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Abstract

Cross-view geo-localization mainly exploits query images to match
images from the same geographical location from different platforms.
Most existing methods fail to adequately consider the effect of image
structural information on cross-view geo-localization, resulting in the
extracted features can not fully characterize the image, which affects
the localization accuracy. Based on this, this paper proposes a cross-
view geo-localization method guided by relation-aware global attention,
which can capture the rich global structural information by perfectly
integrating attention mechanism and feature extraction network, thus
improving the representation ability of features. Meanwhile, consider-
ing the important role of semantic and context information in geo-
localization, a joint training structure with parallel global branch and
local branch is designed to fully mine multi-scale context features for
image matching, which can further improve the accuracy of cross-
view geo-localization. The quantitative and qualitative experimental
results on University-1652, CVUSA, and CVACT datasets show that
the algorithm in this paper outperforms other advanced methods in
recall accuracy (Recall) and image retrieval average precision (AP).

Keywords: Cross-view geo-localization, Attention mechanism, Dual-branch
structure, Dilated convolution
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1 Introduction

Cross-view geo-localization can be regarded as a content-based image retrieval
task [1, 2], which refers to matching the query image from one platform with
the images from other platforms to find the images with the same geographic
location. Previous research mainly focused on matching ground views with
satellite and aerial images. Recently, drone-view images have been introduced
in cross-view geo-localization with the gradual maturity of UAV technology
[3], and geo-localization based on drone-view and satellite images has become
the current research hotspot.

As convolutional neural networks (CNN) are widely used in visual tasks
such as image classification [4, 5], object detection [6, 7], semantic segmen-
tation [8, 9], and action recognition [10, 11], some researchers have applied
CNN to cross-view geo-localization [12] and made significant progress. How-
ever, most cross-view geo-localization methods mainly consider the high-level
semantic information of the target image, ignoring the impact of spatial struc-
ture information on improving the accuracy of geo-localization. Zheng et al.
[13] regarded geo-localization as a classification task and measured the similar-
ity of the image semantic features. However, this method ignores the context
information of the area around the target, resulting in the extracted features
are not comprehensive enough. Wang et al. [14] used the square-ring parti-
tion strategy to make the network focus on the surrounding area of the target,
thus improving the accuracy of geo-localization by exploiting context informa-
tion. However, this method directly divides the feature map into four scales
and ignores the global structure information of the image, which leads to the
false detection of similar images as the correct retrieval results in the retrieval
process. Obviously, it is helpful to elevate the performance of geo-localization
tasks by sufficiently exploring the structural information of the geographic
target images.

To alleviate the impacts of existing algorithms that fail to fully consider
the image structure information on the matching accuracy of cross-view geo-
localization, this paper proposes a cross-view geo-localization method guided
by relation-aware global attention. Specifically, this method adopts the deep
residual network [15] as the backbone network, and exploits the relation-aware
global attention module (RGA) [16] to capture more robust global structure
information of the image for image feature matching. Meanwhile, a dual-branch
network is designed to capture deep features with rich semantic information
and local features with multi-scale context information, respectively. Among
them, the local branch employs the dilated convolution [17] to increase the
receptive field of the feature map while adopting the square-ring partition
strategy [14] to divide the feature map at four scales. Moreover, our method
converts the feature map of each branch into a column vector and obtains its
prediction category through the classifier. Finally, the cross-entropy loss func-
tion [18, 19] is exploited to learn the image prediction category for improving
the training accuracy of the network.

The contributions of this paper mainly include the following aspects:
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(1) A cross-view geo-localization method guided by relation-aware global
attention is proposed. This method exploits the relation-aware global attention
module to learn the relationship between image feature nodes, which can suf-
ficiently mine the global structural information of the image, thus extracting
more robust features for image feature matching.

(2) A dual-branch structure is designed, where the deep residual network is
exploited in the global branch to extract deep features for obtaining the feature
maps containing abundant semantic information, while the dilated convolution
is employed in the local branch to capture local features with richer multi-scale
context information, which further enhances the precision of geo-localization.

(3) The method achieves superior positioning accuracy than other advanced
models on the three datasets of Univers- ity-1652, CVUSA, and CVACT, which
proves the effectiveness of the proposed method in geo-localization.

The remainder of this paper is organized as follows. Section 2 introduces the
related work of cross-view geo-localization. Section 3 details the method and
network structure. Section 4 describes the experimental results and analyzes
the results, and conducts the ablation experiment and followed by the summary
of the full text and prospects for future research directions in section 5.

2 Related work

The research content of early geo-localization is mainly based on ground view
and aerial view images. Workman et al. [20] adopted two publicly available
pre-trained models to extract image features, and proved that deep features
can discriminate images from different geographic locations. However, this
method only focuses on image feature extraction at a single scale, and fails to
effectively utilize the multi-scale information, resulting in insufficient match-
ing features extracted by the network. On this basis, Workman et al. [21]
constructed a CVUSA (Cross-View USA) dataset to perform a multi-scale
fusion of aerial image features and improved the cross-view localization results.
Lin et al. [22] employed publicly available data to build 78,000 street view
and 45° aerial image pairs and then adopted the deep siamese network to
extract features for conducting cross-view localization. Vo [23] et al. trained
the network by exploiting the distance based logistic layer (DBL) and rotation
invariance to evaluate different deep learning methods and improve the local-
ization accuracy. Considering that the image semantic information is more
robust to viewpoint changes, Tian et al. [24] used object detection technology
to extract buildings in the image for building matching, and obtained the final
geo-localization results. Altwaijry et al. [25] focused on the matching task of
aerial image pairs, and they exploited data-driven methods to learn discrimi-
nant representations from image pairs, thus solving the problem of ultra-wide
baseline image matching. Furthermore, Zhai et al. [26] first extracted aerial
image features, then mapped them to the ground view by employing adap-
tive transformation, and finally minimized the difference between the semantic
feature predicted from the ground view and those directly extracted from the
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ground images through an end-to-end learning method. Hu et al. [27] combined
the siamese networks with NetVLAD [28] to encode local features for obtain-
ing global descriptors and accelerated network convergence by introducing
weighted soft margin ranking loss, thus improving network performance. Shi
et al. [29] believed that existing methods ignore the differences in appearance
and geometry between ground view and aerial view images, so they utilized the
polar coordinate transform to approximately align aerial images with ground
view images. In order to further solve the problem of orientation alignment in
the cross-view, Shi et al. [30] designed a dynamic similarity matching network
(DSM), which makes the image matching results more accurate. Liu et al. [31]
believed that geometric cues (such as orientation) can be used for localization,
so they designed a siamese network to integrate the orientation information of
each pixel from the image into the network model, which can enable the net-
work to learn both appearance and geometric information, and improve the
recall accuracy and precision of the network. To solve the problem of scene
changes over time, Rodrigues et al. [32] proposed a semantic-driven data aug-
mentation technique aimed at simulating the phenomenon of the scene change
in cross-view image matching, and then employed the multi-scale attention
module to match the image, and improved the network performance. Regmi et
al. [33] first applied generative adversarial networks (GANs) [34] to cross-view
localization, and synthesized aerial images from ground views by using GANs
for image matching, but this method is not an end-to-end method. Toker et
al. [35] employed polar coordinate transformation on satellite views to syn-
thesize the ground views followed by image retrieval, and achieved advanced
geo-localization performance by integrating the two steps in an end-to-end
architecture. The above methods mainly focus on the matching task between
ground view and aerial view images, they only consider two views for geo-
localization and do not pay attention to the drone-view image, so the feature
learning of multi-view matching task is ignored.

Recent research on cross-view geo-location believes that adding the view-
point can improve the accuracy of geo-localization, so the drone images are
introduced to solve geo-localization problem. Zheng et al. [13] constructed the
University-1652 dataset, including satellite view images, ground view images,
and drone view images, and they considered all view images at the same loca-
tion as a category to complete the geo-localization task in a classified manner,
while optimizing the model by applying the instance loss [36]. Nevertheless,
this method only concentrates on the semantic information and does not con-
sider the impact of the detailed information on cross-view geo-localization. To
solve this problem, Wang et al. [14] proposed a local pattern network (LPN),
which takes the contextual information of the image as an auxiliary clue and
divides the feature image to make the network notice the environment around
the target building, thus effectively solving the problems of ignoring the image
details in the method [13] and achieving better matching results. Ding et al. [37]
adopted the location classification (LCM) to achieve image matching, which
solves the problem of sample imbalance between satellite images and drone
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images and improves the image matching accuracy. The attention mechanism
has been widely applied in the field of computer vision [16, 38–40], which aims
to enable the network to pay more attention to discriminative features while
filtering out some irrelevant information, thereby improving the training effect
of the model. Zhang et al. [16] integrated relation-aware global attention into
the person re-identification network, which enhances the feature representa-
tion ability by capturing the global structural information of the image, and
improves the performance of person re-identification. In order to avoid the
impact of target offset and view scaling on image matching, Zhuang et al.
[38] proposed a multi-scale block attention (MSBA) structure to enhance the
salient features of different regions. Lin et al. [39] introduced the unit subtrac-
tion attention module (USAM), which makes the model focus on the salient
areas in the image by detecting key points in the feature map, and improves
the performance of the model with fewer parameters. Dai et al. [40] believed
that some operations based on CNN would lead to the loss of fine-grained
image information, so the Transformer structure [41] is introduced in the cross-
view localization and designed the feature segmentation and region alignment
method (FSRA), which segments the feature map into different regions on the
basis of the heat distribution for classifying and supervising each region, thus
effectively realizing the cross-view localization.

The above methods provide a new research idea for solving the problem of
inaccurate geo-localization. Inspired by this, this method fully combines the
attention mechanism with the feature extraction network to mine structural
information from a global perspective. Meanwhile, the dual-branch structure
is designed for joint training, and the dilated convolution is fused in the local
branch to increase the receptive field of the feature map, which can capture
richer multi-scale context information and further improve the accuracy of
cross-view localization.

3 Method

3.1 Overview architecture

The overview framework is shown in Figure 1. The entire network structure is
divided into the global branch and the local branch, which share the network
weights. First, this model employs ResNet50 as the backbone network while
removing the average pooling layer and classification layer, and then extracts
features of the input images. At the same time, the relation-aware global atten-
tion module is introduced after extracting the shallow features, which can
sufficiently capture the global structure information of the image. Then, a dual-
branch structure is exploited to process the output features of the previous
stage respectively, which can effectively focus on global and local information.
Among them, the global branch is adopted to extract the high-level semantic
information of the whole image, while the local branch is employed to focus
on the context features of the network, thereby retaining more image detail
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Fig. 1 The framework of the proposed method.

information. Meanwhile, so as to combine the valuable environmental infor-
mation of the region around the building, the feature map is divided into four
distinct regions by using a square-ring partition strategy in the local branch.
Finally, the image high-level features are converted into column vector descrip-
tors through global average pooling. The classifier module is utilized in the
training process to get the predicted category probability of each column vec-
tor descriptor, and the cross-entropy loss function is employed to minimize the
difference between the predicted class and the true one. The Euclidean dis-
tance is adopted to calculate the similarity between the query image and the
database image during the test, and finally, the retrieved images are sorted
according to the similarity.

3.2 Relation-aware global attention

In the cross-view geo-localization task, the RGA module can make the network
notice the differences in image features to help identify buildings with a similar
appearance. This paper combines the RGA module with the deep residual net-
work to construct a feature extraction network guided by relation-aware global
attention, which calculates the attention weights by learning the relationship
between feature nodes, thus making the network sufficiently mine the feature
of discriminant region. The relation-aware global attention is shown in Figure
2. The feature vector in the feature map is represented as the feature nodes
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Fig. 2 The structure of relation-aware global attention.
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xi, where i = 1, 2, · · ·N , and N is the number of feature nodes. For a feature
node xi, calculate the correlation relationships ri,j and rj,i between the current
node and all other nodes, where j = 1, 2, · · ·N , thus the relationship vector
of the feature node xi is ri = [ri,1, ri,2, · · · , ri,N , r1,i, r2,i, · · · , rN,i]. Then, the
feature node xi and the relationship vector ri are concatenated to acquire the
relation-aware feature Ei, and the attention weight ai of the current feature
node is inferred.

3.2.1 Spatial relation-aware global attention

The spatial relation-aware global attention (RGA-S) learns the correlations
among all feature nodes in the spatial dimension of the feature map to enable
the network to capture the features of the salient target. The RGA-S is shown
in Figure 3.

Specifically, for the feature map S ∈ R
C×H×W obtained from the neural

network, the C-dimensional feature vector of each spatial position is taken as
a feature node to form a graph Gs with a total of N = W ×H nodes and the
feature node is represented as xi, where i = 1, 2, · · ·N . The correlation ri,j
between the feature nodes xi and xj can be obtained through the dot product
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operation, which can be defined as Equation (1):

ri,j = fs (xi, xj) = (ReLU(BN(Conv(xi))))
T (ReLU(BN(Conv(xj)))), (1)

where fs(·) represents the dot product operation, ReLU(·)is the modified linear
unit activation function, BN(·)denotes the batch normalization layer, Conv(·)
represents the 1×1 convolution operation, and the dimensionality reduction
ratio is controlled by a predefined positive integer. Similarly, the correlation
rj,i between feature nodes xj and xi can be obtained, and (ri,j , rj,i) is used to
represent the pairwise relationship between feature nodes xi and xj . Finally,
the correlation between all nodes can be represented by a relation matrix
RS ∈ R

N×N , where ri,j = RS(i, j).
Stack the relationships between the ith feature node and all nodes in a fixed

order to obtain the spatial relationship vector ri = [RS(i, :), RS(:, i)] ∈ R
2N ,

where RS(i, :) represents the correlation between the ith feature node and all
nodes, and RS(:, i) represents the correlation between all nodes and the ith

node. In order to enable the network to sufficiently exploit the global structural
information, the spatial relationship vector ri is concatenated with the feature
node itself xi to get the spatial relation-aware feature Es, which can be defined
as Equation (2):

Es = C(xi, ri
) = (poolc(ReLU(BN(Conv(xi)))), (ReLU(BN(Conv(r

i
))))),

(2)
where C(·) represents concatenation operation, poolc(·) represents the global
average pooling on the channel dimension, reducing the channel dimension
to 1. The spatial attention weight ai can be calculated through Es, which is
defined as Equation (3):

ai = sigmoid(BN(Conv2(ReLU(BN(Conv1(Es)))))), (3)

where sigmoid(·) represents sigmoid activation function, Conv2(·) converts
the number of channels to 1, and Conv1(·) reduces dimensions at a fixed ratio.

3.2.2 Channel relation-aware global attention

The channel relation-aware global attention (RGA-C) learns the correlations
between all feature nodes in the channel dimension of the feature map to assign
different weights for each channel. The RGA-C is shown in Figure 4.

Specifically, for the acquired feature map S ∈ R
C×H×W , the feature map

on each channel is considered as a feature node to form a graph GC with a
total of C nodes, and each feature node is denoted as xi, where i = 1, 2, · · ·C.

For the input feature graph S, it is first compressed into S
′

∈ R
(HW )×C×1

in space, and then the correlation ri,j between the feature node xi and xj can
be obtained similar to the RGA-S, which is defined as Equation (4):

ri,j = fc (xi, xj) = (ReLU(BN(Conv(xi))))
T (ReLU(BN(Conv(xj)))), (4)
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where fc(·) represents the dot product operation. Similarly, the correlation
rj,i between the feature nodes xj and xi can be obtained, and the pairwise
relationship between all nodes is expressed by matrix RC ∈ R

C×C . The rela-
tionship between the ith feature node and all nodes is stacked to obtain the
channel relationship vector ri = [RC(i, :), RC(:, i)] ∈ R

2N , which is similar to
Equation (2)(3), and the final channel attention weight ci can be obtained.

3.3 Local branch

Since the rich multi-scale context information and detailed spatial structure
information can assist the network to match the image of the same geograph-
ical place to optimize the precision of cross-view geo-localization, the dilated
convolution [17] with multiple dilation factor is adopted in the local branch
to increase the receptive field of the feature map without losing image details,
thereby the model can capture more robust multi-scale information. Mean-
while, the feature map is divided into four scales by using the square-ring
partition strategy to obtain rich spatial context information.

The dilated convolution expands the receptive field of the convolution ker-
nel by inserting r− 1 values with weight 0, where r is the dilation factor. The
structure of the standard and dilated convolutions is shown in Figure 5, where
(a) represents the standard convolution and (b) represents the dilated convo-
lution with the dilation factor 2. Using the convolution kernel of 3×3 under
the same conditions, the receptive fields of the standard and dilated convo-
lutions are 3×3 and 5×5, respectively. Compared with standard convolution,
the dilated convolution can capture richer multi-scale context information for
image matching.

Specifically, this module employs the dilated convolution with dilation fac-
tors 2 and 4 to increase the receptive field of the feature map, and the stride of
both the convolutional layer and the downsampling layer in the last residual
block of ResNet50 is adjusted to 1. When the resolution of the input image
is 256×256, the resolution of the feature image output by the backbone net-
work is 8×8, while that of the output feature image using the dilated residual
network is 32×32.
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(a) (b)

Fig. 5 The standard convolution and the dilated convolution. (a) represents the standard
convolution; (b) represents the dilated convolution with dilation factor 2.

To help the network better discriminate the images in different geographical
locations, the environment around the target building is used as auxiliary infor-
mation. Meanwhile, the feature image is divided into four parts by adopting the
square-ring partition strategy in the local branch, to obtain the feature repre-
sentation of distinct regions. Then, the obtained image features are converted
into 2048-dimensional feature vectors through the average pooling operation,
represented by Equation (5):

lij = Avgpool
(

sij
)

, (5)

where Avgpool(·) represents the average pooling operation, sij(i ∈ [1, 4]; j ∈
[1, 2]) denotes the feature maps of the local branch divided in the different
view platforms, and lij represents the 2048-dimensional feature vector of the
four local branches after pooling.

3.4 Global branch

Since the semantic information focused by the deep network is also an impor-
tant part of the cross-view geo-localization task, a global branch structure is
designed which is parallel to the local branch. The deep residual network is
exploited in the global branch to extract and refine the large-scale features
for obtaining the feature map fj containing rich semantic information. Then,
the average pooling method is applied to obtain the 2048-dimensional feature
vector and enables the network to recognize the categories of image features,
which is expressed by Equation (6):

gj = Avgpool
(

fj
)

, (6)

where gj denotes the feature vector of the global branch after pooling.

3.5 Classification of learning and loss function

The classifier module is introduced after the feature extraction stage to predict
the category of each feature vector, where the classifier consists of a fully
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connected layer (FC), a batch normalization layer (BN), a dropout layer, and a
classification layer (Cls). This module takes the local feature vector lij and the
global feature vector gj as input to predict the category to which each feature
vector belongs, and finally obtains the local and global prediction probability
distribution vector zij and qj respectively.

The method adopts cross-entropy loss as a loss function to measure the
distribution difference between the image predicted probability and the real
one, which can learn more robust image features and enhance the network
training accuracy. The cross-entropy loss can be expressed by Equation (7)):

Loss =
∑

i,j

− log(p̂(y|xi
j))−

∑

j

log(q̂(y|xj)), (7)

where xi
j(i ∈ [1, 4]; j ∈ [1, 2]) denotes the corresponding original image after

segmentation, xj(j ∈ [1, 2]) represents the input image, j = 1 represents the
UAVs platform, and j = 2 represents the satellite platform; y denotes the
true category of the input image, p̂(y|xi

j) and q̂(y|xj) respectively represent

the normalized probability score of xi
j and xj belonging to the true category,

which is defined by Equation (8) and Equation (9),

p̂(y|xi
j) =

exp(zij(y))
∑C

c=1 exp(z
i
j(c))

, (8)

q̂(y|xj) =
exp(qj(y))

∑C

c=1 exp(qj(c))
, (9)

where C represents the number of all geo-tagged categories in the database.

4 Experiments

4.1 Datasets

In this paper, three datasets of University-1652 [13], CVUSA [21], and CVACT
[31] are exploited to train and test the proposed method.

(1) University-1652 is a multi-view and multi-source dataset, including
drone view, satellite view, and ground view images of 1652 buildings in 72 uni-
versities, and the images in the training dataset and the test dataset are not
duplicates. Our method uses this dataset to study the two tasks of drone-view
target localization and drone navigation. There are 701 image categories of
drone view query images in the drone-view target localization task, and each
category corresponds to a real matching satellite image. In the drone naviga-
tion task, there are a total of 701 image categories in the satellite view query
dataset, and each category corresponds to 54 real matching drone images.

(2) CVUSA dataset includes satellite and panoramic ground images, in
which there are 35532 training image pairs and 8884 test image pairs.



12 A Cross-View Geo-localization Method Guided By Relation-Aware Global Attention

(3) CVACT is a larger benchmark dataset, which also includes 35532 train-
ing image pairs, except that 8884 image pairs are employed for validation and
additional 92802 image pairs are used as a test set.

4.2 Experimental detail

Our method is implemented on the Linux server with the Ubuntu20.04 oper-
ating system, and all performance comparisons are based on the results under
this configuration. The server configuration is GTX 3090 GPU with 24G
memory capacity. The proposed model is implemented based on the Pytorch
framework. Before training, the size of all input images is adjusted to 256×256,
and horizontal flipping and random rotation are used for data augmentation.
The SGD optimizer with 0.9 momentum and 0.0005 weight decay is adopted
to update the model and we set the initial learning rate to 0.001. To accelerate
the network convergence, the model training epoch is 140 for University-1652
dataset, and 100 for CVUSA and CVACT datasets. During testing, the feature
vectors of each branch are spliced to obtain the final feature representation,
so as to complete the image matching.

4.3 Performance comparison

4.3.1 Quantitative comparison

In this paper, recall accuracy at top K (Recall@K) and image retrieval average
precision (AP) are adopted as the performance metrics of image retrieval.
Recall@K refers to the ratio of the true-matched images in the top k retrieved
results to all the real matching images in the database. In this paper, the
case of k=1 is mainly considered. AP refers to the ratio of the real matching
images retrieved to the total number of retrieved results. The larger the value
of Recall@K and AP, the higher the precision of image retrieval.

We compare our method with other CNN-based algorithms on three
datasets, University-1652, CVUSA, and CVACT. Among them, the com-
parison results on the University-1652 dataset are shown in Table 1. The
comparison methods include Instance Loss [13], LCM [37], LPN [14], Instance
Loss+USAM [39], LPN+USAM [39].

As can be seen from Table 1, our method achieves the best results in
both tasks on the University-1652 dataset. In the task of drone-view target
localization, i.e., Drone→Satellite, the performance of the proposed method on
R@1 and AP reached 81.06% and 83.74%, respectively, our method achieves
the improvement of 3.99% and 3.65% on each of the two metrics compared to
the suboptimal method LPN+USAM [39]. In the drone navigation task, i.e.,
Satellite→Drone, the performances of 89.58% and 79.63% are achieved on the
R@1 and AP, respectively. Compared with the suboptimal method LPN [14],
it has improved by 3.13% and 4.84% in the two metrics, which proves that our
method has significant advantages in image retrieval performance.

The comparison with other approaches on the CVUSA and CVACT val
datasets are detailed in Table 2. Since the ground images in these two datasets
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Table 1 Quantitative test results on University-1652 dataset. Where method [22, 27, 42]
is the result obtained by replacing the loss function on the basis of method [13]. The
optimal and suboptimal results of the evaluation indicators are indicated in red and blue
font, respectively.

Method
Drone→Satellite Satellite→Drone
R@1↑ AP↑ R@1↑ AP↑

Instance Loss [13] 58.49 63.13 71.18 58.74
Contrasive Loss [22] 52.39 57.44 63.91 52.24

Triplet Loss(M=0.3) [42] 55.18 59.97 63.62 53.85
Triplet Loss(M=0.5) [42] 53.58 58.60 64.48 53.15

Soft Margin Triplet Loss [27] 53.21 58.03 65.62 54.47
LCM [37] 66.65 70.82 79.89 65.38
LPN [14] 75.93 79.14 86.45 74.79

Instance Loss+USAM [39] 65.63 69.68 78.32 64.87
LPN+USAM [39] 77.07 80.09 85.16 74.06

Ours 81.06 83.74 89.58 79.63

Table 2 Quantitative test results on CVUSA and CVACT val datasets. The optimal and
suboptimal results of the evaluation indicators are indicated in red and blue font,
respectively. † represents that the method uses additional orientation information.

Method
CVUSA CVACT val

R@1↑ R@Top1%↑ R@1↑ R@Top1%↑

CVM-Net [27] 18.80 91.54 20.15 87.57
Orientation† [31] 27.15 93.91 46.96 92.04
Instance Loss [13] 43.91 91.78 31.20 85.27

Regmi [33] 48.75 95.98 - -
Siam-FCANet [43] - 98.30 - -

CVFT [12] 61.43 99.02 61.05 95.93
LPN [14] 85.79 99.41 80.37 96.40

Instance Loss+USAM [39] 52.50 96.52 40.53 89.12
LPN+USAM [39] 85.97 99.43 80.50 96.37

Ours 88.00 99.47 80.98 96.53

are panoramic images, a sequential partition strategy [14] is adopted to divide
the images. The comparison methods include the CVM-Net [27], Orientation†

[31], Instance Loss [13], Regmi et al. [33], Siam-FCANet [43], CVFT [12], LPN
[14], Instance Loss+USAM [39], LPN+USAM [39], where the results of LPN
[14], LPN + USAM [39]algorithms are generated by adopting the publicly
released codes for training, while the other methods directly use the results
provided by the authors.

It can be observed that on the CVUSA dataset, the proposed method
achieves 88.00% and 99.47% on the evaluation indicators R@1 and R@Top1%,
respectively. Compared with the other nine advanced models, this method has
achieved evident promotion in retrieval performance, especially in the R@1
indicator, the performance is improved by 2.03%. On the CVACT val dataset,
the proposed method reached 80.98% and 96.53% on R@1 and R@Top1%,
both of which achieved optimal results, thus demonstrating the effectiveness
of our method.
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Drone View Satellite View(R@1→R@5)

True-Matched Images False-Matched Images

Fig. 6 University-1652 (Drone Localization).

Except for integrating the relation-aware global attention in the feature
extraction network to capture the rich global structural information, our
method also designs a joint training structure with parallel global branch and
local branch to fully mine multi-scale context features, which is the key that
the proposed method outperforms other cross-view geo-localization models.

4.3.2 Qualitative results

Figures 6 and 7 are the retrieval results of our method on the University-1652
dataset, which respectively visualizes the results from the tasks of drone-view
target localization and drone navigation; and Figure 8 is the retrieval results
on the CVUSA dataset. In these qualitative results, each row represents the
retrieval result of a position, the first image is the query image, and the top
images in the matching results are shown on the right side of the dotted line,
where the yellow box represents the true retrieval and the blue box denotes
the false retrieval.

For the drone-view target localization task, there is only one truly matched
image in the first five images that showed the matching results in Figure 6,
this is because each drone view image has only one matching satellite image,
which proves that our method can correctly retrieve the matched image under
the interference of similar images. For the drone navigation task, the top five
images of the matching results in Figure 7 are all correctly matched images,
because each satellite image has 54 drone view images matched with it. Since
each ground image in the CVUSA dataset corresponds to one real satellite
image, the first image in the retrieval result of each query image in Figure 8
is the correctly matched image. Through the analysis of qualitative results, it
can be found that our method can retrieve the correct results on both datasets,
which further demonstrates the effectiveness of our method.
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Drone View(R@1→R@5)Satellite View

True-Matched Images False-Matched Images

Fig. 7 University-1652 (Drone Navigation).

Ground View Satellite View(R@1→R@3)

True-Matched Images False-Matched Images

Fig. 8 CVUSA.

4.4 Ablation experiment

To verify the effectiveness of each component, we conduct several ablation
experiments on the University-1652 dataset.

4.4.1 Effectiveness of the relation-aware global attention

To verify the effectiveness of the relation-aware global attention module, two
ablation experiments are conducted in this subsection. The first experiment
is to remove the relation-aware global attention module and only use the net-
work with a dual-branch structure for image feature extraction. The second
experiment is to add the SE attention module in SENet [44] to the network
based on the first experiment for obtaining the attention of the image in the
channel dimension.
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Table 3 Comparison results of ablation experiments on the relation-aware global
attention module. (a) indicates without attention module; (b) indicates the addition of the
SE attention module; (c) indicates the addition of the RGA module. The best results are
represented in red font.

Method
Drone→Satellite Satellite→Drone
R@1↑ AP↑ R@1↑ AP↑

(a) Without Attention Module 76.95 80.02 84.88 75.84
(b) +SE Attention Module 79.16 82.04 89.44 78.65

(c) +RGA(ours) 81.06 83.74 89.58 79.63

Table 4 Comparison results of ablation experiments on the dilated convolution. (a)
indicates the dilation factors in the local branch residual blocks are 1 and 1 respectively;
(b) indicates the dilation factors are 1 and 2 respectively; (c) indicates the dilation factors
are 2 and 2 respectively; (d) indicates the dilation factors are 2 and 4 respectively. The
best results are represented in red font.

Method
Drone→Satellite Satellite→Drone
R@1↑ AP↑ R@1↑ AP↑

(a) (1,1) 79.02 82.80 87.73 77.94
(b) (1,2) 80.04 82.80 88.02 78.18
(c) (2,2) 80.77 83.07 89.02 79.20

(d) (2,4) (ours) 81.06 83.74 89.58 79.63

According to the results of Table 3, it can be observed that compared with
not adding any attention mechanism and adding an SE attention module,
using the relation-aware global attention module can make the network pay
attention to the discriminative features of the image while capturing more
robust global structure information, which improves the retrieval ability of the
network and achieves the better performance.

4.4.2 Effectiveness of the dilated convolution

In this part, we conducted three ablation experiments to verify the effectiveness
of the dilation convolution, that is, we adjusted the dilated convolution in the
local branch residual blocks and adopted different dilation factors to extract
image features. It can be seen from the results in Table 4 that increasing the
receptive field of the feature map by using the dilated convolution can effec-
tively capture more detailed information of the image and mine the potential
features. When the dilation factors are 2 and 4, respectively, the performance
of the model is optimal.

4.4.3 Effectiveness of the dual-branch structure

The dual-branch structure is an important component of this method. There-
fore, two ablation experiments are conducted to verify its effectiveness, that is,
using different branches to extract features for subsequent matching. Accord-
ing to the results in Table 5, it can be found that using the dual-branch for
joint training can adequately exploit the semantic and multi-scale context
information of the image, thus obtaining the optimal retrieval performance.
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Table 5 Comparison results of ablation experiments on the dual-branch structure. (a)
indicates the local branch structure for training; (b) indicates the global branch structure
for training; (c) indicates the dual-branch structure for joint training. The best results are
represented in red font.

Method
Drone→Satellite Satellite→Drone
R@1↑ AP↑ R@1↑ AP↑

(a) Local Branch 75.77 78.87 86.59 75.49
(b) Global Branch 58.96 63.54 74.32 57.56

(c) Dual-branch (ours) 81.06 83.74 89.58 79.63

Table 6 The effect of input images with different resolutions on the performance. (a)
indicates that the input image size is 224×224; (b) indicates that the input image size is
256×256; (c) indicates that the input image size is 320×320; (d) indicates that the input
image size is 384×384. The best results are represented in red font.

Image Size
Drone→Satellite Satellite→Drone
R@1↑ AP↑ R@1↑ AP↑

(a) 224×224 77.69 80.64 88.02 77.15
(b) 256×256 81.06 83.74 89.58 79.63
(c) 320×320 83.85 86.10 91.73 82.72
(d) 384×384 83.61 85.92 90.58 82.10

4.4.4 Effect of the input image size on the results

In real-world applications, training models with high-resolution images can
achieve better accuracy but require more computational resources and time.
Due to limited resources, it is necessary to exploit low-resolution input images
in the actual operation, which will reduce the accuracy of image matching.
Therefore, this paper designs a set of ablation experiments to observe the
impact of input images with different resolutions on the model performance.
It can be found from the results in Table 6 that while increasing the size of
input image from 224 to 320, the R@1 and AP values of the network are both
improved; and when the image size increases to 384, the performance of the
network decreases slightly.

5 Conclusion

In this paper, we proposed the cross-view geo-localization method guided by
relation-aware global attention, which exploits the relation-aware global atten-
tion to capture the global structural information and extract more robust
image features for geo-localization. Meanwhile, the dual-branch strategy is
designed for joint training, and the dilated convolution is adopted in the local
branch to increase the receptive field of the feature map while dividing the fea-
ture map into four scales, which obtains the feature representation containing
semantic and context information to calculate the image category probability,
and higher accuracy is obtained in geo-localization. The experimental results
show that on the three datasets of University-1652, CVUSA, and CVACT, our
method has achieved significant improvements in both Recall@K and AP. In
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addition, the algorithm can also avoid the interference of similar buildings and
retrieve the correct image. In future research, we will consider the complexity
of images in real scenes, further study the cross-view geo-localization meth-
ods that can adapt to complex scenes, and explore approaches to effectively
elevate the precision of geo-localization.
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