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Abstract
Existing research on audio-text retrieval is limited by the size of the dataset and the structure of the
network, making it di�cult to learn the ideal featuresof audio and text resulting in low retrieval accuracy.
In this paper, we construct an audio-text retrieval model based on contrastive learning and collaborative
attention mechanism . We �rst reduce model over�tting by implementing audio augmentation strategies
including adding Gaussian noise, adjusting the pitch and changing the time shift.Additionally, we design
a co-attentive mechanism module that the audio data and text data guide each other in feature learning,
effectively capturing the connection between the audio modality and the text modality. Finally we apply
the contrastive learning methods between the augmented audio data and the original audio, allowing the
model to effectively learn a richer set of audio features. The retrieval accuracy of our proposed model is
signi�cantly improved on publicly available datasets AudioCaps and Clotho.

1. Introduction
In recent years, multimedia data, including image, text, video and audio, has �ooded our daily lives and
this media information has become the main form of understanding the world. With more and more
multimedia data, the previous single-media retrieval methods can no longer meet people's needs, and
how to effectively perform multimodal information retrieval has become a popular research topic. Audio-
text retrieval technology has very broad application scenarios in the age of information technology. First
of all, people expect to be able to use text to retrieve audio clips on search engines and social networking
software such as Google and Instagram in the same way as text retrieval for images and text retrieval for
news, which will greatly enrich people's daily lives. Audio-text retrieval technology can also be applied to
speech recognition, audio auditing and more. At the same time, the maturity of audio-text retrieval
technology will make it easier to retrieve large volumes of media databases and facilitate the effective
management of multimedia databases. As audio and text are important components of multimedia data,
our aim is to construct a novel audio-text retrieval model.

Over the past decade, most research on audio retrieval has been devoted to content-based retrieval, that
is, �nding audios similar to the query audio from a reference audio database; however, content-based
audio retrieval is limited by the structure of audio events, and audio retrieval tasks often perform poorly if
the audio events are unstructured. We propose an audio-text retrieval framework that can query audio
through detailed free-form natural language. For example, if people want to search for an audio clip of a
dog barking after a thunderclap, they can use a text description like "After a thunderclap, the dog in the
yard barked", which would have a chronological sequence of audio events, rather than a text description
like "After the dog in the yard barked, the thunder rumbled". Audio retrieval with free-form text queries
facilitates more �exible and accurate audio retrieval tasks as shown in Figure 1.

Current cross-media retrieval methods based on deep learning typically include binary representation-
based learning method and real value representation-based method. The binary representation-based
learning method projects cross-modal data into a common Hamming space and uses hash codes for
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retrieval. For example, Jiang  et al. [1] learns discrete hash codes through a cross-modal deep hashing
algorithm to improve retrieval performance. To further improve the retrieval accuracy, Li et al. [2]proposed
self-supervised adversarial hashing, which not only reduces a signi�cant amount of time compared to the
cross-modal deep hashing algorithm, but also learns richer supervised information. Wu et al. [3] proposed
cycle-consistent deep generative hashing, which maximizes the relationship between the learned hash
codes and each input and output, effectively compressing the data and maximizing the retention of its
own information and the relationship between different modal samples. The binary representation-based
learning method is highly e�cient, with less storage space, and focuses on modal differences caused by
modal feature heterogeneity, but it is di�cult to solve the "semantic gap" problem and is not applicable in
audio-text retrieval tasks.

The real value representation-based method has good semantic differentiation capabilities and can
reduce the "semantic gap" to a large extent. Yu et al.[4] proposed a two-branch deep neural network
learning architecture for audio modality and text modality. Lou et al. [5] evaluated the impact of various
aggregation methods including mean pooling, max pooling, NetVLAD and NetRVLAD on cross-modal
alignment for better audio-text alignment. Liu et al.[6]designed an omni-perception pre-trainer containing
single encoders for audio and text modalities, and cross-modal encoders between the two modalities, to
learn rich multimodal representations of audio and text. Manco et al. [7]proposed a framework for music
contrastive audio-language learning. This is a dual-encoder architecture that learns cross-modal
alignment between modalities and produces multimodal embeddings. Although these existing methods
effectively focus on the relationship between audio and text modalities, they are limited by the size of the
dataset to the extent that the modal features learned are often limited. Moreover, existing research on
audio-text retrieval has focused too much on cross-modal connections, instead neglecting feature
learning from a single modality. We address the problem of insu�cient number of samples in existing
audio-text retrieval by expanding the number of audio samples through audio augmentation. We propose
a method to compare the augmented audio with the original audio to learn rich audio features, and we
design a network structure based on collaborative attention mechanism to capture the close relationship
between different modal data. We design an end-to-end network model that combines audio
augmentation, multimodal feature extraction, contrastive learning, collaborative attention mechanism
and common embedding space learning to improve the accuracy of mutual retrieval between audio and
text as shown in Figure2. Our contributions in this paper are summarized as follows:

Introducing audio augmentation and applying contrastive learning. In the audio-text retrieval, the
introduction of audio augmentation not only solves the problem of insu�cient sample data, but we
also apply contrastive learning between the augmented audio and the original audio, and this self-
supervision within the same modality effectively learns a richer set of features. We also evaluate the
impact of different audio augmentation methods on audio-text retrieval, which provides more
references for future application of our method to other cross-media tasks including audio.

The collaborative attention module helps to learn more effective modal features. We use audio
modality to assist in learning text features, and text modality to assist in learning audio features. The
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collaborative attention module effectively captures the close relationship between audio and text,
further improving retrieval accuracy.

Comprehensive experiments show that our approach achieves excellent performance in audio-text
retrieval.

2. Related Work
In this section, we brie�y introduce audio-text retrieval, audio augmentation, and contrastive learning.

2.1 Audio-text Retrieval
The audio-text retrieval, as the name suggests, is to query the corresponding audio information through
text, and query the corresponding text information through audio. Different media have inconsistent
distributions and feature representations, and the main task in audio-text retrieval is to bridge the
"heterogeneity gap" between the two. The current mainstream approach is to learn the feature
representations of both modalities in a common embedding space, and the similarity between the two
modalities is measured by the cosine similarity. How to learn the effective feature representations of both
modalities has become a competing goal. Recently, Won et al. [8][9] successfully introduced multimodal
metric learning for tag-based music retrieval, and focused on automatic retrieval of matching music for
text-based stories. Zhang et al.[10] proposed a cross-modal audio-text retrieval method using an
interactive learning convolutional autoencoder (CAE) to obtain shared features of audio and text patterns
through interactive learning of CAE, which is then sent to a modal classi�er to identify modal information
for audio-text retrieval. Mei et al.[11]proposed an audio captioning system with an encoder-decoder
architecture that uses transfer learning to alleviate problems caused by data scarcity, in addition to
incorporating evaluation metrics into the optimization of reinforcement learning models. The audio-text
retrieval is still at a preliminary stage of research compared to other inter-modal retrieval tasks, and more
work is being done to establish suitable benchmarks. Kuzminykh et al. [12] investigates possible
solutions for retrieving audio events based on natural language queries and evaluates the effectiveness
and accuracy of multiple models. Koepke et al.[13] introduced new benchmarks for audio-text retrieval
and used these to establish a baseline for cross-modal audio retrieval, demonstrating the bene�ts of pre-
training for different audio tasks. In our work, we introduce audio augmentation from the perspective of
limited audio-text data, drawing on image augmentation methods commonly used in image-related tasks.
Moreover, we learn more complete audio features through contrastive learning, and we also design a
collaborative attention-based network structure to further improve retrieval accuracy in terms of baseline
metrics.

2.2 Audio augmentation
In the �eld of audio, the goal of audio augmentation is to enhance low-quality audio signals to improve
quality and intelligibility. Audio augmentation methods are widely used for tasks such as speech
recognition, speech separation and speech coding. The earliest methods of audio augmentation were
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traditional statistical signal processing-based methods[14][15][16][17][18][19]. However, traditional
methods cannot handle complex and irregular noise, and deep learning approaches can be more �exible
to address these challenges. The most commonly used structure is the feedforward fully-connected
neural network (FFNN) [20][21], in addition to the use of CNN[22][23], LSTM [24][25], BiLSTM[26][27]and
others. Although there are many existing audio augmentation methods, it is a challenge to choose the
appropriate augmentation method to be applied to audio-text retrieval. Unlike speech separation and
speech synthesis, the purpose of applying audio augmentation is to expand the number of samples in
audio-text retrieval. In reference image retrieval, images often need to be cropped and �ipped, and the
augmented audio should not be too different from the original audio. Therefore, we choose to use three
audio augmentation methods: add Gaussian noise to the samples, pitch shift the sound up or down
without changing the tempo and shift the samples forwards or backwards in this work.

2.3 Contrastive Learning
Contrastive learning [28][29][30][31] is a self-supervised learning method that learns general features of a
dataset by allowing the model to learn which data are similar or dissimilar. Due to the excellent
performance of contrastive learning on multimodal tasks, contrastive learning has become one of the
popular methods to build multimodal retrieval models. Jia et al.[32][33][34][35] used contrastive learning
to align representations of image and text achieving excellent feature representations and good results
on their respective tasks. Contrastive learning has also been applied to NLP [36][37], including natural
language understanding and machine translation tasks, where simple data augmentation has yielded
results that approach or exceed SOTA. In cross-modal tasks [38][39], cross-modality contrastive learning
is widely adopted to imply the information of different modalities into a uni�ed semantic space. In this
paper we apply contrastive learning not only to different modalities, but also within the same modality.

3. Methods

3.1 Problem formulation
Suppose we have a dataset О corresponding to text and audio, where Оt, and Оa denote text and audio

data respectively. We assume that  are N sets of one-to-one corresponding text and audio
instances,  denotes the dt-dimensional text feature vector in dataset Оt, and denotes
the da-dimensional audio feature vector in dataset Оa. For a set of text-audio pairs (ti,aj) the similarity
between them can be measured by the cosine similarity, as shown in Eq. 1.

1
where φ() and ψ() denote the encoders for text and audio, respectively. We consider sii as a positive pair
where the text matches the audio, and sij as a negative pair where the text does not match the audio. Our

{ti,ai}
N
i=1

ti ∈ R
dt aj ∈ R

da

sij =
ϕ (ti) ⋅ ψ (aj)

∥ϕ (ti)∥2
∥∥ψ (aj)∥∥2
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retrieval goal is to query the corresponding audio sample ai by an arbitrary text sample ti, and we also
consider the opposite retrieval task, querying the corresponding text sample ti by an arbitrary audio
sample ai.

3.2 Models
Previous experiments have shown that pre-trained models can achieve excellent results on cross-media
retrieval tasks, so we used pre-trained models for text and audio feature extraction.

Text encoder:In the �eld of natural language processing (NLP), BERT has achieved state-of-the-art results
on lots of tasks, and we chose to use the pre-trained BERT as a text encoder, appending a "<cls>" tag at
the beginning of each sentence for the �nal whole-sentence feature representation. After the Bert encoder,
the text feature dimension is B×768, where B is the batch size. After that, the text features are passed
through two fully connected layers and a ReLu activation function, one fully connected layer is (768,
2048) and the other is (2048, 1024), and the �nal text feature dimension is adjusted to B×1024.

Audio encoder:For the choice of audio encoder, we refer to the work of Ref.[40] to select the audio encoder
ResNet-38 used in PANNs, discarding two of the linear layers and applying the average pooling and max
pooling layers to aggregate the frequency dimensions along the feature map output from the last
convolution block to obtain an audio feature dimension of B × 2048. As with the text encoder, we pass the
audio features through two fully connected layers and a ReLu activation function, one fully connected
layer of (2048, 2048) and the other fully connected layer of (2048, 1024), and the audio feature
dimension is similarly adjusted to B × 1024.

3.3 Collaborative attention mechanism
The collaborative attention mechanism refers to the self-attentive mechanism in Transformer, where there
are three inputs Q (a matrix of query sets), K (a matrix of key sets), and V (a matrix of value sets). Various
ranges of dependencies within the sequence can be captured through the Q, K, V attention mechanism.
The attention mechanism through Q, K, V can capture various ranges of dependencies within the
sequence. The dot product of each Q and K is divided by , and the attention weight is obtained after
softmax processing, and then multiplied by the corresponding V as shown in formula 2, where d is the
dimension of Q and K.

2
However, as opposed to learning just one attentional convergence, learning multiple attentional
convergences, stitching the outputs of multiple attentional convergences together and varying them
through another linear projection that can be learned to produce the �nal output can often be achieved

√d

Attention(Q,K,V ) = softmax( )V
QKT

√d
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better. This approach is called multi-head attention and a single attentional convergence can be
represented as:

3
The �nal output is as in Eq. 4.

4
Where  is the learni, g projection matrix and dm is the dimension
of the output matrix. The vectors of Q, K, V are the same in the self attention mechanism. In the co-
attentive mechanism module for audio-text retrieval, we input the text feature vector and the audio feature
vector into the audio attention module, replacing the values of K,V with the text feature vector. The output
FA of the �nal audio features and the output FT of the text features are obtained through a multi-head
attention structure and a fully connected feed-forward network.

5
    (6)

3.4 Audio augmentation
In a large number of text-image retrieval tasks, image augmentation is often used to generate similar
image data to improve the robustness and generalization ability of the model. We feel that audio
augmentation can also improve our retrieval e�ciency in text-audio retrieval, and we have used several
common audio augmentation methods: add Gaussian noise to the samples, pitch shift and time shift. We
apply each augmentation method to the retrieval task individually or combine multiple augmentations to
the retrieval task. The selection strategy for the three augmentation methods is random augmentation,
and we set the probability of audio augmentation for the original audio as 0.5.

Add Gaussian noise: Gaussian noise is added to the audio samples with a minimum amplitude set to
0.001 and a maximum amplitude set to 0.015.

Pitch shift: pitch moves the sound up or down without changing the tempo, minimum semitone is set to
-4 and maximum semitone is set to 4.

Time shift: shift the samples forwards or backwards, with or without rollover, we set the minimum
fraction of total sound length to -0.5 and the maximum fraction of total sound length to 0.5, scrolling
beyond the �rst or last position reintroduces the samples.

 head i =  Attention  (QW
Q

i ,KW K
i ,VW V

i )

MultiHead (Q,K,V ) =  Concat  ( head 1, … ,  head m)W O

W
Q,W K,W V

ϵR
d×dm W

O
ϵR

m×dm×d

FA = MultiHead (QA,KT ,VT )

FT = MultiHead (QT ,KA,VA)
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After three audio augmentation strategies, Mel spectrums of the original audio and augmented audios
are shown in Fig. 3. From an intuitive point of view it is di�cult to detect the subtle differences between
them, but it is this subtle difference, which is not visible to the naked eye, that can obtain different audio
features through the audio encoder. Although the audio encoder has captured most of the features of the
original audio, there are still some details that are overlooked, and by contrastive learning between the
original and the augmented audio, we can get richer features of the audio.

3.5 Contrastive learning
In the audio-text retrieval, we expand the number of audios by audio augmentation. We considered the
original audio and the matched text as positive sample pairs, the augmented audio and text as positive
sample pairs as well, and the other mismatched ones as negative sample pairs. We want the similarity
between the positive samples to be as large as possible and the similarity between the negative samples
to be as small as possible. Chen [41] learns visual representations in self-supervised learning and
proposes a softmax-based contrast loss NT-Xent, which can be expressed as:

7
where s(i,i) denotes positive sample pairs and s(i,j) denotes negative sample pairs. B is the batch size and
τ is the temperature coe�cient, set to 0.2 in the experiments. Our audio retrieval task is bidirectional, so
the loss function is computed in a bidirectional manner expressed as:

8
Intra-modal contrastive learning: we introduce intra-modal contrastive learning of audio on AudioCpas
and Clotho. We consider the original audio ai and the augmented audio  as a positive sample pair a(i,i),
then a(i,j) as a negative sample pair. The intra-modal contrastive learning of audio loss is :

9
The �nal loss function can be expressed as:

10

4. Experiments

L1 = − ∑B
i=1 log

1
B

exp(sii/τ)

∑B

j=1 exp(sij/τ)

L2 = − (∑B
i=1 log + ∑B

i=1 log )1
B

exp(sii/τ)

∑B

j=1 exp(sij/τ)

exp(sii/τ)

∑B

j=1 exp(sji/τ)

âi

L3 = − ∑B
i=1 log

1
B

exp(aii/τ)

∑B

j=1 exp(aij/τ)

L = L2 + L3
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In this section, we �rst compare the performance of our model for audio-text retrieval (Text->Audio) and
text audio-retrieval (Audio->Text) on both AudioCaps and Clotho datasets. We then conduct ablation
experiments for each module in our model.

4.1 Datasets
AudioCaps

AudioCaps is a dataset for generating natural language descriptions for any type of audio data. The
dataset consists of 46K pairs of audio clips and text descriptions, where the audio is mainly sourced from
Audioset. The length of each audio clip is approximately 10s. The training set contains 49274 audio clips,
where each audio clip corresponds to a text description, the validation set contains 494 audio clips, and
the test set contains 957 audio clips, where each audio clip corresponds to �ve different text descriptions
in the validation and test sets.

Clotho

Clotho is an audio captioning dataset consisting of 4981 audio samples, and the duration of each audio
segment is 15-30s. The dataset is divided into a training set, a test set and a validation set. In Clotho v2,
there are 3,839 audio clips in the training set and 1,045 clips in the validation and test sets. Each audio
clip corresponds to �ve different text descriptions and each paragraph of text is 8 to 20 words in length.

4.2 Implementation details
In this section, we use the retrieval metrics of R@K (higher is better), median (MedR) and mean (MeanR)
ranking (lower is better) to evaluate the performance of our model in retrieval tasks. R@K denotes the
percentage of correct results retrieved in the top-K results, MedR denotes the median of the �rst correct
result retrieved, and MeanR denotes the median of the �rst median of correct results retrieved.

During our experiments, the batch size in our experiments is set to 32, num_wokers is set to 6, the learning
rate is 0.2 and the epoch in our experiments is set to 50 on AudioCpas. The batch size is set to 24,
num_wokers is set to 8, the learning rate is 0.2 and epoch was set to 50 on Clotho.

4.3 Results
Our audio-text retrieval model is retrieved on AudioCpas and Clotho. We extract audio features using the
pre-trained audio model ResNet38 in PANNs and text features via the pre-trained Bert model in
HuggingFace, aligning the feature vectors of both modalities to 1024 latitude via a fully connected layer.
We pass the audio and text feature vectors through the collaborative attentive module, using cross-modal
contrastive learning to align features between the two modalities, and learning more effective single-
modal features through inter-modal contrastive learning. We �ne-tune the pre-trained audio and text
encoders on the training set and select the model with the best combined performance on all retrieval
metrics on the validation set to be applied to the test set. We perform two retrieval tasks, including audio
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retrieval by text and text retrieval by audio. We compare our model with current state-of-the-art audio-text
retrieval models and the results are shown in Table 1 and Table 2.

 
Table 1

Models for audio-text retrieval on AudioCaps
Model Text–>Audio

R1↑ R5↑ R10↑ R50↑ MedR↓ MeanR↓

CNN14 + NetRVLAD[5]* 29.3 ± 0.3 65.2 ± 0.5 79.3 ± 1.0 / 3.0 ± 0.0 /

CE[13] 23.6 ± 0.6 56.2 ± 0.5 71.4 ± 0.5 92.3 ± 1.5 4.0 ± 0.0 18.3 ± 3.0

MOEE[13] 23.0 ± 0.7 55.7 ± 0.3 71.0 ± 1.2 93.0 ± 0.3 4.0 ± 0.0 16.3 ± 0.5

Ours 33.4 ± 0.4 68.8 ± 0.1 81.9 ± 0.3 96.8 ± 0.2 3.0 ± 0.0 10.0 ± 0.3

Model Audio–>Text

R1↑ R5↑ R10↑ R50↑ MedR↓ MeanR↓

CNN14 + NetRVLAD[5]* 33.3 ± 0.5 67.6 ± 0.5 80.6 ± 0.8 / 3.0 ± 0.0 /

CE[13] 27.6 ± 1.0 60.5 ± 0.7 74.7 ± 0.8 94.2 ± 0.4 4.0 ± 0.0 14.7 ± 1.4

MOEE[13] 26.6 ± 0.7 59.3 ± 1.4 73.5 ± 1.1 94.0 ± 0.5 4.0 ± 0.0 15.6 ± 0.8

Ours 42.3 ± 0.6 74.0 ± 0.7 85.3 ± 0.3 98.0 ± 0.2 2.0 ± 0.0 7.2 ± 0.3
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Table 2
Models for audio-text retrieval on Clotho

Model Text–>Audio

R1↑ R5↑ R10↑ R50↑ MedR↓ MeanR↓

CNN14 + NetRVLAD[5]* 13.1 ± 0.2 33.1 ± 0.6 45.1 ± 0.2 / 13.0 ± 0.0 /

CE[13] 6.7 ± 0.4 21.6 ± 0.6 33.2 ± 0.3 69.8 ± 0.3 22.3 ± 0.6 58.3 ± 1.1

MOEE[13] 6.0 ± 0.1 20.8 ± 0.7 32.3 ± 0.3 68.5 ± 0.5 23.0 ± 0.0 60.2 ± 0.8

Ours 12.7 ± 0.3 34.5 ± 0.7 47.1 ± 0.2 77.5 ± 0.4 12.0 ± 0.0 51.6 ± 1.3

Model Audio–>Text

R1↑ R5↑ R10↑ R50↑ MedR↓ MeanR↓

CNN14 + NetRVLAD[5]* 13.0 ± 0.2 32.9 ± 0.7 45.4 ± 0.8 / 13.0 ± 0.0 /

CE[13] 7.0 ± 0.3 22.7 ± 0.6 34.6 ± 0.5 67.9 ± 2.3 21.3 ± 0.6 72.6 ± 3.4

MOEE[13] 7.2 ± 0.5 22.1 ± 0.7 33.2 ± 1.1 67.4 ± 0.3 22.7 ± 0.6 71.8 ± 2.3

Ours 14.3 ± 1.1 35.1 ± 1.0 48.1 ± 1.6 79.8 ± 0.6 11.3 ± 0.9 42.3 ± 2.2

Note:The * indicates that the relevant source code is missing the results of this experiment are from the
original paper, and / indicates that the metric is not given in the original paper.

Our work achieves superior retrieval results on the audio-text retrieval relative to previous work. On
AudioCaps, our model improves R1 by 10%, R5 by 13%, R10 by 10%, R50 by 13%, MedR by 1% and MeanR
by 6% on the task of text retrieval for audio relative to CE and MOEE. For the task of audio retrieval of text,
R1 improved by 12%, R5 by 15%, R10 by 11%, R50 by 14%, MedR by 2% and MeanR by 7%. Our model has
a combined improvement of over 3% on the text retrieval audio task and nearly 7% on the audio retrieval
text task for the method of Ref.[5]. We believe that the main reason for the signi�cantly higher
improvement in the task of retrieving text by audio compared to retrieving audio by text is that the
contrastive learning between audio modalities learns richer audio features, so that our "questions" are
described more speci�cally in the retrieval process to the extent that our "answer" needs to be more
precise.

On Clotho, our model improves R@1 by 6%, R@5 by 13%, R@10 by 14%, R50 by 8%, MedR and MeanR by
nearly 10% compared to CE and MOEE on text retrieval audio task. On the audio retrieval text task,R@1
increases by 7%, R@5 increases by 13%, R@10 increases by 14%, R50 increases by 12%, and MedR and
MeanR increase by close to 11%. Compared with the work of [5], our model reduces R@1 by 0.4% on the
text retrieval audio task, and improves other indicators by about 2%. On the audio retrieval text task, R@1
increases by 1%, and other indicators increase by nearly 3%. Compared with AudioCaps, the Clotho
dataset is more complicated to process, and the improvement of our model on Clotho is relatively
reduced, but it still has a signi�cant improvement compared to existing models. Then we evaluate the
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experimental results of �ne-tuning and freeze on AudioCaps and Clotho, as shown in Table 3 and Table
4. 

 
Table 3

Experimental results of freeze and �ne-tune for our model retrieval on AudioCpas
AudioCaps Text–>Audio

R1↑ R5↑ R10↑ R50↑ MedR↓ MeanR↓

Freeze 19.7 ± 0.3 51.8 ± 0.3 68.2 ± 0.1 92.7 ± 0.3 5.0 ± 0.0 16.6 ± 0.2

Fine-tune 33.4 ± 0.4 68.8 ± 0.1 81.9 ± 0.3 96.8 ± 0.2 3.0 ± 0.0 10.0 ± 0.3

AudioCaps Audio->Text

R1↑ R5↑ R10↑ R50↑ MedR↓ MeanR↓

Freeze 23.6 ± 0.2 56.8 ± 0.9 72.0 ± 1.3 95.1 ± 0.3 4.0 ± 0.0 12.5 ± 0.2

Fine-tune 42.3 ± 0.6 74.0 ± 0.7 85.3 ± 0.3 98.0 ± 0.2 2.0 ± 0.0 7.2 ± 0.3

 
Table 4

Experimental results of freeze and �ne-tune for our model retrieval on Clotho
Clotho Text–>Audio

R1↑ R5↑ R10↑ R50↑ MedR↓ MeanR↓

Freeze 8.4 ± 0.1 25.7 ± 0.6 38.1 ± 0.6 72.0 ± 0.1 18.3 ± 0.5 56.2 ± 0.5

Fine-tune 12.7 ± 0.3 34.5 ± 0.7 47.1 ± 0.2 77.5 ± 0.4 12.0 ± 0.0 51.6 ± 1.3

Clotho Audio->Text

R1↑ R5↑ R10↑ R50↑ MedR↓ MeanR↓

Freeze 10.2 ± 0.8 27.8 ± 1.4 39.7 ± 1.3 71.8 ± 0.9 17.0 ± 0.8 64.5 ± 3.3

Fine-tune 14.3 ± 1.1 35.1 ± 1.0 48.1 ± 1.6 79.8 ± 0.6 11.3 ± 0.9 42.3 ± 2.2

When �ne-tune of the pre-trained audio and text encoders on the training sets of the AudioCpas and
Clotho, the retrieval accuracy of our model is signi�cantly improved. Using pre-trained models and �ne-
tuning them on downstream tasks can signi�cantly improve task performance, and �ne-tuning is widely
used in the �elds of computer vision and natural language processing.

4.4 Ablation experiments
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In the ablation experiments, we follow the implementation details in 4.1. Since �ne-tuning would
substantially increase the training time of the model, in this section none of the pre-trained encoders in
our experiments are �ne-tuned on the training set. We sequentially evaluate the effects of audio
augmentation, collaborative attentive mechanism and inter-modal contrastive learning on audio-text
retrieval in comparison experiments. The baseline model we use is the model with all three components
of audio augmentation, collaborative attentive mechanism and inter-modal contrastive learning removed
from our model.

4.4.1 Effect of audio augmentation
In the �eld of deep learning, data augmentation has been an important tool to improve the performance
of a task. In the �eld of computer vision, strategies for image augmentation are found everywhere. In
audio-text retrieval, our introduction of audio augmentation not only expands the dataset, but also
provides a solution for contrastive learning between audio modalities in our follow-up work. We add
audio augmentation module to the baseline model. The audio augmentation methods include adding
Gaussian noise, pitch shift and time shift, then we combine the three augmentation methods two by two,
and �nally the three augmentation methods are combined. We add each of the different audio
augmentation methods to the baseline model. The impact of the different audio augmentation methods
on the experiments are evaluated on AudioCpas, as shown in Table 5. 
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Table 5
Different audio augmentation methods for audio-text retrieval on AudioCpas

Augmentation Text–>Audio

R1↑ R5↑ R10↑ MedR↓ MeanR↓

No augmentation 18.9 ± 0.5 50.4 ± 0.3 66.2 ± 0.2 5.0 ± 0.0 19.2 ± 0.5

Add Gaussian noise+ 19.2 ± 0.2 51.3 ± 0.3 67.4 ± 0.6 5.0 ± 0.0 17.7 ± 0.6

Time shift+ 19.1 ± 0.1 51.1 ± 0.2 66.8 ± 0.2 5.0 ± 0.0 19.1 ± 0.2

Pitch shift+ 19.2 ± 0.3 51.2 ± 0.5 67.0 ± 0.2 5.0 ± 0.0 17.6 ± 0.1

Add Gaussian noise+ Pitch shift+ 19.2 ± 0.2 51.5 ± 0.2 68.0 ± 0.1 5.0 ± 0.0 17.2 ± 0.2

Add Gaussian noise+ Time shift+ 19.7 ± 0.4 51.5 ± 0.4 68.0 ± 0.2 5.0 ± 0.0 17.3 ± 0.2

Time shift+ Pitch shift+ 19.1 ± 0.1 51.7 ± 0.2 67.6 ± 0.1 5.0 ± 0.0 17.4 ± 0.1

Mix+ 18.6 ± 0.2 51.4 ± 0.1 68.3 ± 0.2 5.0 ± 0.0 16.7 ± 0.3

Augmentation Audio->Text

R1↑ R5↑ R10↑ MedR↓ MeanR↓

No augmentation 20.3 ± 0.7 53.0 ± 0.8 69.6 ± 0.8 5.0 ± 0.0 16.9 ± 0.6

Add Gaussian noise+ 21.3 ± 0.8 54.2 ± 0.5 70.7 ± 1.0 5.0 ± 0.0 14.3 ± 0.4

Time shift+ 21.5 ± 0.1 54.0 ± 0.8 70.1 ± 0.7 5.0 ± 0.0 15.7 ± 0.1

Pitch shift+ 20.9 ± 0.5 54.1 ± 0.6 70.1 ± 0.3 5.0 ± 0.0 15.4 ± 0.2

Add Gaussian noise+ Pitch shift+ 20.9 ± 1.6 53.1 ± 1.4 70.4 ± 0.8 5.0 ± 0.0 14.9 ± 0.4

Add Gaussian noise+ Time shift+ 21.6 ± 0.6 54.7 ± 0.8 71.4 ± 0.2 5.0 ± 0.0 14.2 ± 0.2

Time shift+ Pitch shift+ 20.8 ± 0.3 53.0 ± 0.6 69.5 ± 0.8 5.0 ± 0.0 15.1 ± 0.4

Mix+ 20.5 ± 0.8 53.3 ± 0.4 69.8 ± 0.9 5.0 ± 0.0 14.7 ± 0.4

We can observe that whether a single audio augmentation method is used or a combination of different
audio augmentation methods, the performance improvement for the retrieval task is roughly the same for
all methods, improving the retrieval metric by 0.5–2%, but the combination of adding Gaussian noise and
time shift works best in relative terms. Mixing the three augmentation methods instead reduced the
metric of R@1, and we believe that overly complex audio changes to the original audio were instead
detrimental to its feature learning. It is worth noting that we found during the training process that the
method of adjusting the audio pitch increases the time overhead substantially and does not lead to better
enhancement. We think that adjusting the pitch is more altering to the original audio compared to the
other two audio augmentation methods, which will change the frequency of the original audio itself
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increasing the time overhead, so if the audio augmentation is used in related tasks by subsequent
scholars, it can be discard this method.

4.4.2 Effect of the collaborative attention mechanism
The biggest challenge faced in cross-modal retrieval tasks is how to address the heterogeneity divide.
Existing approaches have worked to reduce the disparity between different modalities. We introduce a
collaborative attentive mechanism with reference to the attention mechanism in the audio-text retrieval,
where information from the audio modality is used to guide feature learning in the text modality, and
information from the text modality is used to guide feature extraction in the audio modality. We hope that
this interaction of information between different modalities can appropriately reduce the variability
between different modalities.

We add the collaborative mechanism to the baseline model. During the experiments, we use multiple
heads of attention, with heads set to 2, 4 and 8, and dropout in the attention mechanism set to 0.2. We
evaluate the effect of the collaborative attentive mechanism on AudioCpas and assess the variability of
the different heads in collaborative attentive mechanism in the experiments. The boost of collaborative
attentive mechanism relative to the audio-text retrieval task is approximately 0.5%, with the best results
achieved when the heads equal 4, as shown in Table 6.

 
Table 6

Audio-text retrieval on AudioCpas for different sizes of heads in the collaborative attention
mechanism

AudioCaps Text–>Audio

R1↑ R5↑ R10↑ MedR↓ MeanR↓

No Co-attention 18.9 ± 0.5 50.4 ± 0.3 66.2 ± 0.2 5.0 ± 0.0 19.2 ± 0.5

Co-attention heads = 2 19.3 ± 0.1 50.8 ± 0.6 66.7 ± 0.3 5.0 ± 0.0 18.1 ± 0.2

Co-attention heads = 4 19.5 ± 0.2 51.1 ± 0.4 67.1 ± 0.6 5.0 ± 0.0 18.0 ± 0.5

Co-attention heads = 8 19.7 ± 0.3 51.2 ± 0.2 66.4 ± 0.3 5.0 ± 0.0 18.4 ± 0.2

AudioCaps Audio->Text

R1↑ R5↑ R10↑ MedR↓ MeanR↓

No Co-attention 20.3 ± 0.7 53.0 ± 0.8 69.6 ± 0.8 5.0 ± 0.0 16.9 ± 0.6

Co-attention heads = 2 21.6 ± 1.0 53.3 ± 0.1 69.8 ± 0.5 5.0 ± 0.0 14.7 ± 0.5

Co-attention heads = 4 20.8 ± 0.9 54.2 ± 1.0 70.0 ± 0.2 4.6 ± 0.4 14.8 ± 0.6

Co-attention heads = 8 21.1 ± 0.7 54.4 ± 0.6 70.1 ± 0.3 5.0 ± 0.0 15.2 ± 0.4
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4.4.3 Effect of the intra-modal contrastive learning
Referring to the experimental results in Table 3, we chose the audio augmentation method with the
highest overall performance improvement, combining the strategy of adding Gaussian noise and time
shift to augment the original audio. We �rst evaluate the effect of the intra-modal contrastive(IMC)
learning module on the experiments on AudioCaps, as shown in Table 7. 

 
Table 7

Effect of the intra-modal contrastive learning for audio-text retrieval on
AudioCpas

AudioCaps Text–>Audio

R1↑ R5↑ R10↑ MedR↓ MeanR↓

No IMC 18.9 ± 0.5 50.4 ± 0.3 66.2 ± 0.2 5.0 ± 0.0 19.2 ± 0.5

IMC 19.1 ± 0.7 51.3 ± 0.3 67.9 ± 0.5 5.0 ± 0.0 17.5 ± 0.1

AudioCaps Audio->Text

R1↑ R5↑ R10↑ MedR↓ MeanR↓

No IMC 20.3 ± 0.7 53.0 ± 0.8 69.6 ± 0.8 5.0 ± 0.0 16.9 ± 0.6

IMC 23.0 ± 0.6 57.1 ± 1.1 71.1 ± 0.2 4.0 ± 0.0 14.2 ± 0.4

Contrastive learning within the audio modality has a relatively large improvement on the audio-text
retrieval, particularly for the audio retrieval text task, where the maximum improvement can be up to 4%.
Observing the complexity of the Clotho dataset, in addition to the comparison module within the audio
modality, we also included a comparison module within the text modality, where we return two texts at a
time from a given set of �ve texts for comparison learning. We conduct experiments on Clotho to
evaluate its effectiveness, as shown in Table 8.
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Table 8
Effect of the intra-modal contrastive learning for audio-text retrieval on Clotho

Clotho Text–>Audio

R1↑ R5↑ R10↑ MedR↓ MeanR↓

No IMC 8.2 ± 0.2 25.2 ± 0.2 36.5 ± 0.1 20.0 ± 0.0 61.3 ± 0.5

Audio IMC 8.1 ± 0.1 25.1 ± 0.2 36.4 ± 0.1 19.7 ± 0.5 58.6 ± 1.4

Audio + Text IMC 7.9 ± 0.2 25.2 ± 0.1 37.0 ± 0.1 19.0 ± 0.0 57.8 ± 0.8

Clotho Audio->Text

R1↑ R5↑ R10↑ MedR↓ MeanR↓

No IMC 9.8 ± 0.3 27.8 ± 0.4 38.7 ± 0.6 18.7 ± 0.9 68.8 ± 0.5

Audio IMC 9.7 ± 0.2 27.1 ± 0.8 38.9 ± 0.5 18.0 ± 0.0 67.7 ± 0.8

Audio + Text IMC 9.8 ± 0.1 28.0 ± 1.0 40.0 ± 0.6 17.3 ± 0.5 67.1 ± 1.6

We found that the method of contrastive learning in the audio modality has little improvement for
retrieval tasks on the Clotho dataset other than MedR and MeanR. We carefully studied the data of the
Clotho data set, as shown in Table 9. In the Clotho training set, each audio corresponds to �ve text
descriptions, which are different in length and content. Coupled with the small number of samples in the
Clotho dataset, it was di�cult for us to effectively learn valid audio and text features, and even though we
expanded the number of audios through audio enhancement, the fact that the text matched with them
was not the same text each time greatly makes our retrieval more di�cult. Our attempts to get a better
feature representation using contrastive learning within the text modality, where �ve different texts learn
from each other. In the task of text retrieval audio, R@10 increases 0.5%, and in the task of audio retrieval
text R@10 improves 1.3%. We will follow up with further research on how to handle such di�cult
datasets. 

5. Conclusion
In this paper, we introduced a new framework for audio-text retrieval in which we designed three modules
for audio-text retrieval including audio augmentation, collaborative attention mechanism and intra-modal
contrastive learning. We achieved excellent retrieval performance using pre-trained models and �ne-
tuning on datasets for audio-text retrieval. We evaluate the effectiveness of the three modules we
introduce on the audio-text retrieval. In summary, our method provides advanced performance for audio-
text retrieval, providing guidance for further research in audio-text retrieval.
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Figure 1

Matching natural language text to audio
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Figure 2

Overview of the audio-text retrieval model

Figure 3

Mel spectrums of the original audio and augmented audios
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