Data annotation: Data were manually annotated by the
author to collect the ground truth (GT). Each GT depicts
tighest fitting bounding box that can be drawn to have the
target within the box.

5 � Result and observation

We evaluated the performance of our tracker on Prince-
ton Dataset, a standard benbchmark for tracking and make
observations of the results, in particular how the results are

Fig. 12   a Sample RGB image from Princeton dataset. b Corresponding depth image, c depth colormap from the depth data

Fig. 13   The figure shows a few sample images with the target to be tracked (in green) from the Princeton Dataset. Best viewed in color

414	 S. Yadav, S. Payandeh

1 3

affected with human targets and theirt size. We also make
detailed analysis when we test the algorithm on the dataset
we collect using our own Kinect depth sensors and show that
our proposed method ourperforms standard KCF tracker by
a high margin.

5.1 � Princeton dataset

5.1.1 � Evaluation metrics

To evaluate the overall performance, we test it on Prince-
ton data. It does not explicitly provide ground truth bound-
ing box values but provides a script to evaluate results as
detailed in [23]. We report the success rate provided by
Princeton data evaluation (criterion used in the [24]) which
is the ratio of overlap between the outputs and true bound-
ing boxes:

where ROITi is the target bounding box in the i-th frame and
ROIGi

 is the ground truth bounding box. By setting a mini-
mum overlapping area rt , they calculate the average success
rate R of each tracker as follows:

ri =

⎧
⎪⎨⎪⎩

area
�
ROITi ∩ ROIGi

�
ifbothROITiandROIGi

exist

+1ifneitherROITiandROIGi
exist

−1otherwise

,

where ui is an indicator denoting whether the output bound-
ing box of the i-th frame is acceptable, N is the number of
frames, and rt is the minimum overlap area defining whether
the output is correct. Since some trackers may produce out-
puts that have a small overlap ratio overall frames while
others give large overlap on some frames and fail completely
on the rest,rt must be treated as a variable to conduct a fair
comparison. Table 1 shows the success rate of our tracker
as compared to KCF and other trackers under different cat-
egorizations on the Princeton dataset.

From the evaluation, we observe that our tracker performs
best for human targets that are large in size and for scenarios
where the target is occluded.

When it came to target type, it performs best for humans,
with a success rate of 41%, close to Dhog (43% success
rate) and KCF (39.7% success rate). The tracker performs
worse for animals. One possible explanation is that tracker
is unable to extract unique features from animals, especially
since the color features of the animals in the dataset are very
similar to the background (example: a white rabbit moving
on a white floor as shown in Fig. 13). These animals are
also very small making it harder for sufficient features to
be extracted.

R =
1

N

N∑
i=1

uiwhereui =

{
1ifri > rt
0otherwise

,

Fig. 14   Sample RGB and Depth images were collected for real-time analysis of the proposed long-term tracker

415DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

One of the main objectives of our tracker is to be able to
track when the target is occluded. Our tracker shows positive
results in the ‘Occlusion’ category. We observe that, when
the target is occluded, the success rate of our tracker is sig-
nificantly better than KCF. KCF (RGB tracker) has a success
rate of 35.2% whereas our tracker (RGB-D tracker) has 47%,
a jump of approximately 12%, validating our hypothesis that
depth data can significantly improve our results. Our trackers
also perform well from a few other RGB-D-based trackers
like Dhog which has a success rate of 38.4% and PCflow
with a success rate of 32.4%.

In target size, our tracker performs best for larger targets
(success rate of 46%) very close to Dhog, another RGB-D
based tracker (success rate of 47.2%). Both of them are sig-
nificantly better than KCF which uses only image features
for tracking. When the object is large, not only features are
easily and sufficiently captured, but the depth information
is also large enough to track any significant changes in the
depth of the target. Both these factors combined, make
depth-based trackers better for larger objects.

It is observed that for ‘Movement’ and ‘Motion Type’,
depth data can negatively affect the performance depend-
ing on the scenario. Depth information of an object will
change significantly if an object rotates or move very fast.
Image features are also adversely affected since (a) fast-
moving objects will be blurry and (b) rotating objects will
have different features at each frame (relative to the previous
frame). Also, our tracker is not scale-invariant making the
false positives even higher than other depth-based trackers
in both these categories. Due to this reasoning, our current
implementation of the tracker can not be generalized well on
rotating objects and fast-moving objects (35% success rate
as compared to 42% in KCF). Depth does help in identifying
the target better, however, when the target is hidden or lost,

the tracker attempts to locate the target in surrounding areas
adding to a few false positives. For these reasons, during
passive and active motions of the target, the performance
of our tracker can be better or poor depending on a scenario
as can be seen in Table 1. The current state of the art for
occlusion detection on Princeton dataset is 3D-T [31] which
provides a success rate of approximately 70% for occlusion
scenarios and works best for humans (81%) and weakest
for animals (64%). It uses 3D based detection that exploits
sparse representation, object parts as well as adaptive parti-
cle sampling and pruning, all in a unified framework.

5.2 � Real‑time Kinect dataset

5.2.1 � Evaluation metrics

With the implementation of a new RGB-D tracker, we aim
to compare how well does new RGB-D tracker performs as
compared to the KCF tracker (which only uses RGB). We
take our inspiration for evaluation metrics from the original
work of KCF which used average precision as their evalua-
tion metrics. Additionally, we also use confusion matrices
for two trackers (our RGB-D tracker and KCF RGB tracker)
to discuss the tracker’s ability to distinguish when the target
is present (True Positives i.e., TP) and when it is absent
(True Negatives i.e. TN).

Average precision: The first metric we use for com-
parison is average precision (AP). Precision can be stated
as ‘when the model guesses, how well does it guess cor-
rectly”. Average Precision (AP) as the name suggests is
calculated by taking the mean of the precisions (calculated
for each dataset). If we define n as the number of scenes in
the dataset (e.g., 5 scenes in our dataset) and s as the num-
ber of samples(images) in each scene in the dataset (e.g.,

Table 1   The table shows the
success rate (%) of our tracker
on Princeton dataset

The evaluation compares the performance of our tracker against the KCF tracker and a few other trackers.
Trackers marked with (*) use RGB and Depth data; others use only RGB data

Target type Target size Movement Occlusion Motion type

Human Animal Rigid Large Small Slow Fast Yes No Passive Active

Ours* 41 37 42 46 40 56 35 47 51 52 46
KCF [7] 39.7 49.4 54.6 40.1 52.5 57.8 42.9 35.2 63.6 56.4 43.7
Dhog* [23] 43.3 48.3 55.9 47.2 50.3 52.7 47.5 38.4 63.5 54.3 46.9
Struck [25] 35.4 47 53.4 45 43.9 58 39 30.4 63.5 54.4 40.6
VTD [26] 30.9 48.8 53.9 38.6 46.2 57.3 37.2 28.3 63.1 54.9 38.5
RGB [23] 26.7 40.9 54.7 31.9 46 50.5 35.7 34.8 46.8 56.2 33.7
CT [27] 31.1 46.7 36.9 39 34.4 48.6 31.5 23.3 54.3 42.1 34.2
PCflow* [23] 35.2 29.1 43.6 42.2 33.2 47.2 33.1 32.4 43.5 41.3 35.5
TLD [28] 0.29 0.35 0.44 0.32 0.38 0.52 0.30 0.34 0.39 0.50 0.31
MIL [29] 32.2 37.2 38.3 36.6 34.6 45.5 31.5 25.6 49 40.4 33.6
SemiB [30] 0.22 0.33 0.33 0.24 0.32 0.38 0.24 0.25 0.33 0.42 0.23
OF [23] 18 11 23 20 17 18 0.19 0.16 0.22 0.23 0.17

416	 S. Yadav, S. Payandeh

1 3

150 samples for scene 1, 180 samples for scene 2, etc.)
such that total number of test samples is N = n ∗ s , then,

and

where N is the number of samples in the dataset TP is True
Positive and FP is False Positive.

Confusion matrices: Confusion matrices are a perfor-
mance measure of a classification algorithm. It is a 2D
array that compares the true labels against the predicted
labels. It shows how well the predictions are made for any
category. Confusion matrices can be defined in two ways
as mentioned below.

Method 1: We can use a method where TP, FP, FN, TP
are dependent on the actual ‘number’ of classifications
w.r.t to the total number of classifications. Hence when
Total = TP + FN + FP + TN , elements of the confusion
matrix can be defined as shown in Table 2.

This representation though correct would not help much
in our evaluation because for our base tracker KCF (RGB
tracker) TN and FN will always be 0. It is because KCF
can not identify the absence of the target. Intuitively, if the
tracker does not have the ability to predict the absence of
a target, our metrics should show that TN and FN can not
be computed and hence ‘can not be determined’.

Method 2: Motivated by the belief that Method 1 may
not be adequate, we modify our confusion matrix. We
know that at any given instance of time, the target will be
either predicted or not predicted. So, we can look at our
predictions in every scene to see how well it matches our

Precision(P) =
TP

TP + FP
,

AveragePrecision(AP) =
1

N

N∑
i=1

P,

ground truth. We can now define our confusion matrix as
(Table 3):

This metric is also helpful when comparing and discuss-
ing datasets where the number of samples in each data-
set varies. For example, consider the following scenario
(Table 4):

Method 2 seems to be a fair comparison to answer ‘how
many false negatives were correctly predicted’ between two
datasets with varying samples. Given the above motivation,
we use Method 2 as the correct metric for evaluation and
discussion.

Hence, for the KCF RGB tracker, TN and FN will always
be ‘undetermined’. However, if our RGBD tracker performs
well, including occlusion scenarios, we expect to have TN
and TP values, both high in number.

Table 5 shows the comparison of average precision (AP)
computed on our dataset. Figure 15 shows the confusion

Table 2   The table shows how elements of the confusion matrix (TP, FP, TN, FN) are computed for Method 1

True Positives (TP) False Positives (FP) True Negatives (TN) False Negatives (FN)

The outcome when a model cor-
rectly predicts the positive class
i.e. models says the target is
present when the target is present

The outcome when a model incor-
rectly predicts the positive class
i.e. models says the target is
present when the target is absent

The outcome when a model cor-
rectly predicts the negative class
i.e. models says the target is
absent when the target is absent

The outcome when a model
incorrectly predicts the nega-
tive class i.e. models says the
target is absent when the target
is present

TP(in%) =
TP

Total
FP(in%) =

FP

Total
TP(in%) =

TN

Total
TP(in%) =

FN

Total

Table 3   The table shows how elements of the confusion matrix (TP, FP, TN, FN) are computed for Method 2

For every time the target is predicted in the scene How many times is the prediction correct?
TPnew(in%) =

TP

TP+FP

How many times is the prediction incorrect?
FPnew(in%) =

FP

TP+FP

For every time the target is not predicted in the
scene

How many times is the prediction incorrect?
FNnew(in%) =

FN

FN+TN

How many times is the prediction correct?
TNnew(in%) =

TN

FN+TN

Table 4   The table shows the usefulness of Method 2 over Method 1
for two datasets

Total
no. of
samples

No. of
samples
where the
target was
absent

No. of
samples
when the
target was
predicted
absent

TN (%)
(using
Method
1)

TN (%)
(using
Method 2)

Dataset 1 100 20 20 20% 100%
Dataset 2 200 20 20 10% 100%

Table 5   Table shows the
comparison of average precision
(AP) in % when the two trackers
are evaluated on the dataset

Tracker AP (%)

Ours 66.35
KCF 39.99

417DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

matrix for the test results for KCF RGB tracker and our
RGB-D tracker. As discussed previously, we consider that
TP + FP = 100% and FN + TN = 100%. We know that KCF
RGB tracker gives no TN and FN, and hence, it can not make
a decision on it. Figure 16 gives a detailed view of the sam-
ples in each scene along with the prediction made on them.

Hence by augmenting image features with the depth
information, we make our tracker more robust to occlusions.
It is able to detect occlusions and can also detect the absence
of the target and stops tracking. This not only increases the
TN , but also decreases FP . From Fig. 15. we can see that
TN are 52.7% as compared to KCF where we cannot have
this value. TP in our tracker is at 92.50% which is signifi-
cantly higher than KCF at 32.54%. Figure 16 shows some
sample results from our training method. However, we do
have some failure cases which add to our FP and FN as we
will now discuss.

5.2.1.1  Computation time  KCF is the fastest with 141
frame-per-second (FPS) but it leads to less accurate results
on average. The tracker achieves an average FPS of 10 on a
PC with Intel i5 3.6 GHz CPU and 16 GB RAM on MAT-
LAB with multi-threading. This is comparable to DS-KCF
(30–43 FPS) but slightly lower due to the exhaustive search
strategy we use to make accurate predictions. Our pro-
posed method aims to improve the tracker in its success rate
(Table 1) and precision of the tracker (Table 5) to make it
less prone to errors during occlusion. Such trackers are suit-
able for real-time applications typically mobile robotic plat-
forms. We estimate that with the use of GPUs, a higher FPS
can be achieved due to more available compute resources
and better processing.

5.2.1.2  Failure cases  Adding depth information to existing
features makes the tracker very robust to occlusions. How-

ever, when the target is absent, the tracker attempt to locate
the target in the vicinity. Since the tracker keeps looking in
the neighboring space, there are locations where it falsely
predicts the target momentarily adding to False Positives.
Also, the proposed tracker cannot detect partial appearance.
Hence, in scenes where the target is coming out of occlu-
sions, there are no clear detections adding to False Nega-
tives. When the target is clearly out of the occlusion, the
target is tracked again. Figure 17 shows some of the failure
cases of the proposed tracker.

6 � Discussions and Conclusions

In our proposed implementation, it is shown that depth
cues when used with image features in KCF tracking can
significantly improve the performance of the tracker. We
observe that KCF tracker loses the target information once
it is occluded adding to its inability to track a subject for
a long time. Depth information, however, provided an
additional layer of information that informs the tracker of
the status of occlusion (true or false). Hence, it can stop
tracking the target when the target is hidden. Using similar
information, when the tracker is informed that the target
is no more hidden, using the sliding window approach,
it is able to search exhaustively in a large search space
around the target to relocate the target. We are assuming
the tracking happens in an indoor environment; hence, the
nominal walking speed is considered. The experiments
prove the usefulness of depth information as additional
information in making the tracker robust. Experiments also
show a few failure cases showing that at a certain time, the
model may drift slightly from the expected path, possibly
in cases (a) when the target is partly hidden (just coming
of occlusion), (b) failed to correctly estimate the depth

Fig. 15   Comparison of confusion matrix of test results between our RGB-D tracker and KCF RGB tracker. Note, each row of the confusion
matrix adds up to 100% i.e. TP + FP = 100% and FN + TN = 100%. See the related section for an explanation

418	 S. Yadav, S. Payandeh

1 3

Fig. 16   Qualitative results for the proposed RGB-D tracker, compared to Kernelized Correlation Filter (KCF) tracker. Images show the tracking
bounding box on test data. The red color denotes the KCF tracker and the green color denoted our tracker

419DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter﻿	

1 3

information. From our experimental observations, we see
that the tracking performance of the tracker is improved
compared to our KCF RGB tracker but also has the poten-
tial to improve even further.

Author contributions  All authors have equal contributions.

Funding  This work has been supported by the Natural Sciences and
Engineering Research Council of Canada (Grant 31-611205).

Availability of data and material  Please contact the author for data
requests.

Declarations 

Conflict of interest  The authors declare that they have no competing
interests.

Ethical approval and consent to participate  Not applicable.

Consent for publication  The picture materials quoted in this article
have no copyright requirements, and the source, if applicable, has been
indicated.

References

	 1.	 Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le,
Q.V.: XLNet: Generalized autoregressive pretraining for language
understanding. arXiv. (NeurIPS):1–18 (2019)

	 2.	 Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed
tracking with Kernelized Correlation Filters. IEEE Trans Pattern
Anal Mach Intell. 37(3), 583–596 (2015)

	 3.	 Xie, Y., Lu, Y., Gu, S.: RGB-D object tracking with occlusion
detection. In Proceeding of - 2019 15th International Conference
of Computer Intelligent Secure CIS. 2019;11–15 (2019)

	 4.	 Qian, Y., Lukežič, A., Kristan, M., Kämäräinen, J.-K., Matas,
J.: DAL—a deep depth-aware long-term tracker. 2019; Available
from: http://​arxiv.​org/​abs/​1912.​00660

	 5.	 Hannuna, S., Camplani, M., Hall, J., Mirmehdi, M., Damen, D.,
Burghardt, T., et al.: DS-KCF: a real-time tracker for RGB-D data.
J. Real-Time Image Process 16(5), 1439–1458 (2019)

Fig. 16   (continued)

Fig. 17   Failure cases of our
RGB-D tracker

http://arxiv.org/abs/1912.00660

420	 S. Yadav, S. Payandeh

1 3

	 6.	 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual
object tracking using adaptive correlation filters. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. pp. 2544–2550 (2010)

	 7.	 Henriques, J.F., Rui, C., Pedro, M., Horge, B.: Kernelized Cor-
relation Filters 37(3), 583–596 (2015)

	 8.	 Yadav, S., Payandeh, S.: Understanding tracking methodology of
Kernelized Correlation Filter. In: 2018 IEEE 9th Annual Informa-
tion Technology, Electronics and Mobile Communication Confer-
ence, IEMCON 2018. IEEE. pp. 1330–1336 (2019)

	 9.	 Yadav, S., Payandeh, S.: Real-time experimental study of Ker-
nelized correlation filter tracker using RGB Kinect camera. In:
2018 IEEE 9th Annual Information Technology, Electronics and
Mobile Communication Conference, IEMCON 2018. IEEE. pp.
1324–1329 (2019)

	10.	 Yadav, S., Payandeh, S.: Critical overview of visual tracking with
kernel correlation filter. Technologies 9(4), 93 (2021)

	11.	 Montero, A.S., Lang, J., Laganière, R.: Scalable kernel correlation
filter with sparse feature integration. In Proceeding of the IEEE
International Conference on Computer vision. 2016-Febru:587–
594 (2016)

	12.	 Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale
estimation for robust visual tracking. In: BMVC 2014—Proceed-
ings of the British Machine Vision Conference 2014. (2014)

	13.	 Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Learning
spatially regularized correlation filters for visual tracking. In
Proceedings of the IEEE Conference on Computer vision. 2015
Inter:4310–4318 (2015)

	14.	 Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond
correlation filters: learning continuous convolution operators for
visual tracking. Eccv 5, 1–9 (2016)

	15.	 Zuo, W., Member, S., Wu, X., Lin, L., Member, S.: Learning
support correlation filters for visual tracking. IEEE Trans. Pattern
Anal. Mach. Intell. 41(5), 1158–1172 (2019)

	16.	 Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.H.: Fast visual
tracking via dense spatio-temporal context learning. Lect Notes
Comput Sci (including Subser Lect Notes Artif Intell Lect Notes
Bioinformatics). 8693 LNCS(PART 5):127–141 (2014)

	17.	 Liu, T., Wang, G., Yang, Q.: Real-time part-based visual tracking
via adaptive correlation filters. In: Proceeding of IEEE Conference
on Computer Vision and Pattern Recognition. 07–12-June:4902–
4912 (2015)

	18.	 Zhang, T., Xu, C., Yang, M.H.: Multi-task correlation particle
filter for robust object tracking. In: Proceedings - 30th IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2017
(2017)

	19.	 Camplani, M., Hannuna, S., Mirmehdi, M., Damen, D., Paie-
ment, A., Tao, L, et al.: Real-time RGB-D tracking with depth

scaling Kernelised correlation filters and occlusion handling.
145.1–145.11 (2015)

	20.	 Hou, N.A., Zhao, X.-G., Zeng-Guang.: Online RGB-D tracking
via detection-learning-segmentation. Pattern Recognit (ICPR),
2016 23rd Int Conf. 1231–1236 (2016)

	21.	 Rasoulidanesh, M., Yadav, S., Herath, S., Vaghei, Y., Payandeh,
S.: Deep attention models for human tracking using RGBD. Sen-
sors (Switzerland) 19(4), 750 (2019)

	22.	 Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking
with online multiple instance learning. IEEE Trans Pattern Anal
Mach Intell. 33(8), 1619–1632 (2011)

	23.	 Song S, Xiao J. Tracking revisited using RGBD camera: Unified
benchmark and baselines. In: Proceeding of IEEE International
Conference on Computer Vision 233–240 (2013)

	24.	 Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zis-
serman, A.: The pascal visual object classes (VOC) challenge. Int
J Comput Vis. 88(2), 303–338 (2010)

	25.	 Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.M.,
Hicks, S.L., et al.: Struck: structured output tracking with kernels.
IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016)

	26.	 Kwon, J., Lee, K.M.: Visual tracking decomposition. In Proceed-
ing of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. 1269–1276 (2010)

	27.	 Zhang, K., Zhang, L., Yang, M.H.: Fast compressive tracking.
IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)

	28.	 Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection.
IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2011)

	29.	 Babenko, B., Belongie, S., Yang, M.H.: Visual tracking with
online multiple instance learning. In: 2009 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
Work CVPR Work 2009. 2009 IEEE:983–990 (2009)

	30.	 Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line
boosting for robust tracking. (813399):234–247 (2008)

	31.	 Bibi, A., Zhang, T., Ghanem, B.: 3D part-based sparse tracker
with automatic synchronization and registration. In Proceeding
of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. 2016-Decem:1439–1448 (2016)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	DATaR: Depth Augmented Target Redetection using Kernelized Correlation Filter
	Abstract
	1 Introduction
	2 Literature review on RGB and RGB-D based trackers
	3 Depth augmented target re-detection
	3.1 Method implementation
	3.2 Creating self-adjusting depth patch
	3.3 Training, detection, and re-detection of target under occlusion

	4 Experimental setup
	4.1 Princeton dataset
	4.2 Real-time Kinect dataset

	5 Result and observation
	5.1 Princeton dataset
	5.1.1 Evaluation metrics

	5.2 Real-time Kinect dataset
	5.2.1 Evaluation metrics
	5.2.1.1 Computation time
	5.2.1.2 Failure cases

	6 Discussions and Conclusions
	References

