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Abstract: Network video typically contains a variety of information that is used 

by the video caption model to generate video tags. The process of creating video 

captions is divided into two steps: video information extraction and natural 

language generation. Existing models have the problem of redundant information 

in continuous frames when generating natural language, which affects the accuracy 

of the caption. As a result, this paper proposes a Multimodal Semantic Grouping 

and Semantic Attention Video Caption Model (VMSG). VMSG uses a novel semantic 

grouping method for decoding, which divides the video with the same semantics 

into a semantic group for decoding and predicting the next word, to reduce the 

redundant information of continuous video frames, which differs from the decoding 

mode of grouping by frame. Because the importance of each semantic group varies, 

we investigate a semantic attention mechanism to add weight to the semantic group 

and use a single-layer LSTM to simplify the model. Experiments show that VMSG 

outperforms some state-of-the-art models in terms of caption generation 

performance and alleviates the problem of redundant information in continuous 

video frames. 

Keywords: Video caption; multimodal; semantic grouping; semantic attention 

 

1 Introduction 

  Human intelligence manifests itself in two ways: visual perception and language 

expression. Video caption generation is a common application of artificial 

intelligence that combines visual data and natural language. Understanding a 

visual scene and naturally describing it is referred to as video captioning. It 

is a hot topic in computer vision. There are two important aspects to video 

captioning. The first step is to extract information about distinguishable 

features from the video. The second step is to extract features and convert them 

into natural language [1-4]. In computer vision and natural language processing, 

data-driven deep learning is the primary processing method. Figure 1 depicts a 

video caption generation example. 



 

Figure 1 Example of video caption generation 

  The most widely used video caption algorithms are encoder-decoder frameworks 

based on convolutional neural networks and recurrent neural networks. The 

convolutional neural network encoder obtains a set of continuous frames from the 

input video and generates the corresponding video features. The recurrent neural 

network-based decoder then takes the visual coding characteristics and previously 

predicted words as input and generates a word each time. The static content in 

a single image must be understood by the video caption. In contrast, the video 

caption must fully comprehend the video context. 

  Video on the network contains information that is similar between adjacent 

video frames. As a result, there is more redundant information between adjacent 

video frames, which cannot usually provide enough unique information [5]. It is 

natural for humans to comprehend video by segmenting it into information units 

using semantics. Therefore, viewing each frame as a separate information unit is 

ineffective for comprehending video. 

  The complementarity of visual and text information is critical for the video 

caption algorithm. However, when encoding video, the previous methods primarily 

focus on the visual aspect (i.e., video frame) while paying less attention to 

the text aspect (i.e., partially decoded title). The video caption is made up of 

text that was predicted by the decoder and summarizes the visual content. As a 

result, the word phrase made up of partially decoded abstracts can group 

semantically related frames into information units to form a semantic group. 

  In a video scene where a boy meets a girl and talks to her, for example, the 

decoder has partially generated "a boy talking with". The phrase "a boy" can 

form a semantic group from the image of the boy standing alone, and "talking 

with" can form a semantic group from the video frame of the following two people 

talking. The next word, "girl", can be predicted by this semantic group. 

  To be used as information units for understanding video, semantic groups must 



have the three characteristics listed below. To begin, semantic groups' meanings 

should be concrete and observable. Second, a semantic group should have distinct 

meanings from other semantic groups, allowing it to be treated as a standalone 

information unit with no redundancy. Third, all video frames in a semantic group 

should be closely related to the phrases they represent. 

  This paper proposes a video caption model based on multimodal semantic grouping 

and semantic attention (VCMSGA) to address the problem of continuous frame 

redundancy and insufficient feature extraction. To extract 3D and 2D features, 

the model employs the 3DResNet [6] neural network and the residual neural network 

[7]. The classification information for audio and video is then added to the 

multimodal framework for coding. Once the multimodal features have been obtained, 

they must be decoded. Unlike the previous decoding mode, which groups frames 

frame by frame, VMSG decodes using semantic grouping. Because the importance of 

different semantic groups varies, this paper investigates a semantic attention 

algorithm to give semantic groups more weight. For decoding and predicting the 

next word, videos with the same semantics are grouped together. This paper's 

work and contributions are summarized as follows: 

1. This paper proposes a multimodal semantic grouping-based video caption model. 

Adjacent video frames are composed of a semantic grouping to combine redundant 

information when using video information. 

2. Due to the disappearance of the deep network gradient and other issues, we 

use the 3DResNet network to extract video rather than the C3D [8] network. 

3. We replace the original two-layer network simplification model with a 

single-layer LSTM and add a semantic attention mechanism. 

4. We put the proposed method to the test using a public data set. Experiment 

results show that the method described in this paper outperforms more advanced 

algorithms. Following analysis, the model is capable of extracting video features 

effectively. 

The remainder of the paper is organized as follows: Section 2 describes the VMSG 

model in detail, and Section 3 demonstrates the model's performance through 

detailed experiments. The final section contains the conclusion and future work. 

2 The proposed method 

2.1 Overall structure of the model 

  Our VMSG consists of four modules: video coding, phrase coding, semantic 

grouping, and decoding. Figure 2 depicts the overall structure of VMSG. 

  We use multimodal input in the video coding module to provide more information 

for the input, adding 2D features, 3D features, audio features, and 

classification features. Based on the foregoing, replacing C3D with a 3DResNet 



network can sufficiently alleviate the deep network's degradation and improve 

the model's extraction of dynamic features. 

  We encode the phrase and form the phrase based on the obtained words after 

acquiring the multimodal features. Then, using semantic grouping, we group the 

phrases that correspond to the video frame and finally form the video 

representation. Figure 3 depicts a schematic diagram of semantic grouping. W 

stands for the generated word, P stands for the generated semantic sentence, f 

stands for the multimodal video frame, and X stands for the video. Each semantic 

group has a different level of importance. As a result, this paper augments the 

decoder with an attention mechanism that assigns weight to each semantic group. 

  We simplify the model by converting the double-layer LSTM into a single layer 

as the VMSG decoder. In addition, contrastive attention loss based on cross-

entropy loss is added by VMSG. 
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Figure 2. Over architecture of VMSG 

 

Figure 3. Semantic grouping mode 
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contributes to the generation of video caption. This paper's multimodal feature 

fusion employs the early fusion method to splice the multimodal features step by 

step. The multimodal input includes the following 2D features, dynamic features, 

video category features, and audio features. 

  2D features:   

  2D features are widely used in image detection and classification tasks. It 

gives specific information about objects and scenes. We employ the ResNet-152 

residual network. More than 1.2 million images from 1000 different categories 

are used to train the model. We add a pooling layer at the end of ResNet and 

generate 2048 dimensional 2D features. 

  Dynamic features:  

  ResNet's ability to extract dynamic features is limited, despite its ability 

to generate visual features in still images. Each object's motion information 

can be well described by dynamic features. We improve the recording of dynamic 

features by extending the two-dimensional neural network to a three-dimensional 

convolutional neural network. 

When compared to the C3D network, the 3DResNet network can alleviate the 

degradation of the deep network model sufficiently. Given that 3DResNet has 18 

layers, 34,101 layers, and other hierarchical structures, we study and test the 

3DResNet of each layer before selecting 3DResNet -101 to extract dynamic features 

for VMSG. To better extract dynamic features, we train 3DResNet on the Kinetics 

dataset. 

  Category features: 

  In the video feature ablation experiment, we discover that the video category 

information contains information that is useful for the generation of video 

captions. For example, if the object is a music video, the audio weight should 

be increased appropriately. The object is a motion video, and the visual weight 

should be increased. To extract video classification information, we use a 

3DResNet network and a full connection layer, and we train 3DResNet on the 

Kinetics dataset. The dataset has 400 categories, including small categories in 

sports, film, food, and other fields, and the level of detail has been greatly 

improved. Furthermore, because tags can be generated independently, 

generalization performance has improved. 

Audio features: 

  We use a commonly used audio feature - Mel Frequency Cepstrum Coefficient - to 

make good use of the original audio features (MFCC). To extract the features of 

uniformly sampled 1-second audio clips, PyAudioAnalysis [9] is used. The actual 

audio representation is made up of the average and standard deviation of 34 

different audio features. 



  After the above processing, the 2D feature representation 1{ }a N

i i
v   of the video, 

the dynamic feature representation 1{ }m N

i i
v  , the category feature 1{ }c N

i i
v   and the 

audio feature representation 1{ }v N

i i
v  . Connect different video features frame by 

frame to form a frame representation: [ ; ; ; ]a m c v

i i i i i
v v v v v . 

2.3 Phrase coding module 

  Some words, such as 'is' and 'the,' have no meaning when used alone. When used 

alone, some words do not have a clear meaning. For example, when the words 

'woman' and 'cap' are combined to form 'woman with cap,' the meaning becomes 

clearer. As a result, when we make a semantic grouping, we use phrases rather 

than individual words. 

  To build the model's semantic phrases, we must generate appropriate words and 

phrases from some generated abstracts. To accomplish this goal, we must discover 

the relationships between words. When the t-th word 
t

w  of the caption is 

generated, there is a word representation matrix ( 1)

1 1[ [ ] [ ]] wt dT

t t
W E w E w

 
 L ¡ , 

where E  represents a word embedding matrix. We use the phrase encoder p to 

generate the phrase representation matrix 
( 1)

1, 1,[ ] wt dT

t t t t
P p p

 
 L ¡  by using the 

word representation matrix 
t

W , which is given as 

                        , ( )p

t t t
P A W ,                           (1) 

where ( 1) ( 1)
1, 1,[ ]T t t

t t t t
A a a

  
 L ¡ is the word attention matrix. The weight of 1

1{ }i t

i i
w

 
  

is 1
,

t

j t
a

 ¡ . For the encoder p , we use the self-attention mechanism module [10] 

proposed by Vaswani et al., which can well model the dependency between words in 

sentences. 

2.4 Semantic grouping module 

  A phrase serves as the foundation for a semantic grouping, which is made up of 

phrases and all semantically related features. The number of candidate phrases 

equals the number of words, and many of them are very similar. As a result, 

phrase suppressors are used by the model to filter out these phrases. The semantic 

aligner will semantically align the video frame with the phrase once the model 

has obtained all of the available phrases. 

  To keep those phrases with meaning and low coupling, the model must use a 



phrase filter to determine which phrases to discard based on their similarity. 

In this paper, we calculate similarity using the attention matrix of phrases, 

which is given as 

                                  ( )T

t t t
R A A ,                  

(2) 

where , ,i j t
r  denotes the similarity between ,i t

p  and ,j t
p . We set a threshold   and 

if , ,i j t
r is more significant than this threshold, it will be determined that the 

two phrases are related. After getting two associated phrases, compare the 

similarity between the two phrases, and all phrases and the party with the most 

significant value will be discarded. If , , , ,i k t j k t
r r  , then ,i t

p  will be 

discarded. Table 1 shows the detailed phrase filter mechanism. 

Table 1 

The detailed phrase filter mechanism 

Algorithm 1 Phrase filter 

Input: phrase 1{ , , }
k

P p p L , a word attention matrix A and a threshold    

output: filtered phrase set 1{ , , }
k

P p p
  

 L  

1:  function phrase Filtering( P ,A, ) 

2:                          P P


  

3:                          
T

R AA  

4:                          for , , , ,{ | , }
i j i j i j i j

r r r R r    do 

5:                                 if , ,k i k k j k
r r  then 

6:                                      \ { }
i

P P p


  

7:                                  else 

8:                                      \ { }
j

P P p


  

9:                                  end if 

10:                        end for 

11:                        return P


 

12:   end function 

2.5 Single layer LSTM decoding module based on semantic attention 



  For encoding and decoding, the traditional video caption model typically 

employs a two-layer LSTM. The two-layer LSTM network, however, increases the 

model's parameters, increasing the difficulty of training. As a result, we adopt 

a single-layer LSTM network. To simplify the model, the network has one embedding 

layer, one bidirectional layer, and two full connection layers. 

  Figure 4 shows the working mechanism of semantic attention. The contribution 

of each semantic group ,i t
s  in generating the t

th
 word 

t
w  is different. For example, 

when generating "people" in "a man is talking to a group of people", two semantic 

groups, "a man is talking" and "a ground of" will be generated. For these two 

semantic groups, "a group of" is more important to "people". 

 
Figure 4. Working mechanism of semantic attention 

  The attention mechanism has three parameters Q, K, and V. Q is the semantic 

group ,i t
s of this paper, K and V are 1t

h  . Considering that the expression ability 

of the linear model is not enough, we add a hyperbolic tangent function   to 

the attention module. The final form is shown in Eq. (3), where 
s

u , 
d

U , 
d

H  and 

d
b  are learnable parameters and ,  i t

  is the weight of each semantic group. The 

equation is given as 

                        ,  1 T

i t s d t d j d
u U h H v b     .               

(3) 

  After adding semantic attention, the decoder in this paper will assign a score 

to each semantic group according to the state function 1t
h  of the previous decoder. 

After getting the weight of the semantic group, the weighted average gets t
x , 

which is given as 

                             
, ,

1

tM

t i t i t

i

x s


 .                      

(4) 



  Then 
t

x  is output to LSTM. The possible probability of the next word consists 

of a full connection layer and a Softmax layer, which is given as 

                         1,] )  ;  1  
t t t t

h LSTM x E w h   ,                

(5) 

                       1 1,  , ,      |
t t h t h

p w V w w softmax U h b  L ,          

(6) 

where 
h

U  and 
h

b  are learnable parameters. The decoder in this paper is similar 

to the traditional decoder. The difference is that it changes the frame into a 

semantic group and reduces the number of layers of LSTM.  

Table 2 shows the detailed semantic attention algorithm. 

Table 2 

The detailed semantic attention mechanism 

Algorithm 2. Semantic attention 

Input: semantic group ,i t
s , status function 1t

h   

Output: weighted average semantic group 
t

x  

1:  function semantic Attention ( ,i t
s , 1t

h  ) 

2:                          ,  1 T

i t s d t d j d
u U h H v b      

3:                          for ( :
t

i M )do 

4:                                 , ,i t i tt t
sx x   

5:                          end for 

6:                          return 
t

x  

7:   end function 

2.6 Loss function of the model 

  The key to training the model is to generate a distinct and coherent semantic 

information group. To ensure the generation of semantic groups, the phrase 

suppressor will filter out redundant phrases. This paper employs the typical 

cross-entropy loss function Lce  and the comparative attention loss function Lca  

to train the model. When a video v and its standard translation 1[ , , ]
T

Y y y L  is 

given, its loss function can be obtained as 



                               L Lce Lca  .                          (7) 

  Cross-entropy loss is defined as the negative logarithmic probability of 

producing the correct title: 

1, 1
( , )

( log ( | , , ))
ce t t

V Y D t

L p y V y y 


   L                 (8) 

  To ensure that the semantic group's members have a consistent meaning, a 

semantic group should only contain frame information that is highly related to 

the semantics. In this paper, we use another group of videos with low correlation 

as the semantic alignment module's incorrect candidate. To ensure low correlation, 

we choose a control video at random from a group of videos with completely 

different abstracts. From equation 3, the positive correlation coefficient , ,
pos

i j t
  

and the negative correlation coefficient , ,
neg

i j t
  of the input video frame j

f  and the 

phrase j
p


can be obtained. 

  After obtaining the positive and negative correlation coefficient, we use 

softmax for normalization. , ,1
( , )

N pos

ca i i j tj
p s t 


  represents the probability that 

there is no control frame in the semantic group. ( , )
ca i

p s t  increases with the 

increase of positive correlation coefficient relative to negative correlation 

coefficient. 
t

M  indicates the number of semantic groups. The equation is given 

as  

,
( , )

( log ( ))
tM

ca ca i t

V Y D t i

L p s


                       (9) 

3 Experimental results and analysis 

  This section first describes the dataset's characteristics, then provides the 

evaluation criteria and thoroughly analyzes the experimental results. 

3.1 Dataset 

  We train and test our MGVC in MSR-VTT [11] throughout the experiment. In the 

field of video caption, MSR-VTT is a critical dataset. It specifies the video 

category as well as the video's audio characteristics. MSR-VTT has 10,000 online 

videos totaling 41.2 hours in 20 different classes. AMT staff created 20 video 

captions for each online video. 

  During the experiments, we find that some issues with the dataset's video, 

such as word spelling errors and audio information that cannot be used. Despite 

the fact that the total number of words in the video caption is 23667, 10040 of 



them appear only once. Furthermore, when all of the words are compared to 

Wikipedia's vocabulary, we find that 836 words do not exist, owing to spelling 

errors. It makes the model's training and testing are complicated. 

  The dataset's video includes audio features that can be used to generate a 

video caption. However, because approximately 13% of videos lack audio 

information, the experiment is complicated. 

  More than 90% of the videos are under 30 seconds long, and 90% of the video 

captions are under 16 words long. As a result, we take 30 frames evenly, which 

allows us to better characterize the video features while keeping the data size 

manageable. 

3.2 Evaluating criteria 

  We use four criteria to evaluate the model: BLEU [12], METEOR [13], ROUGE-L 

[14], CIDEr [15]. 

  BLEU: BLEU (Bilingual Evaluation understudy), proposed by IBM in 2002, is an 

overall video caption evaluation criterion. It represents the likelihood of the 

occurrence of n-word lengths in the text of video caption and standard translation. 

The result of video caption can be expressed as 1 2{ , , }
N

C c c c L  and the data 

scale is N. The corresponding reference translation 1 2{ , , }
i i i im

S s s s L  , in which 

m represents the number of reference sets. N in the equation represents the word 

length, k
w  represents the k

th
 caption result, and the word phrase with length n 

in the reference translation. ( )
k i

h c  represents the total number of occurrences 

of k
w  in i

c  and ( )
k ij

h c  represents the number of occurrences of k
w  in standard 

translation
ij

s . The corresponding statement BLEU can be calculated according to 

min( ( ),max ( ))
( , )

( )

k i j m k iji k
n

k ii k

h c h s
CP C S

h c

 
 

               (10) 

  From the above equation, we can see that the lower the length of machine 

translation, the higher the final score, so the length penalty factor ( , )b C S

（BP(Brevity Penalty) ）is added, which is given as 

1           

1           if  

( , )

if  
s

lc

c s

l

c s

l l

b C S

e l l


 
 

.                        (11) 

  BLEU is the weighted average of the accuracy of all statements, which is given 



as 

1

( , ) ( , )exp( log ( , ))
N

n n

n

BLEU C S b C S w CP C S


                 (12) 

  METEOR: METEOR, which Lavir proposed in 2004, is a weighted average based on 

single-precision and recall rate. In comparison to BLEU, the research shows that 

METEOR is more similar to the results judged by people themselves. METEOR is 

defined specifically as follows: 

           ( )
ch

Pen
m

 , 
(1 )
m m

mean

m m

P R
F

P R 


 
, 

| |

( )
m

k ik

m
P

h c



, 

| |

( )
m

k ijk

m
R

h s



, (1 )
mean

METEOR Pen F  ,                 (13) 

where  ,   and   are set default parameters, m  is a given set of 

calibrations and ch  is a continuous and orderly statement block.  

  ROUGE-L: ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a common 

video caption criterion that is primarily based on recall rate. The letter L in 

ROUGE-L stands for the longest common subsequence (LCS). ROUGE-L employs the 

longest common subsequence of video caption C and standard caption S, which is 

give as 

( , )

( )
LCS

LCS C S
R

len S
 , 

( , )

( )
LCS

LCS C S
P

len C
 , 

2

2

(1 )
LCS LCS

LCS LCS

R P
ROUGE L

R P





 


.    (14) 

  CIDEr: CIDEr (Consensus-based Image Description Evaluation) considers each 

sentence to be a document and computes the cosine angle of the TF-IDF vector. 

The number of times a specific phrase appears in a sentence is represented by 

TF. The acronym IDF is used to emphasize the significance of a phrase as  

( )
( )

( )
k i

l i

h c
TF k

h c



, 

1 1

( ) log( )
min(1, ( ))

N m

k iji j

N
IDF k

h S
 


 

, 

   ( ) ( ) ( )
k i

g c TF k IDF k  ,                           (15) 

where ( )
k i

g c  represents the TF-IDF vector of k
w . ( )

k i
h c  indicates the number of 

times k
w  appears in the sentence i

c . ( )
l i

h c  indicates the number of all n-

length words in i
c . 

1 1
min(1, ( ))

N m

k iji j
h S

   indicates the number of sentences 

contained k
w  in the reference translation of the dataset. 

  According to the cosine angle, the similarity between sentences is obtained as  



1

( ) ( )1
( , )

|| ( ) || || ( ) ||

n n
M i ij

n i i n nj
i ij

g c g S
CIDEr c S

M g c g S




 .             (16) 

  After obtaining the results of all sentences, we calculate the ( , )
n

CIDEr c S  

of all n lengths and take the average result as 

 
1

1
( , ) ( , )

N

nn
CIDEr c S CIDEr c S

N 
  ,                    (17) 

where ( )n
g c  is the transpose of all matrices of ( )

k i
g c , ( )n

ij
g S is the matrix of 

all k
w  TF-IDF vectors in the standard translation.  

  CIDEr is identical to ROUGE and BLEU. It only targets the words in the sentence, 

not the sentence's semantic information. 

3.3 Experimental setup 

  First, we sample each input video uniformly, and each video samples 30 frames 

of images and 30 video clips. The video clip is made up of frames that surround 

the video clip. We can extract the 2D and dynamic features of the video as well 

as the audio features from the one-second clip at the beginning of these video 

frames using these 30 frames of images and video clips as the input of ResNet 

and 3DResNet. 

  Because VMSG is a multimodal input, multimodal input will inevitably result in 

increased input dimension, which dramatically reduces hardware requirements. As 

a result, we use a full connection layer to reduce feature dimension. The initial 

dimensions of 2D and 3D features are 2048, while audio features and classification 

labels are 1. 

  We fed the sampled video frames into the 3DResNet network after it had been 

trained on the Kinetic dataset. To encode the label and feed it into LSTM, we 

use a single hot coding method. We initialize the word embedding matrix with a 

glove, set embedding_ size to 300, and train it with the entire model. Before 

producing the first word, we use <SOS> as the caption's beginning, then ignore 

it,  and   are set to 0.2 and 0.16, respectively. 

  A thesaurus is required to generate a sentence or a word. With a total of 23667 

words, the model thesaurus is entirely derived from the video captions of the 

training and test sets in MSR-VTT. We set dropout to 0.5 during training to 

reduce overfitting. Adam optimizer is used to optimize the model, and the initial 

learning rate is set to 0.0005. The MSR-VTT dataset videos 6513, 497, and 2990 

are used to train, verify, and test the model in this paper. The batch size is 

set to 100, and the cycle speed is set to 50. To evaluate the model, we use 



Microsoft Coco's official code. The maximum caption length is set at 15 characters. 

3.4 Ablation Experiment 

 (1) C3D and 3DResNet 

  When the problems of gradient disappearance and gradient explosion in the deep 

network are considered, 3DResNet can solve gradient disappearance and gradient 

explosion better than the C3D network, so the effect of extracting image features 

in deep 3DResNet is better than C3D. On the ActivityNet dataset, 3DResNet-18 

outperforms C3D. Table 3 shows that 3DResNet- 34 outperforms C3D on various 

datasets. 

Table 3 

Accuracy of C3d and 3D resnet-34 in extracting features on each data set 

Model  ASLAN Sports1M UCF101 HDMB51 

C3D 78.3 61.1 82.3 51.6 

3D ResNet-34 78.8 65.6 85.8 54.9 

  We use C3D, 3D ResNet-34, and 3D ResNet-101 to extract dynamic features to 

form multimodal features, and single-layer LSTM for decoding. Table 4 displays 

the results. Where C stands for C3D, R34 stands for 3D ResNet-34, and R101 stands 

for 3D ResNet-101. The table shows that 3D ResNet-101 has the best effect, 

outperforming C3D in BLEU4, METEOR, and CIDEr. In this paper, we use 3D ResNet-

101 as the dynamic feature extraction model after conducting experimental 

comparisons. The experimental results are depicted in Figure 5. The experimental 

results of 3D ResNet-101 are more accurate and better predict the "person". 

Table 4 

Comparison of experimental criteria between C3d and 3D RESNET  

Model  BLEU4 METEOR  ROUGE-L CIDEr 

Multi(C) 40.4 27.8 60.6 45.9 

Multi(R34) 40.3 27.8 60.4 46.1 

Multi(R101) 40.5 28.0 60.6 46.4 

 

Figure 5. Experimental comparison between C3D and 3D ResNet 

(2) Multimodal and semantic grouping module 

  We conduct ablation experiments on each module to evaluate the effectiveness 

of each module in the multimodal semantic grouping, and the results are shown in 

Table 5. 



Table 5 

Ablation experiment of multimodal and semantic grouping module (Red indicate the best 

performance.) 

Multi SA PS CA BLEU4 METEOR  ROUGE-L CIDEr 

× × × × 36.2 25.9 58.7 41.5 

× √ × × 37.3 27.6 59.7 46.7 

× √ √ × 37.5 27.8 59.7 47.4 

× √ √ √ 39.7 28.1 60.0 48.5 

√ √ √ √ 40.7 28.2 60.8 49.0 

  Note: use 2D and 3D features before using multimodal features. 

  Multi represents multimodal features, which enrich the model's extracted 

features. SA is a semantic aligner (including phrase coding) that allows video 

frames with similar semantics to be combined to form a semantic group. PS is a 

phrase filter that can generate semantically relevant words. CA indicates the 

contrastive attention loss, which promotes accurate alignment of semantic words 

and video features and improves the model's ability to form a semantic group. 

According to the table, the performance improved by SA is the most outstanding, 

while the range improved by PS is the smallest. SA and CA do a better job of 

combining adjacent frames into a semantic group, and PS generates semantic words 

that correspond to the semantic group. In comparison to forming adjacent features 

into a semantic group, the effect of generating semantic words in the semantic 

group is subtle. The reason for this is that both SA and CA promote the formation 

of a semantic group directly, whereas PS indirectly promotes the formation of a 

semantic group. Multimodal video features can significantly improve the model's 

performance by enriching the video information contained in the encoder. Figure 

6 depicts the experimental results. VMSG experimental results are more precise 

and accurately generate "apply makeup" when compared to other experimental 

results.  

 
Figure 6. Ablation experiment of each module of semantic group 

(3) Semantic attention mechanism 

  To investigate the effect of the semantic attention mechanism, we conduct 

experiments with and without the semantic attention mechanism, as well as 50 

cycles of iterative training. Table 6 displays the results. VMSG-WA denotes that 



the semantic attention mechanism is not added, whereas VMSG denotes that the 

semantic attention mechanism is added. As shown in the table, VMSG outperforms 

VMSG-WA in four criteria. 

  VMSG has improved in four criteria when compared to VMSG-WA. VMSG has improved 

slightly in BLEU4, METEOR, and ROUGE-L, and has increased by 2% in CIDEr. CIDEr 

represents the model's ability to grasp key points. The attention mechanism 

assigns a weight value to each semantic group. As a result, the weight value of 

the semantic group with high importance is high, which improves the model's 

ability to grasp the key points. The experimental results are depicted in Figure 

7. The attention mechanism improved the focus of the VMSG model's generated 

caption, replacing "cooking" with "making a dish". 

Table 6  

Ablation experiment of semantic attention  

Model BLEU4 METEOR ROUGE-L CIDEr 

VMSG-WA 40.0 28.0 60.7 47.9 

VMSG 40.7 28.2 60.8 49.0 

Figure 7. Comparison after adding attention mechanism 

3.5 Comparison with stat-of-the-arts 

  This section compares the performance of our model to that of the state-of-

the-art models. Table 7 displays the results. In the MSR-VTT dataset, it can be 

seen that VMSG has progressed to the advanced level. VMSG took first place in 

METEOR and CIDEr, ahead of second place by 3% and 1%, respectively. In the other 

two metrics, BLEU4 and ROUGE-L, VMSG reaches the current advanced level. 

Therefore, on the whole, VMSG is the state-of-the-art video caption generation 

model at present. 

METEOR represents the semantic correctness of the model-generated abstract, 

while CIDEr represents the ability to extract key information from the model. We 

believe that the semantic group can eliminate redundant information, resulting 

in less interference information. in addition, we include a semantic attention 

mechanism to increase the weight of the semantic group, highlight key points, 

and improve the model's ability to extract key information and extract 

semantically correct results. 

  The model's accuracy and recall rate are represented by BLEU4 and ROUGE-L, 



respectively. VMSG makes use of multimodal input. We use ResNet-152 to extract 

2D features and 3DResNet-101 to replace the C3D network, which can extract 

dynamic video features better. We also include audio features, which allow the 

model to extract enough information via classification features. Meanwhile, the 

semantic grouping and attention techniques used in this paper reduce redundant 

information from adjacent frames. As a result of these factors, the VMSG model's 

abstraction accuracy and recall rate reach an advanced level. 

Table 7 

Comparison of VMSG and several state-of-the-art methods on BLEU4, METEOR, ROUGE-L, and CIDEr. 

Red and blue indicate the best and second-best performance. 

Model  Year BLEU4 METEOR  ROUGE-L CIDEr 

SA-LSTM
[2]
 2018 36.3 25.5 58.3 39.9 

M3 
[16]
 2018 38.1 26.6 - - 

RecNet
[5]
 2018 39.1 26.6 59.3 42.7 

PickNet∗
[16]
  2018 41.3 27.7 59.8 44.1 

SibNet
[17]
 2019 40.9 27.5 60.2 47.5 

MGSA
[18]
 2019 42.4 27.6 - 47.5 

MARN
[19]
 2019 40.4 28.1 60.7 47.1 

OA-BTG
[20]
 2019 41.4 28.2 - 46.9 

Two-stream
[21]
 2020 39.7 27.0 - 42.1 

STG-KD
[22]
 2020 40.5 28.2 60.9 47.1 

RMN
[23]
 2020 39.2 27.8 59.9 46.7 

BilSTM-CG[24] 2020 39.1 27.7 59.9 46.4 

VideoTRM[25] 2020 38.8 27.0 - 44.7 

NA-B[26] 2021 40.4 28.0 - 47.6 

RAE[27] 2021 40.0 28.0 60.0 45.7 

SGN(R152)[28] 2021 39.6 27.6 59.6 45.2 

VMSG(our) - 41.0 28.2 60.8 49.0 

 

Figure 8. Experimental results of the 7743
th
 video 



 

Figure 9. Experimental results of the 8235
th
 video 

  Figures 8 and 9 show an example of SA-LSTM and VMSG generating titles, with 

VMSG outperforming SA-LSTM in terms of accuracy. As shown in Figure 8, VMSG can 

generate the subject who is acting in the video scene. VMSG predicts a group of 

cartoon characters rather than just one, and the content is more accurate as a 

result. Meanwhile, its ability to extract critical information has improved. In 

general, VMSG outperforms SA-LSTM. 

 

Figure 10. Formation process of semantic groups of the 9234
th
 video  

(Note: the orange shades represent the size of semantic weight) 

  Figure 10 constructs the phrases "a man is talking" and "a group of" from the 

words in the partially decoded title "a man is talking to a group 

of".  Collecting a man's speech and a group of people resulted in the formation 

of one semantic group. More data from the latter semantic group predicts the 

following word, "people". The findings show that VMSG can form semantic phrases 

and associate image frames with semantic phrases. 

4 Conclusion 

  In this paper, we propose a semantically grouped multimodal video description 

method that employs multimodal feature fusion based on 2D and 3D features, as 

well as tag and audio features. To extract dynamic features from videos, VMSG 

employs 3DResNet rather than C3D. We compose video frames with the same semantics 



into a semantic group for decoding to solve the problem of redundant information 

in adjacent video frames. Because the importance of different semantic groups 

varies, we investigate a semantic attention algorithm that assigns weight to 

semantic groups. Finally, to simplify the model, we employ a single-layer LSTM. 

On MSR-VTT, VMSG achieves good results. Our long-term goal is to develop better 

multimodal models that take into account video decoding using non-autoregressive 

methods. 
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