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Abstract
The World Health Organization (WHO) declared a pandemic in response to the coronavirus COVID-19 in 2020, which 
resulted in numerous deaths worldwide. Although the disease appears to have lost its impact, millions of people have been 
affected by this virus, and new infections still occur. Identifying COVID-19 requires a reverse transcription-polymerase 
chain reaction test (RT-PCR) or analysis of medical data. Due to the high cost and time required to scan and analyze medi-
cal data, researchers are focusing on using automated computer-aided methods. This review examines the applications of 
deep learning (DL) and machine learning (ML) in detecting COVID-19 using medical data such as CT scans, X-rays, cough 
sounds, MRIs, ultrasound, and clinical markers. First, the data preprocessing, the features used, and the current COVID-19 
detection methods are divided into two subsections, and the studies are discussed. Second, the reported publicly available 
datasets, their characteristics, and the potential comparison materials mentioned in the literature are presented. Third, a 
comprehensive comparison is made by contrasting the similar and different aspects of the studies. Finally, the results, gaps, 
and limitations are summarized to stimulate the improvement of COVID-19 detection methods, and the study concludes by 
listing some future research directions for COVID-19 classification.
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1  Introduction

Coronavirus 2 (SARS-CoV-2) is an infectious virus that 
causes severe acute respiratory syndrome and is recog-
nized as COVID-19 disease [1, 2]. Coronaviruses are large, 
positively spliced, single-stranded RNA viruses [3] that 
infect humans and a variety of other living organisms [4]. 
The disease first appeared in Wuhan, China, and eventu-
ally spread worldwide. The World Health Organization 
(WHO) has determined that COVID-19 is an outbreak that 
poses an exceptionally high risk to millions of lives world-
wide, particularly in countries with less developed health 

systems [5] and is recognized as a pandemic. COVID-19 
has infected over 640,395,651 people worldwide and caused 
over 6,618,579 deaths (as of December 3, 2022). Although 
the pandemic appears to be over these days, an average of 
378,000 new cases occur daily, according to WHO [6]. A 
collective response was quickly formed to prevent the fur-
ther spread of COVID-19. Most affected countries closed 
their borders and temporarily suspended transportation and 
travel. WHO and the Centers for Disease Control (CDS) 
published international guidelines to be followed by inter-
national and national businesses, governments, and citizens 
to fully contain the pandemic. CDC and WHO have identi-
fied and listed symptoms that indicate plausible COVID-19 
infection, including dry cough, fever, diarrhea, myalgia, and 
vomiting. Public awareness has been raised in all countries 
to seek treatment as soon as possible to reduce morbidity 
rates. Governments have advocated and supported research 
and development of vaccines against COVID-19. Contain-
ment of the outbreak requires increased attention given the 
increase in COVID-19 cases worldwide.

Reverse transcription-polymerase chain reaction (RT-
PCR) is a technique for detecting the COVID-19 virus [7]. 
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Rapid and accurate detection is critical for disease control 
[8]; However, test results can be obtained within 2–48 h [9].

Due to the development of coronavirus ribonucleic acid 
(RNA), numerous vaccines have been developed. These vac-
cines use various biological agents such as attenuated live 
viruses, proteins or subunits, messenger RNA (mRNA), and 
deoxyribonucleic acid (DNA). Vaccines are still 95% effec-
tive, although they can slow the progression of infection 
and help people build immunity by triggering the produc-
tion of exemplary antibodies [10]. Even when a vaccine is 
available, early detection of coronavirus is critical, because 
it facilitates the identification of individuals who have been 
directly or indirectly exposed to the virus. Identification 
of these individuals may prevent the further spread of the 
pandemic, as COVID-19 infections manifest as pulmonary 
infections. Therefore, computed tomography scans (CT) and 
chest X-rays can be used to detect COVID-19 disease [2].

Medical imaging systems have been used since the mid-
1960s to aid decision-making in diagnosing chest disease 
[11]. In the mid-1980s, cancer diagnosis using chest X-rays 
was one of the most typical applications of computer-aided 
diagnosis systems (CAD) [12]. More recently, researchers 
have used deep learning (DL) architectures, particularly 
convolutional neural network (CNN) models, to classify 
diseases based on medical images [13]. The COVID-19 
pandemic is the focus of other research and development 
initiatives. Machine learning (ML) and DL are now com-
monly used to detect COVID-19. DL methods for detecting 
COVID-19 infections from images have received a major 
boost from the recent pandemic. The originality of the cur-
rent research is that it focuses on the difficulties associated 
with DL and image processing approaches for detecting 
COVID-19.

One of the major problems in studying COVID-19 is the 
lack of sufficient and reliable data in the first quarter of the 
pandemic. Because of the limited number of tests, many 
deaths and viral infections cannot be detected. No country 
in the world has been able to provide reliable datasets on 
the presence of the virus in a representative sample of the 
mass population. The accessibility of large and high-qual-
ity datasets in the ML and DL applications plays a crucial 

role in the robustness of the results. Therefore, researchers 
had to work with datasets in a limited range by combining 
available datasets or using data augmentation techniques. 
Figure 1 illustrates the general structure of a deep learning-
based COVID-19 diagnostic system.

In Fig. 1, inpatients are considered participants in the data 
collection phase. Medical imaging techniques such as CT 
and X-rays are used for COVID-19 diagnosis. The follow-
ing step is data preprocessing, which converts the data into 
a model-friendly format. Data preprocessing includes noise 
removal, image scaling, data augmentation, and data parti-
tioning, where the data is divided into training, validation, 
and test groups. For data partitioning, the cross-validation 
method is usually used. A particular model is trained and 
evaluated using this partitioned data. The classification and 
feature extraction phase of a DL-based COVID-19 recogni-
tion system is crucial. In this phase, features are extracted 
through a series of procedures using numerous feature 
extraction techniques. One-hot encoding is another preproc-
essing method for processing categorical data in ML and 
DL applications. Categorical data must be modified in the 
preprocessing phase because the models require numerical 
input variables. In this method, a new column is created for 
each feature value in the original categorical column [14].

In the literature, there are some studies on COVID-19 
detection [15–20]. Some of these studies were published 
during the early pandemic COVID-19. Thus, they do not 
cover more recent works. These works also focus on ML 
and artificial intelligence (AI) [16], mathematical, ML, and 
DL [18], ML and LD [19], and ML [20] methodologies. In 
this work, we focus on especially DL work that considers the 
identification of COVID-19 and it includes several papers 
using different datasets consisting of CT scans, X-rays, MRI, 
blood tests, cough sound, and ultrasound.

This study examines approaches from recent articles pub-
lished by respected publishers to help the research commu-
nity and regulatory agencies formulate recommendations to 
address the disease. In addition, it highlights the contribution 
of ML and, in particular, DL to the control of the COVID-19 
pandemic. We provide an overview of the most advanced 
technologies developed.

Fig. 1   General illustration of the COVID-19 detection systems using deep learning



1605An overview of deep learning techniques for COVID‑19 detection: methods, challenges, and future…

1 3

The main contributions of this study can be summarized 
as follows: 

1.	 The review includes information about COVID-19 
and the prevalence of the disease, which motivates and 
emphasizes the need for faster prediction mechanisms 
to combat the disease.

2.	 Some of the key elements of current studies, such as the 
dataset, proposed architecture, data partitioning method, 
and evaluation criteria, are discussed, and the basics are 
explained clearly, concisely, and understandably.

3.	 The role of DL applications in the medical area to pre-
dict COVID-19 is supported by a detailed discussion.

4.	 We summarized future approaches to epidemic contain-
ment in countries, methodology, datasets, evaluation 
metrics, research barriers, and lessons learned.

The remainder of this paper is organized as follows. The rea-
son for using DL is to analyze and process medical images 
from recent works, essential information on DL, and give 
information for CNN architectures presented in Sect. 3. 
Section 4 provides a detailed overview of the use of DL in 
COVID-19 and is divided into two subsections. Section 5 
analyzes and discusses available datasets and implemen-
tations of DL for medical imaging. Recommendations for 
challenges and future directions of study are included in 
Sect. 7. Further discussion can be found in Sect. 8. Finally, 
conclusions are presented in Sect. 9.

2 � Review methodology

This review used a comprehensive non-systematic review 
methodology. COVID-19 diagnosis articles using DL and 
published in the last 4 years (2020–2023) were included. 
Articles from several major databases, such as Scopus, 
Google Scholar, and Crossref, were included in this review. 
Important keywords were used in the search, such as: 
‘COVID-19’, ‘Sars-CoV2’, ‘Coronavirus’, ‘Deep Learning’, 
‘Diagnosis’, ‘CT scans’, ‘X-rays’, ‘Medical Imaging’, ‘Deep 
Learning for COVID-19’ and others were included. The 
different combinations of these keywords were also used. 
Full-text articles on COVID-19 diagnosis with DL and ML 
were identified as inclusion criteria. The following articles 
were excluded as exclusion criteria: pre-prints (such as arXiv 
and medRxiv), pure medical diagnostic studies that do not 
involve deep learning and AI, animal studies, letters to the 
editor, commentaries, case reports, and articles without full-
text content. We also preferentially selected articles from 
reputable journals in the Q1–Q2 quartile.

The final list of articles selected for review was 86, 
including COVID-19 diagnosis based on various modalities 

such as CT scans, X-rays, MRIs, cough sounds, blood tests, 
and ultrasound analysis.

3 � Backgrounds

Before discussing the details of the current methods for 
detecting COVID-19 disease, it is important to learn about 
ML, DL, and common CNN architectures. In this section, we 
describe common CNN models used in detecting COVID-19 
and give a brief overview of their architecture.

3.1 � Fundamentals of machine learning and deep 
learning

ML is the core of the field of artificial intelligence. In ML 
approaches, algorithms are developed to find patterns or 
make predictions from empirical data. ML is increasingly 
used in many fields, including manufacturing, retail, medi-
cine, finance, robotics, telecommunications, and social 
media.

DL is a relatively new area in ML. DL has seen a signifi-
cant upsurge in today’s scientific research in recent years due 
to its excellent learning capabilities [21–23]. DL is also used 
in various applications due to its ability to adapt to differ-
ent data types in numerous domains, such as classification 
problems, image recognition, and object recognition [24].

The learning methods in ML–DL can be divided into 
three categories such as unsupervised, semi-supervised, and 
supervised. In supervised learning, the model is trained with 
the input–output pair. Each detected layer generates an input 
vector and a control signal corresponding to the expected 
value. Based on the available labels, the method predicts 
the output labels [25]. A strategy that lies between super-
vised and unsupervised learning is called semi-supervised 
learning. In semi-supervised learning, both unlabeled and 
labeled values form the training data. When used together 
with labeled data, unlabeled data can significantly increase 
learning accuracy [26]. Unsupervised learning analyzes and 
groups unlabeled data using ML methods. These find hidden 
patterns or datasets without human intervention [27]. Anom-
aly detection and clustering are two examples of algorithms 
used in conjunction with these methods. Clustering is about 
finding patterns or anomalies in a dataset that are similar to 
each other [28]. This unsupervised learning technique for 
anomaly detection is commonly used in security domains 
[29]. Figure 2 shows the different techniques used in DL.

3.2 � Machine learning methods for detecting 
COVID‑19

ML techniques and medical data such as computed tomogra-
phy (CT), X-rays, and clinical blood tests have been used to 
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diagnose numerous diseases. ML assists medical personnel 
in the rapid, reliable, and accurate detection of COVID-19 
[30–32].

In ML, supervised classification algorithms of different 
categories such as the linear logistic regression model (LR), 
the K-nearest neighbor classifier (KNN), tree-based ensem-
ble models such as random forest (RF), and boosting meth-
ods (XGBoost and AdaBoost) are also used for COVID-19 
detection [17, 32].

In addition, blood test results from COVID-19 patients 
can change rapidly, and these results can be used for pre-
screening in many medical studies. While the presence of 
this infection can be confirmed by diagnosis, a series of ini-
tial screening tests may provide a possible clue to the pres-
ence of the disease. It is difficult for a specialist to obtain 
complete information from the various laboratory blood 
tests [33]. However, ML models can easily distinguish the 
different patterns that emerge from the blood parameters. 
Therefore, many researchers have developed ML techniques 
to diagnose COVID-19.

3.3 � Convolutional neural networks

DL methods successfully automate the task of learning 
feature representations and attempt to gradually eliminate 
the tedious task of manually processing features. DL and 

convolutional neural networks (CNNs) attempt to mimic 
the structure and operation of the human visual cortex 
system by using a hierarchical layer of feature representa-
tion. This layered feature representation approach enabled 
automatic learning of various image features, allowing 
CNNs to outperform hand-built feature detection methods. 
In reality, CNNs are simply multilayer neural networks. 
They combine a multilayer stack of neurons with math-
ematical operations that have several variable parameters 
to preprocess small amounts of data [34].

CNN models are designed to analyze multidimensional 
data such as time series or image data by computing 
weights and extracting features during the training phase. 
Since they use a convolution operator to simplify compli-
cated tasks, they have been given the term convolution. 
Because CNNs can automatically generate features from 
images, they are most commonly used in health applica-
tions [35]. Through transfer learning (TL) and fine-tuning, 
CNNs can also learn from one task and apply it to another. 
The efficiency of this strategy has been demonstrated in 
categorization tasks [36].

In addition, CNN models have proven successful in image 
classification problems. CNN-based research has signifi-
cantly improved the best performance for many image data-
bases, including the MNIST database, the NORB database, 
and the CIFAR10 dataset [37]. CNN models are an excellent 

Fig. 2   Applications and techniques of deep learning
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feature extractor used in several studies to classify COVID-
19 from chest X-rays or CT [38].

3.3.1 � CNN architectures for detecting COVID‑19

CNN models are of great interest to researchers in detecting 
and classifying COVID-19 because they can recognize and 
distinguish the patterns in radiological images [39].

Several CNN architectures have been presented in recent 
years. In this section, we examine the most commonly used 
CNN architectures for detecting COVID-19, such as AlexNet 
[40, 41], Xception [42, 43], ResNet [44, 45], DenseNet [46, 
47], VGG [48, 49], MobileNet [50, 51], and Inception [52, 
53]. Examining the properties of these architectures, such as 
depth, robustness, and input size is critical to selecting the 
right architecture for the task at hand. Table 1 provides an 
overview of the CNN architectures.

According to the first CNN-based model AlexNet, each 
subsequent architecture uses more layers in its network to 
reduce the error. With smaller layers, a significant DL prob-
lem known as a vanishing/exploding gradient occurs as more 
layers are added. This causes the gradient to become zero 
or too large, and the error rate during training and testing 
increases as the number of layers increases [54]. The ResNet 
architecture introduced the concept of residual blocks to 
solve the gradient problem. In this architecture, a technique 
called skip connections was proposed. Skip connections con-
nect first layer activations to other layers by skipping some 

intervening layers. ResNets are formed by stacking residual 
blocks, such as ResNet18, ResNet34, ResNet50, ResNet101, 
ResNet110, ResNet152, ResNet164, and ResNet1202 [55]. 
The winner of ILSVRC 2015, one of the most widely used 
architectures, is ResNets. In the ResNet family architecture, 
a residual block, a net within a network, is used. The archi-
tecture is defined in five steps with identity and convolu-
tional blocks, and the input size is 224 × 224 [56]. AlexNet 
is known for its success in image recognition and classifica-
tion. AlexNet was first proposed by Krizhevsky et al., who 
also increased the learning capacity of CNN by extension 
and numerous parameter optimization techniques [57].

Like ResNet, the DenseNet architecture uses a residual 
identity block, but instead of summation, concatenation is 
used. Unlike the L(L+1)/2 connections used by DenseNet, 
conventional CNN models use L connections for L layers 
[58]. There is a feedforward connection between each layer. 
All preceding layers receive data from the feature map of the 
current layer, while all other layers receive the feature map 
of the current layer as input. The model has a size of 224 × 
224. Xception is another CNN architecture that uses incep-
tion blocks with convolutional layers in depth. The size of 
the Inception image is 229 × 229 and the number of layers 
is 71 [59]. The HRNet model consists of advanced algo-
rithms for facial feature recognition, semantic segmentation, 
and human posture estimation. Datasets such as Context, 
LIP, AFLW, PASCAL, 300W, Cityscapes, and COFW have 
shown significant results in semantic segmentation [60]. 

Table 1   Summary of the CNN models

Model Finding Depth Source Input size

Alexnet ReLU and utilize dropout 8 ImageNet 227 × 227 × 3
CapsuleNet Pays attention to special relationships between features 3 MNIST 28 × 28 × 1
DenseNet Blocks of layers, layers connected to each other 201 CIFAR10, 

CIFAR100, 
ImageNet

224 × 224 × 3

HRNetV2 High resolution representations – ImageNet 224 × 224 × 3
InceptionV3 Utilizes small filtersize, better feature representation 48 ImageNet 229 × 229 × 3
InceptionV4 Divided transform and information concepts 70 ImageNet 229 × 229 × 3
MobileNetv2 Interved residual structure 53 ImageNet 224 × 224 × 3
ResNet Robust against overfitting due to symmetry mapping based skip links 152 ImageNet 224 × 224 × 3
Xception A depthwise convolution followed by pointwise convolutional 71 ImageNet 229 × 229 × 3
VGG16 Increased depth, small filter size 16 ImageNet 224 × 224 × 3
VGG19 Increased depth, small filter size 19 ImageNet 224 × 224 × 3
EfficientNetB0 Scales all dimensions of depth/width/resolution using a compound coefficient 237 ImageNet 224 × 224 × 3
EfficientNetV2 Scales all dimensions of depth/width/resolution using a compound coefficient 42 CIFAR10 300 × 300 × 3
InceptionResNetV2 Incorporates residual connections 164 ImageNet 299 × 299 × 3
ResNext50 An additional dimension on top of the width and depth of ResNet 128 ImageNet 224 × 224 × 3
ShuffleNetV2 Speed or memory access cost, to measure the network’s computational complex-

ity
164 ImageNet 224 × 224 × 3

MnasNet Directly measures real-world inference latency by executing the model on 
mobile phones

18 ImageNet 224 × 224 × 3
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Another model is the VGG architecture, which has been 
presented for use in image recognition software. Layers 16 
and 19 are used by weighting them into VGG16 and VGG19 
with a 3 × 3 convolutional filter size. The input image is 224 
× 224 [61].

ILSVR (ImageNet) participants in 2014 included the 
Inception model used for image classification. Participants 
use multiple filter sizes simultaneously for the input image, 
rather than adding more layers to the model to make it 
deeper. The next inception block gets the chain of the incep-
tion block [56]. There are several variants of the Inception 
model, including InceptionV1 [62], InceptionV2 [63] and 
InceptionV3 [64], InceptionV4 [65], and InceptionResNet 
[66]. Each version of Inception is an iterative upgrade of 
the previous version. Understanding the upgrades can help 
develop optimized classifiers for speed and accuracy [67]

MobileNets are small architectures that can be used on 
both embedded and mobile devices. They have separable 
convolutional layers, and 2D convolutional layers are used in 
this architecture. This is associated with reducing the num-
ber of parameters, computations, training time, and memory 
requirements [68]. In addition, MobileNets have 54 layers 
and the input image size is 224 × 224. Capsule Networks can 
retrieve spatial information and other important features to 
avoid data loss during pooling operations. The architecture 
consists of six layers. The first three layers are called encod-
ers, whose task is to convert the input image into vector 
form, and the last three layers are called decoders, which 
recover the image [69].

4 � Summary of the research methods

This section explores the potential of ML and DL in medical 
imaging to combat the COVID-19 pandemic by implement-
ing strategies. In recent years, remarkable changes in health-
care have opened up new opportunities to improve people’s 
lives. DL has been used in research to detect various diseases 
by analyzing medical images. Previously, medical staff has 
spent a lot of time manually reviewing reports and analyzing 
images. ML and DL have shortened this process by provid-
ing better results with computer-aided diagnostic applica-
tions. ML and DL have become increasingly important due 
to their promising effects and revolutionizing healthcare.

4.1 � Machine learning for medical image processing 
in COVID‑19

Researchers have used various ML algorithms to diagnose 
COVID-19. Since the pandemic outbreak, there have been 
several areas where ML has been used. These involve deter-
mining the number of people infected with COVID-19, 
predicting the occurrence and severity of the next wave, 

predicting mortality rates, and detecting people who do not 
wear face masks or adhere to social distancing several use 
cases for ML. Early detection of COVID-19 patients is criti-
cal to preventing disease progression in an individual.

Kukar et al. developed the ML model to detect COVID-
19 using the clinical markers of 160 COVID-19 and 5333 
COVID-19-negative patients. The classifiers used were 
random forest (RF), DNN (deep neural network), and 
XGBoost (extreme gradient boosting). XGBoost provided 
the best results. The average sensitivity and AUC of the dif-
ferent classifiers were 88.9% and 97%, respectively [70]. 
Muhammed et  al. employed supervised ML models to 
detect COVID-19. Feature extraction was used to train the 
ML models. In addition, 5 ML algorithms were used: naive 
Bayes, decision tree, artificial neural networks (ANN), logis-
tic regression, and support vector machine. They attained 
an accuracy of 94.99%, 94.4%, 94.36%, 92.4%, and 89.2%, 
respectively [71]. Plante et al. utilized the ML model to rec-
ognize COVID-19. 2183 COVID-19 patients were included 
in this study. They used XGBoost and achieved a sensitivity 
and AUC score of 95.9% and 91%, respectively [72].

Quiroz-Juarez et  al. used ML to identify COVID-19 
patients. They used four ML algorithms, namely, neural 
networks, logistic regression, support vector machines, and 
KNN, and obtained accuracies of 93.5%, 92.1%, 92.5%, and 
89.3%, respectively [73]. Arpaci et al. implemented 14 clini-
cal features to distinguish COVID-19 infection, and the data-
set included 114 COVID-19 cases. Six different classifiers 
were used, with logistic regression providing the best results 
with 84.21% accuracy [74]. Mukherjee et al. implemented 
a KNN algorithm to detect COVID-19 using an internet of 
things (IoT) system. They used an ant colony optimization 
(ACO) algorithm for feature selection and achieved 97% 
accuracy for the model [75].

Blood markers and epidemiological parameters can be 
used for the diagnosis of COVID-19. Unlike CT scans and 
X-rays, these facilities can be easily collected in hospitals 
and used with PT-PCR tests. Wu et al. presented an ML 
model that detected COVID-19 from blood parameters. They 
used 105 COVID-19 patients and attained accuracy, specific-
ity, and sensitivity obtained were 95.95%, 95.13%, and 96%, 
respectively [76]. Fernandes et al. analyzed the blood mark-
ers of 235 COVID-19 patients. 15 blood parameters were 
used for feature extraction, and SVM was used for optimal 
prediction. The AUC, sensitivity, and specificity were 85%, 
68%, and 85%, respectively [77]. Tschoellitsch et al. imple-
mented an ML model using blood tests to predict COVID-
19. They obtained a dataset of 1357 patients who underwent 
blood tests at local hospitals. A random forest ML model, 
consisting of 28 clinical markers, was trained to predict RT-
PCR outcomes and attained 81% accuracy [78]. Chadaga 
et al. used ML algorithms to diagnose COVID-19 using 
blood tests. They used four machine learning algorithms, 
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namely logistic regression, K Nearest Neighbors, Random 
Forest, and XGboost, which were employed. Random for-
est achieved the best result with an accuracy of 92% [33]. 
Sobrinho et al. used ML models to prioritize patients for 
testing based on blood markers. The dataset consists of 
55,676 patients and 12 features. They obtained 89.12% accu-
racy using the decision tree algorithm [79]. The distribution 
of DL algorithms is given in Fig. 3

4.2 � Deep learning for medical image processing 
in COVID‑19

Deep learning algorithms and CNN models in image analy-
sis and processing in the biomedical field have produced 
successful results for years [80]. Moreover, various CNN-
based deep neural networks can achieve remarkable results 
in ImageNet competition [57]. X-rays, CTs, magnetic reso-
nance imaging (MRI), and ultrasounds are widely used in 
biomedical systems. Pneumonia and early-stage cancer are 
both diagnosed with X-ray technology. However, scanning 
CT is a more advanced method based on X-ray technology 
that can detect organ changes. Soft tissue cannot be analyzed 
with X-rays and 2D imaging. CT uses 3D computer vision 
technology that takes multiple images of the organ from dif-
ferent angles. Although both X-rays and scans from CT can 
provide images of internal body structures, conventional 
X-rays tend to overlap. In contrast, a scan from CT elimi-
nates this overlap, highlights internal anatomy, and provides 
a clear picture of health status.

In addition, in respiratory diseases, the voices of the 
patient and the lungs change significantly. Auscultation is a 

method of detecting abnormal lung sounds such as crackles, 
wheezes, and high-pitched sounds that can help determine 
the presence of lung disease [17]. With the development of 
ML and DL methods, it is possible to diagnose COVID-19 
based on the patient’s voice, breath sounds, vibration, heart 
sounds, MRI, and ultrasound. MRI is a medical imaging 
technique that uses radio waves to examine organs. In this 
technique, a magnetic field is constantly applied, and radio 
signals pass through the surface of the body and are then 
reflected by water molecules in the body. These signals are 
received and converted into images that allow accurate diag-
nosis. These medical images are better than CT or X-rays 
because MRI can capture more detail.

This study provides a taxonomy to categorize the diag-
nostic system of COVID-19. As shown in Fig. 4, two dif-
ferent perspectives are used for DL techniques and imaging 
modalities, namely pre-trained models and customized DL 
techniques.

In this study, we divided DL-based methods using medi-
cal images into four categories: CT scans, X-rays, ultra-
sounds, and cough sounds. 55 diagnostic models were stud-
ied for COVID-19. 24 studies included pre-trained models; 
the other 31 included adjusted DL models for COVID-19 
diagnoses.

4.2.1 � Pre‑trained models

A stored network, previously trained using a large dataset, 
especially for an image classification task, is called a pre-
trained model. This model could be adapted to a specific 
task using its pre-trained weights and changing top layers 

Fig. 3   Distribution of classical ML algorithms based on reviewed works in this study
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to adapt to new tasks, and it is named transfer learning (TL) 
[81]. Using a pre-trained model in deep TL has several 
advantages. Training a model from scratch takes a lot of time 
when dealing with large datasets and requires high com-
putational power [82]. The pre-trained model allows faster 
convergence in TL [83]. We found that different models were 
successfully applied in the investigation of recent studies. 
ResNet and its derivatives were mainly determined as the 
main architecture in these studies.

A stored network previously trained with a large dataset 
is called a pre-trained model, especially for an image clas-
sification task. This model can be adapted to a specific task 
by using its pre-trained weights and changing the top layers 
to fit a new study called TL [81]. Using a pre-trained model 
in deep TL has several advantages. Training a model from 
scratch takes a long time for large datasets and requires high 
computational power [82]. The pre-trained model allows 
faster convergence in TL [83]. We found that different mod-
els have been successfully used in recent studies. ResNet 
and its derivatives were mainly determined to be the main 
architecture in these studies.

A COVID-19 detection system based on DL with mul-
tiview fusion was presented by Wu et al. The system used 
ResNet50, a pre-trained CNN model. Data were obtained 
from two local hospitals in China. For the experiment, 495 
images were used, including 368 with COVID-19 cases and 
127 with other disease infections. For training, testing, and 
validation, the dataset was divided into three segments of 
80%, 10%, and 10%, respectively. The input image used 
by the system was resized to 256 × 256 before the model 
was created. The system achieved an accuracy, sensitiv-
ity, and specificity of 76%, 81.1%, and 61.5%, respectively 
[44]. In another study implementing a three-class detection 
model for COVID-19, the authors used CT scans to detect 
the disease. They used ResNet18 with TL and achieved 
a success rate of 86.7% using model-based segmentation 
methods [45]. In [84], they developed a ResNet101-based 

model to distinguish bacterial pneumonia, viral pneumonia, 
and normal images. They also applied their model to diag-
nose COVID-19, and the model’s success rate is 98.75%. 
Another COVID-19 diagnostic system was proposed by Jin 
et al. using ResNet152. They evaluated their model using 
496 images with COVID-19 and 1385 healthy images and 
achieved an accuracy rate of 94.98% [85].

In another study using CT scans as input [48], the authors 
presented a system for diagnosing COVID-19 using pre-
trained CNN models, including AlexNet, MobileNetV2, 
ResNet18, ResNet101, VGG-16, VGG-19, SqueezeNet, 
GoogleNet, ResNet50, and Xception. They used 1020 CT 
healthy and COVID-19 CT scans in the proposed approach, 
and the experimental results showed that the ResNet101 
model achieved 99.51% accuracy using a 20–80% hold-out 
validation method. In addition, Narin et al. presented an 
approach to detect COVID-19 using X-ray images imple-
menting pre-trained CNN models. The dataset contains 100 
X-rays that consist of 50 COVID-19 and 50 healthy images. 
They used the cross-validation method to evaluate the model 
and achieved 98% accuracy with the ResNet50-based model 
[86].

Bukhari et al. proposed another diagnostic model for 
COVID-19 using a pre-trained ResNet50 model. They evalu-
ated their model using 278 chest X-rays from three differ-
ent classes: 89 COVID-19, 93 healthy, and 96 pneumonia 
images. They used the hold-out method, splitting the data-
set into 80% for training and 20% for testing. Their model 
achieved an accuracy rate of 98.18%, precision of 98.14%, 
sensitivity of 98.24%, and F1 score of 98.19% [87]. Xing 
et al. used ultrasound to detect COVID-19. The ultrasound 
device was built with a DL classifier. They used pre-trained 
ResNet50, GoogleNet, and VGG19 models for training and 
obtained 12,949 images for model training. The final model 
achieved accuracy and an F1 score of 96.1% and 96.1%, 
respectively[88]. In another work, Born et al. proposed a 
NasNetMobile model for detecting COVID-19 from lung 

Fig. 4   Overall workflow summary of the methods
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ultrasound images. The model achieved a sensitivity and 
specificity of 81% and 96%, respectively [89].

Another common model used in COVID-19 detection is 
VGG and its derivatives. In [52], the authors implemented 
VGG-19 and InceptionV2 pre-trained models and applied 
fine-tuning to these models. They also used decision trees to 
evaluate the data. Using VGG-19, InceptionV2, and decision 
trees, they achieved success rates of 91%, 78%, and 60%, 
respectively. Moutounet–Cartan presented an approach for 
detecting COVID-19 and lung infections from X-ray images. 
This approach uses VGG-16, VGG-19, InceptionResNetV2, 
Xception, and InceptionV3 pre-trained CNN architectures. 
To evaluate the model, they collected 327 images, including 
152 healthy, 125 COVID-19, and 50 images of various lung 
diseases. They determined VGG-16 as the primary model 
with an accuracy of 84.1% [90]. Horry et al. presented a 
model for diagnosing COVID-19 in X-rays using deep TL 
models, including Inception, Xception, Resnet, and VGG. 
The dataset for testing included 200 healthy, 100 pneumonia, 
and 100 COVID-19 images. The precision, sensitivity, and 
F1 score were 83%, 80%, and 80%, respectively [49].

Another study using the VGG model, COVIDX-Net, was 
developed by Hemdan et al. to identify COVID-19 using 
X-ray images. They used 50 images consisting of 25 healthy 
and 25 COVID-19. According to their numerical results, 
DenseNet and VGG-19 achieved a successful classification 
rate of 90% and an F1 score of 91% [51].

AlexNet is another popular architecture used in medi-
cal image analysis. Cifci presented an approach to detect 
COVID-19 from CT based on deep TL approaches. He used 
5800 CT scans from a public repository, of which 80% were 
used for training and 20% for testing. In the experimental 
results, the AlexNet model performed better. The overall 
accuracy of AlexNet was 94.74%, and its specificity and 
sensitivity were 87.37% and 87.45%, respectively [40]. In 
another study, the authors presented a system combining 
deep TL methods such as GoogleNet, ResNet18, AlexNet, 
and generative adversarial network. The authors used 307 
images, including COVID-19, normal, bacterial, and viral 
images. Googlenet had the highest accuracy rate of 80.6% 
for four-class classification. For three- and two-class clas-
sification, Alexnet achieved 85.2% accuracy [41].

Sethy and Behra proposed a hybrid model that uses both 
SVM and pre-trained CNN models to identify COVID-
19 cases. They used pre-trained CNN models for feature 
extraction and SVM for classification using these features. 
They employed two datasets, the first of which included 
25 COVID-19 X-ray images and 25 normal images and 
the second of which included 133 X-rays images that were 
both healthy and diseases such as acute respiratory distress 
syndrome, SARS, and Middle East respiratory syndrome. 
The proposed hybrid model achieved an accuracy rate of 
95.38% [91]. Abbas et al. proposed another model that 

distinguished between COVID-19 and healthy images 
and used ResNet18 architecture as the main design. This 
model was trained using 196 images, including 80 from 
healthy individuals, 105 from COVID-19, and 11 from 
SARS patients. They used the 30–70% hold-out validation 
technique and achieved 95.12% accuracy, 97.9% sensitiv-
ity, 91.87% specificity, and 93.36% precision [92].

In addition to these popular pre-trained architec-
tures, some studies were conducted with models such 
as DenseNet, Inception, MobileNet, UNet, and NasNet-
Large. Apostolopoulos et al. proposed a model to distin-
guish between normal, viral, and COVID-19 cases. They 
used three different datasets, implemented a pre-trained 
MobileNetV2 as deep TL, and achieved success rates of 
98.66%, 96.46%, and 96.78% for dataset1, dataset2, and 
dataset3, respectively. Kaya and Gursoy implemented a 
TL model using a pre-trained MobileNetV2 model. They 
used 3616 COVID-19 and 1576 normal (healthy) and 4265 
pneumonia X-ray images. Their models achieved an aver-
age accuracy rate of 97.61% for 3-class cases with fivefold 
cross-validation [2].

In [84], they developed a CNN model to distinguish viral 
pneumonia, bacterial pneumonia, and healthy images. They 
also applied their model to diagnose COVID-19, and the 
model’s success rate was 98.75%.

Yousefzadeh et al. presented a model using CT images, 
the COVID-AI system implementing ResNet, Efficient-
NetB0, DenseNet, and Xception. They used a dataset that 
contained 2124 CT scans, including 1418 normal and 706 
COVID-19 images. They employed a 20–80 hold-out vali-
dation method to evaluate their model. The proposed model 
achieved an overall accuracy of 96.4% [46]. Gupta et al. used 
several pre-trained CNN models to classify COVID-19 and 
pneumonia by extracting features from X-rays. Their model 
had a success rate of 99.08% [93]

Luz et al. also implemented a TL model using a pre-
trained EfficientNet to analyze CT scans. Their experi-
ments achieved an accuracy rate of 93.9 [94]. In addition, Jin 
et al. proposed a COVID-19 identification model using DL 
methods, including 3D U-Net++ with a set of pre-trained 
CNN models containing DPN92, Inception-v3, ResNet50, 
and Attention ResNet50. The system was trained with 541 
healthy and 850 COVID-19 samples. They achieved an accu-
racy of 97.1% [53].

Chen et al. used the UNet++-based method to identify 
COVID-19 using CT scans. This work used 46,096 images 
from a hospital in China and achieved 98.85% accuracy. In 
another study, Javaheri et al. proposed a DL model, Cov-
idCTNet, for diagnosing COVID-19 from CT scans. The 
system was developed using the U-Net architecture. The 
model used 89,145 CT scans, of which 32,230 were COVID-
19 samples, 25,699 were with community-acquired pneumo-
nia (CAP), and 31,216 were healthy scans. They achieved 
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accuracy, sensitivity, specificity, and AUC rates of 91.66%, 
87.5%, 94.0%, and 95.0%, respectively [95].

Minaee et al. suggested a model for detecting COVID-
19 in X-rays using deep TL approaches such as ResNet18, 
DenseNet-121, ResNet50, and SqueezeNet. A total of 5071 
images were obtained from various publicly available data-
sets, and they used 3100 images (100 COVID-19 and 3000 
healthy images) to test their model. They reported that 
SqueezeNet obtained the best results, achieving a sensitiv-
ity of 100% and an accuracy of 98.00% [47]. In another 
study using ResNet, NASNetLarge, DenseNet169, Incep-
tion ResNetv2, and Inceptionv3 as TL architecture, Punn 
and Agarwal presented a diagnostic model for COVID-19 
detection. They used 1076 chest X-ray images to evaluate 
their model. The training, testing, and validation sets were 
assigned 80%, 10%, and 10% of the total dataset, respec-
tively. Experimental results show that NASNetLarge per-
formed significantly better than other methods, achieving 
98% accuracy, 88% precision, 91% sensitivity, 99% specific-
ity, and 89% F1 score [96].

Table 2 provides an overview of the COVID-19 diag-
nostic methods using pre-trained models. The data sources, 
collection of images and class types, data partitioning meth-
odology, diagnostic approach, and performance metrics of 
the reported works are summarized.

4.2.2 � Customized deep learning techniques

Customized deep learning techniques enable architectural 
development with more accurate performance because they 
are tailored to the specific application. Combining a par-
ticular DL technique or algorithms with other AI areas such 
as data mining, ML, and nature-inspired algorithms [106, 
107], customized models have been developed [108]. Unlike 
pre-trained models, the network does not use prior biases 
and weights. Therefore, it requires a lot of computational 
power and execution time. This subsection summarizes 
trained from scratch and other hybrid models proposed for 
COVID-19 diagnosis.

In [109], the authors presented a novel approach, COV-
Net, based on ResNet50 to identify COVID-19 on CT 
scans. The dataset included 4536 CT scans, consisting of 
1296 COVID-19, 1735 CAP, and 1325 other lung diseases. 
They divided the dataset into training and testing datasets, 
which comprised 90% and 10%, respectively. They achieved 
a specificity, accuracy, and AUC of 96%, 90%, and 96%, 
respectively.

In another study, Ozturk et al. proposed a DNN to present 
a specific version of DarkNet, DarkCovidNet, for diagnos-
ing COVID-19 from chest X-ray images. They obtained F1 
score, precision, specificity, and accuracy values of 96.51%, 
98.03%, 95.13%, and 98.08%, respectively [110]

To identify COVID-19 from CT scans, He et al. proposed 
a hybrid DL approach that reveals a new supervised learning 
technique combined with transfer learning called CRNet. 
This approach was evaluated using 746 CT scans, including 
349 COVID-19 and 397 healthy images. The training, test-
ing, and validation sets had weights of 60%, 25%, and 15%, 
respectively. They achieved an accuracy of 86%, an F1 score 
of 85%, and an AUC of 94% [111]

Song et al. [112] proposed a DL fuzzy model for diagnos-
ing COVID-19 using CT images. In their model, they first 
implicated DL to calculate low-level features of CT images 
and then analyzed these features to reduce the feature size 
and obtain more relative features. Using a fuzzy classifier, 
they achieved accuracy and F1 scores of 94.2% and 93.8%, 
respectively.

Another hybrid method combining CNNs and the whale 
optimization algorithm (WOA) was proposed by Elgham-
rawy and Hassanien to identify COVID-19 from CT scans. 
In this method, CNNs were used for segmentation, and pre-
dictions were made about the probability of the patient’s 
response considering some factors. The dataset, which 
included 583 CT scans consisting of 432 COVID-19 images 
and 151 pneumonia images, was obtained from publicly 
available databases. They used a 65–35% hold-out valida-
tion method and achieved a detection rate of 96.40% [113]. 
In another study, Khan et al. customized the Xception model 
to identify COVID-19 images automatically. Their study 
attained an accuracy rate of 87.5% [42].

In [114], the authors implemented an inception-based 
architecture, called modified-inception, to detect COVID-19. 
They evaluated the proposed model using 1040 CT scans, of 
which 740 were classified as COVID-19 and 325 as healthy. 
Experimental results show that their model has an accuracy 
of 79.3%, a sensitivity of 83%, a specificity of 67%, and a 
precision of 55%. In another study that used CT scans to 
diagnose COVID-19, Chen et al. recommended the Unet++ 
model, based on the UNet model. The dataset used for this 
model included 51 COVID-19 and 55 other diseases. They 
achieved a success rate of 95.25% and an F1 score of 93.55% 
[115].

Another diagnostic system using a CNN model on CT 
scans was proposed by Liu et al. The proposed model, called 
COVIDNet, was based on DenseNet-264 and consisted of 
4 dense blocks. Each block contained numerous units, each 
of which had two connected stacks and received feature 
maps from the previous layers via dense block connections. 
These blocks included a normalization layer, a convolutional 
layer, and a ReLU activation layer. The dataset includes 
1073 healthy and 920 COVID-19 CT scans. The dataset is 
divided into training, testing, and validation groups of 60%, 
20%, and 20%, respectively. The accuracy of the model was 
94.3% [116].
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Table 2   Summary of DL-based COVID-19 recognition models utilizing pre-trained transfer learning approaches

References Data source Data type Number of images Class Partition Model Acc.(%)

[50] [97–99] X-ray 2870 (448 COVID-19, 
1414 pneumonia, 
1008 normal)

2 Random MobileNetV2 96.78

[44] Local hospitals in China CT 495 (368 COVID-19, 
127 pneumonia)

2 Train= 80% Valida-
tion=10% Test= 10%

ResNet50 76.0

[45] Local hospitals in China CT 618 (219 COVID-
19, 224 IAVP, 175 
normal)

3 Random ResNet18 86.70

[84] [97] X-ray 400 (200 COVID-19, 
200 normal)

2 Train = 80% Validation 
= 20%

ResNet101 98.75

[46] Local hospitals CT 2124 (706 COVID-19, 
1418 normal)

2 Train = 80% Validation 
= 20%

DenseNet 96.40

[93] [98, 100] CT+X-ray 1088 (361 COVID-19, 
362 pneumonia, 365 
normal)

3 Random Inceptionv3 99.08

[52] [101] CT+X-ray 394 (360 COVID-19, 
16 SARS, 18 strepto-
cocus)

3 Random VGG19, Inceptionv2 91.00

[85] Local hospitals from 
China

CT 1881 ( 496 COVID-19, 
1385 normal)

2 Random ResNet152 94.98

[94] [97, 102], Local hos-
pital

X-ray 13,969 (183 COVID-
19, 8066 normal, 
5521 pneumonia)

3 Train = 90% validation 
= 10%

EfficientNet 93.90

[53] Local hospital from 
China, [100]

CT 1391 (850 COVID-19, 
541 normal)

2 Random Inceptionv3, ResNet50 97.10

[95] Local hospitals from 
Iran

CT 89,145 (32,230 
COVID-19, 25,699 
CAP, 31,216 other 
diseases)

3 Train = 90% validation 
= 10%

U-Net 91.66

[48] Local hospitals CT 1020 (510 COVID-19, 
510 normal)

2 Train = 80% validation 
20%

VGG16,VGG19 99.51

[40] Public datasets from 
Internet

CT 5800 2 Train = 80% Validation 
= 20%

AlexNet, Inceptionv4 94.74

[41] [102] X-ray 307 (69 COVID-19, 79 
bacterial pneumonia, 
79 viral pneumonia, 
79 normal)

4 Train = 80% validation 
=10% test = 10%

AlexNet, GoogleNet, 
ResNet18

85.20

[49] [97, 102, 103] X-ray 400 (100 COVID-19, 
100 pneumonia, 200 
normal)

3 Train =80% test = 20% VGG16, VGG19, 
ResNet50

80

[91] [104, 97, 99] X-ray 183 (25 COVID-19 25 
normal 133 pneu-
monia

3 Train = 60% test = 
20% validation = 
20%

AlexNet, VGG16, 
VGG19, GoogleNet, 
ResNet18, ResNet50

95.38

[47] [104] X-ray 3100 (100 COVID-19, 
3000 normal)

2 Train = 40% test = 
60%

ResNet18, ResNet50, 
SqueezeNet, 
DenseNet

98.0

[86] [104], public datasets 
from Internet

X-ray 100 (50 COVID-19, 50 
normal)

2 Cross validation ResNet50, Inceptionv3, 
Inception-ResNetv2

98.0

[96] [101], public datasets 
from Internet

X-ray 1076 (108 COVID-19, 
515 pneumonia, 453 
normal)

3 Train = 80% test = 
10% validation = 
10%

ResNet, Inceptionv3, 
Inception-ResNetv2, 
DenseNet169, 
NASNet

98.0

[87] [101, 105] X-ray 278 ( 89 COVID-19, 93 
normal, 96 pneumo-
nia)

3 Train = 80% test = 
20%

ResNet50 98.18
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Song et al. proposed a model, DeepPneumonia, based on 
a DRE network. Image features were extracted by combin-
ing the feature pyramid network and the ResNet50 model, 
which was used to develop the proposed system. A total of 
1990 CT scans were included in the dataset, consisting of 
708 healthy, 505 bacterial pneumonia, and 777 COVID-19 
images. The proposed model achieved an accuracy of 94%, 
precision of 96%, F1 score of 94%, sensitivity of 93%, and 
AUC of 99% [117].

Similarly, Zheng et al. developed a CNN model called 
DeCoVNet. They used three particular layers: the subsam-
pling layer, the 3D convolutional layer, and the batch norm 
layer. They evaluated their model using 630 CT scans, apply-
ing an 80–20% hold-out validation method. They achieved 
an accuracy of 90.1%, specificity of 91.1%, AUC of 95.9%, 
NPV of 84%, and sensitivity of 90.7% [118].

In [119], the authors propose an approach that uses two 
decoders for segmentation, an MLP for classification, and 
an encoder for reconstruction. For each of the three tasks, a 
single encoder was used to input the sample data with CT 
scans, two decoders were used for reconstruction and seg-
mentation, and the multilayer perceptron was used to clas-
sify the images based on the presence of COVID-19 cases. 
1044 CT scans were used, including 449 COVID-19, 100 
healthy, 98 lung cancer, and 397 other lung disease images. 
The proposed model achieved a sensitivity of 94%, a speci-
ficity of 79%, an accuracy of 86%, and an AUC of 93%.

In another study, Hasan et al. developed a Q-deformed 
entropy technique (QDE-DF) using DL features to identify 
COVID-19 from CT scans. Deep features were extracted 
using CNN and Q-deformed entropy, and then LSTM was 
used to categorize cases based on the deep features. They 
used 321 CT scans, including 118 COVID-19, 96 pneumo-
nia, and 107 healthy images. The dataset was split into train-
ing and testing ratios of 70% and 30%. This model achieved 
a classification accuracy of 99.68% [120].

Singh et  al. presented a hybrid model for detecting 
COVID-19 using CT scans. In this work, multicenter differ-
ential evolution was used to determine the initial parameters 

of the model. They implemented an artificial neural network 
(ANN) and an ANN with a fuzzy inference system (ANN-
FIS). 150 CT scans were included in the evaluation dataset, 
75 COVID-19 and 75 healthy subjects. They tested differ-
ent validation ratios of training and test for the experiment, 
including 20—80%, 30–70%, 40–60%, 50–50%, 60–40%, 
70–30%, 80–20%, and 90–10%. The model’s sensitivity was 
90.70%, the accuracy was 93.25% and F1 score was 92.20% 
[121].

Ucar and Korkmaz proposed a Bayes SqueezeNet-based 
model, COVIDiagnostic, to diagnose COVID-19. They used 
1591 pneumonia, 45 COVID-19, and 1203 healthy chest 
X-rays. The experimental results showed that their model 
achieved an accuracy rate of 98.26% and a specificity of 
98.26%. Farid et al. presented an innovative method for iden-
tifying COVID-19 infections from CT images. They used 
a hybrid composite feature extraction technique to calcu-
late the features, and the stack hybrid classification (SHC) 
method was used to classify these extracted features. SHC 
combines multiple models, such as ensemble learning, to 
improve model performance. To validate the model, 10-fold 
cross-validation was performed, and they achieved an accu-
racy of 94.11%, a precision of 99.4%, an F1 score of 94%, 
and an AUC value of 99.4% [122].

Rahimzadeh and Attar proposed a modified CNN model 
for detecting COVID-19 on chest X-ray images. They used 
ResNet50V2 and Xception CNN architectures as the main 
design and evaluated their model using 180 COVID-19, 
6054 pneumonia images, and 8851 healthy images. A five-
fold cross-validation scheme was implemented, and a suc-
cess rate of 99.50% was achieved [43].

In [123], the authors developed a novel system using the 
CoroNet model and AutoEncoder to diagnose COVID-19 
individuals on X-rays. They use semi-supervised learning 
and classify them using a user-defined network to extract 
the features. The semi-supervised learning approach of the 
designed architecture solved the problem of insufficient 
data. A total of 18,529 images related to different diseases 
were used. Specifically, 9579 images were pneumonia, 99 

Table 2   (continued)

References Data source Data type Number of images Class Partition Model Acc.(%)

[90] [104, 99] X-ray 327 (125 COVID-19, 
152 normal, 50 pneu-
monia)

3 Cross validation VGG16, VGG19, 
Inception-ResNetv2, 
Inception, Xception

84.1

[2] Public datasets from 
Internet

X-ray 9457 (3616 COVID-19, 
1576 normal, 4265 
pneumonia)

3 Cross-validation MobileNetv2 97.61

[88] Public datasets from 
Internet

Ultrasound 12,949 3 Random ResNet50, GoogleNet, 
VGG19

96.10

[89] Public datasets from 
Internet

Ultrasound 202 4 Random NasNetMobile 63.00
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were COVID-19, and 8851 were healthy people. 90% of 
the data were used for training and 10% for test sets. They 
achieved accuracy, precision, recall, and F1 score values of 
93.50%, 93.63%, 93.50%, and 93.51%, respectively.

Farooq and Hafeez proposed a DL architecture, COVID 
-ResNet, based on the ResNet50 model to identify COVID-
19. They trained it from scratch by optimizing the param-
eters and discriminating the learning rate. They used 648 
X-ray images, consisting of 239 bacterial pneumonia, 8 
COVID-19, 234 healthy pneumonia, and 149 viral pneu-
monia, and achieved 96.23% accuracy [124]

Islam et al. developed a hybrid model for the automatic 
detection of COVID-19 based on the hybridization of 
CNN with LSTM. The dataset of 4575 X-rays, including 
1525 COVID-19, 1525 normal, and 1525 viral pneumo-
nia images, was used to evaluate the effectiveness of the 
hybrid model. According to the numerical results, the 
model achieved 99.20% accuracy, 99.30% sensitivity, and 
98.90% specificity [125].

In [126], the authors employed two DL approaches to 
detect COVID-19 cases from chest X-ray images. These 
proposed architectures use artificial neural networks for 
automatic lung segmentation (preprocessing) on CT scans 
and X-rays. The AlexNet architecture is implied as TL 
in both architectures. The second model presented has a 
hybrid structure that includes a BiLSTM (bidirectional 
long short-term memory) layer that also considers tem-
poral aspects. They used 2905 images, including 219 
COVID-19, 1345 pneumonia, and 1341 healthy images. 
The second hybrid architecture has a classification accu-
racy of 98.70%, while the first design achieved an accuracy 
of 98.14%.

Turkoglu presented a hybrid model called COVIDetec-
tioNet, which combines DL and classical ML methods such 
as AlexNet and SVM to identify COVID-19 from X-ray 
images. The researchers collected a dataset from GitHub 
and Kaggle that included 219 COVID-19, 4290 pneumo-
nia, and 1583 normal images. COVIDetectioNet achieved 
99.18% accuracy [127].

In [128], the authors proposed a DL approach, namely 
CovidSORT, to detect COVID-19 using 5910 chest X-ray 
images from local hospitals in China to evaluate the perfor-
mance of the proposed method. According to the numeri-
cal results, the accuracy of CovidSORT model was 96.83%, 
precision was 98.75%, sensitivity was 96.57%, and F1 score 
was 97.65%.

Mahmud et al. developed a unique CNN method, Cov-
XNeT, based on depth-stretched folding to identify COVID-
19. CovXNeT was applied to a combined dataset containing 
305 images in each class from different sources. Experi-
mental results show that CovXNeT achieved an accuracy of 
97.4% for the classification of two classes and an accuracy 
of 90.3% for the classification of four classes [129].

Awasthi et  al. proposed a DL model for COVID-19 
using lung ultrasound images. The new method, namely 
Mini-CovidNet, modified MobileNet with focal loss. Mini-
CovidNet achieved an accuracy of 83.2% [130]. Chen et al. 
implemented a novel CNN model to detect COVID-19 by 
analyzing lung ultrasounds. It was found that the reliabil-
ity of lung ultrasound results was highly dependent on the 
physician’s experience. They collected 1527 images of lung 
ultrasounds from 31 patients diagnosed with COVID-19, 
and the proposed model attained 87% accuracy [131]. In 
addition, Dastier et al. proposed another ultrasound-based 
model to identify COVID-19. They proposed a CNN archi-
tecture implementing an auto-encoder network and separable 
convolutional branches fused with a modified DenseNet201-
based model to create a noise-free classification model and 
achieved a fivefold cross-validation accuracy of 79.1% [132].

Some studies diagnose COVID-19 by analyzing the 
patient’s voice, breath, vibration, heart sounds, and MRI. 
In [133], the authors proposed a model called CR19 using 
genetic ML classifiers to diagnose COVID-19 from cough 
sounds. For this study, public datasets were used, and various 
ML models such as logistic regression, KNN, support vector 
machine, and decision tree algorithms were employed, with 
KNN achieving the best results with precision and F1 score 
of 97 and 98%, respectively. Pahar et al. used a deep-transfer 
learning algorithm to diagnose COVID-19 based on breath, 
cough, and speech. In this study, three modified CNN mod-
els were implemented. The modified ResNet50 model out-
performed the other models with an AUC of 98%, 94%, and 
92% for the cough, breath, and speech classes, respectively 
[134]. In [135], the authors propose a novel CNN model for 
detecting COVID-19 from acoustic sounds. The Modified-
Mel-frequency cepstral coefficient technique was used for 
disease classification. The model achieved accuracy and F1 
score of 92.32% and 93.48%, respectively.

In addition, Laguarta et al. developed a CNN model to 
identify COVID-19 from cough recordings collected via 
cell phones. In this model, the cough recordings were con-
verted into a CNN-based architecture consisting of a Pois-
son Biomarker layer and three ResNet50 layers connected 
in parallel to generate a binary prior diagnosis. The model 
achieved 97.1% accuracy in predicting COVID-19 based on 
5320 cough sounds [136]. Pahar et al. proposed a classifier 
to detect COVID-19 from cough sounds. They used two pub-
licly available datasets that included a total of 1291 samples. 
This study implemented different classifiers, including MLP 
(Multilayer Perceptron), LR, LSTM, SVM, CNN and RNN. 
The modified ResNet50 classifier achieved the best results 
among the classifiers with an accuracy of 95.3% [137].

In [138], the authors proposed a diagnostic tool for 
detecting COVID-19 by MRI. In 32 patients diagnosed with 
COVID-19, scans of chest CT and MRIs were performed 
within 24 h. They found that MRIs achieved better results 



1616	 E. Gürsoy, Y. Kaya 

1 3

Table 3   Summary of deep learning based COVID-19 diagnosis using the customized models

References Data source Data type Number of images Class Partition Model Acc.(%)

[109] Local hospitals CT 4536 (1296 COVID-
19, 1735 CAP, 1325 
pneumonia

3 Train = 90% test = 
10%

COVNet 90.0

[110] [97] X-ray 1127 (127 COVID-
19, 500 normal, 500 
pneumonia)

3 Cross validation DarkNet 98.08

[111] Public databases 
from internet

CT 746 ( 349 COVID-19, 
397 normal)

2 Train = 60% test = 
25% Validation = 
15%

CRNet 86.0

[113] Public databases 
from internet

CT 583 (432 COVID-19, 
151 pneumonia)

2 Train = 65% test = 
35%

WOA-CNN 96.40

[42] [97], public databases 
from Internet

X-ray 1251 (284 COVID-
19, 310 normal, 330 
bacterial pneu-
monia, 327 viral 
pneumonia)

4 Train = 80% test = 
20%

CoroNet 89.50

[114] Local hospitals from 
China

CT 1065 (740 COVID-
19, 325 normal)

2 Random Modified-Inception 79.30

[115] Local hospitals from 
China

CT 106 (51 COVID-19, 
55 other diseases)

2 Train = 80% Test = 
20%

UNet++ 95.24

[116] Local hospitals from 
China

CT 1993 (19 COVID-
19, 777 bacterial 
pneumonia, 708 
normal)

2 Train = 60% test = 
20% Validation = 
20%

COVIDNet 94.30

[117] Local hospitals CT 1990 (777 COVID-
19, 505 pneumonia, 
708 normal)

3 Train= 60% Test = 
10% Validation = 
30%

DRE-Net 94.30

[118] Local hospitals CT 630 2 Train = 80% test = 
20%

DeCOVNet 90.1

[119] [143] CT 1044 (449 COVID-
19, 595 normal)

2 Train = 80% test = 
10% Validation = 
10%

Encoder, decoder 
with multilayer 
perceptron

86.0

[120] Public databases 
from internet

CT 321 (118 COVID-19, 
96 pneumonia, 595 
normal)

3 Train = 70% valida-
tion = 30%

QDE-DF 99.68

[121] Public databases 
from Internet

CT 150 (75 COVID-19, 
75 pneumonia)

2 Random Mode-CNN 93.25

[144] [97, 102] X-ray 2839 (45 COVID-19, 
1203 normal, 1591 
pneumonia)

3 Train = 80% test = 
10% Validation = 
10%

Bayes-SqueezeNet 98.26

[122] Public databases 
from internet,[145]

CT 102 (51 COVID-19, 
51 SARS)

2 Cross-validation CNN 94.11

[43] [97], public databases 
from Internet

X-ray 15,085 (180 COVID-
19, 6054 pneumo-
nia, 8851 normal)

3 Cross-validation Concatated CNN 99.50

[123] [97], public databases 
from Internet

X-ray 18,529 ( 99 COVID-
19, 9579 pneumo-
nia, 8851 normal)

3 Train = 90% valida-
tion = 10%

CoroNet 93.50

[124] [102] X-ray 637 4 Train = 90% Test = 
10%

Covid-ResNet 96.23

[125] [97, 105, 146, 147] 
[148]

X-ray 4575 (1525 COVID-
19, 1525 pneumo-
nia, 1525 normal)

3 Random Cross validation 99.20

[126] [97] X-ray 2905 (219 COVID-
19, 1345 pneumo-
nia, 1341 normal)

3 Random CNN+BILSTM 
AlexNet

98.70
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with a sensitivity and specificity of 91.67% and 100% for 
the diagnosis of COVID-19. In addition, studies such as 
[139–141] use MRI images.

The DL-based COVID-19 diagnostic systems using the 
customized CNN models are summarized in Table 3. We 
provide an overview of the key elements, including data 
sources, data types, number of images, data partitioning 
method, diagnostic strategy, classes, and performance met-
rics of the reported work.

4.2.3 � Comparison of machine learning and deep learning 
techniques

We investigated two approaches for detecting COVID-19 
using pre-trained or customized DL models. Although the 
performance of the proposed approaches is promising, 
these studies have certain similarities and differences that 
should be considered. The sunburst plot of both approaches 
described is given in Fig. 5.

There are studies using the same dataset for pre-trained 
[49, 50, 84, 91] and customized CNN models [42, 110, 125, 
126, 142]. Although the models’ architectures differed, they 
obtained similar results using the same datasets. A direct 
comparison of the results would not be fair because they 
were not trained with the same training parameters on the 
same dataset. In summary, however, the authors in [48] and 
[91] applied the VGG16 model to different datasets and the 
results differed by 14.74%. Another reason the studies get 
various results because they use different types of images 

in the same model. In [40] and [41], the authors used the 
AlexNet model, which uses CT scans and X-ray images, and 
their success rates differed by about 5%.

Insufficient data and class imbalance also led to different 
results. It is difficult to train the system with small datasets, 
and the visual classification task becomes susceptible to 

Fig. 5   Sunburst plot for pre-trained and customized DL models

Table 3   (continued)

References Data source Data type Number of images Class Partition Model Acc.(%)

[127] Public databases 
from Internet

X-ray 6092 (219 COVID-
19, 4290 pneumo-
nia, 1583 normal)

3 Random COVIDetectioNet 99.18

[128] Local hospitals X-ray 5910 3 Cross-Validation COVIDSort 96.83
[129] Public databases 

from Internet
X-ray 7076 2 Cross-validation ConvxNet 97.4

[130] Public databases 
from Internet

Ultrasound 1103 3 Random Mini-CovidNet 83.2

[131] Local hospitals Ultrasound 1521 2 Random Novel CNN 87.0
[132] Public databases 

from Internet
Ultrasound 14,311 4 Cross-validation Modified 

DenseNet201
79.10

[133] Public databases 
from Internet

Cough sounds 469 2 Random CR19 94.32

[134] Public databases 
from Internet

Cough sounds 11,202 2 Random Modified ResNet AUC = 98.00

[135] Public databases 
from Internet

Cough sounds 13,000 3 Random Modified ResNet AUC = 98.00

[136] Public databases 
from Internet

Cough sounds 5320 2 Random Modified ResNet 97.10

[137] Public databases 
from Internet

Cough sounds 1291 2 Random Modified ResNet50 95.30
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overfitting. Some studies used small datasets, which does not 
guarantee that the proposed model is fully trained. In [51, 
115, 121, 122], the authors could not guarantee the accuracy 
of their models because they trained on datasets with less 
than 150 images.

5 � Datasets

Although there are a variety of diagnostic techniques, RT-
PCR is the leading standard for identifying COVID-19 path-
ogen laboratories. However, test results are not available for 
several hours, and this relatively late response is the main 
obstacle to early intervention. Researchers have focused on 
alternative methods that use X-rays or CT scans to shorten 
the time to diagnose the disease.

CT is a technique that takes X-ray images from different 
angles and combines them into a single image. To illustrate 
COVID-19, pneumonia, and normal (healthy) CT scans, see 
Fig. 6.

A CT scan is faster and easier to demonstrate but also 
more costly. Therefore, researchers have developed a 
COVID-19 detection model that uses X-rays rather than CT 
images. The use of X-ray images is readily available and 
inexpensive because most underdeveloped countries have 
X-ray imaging technologies. Figure 7 shows X-ray images 
of COVID-19, pneumonia, and a healthy sample.

In the first quarter of the pandemic, medical imaging 
began to be stored and made publicly available during 
COVID-19. At that time, there were not enough records 
freely available to the public. Therefore, the first publica-
tions suffered from the small size of the training and test 
images [44, 45, 49, 51, 84, 87, 90, 120–122], and these 
works cannot be considered reliable. This is because the 
methods of DL require sufficient data to consistently train 
the model [149].

Toward the end of the pandemic, researchers have suf-
ficient data available thanks to publicly available datasets 
[94, 117, 126–128].

Researchers also used clinical and laboratory data such as 
ultrasound [88, 89, 130–132], MRI [133, 138–141], cough 
sounds [133–137], and blood tests [33, 76, 77, 79] instead 
of X-rays and CT.

The results of the work during this period are more con-
sistent. We summarize general information about the data-
sets in the literature and their resources in Table 4. As can 
see from Table 4, the authors have been very successful in 
providing a variety of datasets and types that can be very 
helpful in diagnosing COVID-19.

In this study, we determine that 23 works used X-ray 
images [41–43, 47, 49–51, 84, 86, 87, 90–92, 94, 96, 110, 
123–129], 20 works use CT scans [40, 44–46, 48, 53, 85, 
95, 109, 111, 113–122], 2 works used both [52, 93], 5 
works ultrasound [88, 89, 130–132], 5 works MRI [133, 
138–141], 5 works cough sounds [133–137], and 4 works 
blood tests [33, 76, 77, 79] as data sources.

Fig. 6   Sample CT images

Fig. 7   Sample X-ray images
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In some studies, because of a lack of data size, research-
ers comprised their test dataset using more datasets to 
increase the data size [49, 50, 87, 90–92, 125, 144]. Thus, 
they achieved a more robust result for the diagnosis of 
COVID-19.

From a different perspective, it is noted that due to the 
lack of data in the early days of the pandemic, a two-class 
classification (COVID-19 and healthy) was applied [40, 
44, 48, 51, 85]. As more relevant data became available 
over time and COVID-19 was evaluated with different 
lung diseases, studies were conducted to classify them into 
three and four classes [41, 42, 45, 52, 91, 130, 132, 135]. 
In addition, some researchers use blood testing techniques 
[33, 75, 77–79] and have used more than four classes for 
classification.

CT scans are more detailed than X-ray images and are 
therefore better suited for detecting COVID-19 and develop-
ing detection models [159]. 18 CT Image-based work used 
the COVID-19 CT scans to develop their architecture. The 
first dataset [100] contains 100 CT images of 40 individu-
als. The experts classified the images into three categories: 
Pleural effusion, consolidation, and actual class.

In [143], the authors presented the COVID-CT dataset 
consisting of 216 CT scans with COVID-19 and 463 images 

of healthy individuals. An experienced radiologist who has 
identified and treated COVID-19 patients since the onset of 
the epidemic confirmed the importance of this dataset [143].

Another COVID-19 CT scan dataset was published at 
Kaggle [145]. This dataset contains 20 CT scans of patients 
diagnosed with COVID-19 and an expert-generated segmen-
tation of lungs and infections. Finally, some researchers use 
the COVID-CT database on GitHub. This dataset includes 
620 individual CT scans, of which 310 are COVID-19, and 
310 are healthy [150]. Researchers working for local hos-
pitals had the opportunity to obtain local images from their 
hospitals and collected their test datasets from these hospi-
tals [45, 115, 117, 118]

Thanks to the cheaper cost of X-ray images, they are 
more accessible than CT scans. Therefore, most authors 
use chest X-rays in their experiments. The most commonly 
used COVID-19 X-ray dataset by researchers is COVID-19 
Image Data Collection [97]. The database also includes lung 
segment annotations and metadata and contains a limited 
number of images but is constantly updated with the addi-
tion of new images.

Another common database is the COVID-19 Radiography 
Database. When it was first published, it consisted of 219 
COVID-19, 1341 healthy, and 1345 viral pneumonia images. 

Table 4   Datasets

References Data type Size Classes

[100] CT 829 829 COVID-19
[143] CT 679 216 COVID-19, 463 healthy
[145] CT 20 20 COVID-19
[150] CT 620 310 COVID-19, 310 healthy
[151] CT 3520 3520 COVID-19
[152] CT 384 384 COVID-19
[97] X-ray 646 468 COVID-19, 5 varicella, 16 SARS, 4 influenza, 3 herpes, 13 Streptococ-

cus spp., 9 Klebsiella spp., 7 Legionella spp., 4 Escherichia coli, 1 aspiration 
disease, 10 MERS-CoV, 24 Pneumocystis spp., 4 Nocardia spp., 5 Mycoplasma 
spp., 2 unknown diseases, 1 Chlamydophia spp., 1 Staphylococcus spp., 8 
lipoid diseases, 2 Aspergillosis spp., 59 unknown diseases

[98] X-ray 3551 219 COVID-19, 1341 healthy, 1345 pneumonia
[99] X-ray 109,322 37,456 CNV, 11,599 DME, 8867 Drusen, 51,390 healthy
[102] X-ray 13,975 COVID-19 and 14 different lung diseases
[148] X-ray-CT 17,099 9471 COVID-19, 8128 healthy
[104] X-ray 79 79 COVID-19
[105] X-ray 112,120 112,120 COVID-19
[153] X-ray 20,226 4558 COVID-19, 5403 healthy, 4497 viral pneumonia, 5768 bacterial pneumonia
[154] PCR and blood test 475 475 COVID-19
[154] PCR and blood test 475 475 COVID-19
[155] Ultrasound 173 173 COVID-19
[155] Ultrasound 150 150 COVID-19
[156] Ultrasound 242 242 COVID-19
[157] Cough sound 734 697 COVID-19 37 normal
[158] Cough sound 25,000 25,000 COVID-19
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The first update included 1200 images of COVID-19 in the 
database. The second update included 1345 viral pneumonia 
images, 6012 pulmonary opacities (not COVID pulmonary 
infection), 10,192 healthy and 3616 COVID-19 images. This 
database is continually updated as new X-ray images with 
COVID-19 arrive [98].

Some authors used the dataset of Kermany et al. [99], 
which includes 741 X-ray images comprising four classes: 
COVID-19, viral pneumonia, bacterial pneumonia, and 
healthy. In [102], the authors presented an open-access 
benchmark dataset, the COVIDx, which consists of 13,975 
X-ray images from 13,870 patients, one of the highest 
numbers of images. The comprehensive COVID-19 X-ray 
Images Dataset consisted of X-rays and CT scans with a 
total of 17,099 images, of which 9544 are X-rays [148]. The 
COVID-19 X-ray images dataset is publicly available on 
Kaggle and contains 76 COVID-19 X-ray images [104].

In another public Kaggle dataset, the NIH Chest X-rays 
database was used by the authors to expand their dataset 
with 5863 images in two classes: pneumonia and normal 
[105]. Finally, the curated dataset for COVID-19 Poste-
rior–Anterior Chest Radiography Images (X-rays) is a public 
dataset available on Mendeley Data. This dataset contains a 
total of 20,226 x-ray images [153].

It is important to use enough data to train a DL model and 
avoid overfitting consistently. Therefore, most researchers 
have extended the dataset using various image preprocess-
ing techniques such as data augmentation [42]. In addition, 
some recent works are trained on a combined dataset that 
integrates the COVID-19 dataset with normal or pneumonia 
chest X-ray images from another repository. In addition, lung 
diseases such as COVID-19 influenza, pneumonia, Middle 
East respiratory syndrome (MERS), severe acute respiratory 
syndrome (SARS), and tuberculosis can cause CT and X-ray 
images to be misclassified [126]

To get around this problem, the researchers modified their 
dataset to include images of diseases similar to COVID-19. 
When accurately distinguishing COVID-19 patients from 
healthy individuals is critical, the authors also augmented 
their dataset with images of healthy individuals [92]. Some 
authors combined COVID-19 images with other lung dis-
eases such as SARS, MERS, influenza, bacterial pneumonia, 
fungal pneumonia, and tuberculosis [125].

6 � Thread to validation

There are some validity cases for each DL and ML work. 
The results obtained in the study should be balanced and not 
tend to be under or overfitting. In addition, the models and 
methods developed should work efficiently in real time. The 
distribution of the dataset should be balanced and appropri-
ate for the metrics used in model training. If the dataset has 

an imbalance of classes, the training does not prove that 
the model is reliable. Evaluation criteria such as precision, 
accuracy, AUC, F1 score, Cohen Kappa, and other criteria 
should also be used [17].

The COVID-19 symptoms and treatments may differ 
between the new context and the study. Data scaling may 
also be a critical factor. It is critical to the success of any 
research to increase validity.

7 � Challenges and future directives

From a technological perspective, the RT-PCR technique is 
the most common, safest, and effective method for identify-
ing COVID-19 cases. The application of DL in healthcare 
is a new and rapidly growing area of research. DL-PCR-
based methods cannot be fully replaced in their current form 
because they are readily available. Therefore, healthcare pro-
fessionals could use DL-based detection systems as an initial 
screening method or a tool to support their decision-making. 
DL-Methods for detecting COVID-19 present numerous 
challenges. Despite encouraging results, DL-based detection 
of COVID-19 from X-ray images and CT scans still faces 
several societal and technical obstacles [160].

DL-based approaches are well suited for automation, 
but creating a reliable diagnostic system requires a large 
amount of data. Because COVID-19 is a relatively new area 
of research, the lack of standardized data complicates diag-
nosis, and image data from COVID-19 patients can be mis-
labeled, noisy, incomplete, and unclear. With such extensive 
and diverse datasets, training DL models is challenging due 
to many issues, such as data redundancy, missing values, and 
sparsity. Various datasets obtained from online sources were 
used for the experiment. The data were processed accord-
ing to the system specifications and evaluated using various 
metrics.

In addition, medical images are usually low-contrast 
images. Therefore, an attempt is made to increase the con-
trast of these images so that the images can be better trans-
formed into feature space when run through a DL model. A 
large heterogeneity in the quality of images acquired at dif-
ferent locations using different imaging devices introduces 
a potential bias in image analysis. This challenge highlights 
the need to improve image quality in a preprocessing step. 
Preprocessing techniques are commonly used in the litera-
ture to improve the quality of images and make them more 
visually appealing.

Lack of data is another problem for COVID-19 detection 
systems based on DL. Because the COVID-19 pandemic 
is still relatively new, clinical information is still sparse 
and tightly controlled, leading to problems with the under 
or overfitting of data and affecting system performance. 
Another critical problem for COVID-19-based diagnostic 
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methods is the imbalance of class. COVID-19 Data from 
X-rays and CT scans are far less available than for other 
common lung diseases. During the training phase of DL 
models, bias often occurs due to an imbalance of data. 
The lower the proportion of positive samples, the more 
difficult it becomes for the model to perform the intended 
classification.

Many studies have shown that most datasets used for 
binary and multiclass classification to diagnose COVID-19 
are category imbalanced or insufficient [41, 44, 51, 52, 66, 
80, 83, 87, 90, 91, 115, 120–122]. This may cause bias in 
the performance of the model. It is of great importance that 
researchers use appropriate datasets, especially since it is not 
possible to collect enough high-quality images in the first 
quarter of the pandemic.

In addition, the entire COVID-19 genome was sequenced 
using information from millions of patients suffering from 
the disease worldwide. The higher mutation rate of the 
COVID-19 virus has proven to be very beneficial for this 
genome sequence. The accuracy of current diagnostic meth-
ods for identifying individual viral genes depends on the tar-
geted regions of the genome [161]. Alarmingly, the impact 
of mutations on diagnostic tests increases the likelihood 
that a patient with the disease will receive a false negative 
result. These diagnostic tests analyze the genetic mutations 
of coronavirus, which often change as the infection spreads 
from person to person. As the number of infected people 
increased and the pandemic spread, numerous containment 
strategies were considered, including lockdowns and social 
isolation [162].

More publicly available datasets could be collected and 
created in the future. There could be new research opportuni-
ties in creating, annotating, and providing metadata for data. 
Researchers could validate models with large datasets in the 
future, and integrating features from different transfer learn-
ing models could create new hybrid models that perform 
better. For multiclass classification, which achieves lower 
classification scores than binary classification, there are very 
few proposed models to date. Future research can focus on 
multiclass classification models to increase their effective-
ness. Since the COVID-19 virus is believed to be in a severe 
stage of infection in the lung region, researchers could also 
study other organs affected by the virus. Researchers can 
apply DL to develop an end-to-end system that can be used 
in widespread hot spots to identify COVID-19 cases.

8 � Discussion

For this work, 86 COVID-19 papers were consulted, of 
which 55 were examined in detail. 24 papers used pre-
trained models, while the remaining 31 used customized DL 
architectures. The results of each approach are analyzed for 

clarity. Six common modalities were used, such as CT scans, 
X-rays, MRI, ultrasound, cough sound, and blood tests.

The problems discussed in the literature are examined in 
detail, as some issues will be resolved in future studies. First, 
most COVID-19-based diagnostic systems are described 
despite DL methods and without detailed explanations of 
background information and mathematical representations.

Second, the reader is urged to consult the relevant refer-
ences rather than discuss the specifics of the CNN, espe-
cially for custom architectures. These modifications include 
batch size, dropout layer, optimization parameters, learn-
ing rate, layer specifications, loss function, and the num-
ber of epochs. Third, most of the work achieved over 90% 
accuracy, whether it was a pre-trained model or customized 
model for CT and X-ray images with few or large datasets. 
The need for a large dataset annotated by an experienced 
physician or radiologist is one of the main problems in using 
DL for the diagnosis of COVID-19. More publicly available 
datasets are needed to use large medical images for model 
training. Despite these problems, CNN models have shown 
promising results.

Finally, the main advantage of DL models is that they 
can be easily used for feature selection [163, 164]. However, 
in the case of medical images, feature selection was more 
important than any other task. Medical personnel cannot 
comprehensively analyze the models from DL. Therefore, 
reliability is not guaranteed, and these models can only be 
used as an early detection system [165]. We have discussed 
the challenges associated with current DL approaches to 
COVID-19 diagnosis. It is important to note that every study 
in the literature has shown that the potential for automated 
detection of COVID-19 simultaneously faces challenges 
or lack of analysis. The proposed approaches should be 
evaluated from different perspectives. We believe that con-
solidating key observations can serve as a benchmark and 
help researchers develop DL-based automatic and efficient 
COVID-19 detection solutions.

9 � Conclusion

The COVID-19 pandemic has a serious impact on the well-
being of people around the world. Technology is advancing 
rapidly, particularly in the areas of ML and DL. ML and DL 
have already made a significant contribution to the human 
response to the pandemic.

Because of their fascinating perspectives, ML and DL 
have been hailed as one of the best strategies to combat the 
COVID-19 epidemic. Numerous DL applications of medi-
cal imaging have inspired the current COVID-19 pandemic 
activities described in this article over the years. This com-
prehensive review presents various diagnostic approaches 
used by ML and DL to detect COVID-19. It also describes 
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the methods of ML and DL, available datasets, and perfor-
mance. Despite the encouraging achievements, ML and DL, 
the successful processing of COVID-19 in medical images 
still requires significant time and effort, as well as close 
coordination among numerous government and industry 
partners. With the help of ML, DL, and other technologies, 
including biomedicine, data science, and mobile commu-
nications, we expect the COVID-19 outbreak to end soon.

This review provides a detailed state-of-the-art over-
view of existing methods and applications for ML and DL 
researchers and the broader health community, with descrip-
tions of how ML and DL will advance the status of COVID-
19 and further studies to prevent the COVID-19 outbreak. 
To stop the spread of COVID-19, we also hope that our 
work will serve as a helpful resource and inspire several 
new studies on digital radiography and medical imaging. 
While this paper does not claim to be an in-depth analysis 
of these studies, it does provide a helpful perspective and a 
fair comparison of the research conducted in recent years 
that researchers can use in determining their future work.
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