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Abstract

The development of deep learning has greatly improved the image
inpainting performance in the past decades. To inpaint images with
specific tasks usually require different network models. For instance,
the highly structured images need to recover the structural consistency,
and the textured ones restore the local high-frequency details. However,
it is still challenging to realize an effective algorithm taking account
of the global structure and texture details separately. Herein, we pro-
posed a two-stage inpainting method, by combining the information
of frequency and spatial domain networks. Stationary wavelet trans-
form (SWT) with good time-frequency characteristics was applied to
obtain the sub-band images as the basic input for frequency domain
inpainting. Contextual attention layer (CAL) modules were optionally
introduced in the network model to adapt to various inpainting tasks.
We also tested and discussed the impacts of some commonly used loss
functions, including normal L1 loss, normal GAN loss, weighted L1
loss and WGAN-GP loss, on highly structured and textured images.

Keywords: Image inpainting, Stationary wavelet transform, Contextual
attention, Loss function
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1 Introduction

Image inpainting is a conservation technique to reconstruct the missing or
damaged parts of images. The recent development of deep learning has greatly
improved the performance of image inpainting, making it widely used in many
fields such as life, culture, medicine, satellite, security and so on. Most of the
currently explored inpainting algorithms focus on the extraction of spatial fea-
tures and thus work better for highly structured images [1–3], such as natural,
facial, and architectural images. However, the inpainting effect on the textured
images is still not ideal to date.

Some algorithms adopted the combination of frequency and spatial domains
to inpaint textured images [4–8]. The frequency domain images, as obtained by
discrete fourier transform (DFT) or discrete wavelet transform (DWT), can be
used as information for network training. The DFT-extracted frequency com-
ponents can represent the information in the global context but in the absence
of the temporal locality of the signals. In contrast, DWT is a multiresolution
time-frequency-dependent transform and extracts the high-frequency compo-
nents in three directions of horizontal, vertical, and diagonal. It can be used
to learn more high-frequency details with the advantage of the modeling fre-
quency domain. As an alternative implementation of DWT, stationary wavelet
transform (SWT) can model the sub-band images with the same size as the
original ones, and the sufficient coefficients can make the transform translation-
invariant and data-redundant, and also avoid the downsampling-caused Gibbs
phenomenon.

In order to take account of both the global structure and texture details
simultaneously, we propose a two-stage image inpainting algorithm based on
SWT. Firstly, the high and low subband images obtained by SWT are taken
as the network input in the first stage to restore texture details. Secondly,
the inpainted features are transformed back to the spatial domain by inverse
stationary wavelet transform (ISWT) and used as the prior information for
the next stage. In addition, the Contextual Attention Layer (CAL) [9] are
introduced into the second stage as an optional module. It can be set up
to enabled or disabled in the network model to adapt to different types of
inpainting tasks, including the highly structured and textured images. Our
contributions are summarized as follows:

• In order to inpaint the high-frequency details of images, we apply the SWT
with good time-frequency characteristics to model the frequency domain
information, which is used as the input of frequency domain inpainting stage.

• In order to meet the different modeling requirements for different highly
structured images and textured images, we construct a spatial image inpaint-
ing model with an optional CAL module to adapt to different types of
images.

• We discuss the impact of the commonly used loss functions, including normal
L1 loss, normal GAN loss, weighted L1 loss and WGAN-GP loss, on the
performance of our model for two different types of images.
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2 Related Work

Traditional image inpainting algorithms [10–14] inpaint defects by diffusing
edge pixels into missing areas or using shallow texture and structure of known
patches to fill defect areas. These methods are less effective when the missing
area is large or the texture is complex. In contrast, image inpainting algo-
rithms based on deep learning can directly extract deep semantic features
from underlying images through networks, and has better generalization abil-
ity and better inpainting effect. Isola et al. [1] proposed the Pix2pix algorithm,
replacing the encoder-decoder network with U-Net. Its skip connections sup-
plemented the underlying semantic information to high layers. PatchGAN was
also proposed to judge image local parts to better restore local high-frequency
details. Liu et al. [2] proposed Partial Convolutions (PConv). It only convolves
the pixels in the known area as effective pixels, and realizes the different treat-
ment of pixels inside and outside the damaged area, thereby effectively solving
the problem of visual artifacts. Liu et al. [15] proposed a probabilistic diverse
GAN (PD-GAN), it adopted both soft and hard spatially probabilistic diver-
sity normalization (SPDNorm) to control the probability of producing diverse
results, their method can produce diverse prediction and generate high-quality
reconstruction content. Guo et al. [16] proposed a two-stream network, which
models the structure-constrained texture synthesis and texture-guided struc-
ture reconstruction. They designed a Bi-GFF module to combine the structure
and texture information and developed a CFA module to refine inpainting.
Peng et al. [17] proposed a multiple-solution method which used hierarchi-
cal VQ-VAE to generate diverse and high-quality images. They designed a
structural attention module to combine texture and structure and two fea-
ture losses to improve structure coherence and texture realism. Their method
shows the superiority in both quality and diversity. Wang et al. [18] proposed
a DSNet which contained VMC and RCN modules. The VMC module dynam-
ically selects sampling locations based on the information in feature maps for
flexible learning and the RCN module can adaptively learn weights. In addi-
tion, there are algorithms that combines frequency domain and spatial domain
[4–8], which propose to use DFT or DWT to model frequency domain infor-
mation, they can restore clearer texture details. Therefore, in this paper, we
also use the combination of frequency domain and spatial domain to realize
the network.

In deep learning, there are many researches on image inpainting algorithms
utilizing attention mechanism [9, 19–26], and these methods are inspired by
the idea of patch matching in traditional methods. Yu et al. [9] proposed CAL,
whose role is to obtain local features from farther known regions and use them
to predict more likely and effective content for missing regions. CAL can be
flexibly added to the network to improve algorithm performance [3] , so we
want to discuss its effectiveness in our algorithm for inpainting different types
of images.

In previous image inpainting algorithms, the combination and improvement
of some loss functions [3, 9, 27–29] are often proposed to enhance the inpainting
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performance. Quan et al. [3] used the weighted L1 loss, which is a weighted
sum of the inpainted region loss and the known region loss. By setting the
loss weight of the inpainted area to be larger, the training process pays more
attention to the compensation effect of the inpainted area. Yu et al. [9] used the
WGAN-GP loss [28] as the loss for the adversarial network. It added a gradient
penalty term on the basis of WGAN [29] to further stabilize the training, so
we discuss the impact of the above two loss functions on the performance of
our model.

3 Proposed Method

Since the image inpainting algorithm [4] that uses both frequency domain
and spatial domain information has a good performance on the public image
inpainting dataset. Therefore, we construct the network model by copying and
improving this algorithm. The framework of our network model is shown in
Figure 1. It is divided into two stages, including the frequency domain inpaint-
ing network (NetF) and the spatial domain inpainting network (NetS). NetF
takes the subband images constructed by SWT as network input. The network
uses simple CNNs. The inpainted subband images are transformed back to the
spatial domain by ISWT. The structure of NetS is GAN. It takes the first stage
output as prior conditions, which provides more complete basic information.
In addition, an optional CAL module is applied to adapt to different types of
images inpainting tasks.
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Fig. 1 The framework of our baseline network model.
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3.1 NetF based on SWT

3.1.1 The Details of SWT

In the process of signal analysis, the signal is not stationary, but changes over
time. The wavelet transform has frequency and time windows that can change
shape. It can adapt to the change of signal waveform, which consider the sharp
and stable time of waveform change at the same time and has the ability to
analyze the signal locally. Compared with other frequency domain modeling
methods, it can reflect the local characteristics of time and frequency more
flexibly.

The wavelet transform will downsample when generating the subband
image, causing its size to become a quarter of the original image. In the inverse
wavelet transform, interpolation is needed to restore the original size. This
transformation method cannot preserve translation invariance. But SWT can
solve this problem. In the process of decomposition, SWT inserts 0 in each
layer filter, which ensures that the image size unchanged. This will provide
enough coefficients to make the transformation have translation invariance and
data redundancy, avoiding the Gibbs phenomenon caused by downsampling.

The advantages of SWT inspired this study to utilize it as the input to the
frequency-domain inpainting network. Haar wavelet is adopted to implement
2-D Stationary Wavelet Transform (SWT) for its simplicity. The low-pass and
high-pass filters used in SWT upsample as a factor of 2. If S(x,y) represents
spatial domain image, it is iteratively decomposed into four subband images
including LL,LH,HL, and HH. The process of one level’s SWT, defined as:

LL,LH,HL,HH = (fp ↑ 2⊗ S (x, y)) (1)

where f denotes filters, ↑ 2 represents the standard up-sampling operator
with factor 2. Due to the invertibility of SWT, the reconstruction of one level’s
subband images can be correspondingly implemented by completely inverse
operation via ISWT without any information loss.

3.1.2 NetF Achievement

In the Frequency Domain Inpainting Network (NetF shown in Figure 1), the
inpainting process of frequency domain images is defined as:

I1pred = ISWT (f (SWT (Iinput,M) ; θ)) (2)

where I1pred represents inpainted images at this stage, Iinput denotes input
damaged images, M is the binary representation of mask images, f means the
function equivalent to the frequency domain inpainting network.

We adopt DnCNNs [4] network to realize feature learning of frequency
domain images. The details of the network structure are shown in Table 1.
In the table, C represents the number of channels, and W and H represent
the width and height of the input image, respectively. This network combines
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ReLU and batch normalization (BN), which improves the model’s ability to
learn nonlinear mapping relationships and makes model training more stable.

Table 1 Detailed Description of DnCNNs Network Structure

Layer Stride,Padding Activation Output size
Input - - 1*C*H*W

3*3 Conv 1,1 ReLU 1*64*H*W
3*3 Conv×15 1,1 BN+ReLU 1*64*H*W
3*3 Conv 1,1 - 1*C/2*H*W

The inputs to the network are the masked image, the mask and the subband
images constructed by the SWT. Since the frequency domain transformation
of the RGB images multiplies the network input channels, and we found in our
experiments that this stage network can not correctly use and restore color
information. To reduce the time cost of model training at this stage, we convert
the RGB image inpainting problem into a grayscale image inpainting problem,
the conversion is defined as:

GRAY = 0.299R + 0.587G + 0.114B (3)

3.2 NetS based on Optional CAL

3.2.1 The Details of CAL

In deep learning, the inpainting network of spatial image usually uses dilated
convolution, residual blocks or encoder-decoder structure to expand the recep-
tive field. But these methods are still difficult to extract image local features
from distant regions. Since the capture and learning of distant local fea-
tures can help missing regions recover more appropriate content [9], we add
an optional CAL [9] to the network at this stage to help borrow feature
information when appropriate.

The structure of the CAL module is shown in Figure 2. Feature maps are
separated into foreground (missing) and background (known), and they are
split into many patches. Cosine similarity is used to measure the similarity
between background and foreground patches, and all background patch atten-
tion scores are obtained by softmax. Then, the transposed convolutions with
the background patches as the convolution kernels on the attention scores get
the prediction of the missing patch. For the feature matching, we select the
3×3 patches as the filter [9], and the cosine similarity is defined as:

Si,j =

〈

Fi

∥Fi∥
,

Fj
∥
∥Fj

∥
∥

〉

(4)

where F denotes the known area, and F represents the missing area. i
means the i-th patch, and j means the j-th patch. Si,j denotes the similarity
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Fig. 2 The structure of the CAL module.

of Fi and Fj . Si,j can get the attention score by softmax calculation:

λi,j =
exp (Si,j)

∑M

j=1 exp (Si,j)
(5)

where M represents the number of patches in the missing area. λi,j denotes
the attention score.

3.2.2 NetS Achievement

The network at this stage adopts GAN [4], which consists of a generator and
a discriminator, and the structure is shown as NetS in Figure 1. The network
converts the grayscale image inpainting problem in the first stage into an RGB
image inpainting problem.

The generator structure details are shown in Table 2, where IN repre-
sents instance normalization. It uses a downsampling-upsampling structure
to reduce the computational complexity of feature learning and increase the
receptive field. The middle residual network directly passes the low-level fea-
ture to the high-level. The existing identity mapping solves the problem of
network degradation, and the convergence speed is faster. A CAL is added
before the second transposed convolution as an optional module to match dis-
tant local features. The last layer of convolution uses Tanh activation, which
limits the output range between -1 and 1, and outputs the compensated image.

The discriminator structure details are shown in Table 3, where LReLU
means Leaky ReLU and SN denotes spectral normalization. It adopts a struc-
ture similar to PatchGAN, which maps the input into an N*N matrix through
convolution. And each element in the matrix represents the evaluation value
of a receptive field. It is used for judging the input image. Compared with the
traditional discriminator that only gives one evaluation value, PatchGAN can
comprehensively score multiple local information. The activation in the dis-
criminator is Leaky ReLU, which preserves the linearity and ensures that the
information less than 0 is not completely lost.

In addition, the residual block and the discriminator use spectral normal-
ization, which solves the problem that the better the discriminator is trained,



Springer Nature 2021 LATEX template

8 A Deep Learning Image Inpainting Method based on Stationary Wavelet Transform

Table 2 Detailed Description of Generator Network Structure

Module Layer
Stride,
Padding

Activation Output size

- Input - - 1*C*H*W

Encoder
7*7 Conv 1,3 IN+ReLU 1*64*H*W
4*4 Conv 2,1 IN+ReLU 1*128*H/2*W/2
4*4 Conv 2,1 IN+ReLU 1*256*H/4*W/4

Residual
blocks×8

3*3 Conv 1,1 IN+ReLU 1*256*H/4*W/4
3*3 Conv 1,1 IN 1*256*H/4*W/4

Decoder

4*4 Conv 2,1 IN+ReLU 1*128*H/2*W/2
CAL - - -

4*4 Conv 2,1 IN+ReLU 1*64*H*W
7*7 Conv 1,3 Tanh 1*C/3*H*W

Table 3 Detailed Description of Discriminator Network Structure

Layer
Stride,
Padding

Activation Output size

Input - - 1*C*H*W
4*4 Conv 2,1 SN+LReLU 1*64*H/2*W/2
4*4 Conv 2,1 SN+LReLU 1*128*H/4*W/4
4*4 Conv 2,1 SN+LReLU 1*256*H/8*W/8
4*4 Conv 1,1 SN+LReLU 1*512*(H/8-1)*(W/8-1)
4*4 Conv 1,1 SN 1*1*(H/8-2)*(W/8-2)
Output - Sigmoid -

the more serious the generator gradient disappears. SN enables the discrimina-
tor to have Lipschitz continuity, which is a stronger smoothness condition that
limits the severity of function changes and makes model training more stable.

3.3 Training Loss

3.3.1 Frequency Domain Inpainting Loss

In the frequency domain inpainting model training, we use the L2 loss function
to minimize the distance between the ground-truth and the inpainted images,
defined as:

LF =
∥
∥
∥I

f
gt − I

1f
pred

∥
∥
∥

2

2
(6)

where I
f
gt means the ground-truth subband image, I

1f
pred represents the

inpainted subband image, LF denotes the loss of NetF.

3.3.2 Spatial Domain Inpainting Loss

In the past image inpainting algorithms, the loss functions of generative adver-
sarial networks are often combined and improved to achieve better results.
In the training of our spatial inpainting network, we use a weighted sum of
two losses, including the reconstruction loss and the adversarial loss. Choosing
appropriate loss functions is important for training the network. Therefore, for
the reconstruction loss, we compare the difference between the normal L1 loss
and the improved weighted L1 loss [3], and for the adversarial loss we compare
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the effect of the normal GAN loss and the newly proposed WGAN-GP loss
[28].

The Reconstruction Loss. The normal L1 loss is defined as:

Lrecon = ∥Igt − Ipred∥1 (7)

where Ipred denotes the inpainted image, Igt means the ground-truth image.
Normal L1 loss treats reconstruction regions and known regions equally, in
contrast, weighted L1 loss takes pixel reconstruction regions as key regions for
model training. That is, the loss of the reconstructed area is calculated sepa-
rately from the known area, and the weight of the loss of the reconstructed area
is increased. In this way, the network is more inclined to the correctness of the
reconstructed region, which can theoretically improve the network repair per-
formance. The reconstruction area loss Lhole and the known area loss Lknown

are defined as follows:

Lhole =
1

sum (M)
∥(Ipred − Igt)⊙M∥1 (8)

Lknown=
1

sum (1−M)
∥(Ipred−Igt)⊙ (1−M)∥1 (9)

where M is the mask (the missing region is 1). Ipred denotes the inpainted
image, Igt means the ground-truth image. When using weighted L1 loss as
reconstruction loss in training, the reconstruction loss defined as:

Lrecon = λholeLhole + λknownLknown (10)

where λhole is set to 6, λknown is set to 1.
The Adversarial Loss. The adversarial loss adopts a minimum optimiza-

tion strategy. During training, The generator (G) tries to inpaint the masks
image as close as possible to the ground-truth, and the discriminator (D) tries
to distinguish between the ground-truth and the inpainted image as much as
possible. Through the iterative game between G and D, the image inpainting
effect is optimized. The objective function of normal GAN loss is expressed as
follows:

Ladv (G,D) = EIgt∼Pgt
[log (D (Igt))] +

EIpred∼Ppred

[
log

(
1−D

(
G
(
I1pred

)))] (11)

where Ipred denotes the inpainted image, I1pred represents the input to G,
Igt means the ground-truth. Pgt is the data distribution of Igt, Ppred is the
data distribution of Ipred.

Normal GAN loss is the simplest adversarial loss, it has the problem of
unstable training. In contrast, the WGAN [29] can make training more stable
without balancing the training levels of G and D. However, WGAN directly
adopts weight clipping to satisfy Lipschitz constraint, which wastes the fit-
ting ability of deep neural networks and easily causes gradients to vanish or
explode. WGAN-GP loss is proposed for the problems existing in WGAN. It
uses another truncation strategy, gradient penalty.
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The objective function of WGAN-GP loss is expressed as follows:

Ladv(G,D)=EG(z)∼Pg
[D(G(z))]−Ex∼Pr

[D(x)]
︸ ︷︷ ︸

D loss

+λEx̂∼Px̂

[

(∥▽x̂D (x̂)⊙M∥2−1)
2
]

︸ ︷︷ ︸

Gradient penalty

(12)

x̂ = tG (z) + (1− t)x, t ∼ U [0, 1] (13)

where z is the input to G, Pg is the distribution of G (z). x is the input
to D, Pr is the data distribution of x. x̂ is sampled from the straight line
between points sampled from distribution Pg and Pr. M means the binary
representation of the mask, it represents the gradient penalty by only applied
to predict regions. The value of λ is set to 10. When applying the WGAN-GP
loss, the sigmoid layer in D is removed.

According to the above, the total loss function of NetS is expressed as:

LNetS = λreconLrecon + λadvLadv (14)

where λrecon is set to 1, λadv is set to 0.1 in the experiments.

4 Experiments

Based on publicly available datasets of different types of images, we discuss
the role of the optional module CAL and compare the effectiveness of loss
functions commonly used in image inpainting.

4.1 Experimental setup

4.1.1 Datasets

To discuss the inpainting of highly structured images and textured images
respectively, we select the highly structured CelebA-HQ dataset [30] and the
textured DTD dataset [31] to validate our algorithm. They are frequently used
in other image inpainting papers.

• CelebA-HQ dataset: It is a high-quality version of part of CelebA dataset.
It is a collection of face images, consisting of 30,000 images of 1024*1024.
We randomly divided the dataset into 28,000 training set, 1,000 validation
set and 1,000 test set.

• DTD dataset: It includes 5640 real-world texture images, obtained from
Google and Flickr websites. The resolution of the images varies from 300*300
to 640*640. We randomly divided the dataset into 5170 training, 235
validation, and 235 testing sets.
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For the mask, we used the irregular masks shared by Liu et al. [2].
They divided the masks into six types according to their proportions. In our
experiments, we use four of them, 10-20%, 20-30%, 30-40%, and 40-50%.

4.1.2 Implementation Details

Our proposed model is implemented with PyTorch 1.7.1. We unified the
dataset image size to 256×256 during training and validation and used the
original dataset images during testing. The mask size changes with the dataset
image size. In the first stage, we initialize the weights by using He initializa-
tion. And we use Adam optimizer with β1 = 0.9 and β2 = 0.999 at the first
stage, β1 = 0.5 and β2 = 0.999 at the second stage. To train the network, we
decayed the learning rate 0.001 at the first stage, and the learning rate of G
and D at the second stage are set to 0.0001 and 0.00001 respectively. Our full
model runs on hardware with GPU GV102.

4.1.3 Evaluation Metrics

For the quantitative evaluation, we adopt several common metrics in the image
inpainting task: MAE, MSE, PSNR, SSIM and FID. The first four metrics are
based on the low-level pixel values, the last one metric is related to the high-
level visual perception. If T is the ground truth image and F is the inpainted
image, then MAE represents the mean of the absolute errors between T and
F, and MSE denotes the mean of the sum of squared errors between T and F.
PSNR is the ratio of peak signal energy to average energy of image distortion,
which can be represented by MSE.

SSIM [32] measures the structural similarity of T and F from three per-
spectives: lightness (L), contrast (C), and structure (S). FID [33] reflects the
similarity from the aspect of visual feature statistics by measuring the distance
between the feature vectors of T and F. Their formulas are defined as follows:

SSIM (T, F ) = L (T, F )× C (T, F )× S (T, F ) (15)

FID (T, F )=Tr
(∑

T+
∑

F−2
(∑

T
∑

F
)

1

2

)

+

∥µT − µF ∥
2
2

(16)

where Tr represents trace of matrix,
∑

represents the covariance. µT and
µF is the mean pixel values of image T and F.

4.2 Discussion on the optional CAL and loss functions

We analyzed the application value of the optional module CAL and different
loss functions on the textured DTD dataset and the highly structured CelebA-
HQ dataset, as shown in Figure 3 and Figure 4. They are the training and
validation curves of different conditions on two dataset, where CAL indicates
that the CAL module is enabled, WL1 and L1 respectively denote weighted L1
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Fig. 3 The training (train) and validation (val) curves under different conditions on the
DTD dataset. (The first one is the MAE curves, and the second one is the PSNR curves.)

loss and normal L1 loss, WGAN-GP and GAN respectively represent WGAN-
GP loss and normal GAN loss. From Figure 3, it can be observed that enabling
the CAL module on the DTD dataset can speed up model convergence and
improve model inpainting performance. However, from Figure 4, the model
that skips the CAL performs better for the CelebA-HQ dataset. According to
the above, the CAL is more suitable for textured images. It means that the
long-distance features of texture images have more utilization value.

Figure 3 and Figure 4 also shows the effect of joint constraints of different
losses on the training process. For both datasets using the CAL module cor-
rectly, the model using WL1 is optimal, and the use of WGAN-GP has little
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Fig. 4 The training (train) and validation (val) curves under different conditions on the
CelebA-HQ dataset. (The first one is the MAE curves, and the second one is the PSNR
curves.)

effect on the optimal model curve. WGAN-GP is effective only when the CAL
module is incorrect or weighted L1 loss is not used, probably because this gives
WGAN-GP room to show its effects. That means WGAN-GP as adversarial
loss can improve the minimum performance level of the model.

Table 4 and Table 5 show the evaluation metrics for different training sit-
uations (in Figure 3 and Figure 4) on two dataset with different proportion
masks (10-50%). ↑ means higher is better, ↓ means lower is better. The values
bolded in red represent the best, and the values bolded in black represent the
second best. From the tables, we observe the same rules as the curves in Figure
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Table 4 The comparisons of different training situations on the textured DTD dataset in
Figure 3.

Masks Models
MAE↓

(%)
MSE↓

(%)
SSIM↑ PSNR↑ FID↓

10-20
%

L1+GAN 1.2864 0.2034 0.9237 28.9934 43.8651
L1+WGAN-GP 1.2925 0.2032 0.9254 28.8028 67.7349
WL1+GAN 1.1605 0.1573 0.9327 30.0189 51.4741
WL1+WGAN-GP 1.1930 0.1708 0.9312 29.7181 54.5805
CAL+L1+GAN 1.2548 0.1823 0.9286 29.3348 33.0890

CAL+L1+WGAN-GP 1.1931 0.1738 0.9318 29.7022 44.2949
CAL+WL1+GAN 1.1154 0.1489 0.9366 30.4303 39.1003

CAL+WL1+WGAN-GP 1.1307 0.1494 0.9368 30.3113 44.5382

20-30
%

L1+GAN 2.1859 0.3915 0.8678 26.1551 72.2455
L1+WGAN-GP 2.1039 0.3528 0.8729 26.2897 98.1306
WL1+GAN 1.9720 0.3029 0.8826 27.1626 84.4447
WL1+WGAN-GP 1.9692 0.3068 0.8807 27.0478 88.3887
CAL+L1+GAN 2.0975 0.3427 0.8777 26.5804 55.4511

CAL+L1+WGAN-GP 2.0372 0.3383 0.8818 26.7667 76.6929
CAL+WL1+GAN 1.8871 0.2835 0.8893 27.5550 67.2282

CAL+WL1+WGAN-GP 1.8751 0.2719 0.8908 27.6457 74.3146

30-40
%

L1+GAN 3.0508 0.5780 0.8067 24.3200 103.3478
L1+WGAN-GP 3.0448 0.5686 0.8138 24.2690 133.7379
WL1+GAN 2.7604 0.4601 0.8274 25.2770 115.9347
WL1+WGAN-GP 2.8460 0.4893 0.8242 24.9473 122.6283
CAL+L1+GAN 2.9326 0.5161 0.8213 24.7256 83.4982

CAL+L1+WGAN-GP 2.8645 0.5100 0.8267 24.8400 112.6386
CAL+WL1+GAN 2.6601 0.4411 0.8366 25.6854 98.4709

CAL+WL1+WGAN-GP 2.7113 0.4407 0.8383 25.4415 104.1821

40-50
%

L1+GAN 4.0007 0.7891 0.7451 22.8922 131.0941
L1+WGAN-GP 4.0022 0.8074 0.7560 22.8074 157.8199
WL1+GAN 3.6476 0.6486 0.7722 23.6807 142.2222
WL1+WGAN-GP 3.7574 0.6988 0.7686 23.4030 150.7337
CAL+L1+GAN 3.9055 0.7402 0.7611 23.0193 108.2128

CAL+L1+WGAN-GP 3.8315 0.7299 0.7681 23.1786 141.7997
CAL+WL1+GAN 3.5189 0.6183 0.7831 24.0142 123.9327

CAL+WL1+WGAN-GP 3.5626 0.6288 0.7862 23.9417 129.1315

3 and Figure 4, but we take the optimal models in the metric tables to partici-
pate in the subsequent algorithm comparisons. That is, the CAL+WL1+GAN
model of the DTD dataset is the best, and the WL1+WGAN-GP model of the
CelebA-HQ dataset is the best. The above optimal methods are determined
according to the number of optimal metrics, and when the number of optimal
metrics is the same, the situation of suboptimal metrics is considered.

4.3 Performance Evaluation

We compare the metrics of our baseline (SWT), our optimal method, and
other three state-of-the-art image inpainting methods on DTD and CelebA-HQ
dataset. Three comparison algorithms include Pix2pix [1], PConv [2] and DFT
[4] methods. They are shown in Table 6 and Table 7, respectively. The opti-
mal methods have optimal values on the four metrics of MAE, MSE, PSNR,
SSIM, which indicates that the images they inpaint are most similar to ground-
truth at low pixel values. However, their poor performance on the FID metric
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Table 5 The comparisons of different training situations on the highly structured
CelebA-HQ dataset in Figure 4.

Masks Models
MAE↓

(%)
MSE↓

(%)
SSIM↑ PSNR↑ FID↓

10-20
%

L1+GAN 0.6649 0.0633 0.9647 33.2510 4.4347

L1+WGAN-GP 0.6585 0.0614 0.9662 33.3510 5.4739
WL1+GAN 0.6253 0.0559 0.9681 33.8290 4.9616

WL1+WGAN-GP 0.6166 0.0554 0.9685 33.9261 5.2724
CAL+L1+GAN 0.7970 0.0841 0.9560 31.8122 5.9134
CAL+L1+WGAN-GP 0.7116 0.0711 0.9625 32.6180 5.9179
CAL+WL1+GAN 0.6971 0.0665 0.9626 32.8518 5.4596
CAL+WL1+WGAN-GP 0.6989 0.0653 0.9632 32.9137 5.8113

20-30
%

L1+GAN 1.1699 0.1335 0.9356 29.7419 7.7946

L1+WGAN-GP 1.1504 0.1279 0.9393 29.9133 10.0889
WL1+GAN 1.1013 0.1180 0.9421 30.3246 9.3039

WL1+WGAN-GP 1.0900 0.1175 0.9428 30.3553 9.9635
CAL+L1+GAN 1.3884 0.1696 0.9216 28.4819 10.4847
CAL+L1+WGAN-GP 1.2388 0.1454 0.9337 29.2735 11.1279
CAL+WL1+GAN 1.2176 0.1388 0.9333 29.4753 9.8763
CAL+WL1+WGAN-GP 1.2171 0.1360 0.9347 29.5453 10.5719

30-40
%

L1+GAN 1.7643 0.2327 0.9008 27.1604 11.2610

L1+WGAN-GP 1.7326 0.2240 0.9079 27.3340 14.8881
WL1+GAN 1.6600 0.2049 0.9115 27.7390 13.8859

WL1+WGAN-GP 1.6484 0.2068 0.9126 27.7406 15.0056
CAL+L1+GAN 2.0697 0.2913 0.8823 26.0393 15.6793
CAL+L1+WGAN-GP 1.8542 0.2496 0.9007 26.7799 16.6646
CAL+WL1+GAN 1.8172 0.2378 0.9004 26.9961 14.3135
CAL+WL1+WGAN-GP 1.8034 0.2293 0.9029 27.1316 15.6672

40-50
%

L1+GAN 2.5153 0.3815 0.8598 24.9384 15.5680

L1+WGAN-GP 2.4611 0.3656 0.8724 25.1331 21.2383
WL1+GAN 2.3601 0.3355 0.8765 25.5238 19.6511

WL1+WGAN-GP 2.3488 0.3414 0.8784 25.4944 20.9365
CAL+L1+GAN 2.9074 0.4698 0.8379 23.9336 23.9017
CAL+L1+WGAN-GP 2.6190 0.4032 0.8635 24.6479 24.0297
CAL+WL1+GAN 2.5617 0.3873 0.8630 24.8496 20.2044
CAL+WL1+WGAN-GP 2.5315 0.3687 0.8668 25.0390 21.8003

indicates the lack of image diversity. Nevertheless, for DTD dataset, the FID
metric of the optimal method is still superior to the three comparison algo-
rithms. Furthermore, from the definition of WL1, the application of WL1 will
make the network pay more attention to low-level pixels, so this metric result
is acceptable. Figure 5 and Figure 6 show the comparison of inpainted results
between our method and three other state-of-the-art image inpainting meth-
ods on DTD and CelebA-HQ dataset. From Figure 5, we can find that our
method can build the clearest and reasonable texture. From Figure 6, it can
be seen that our method can restore the most complete structure and color.
In short, although the optimal methods has shortcomings in the FID metric,
the visual effects of inpainted image are still optimal.
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Table 6 Algorithms comparison on DTD dataset.

Metrics Masks Pix2pix PConv DFT SWT CAL+WL1+GAN

MAE↓(%)

10-20% 1.9484 1.5431 1.3619 1.1784 1.1154

20-30% 3.2734 2.6433 2.2652 2.0563 1.8871

30-40% 4.6348 3.7928 3.2512 2.8961 2.6601

40-50% 6.0480 5.0926 4.2556 3.8807 3.5189

MSE↓(%)

10-20% 0.4467 0.2892 0.2317 0.1758 0.1489

20-30% 0.8100 0.5381 0.4043 0.3487 0.2835

30-40% 1.2364 0.8412 0.6493 0.5372 0.4411

40-50% 1.6761 1.1931 0.8869 0.7419 0.6183

SSIM↑

10-20% 0.8887 0.9061 0.9298 0.9315 0.9366

20-30% 0.8099 0.8425 0.8732 0.8751 0.8893

30-40% 0.7331 0.7691 0.8174 0.8199 0.8366

40-50% 0.6552 0.6902 0.7544 0.7588 0.7831

PSNR↑

10-20% 25.6367 27.3283 28.9578 29.5936 30.4303

20-30% 22.6726 24.6597 26.0266 26.7036 27.5550

30-40% 20.7376 22.6839 23.9774 24.6367 25.6854

40-50% 19.2174 20.9238 22.4964 23.0351 24.0142

FID↓

10-20% 63.3749 44.6316 42.3652 30.5995 39.1003

20-30% 106.1846 75.5827 70.3736 59.2970 67.2282

30-40% 130.9867 106.9886 101.5031 89.2330 98.4709

40-50% 165.8571 137.3557 128.7030 122.5976 123.9327

Table 7 Algorithms comparison on CelebA-HQ dataset.

Metrics Masks Pix2pix PConv DFT SWT WL1+WGAN-GP

MAE↓(%)

10-20% 1.1843 0.7349 0.6884 0.6649 0.6166

20-30% 2.1676 1.2757 1.1860 1.1699 1.0900

30-40% 3.3828 1.8692 1.7524 1.7643 1.6484

40-50% 4.9941 2.5983 2.4874 2.5153 2.3488

MSE↓(%)

10-20% 0.1751 0.0714 0.0658 0.0633 0.0554

20-30% 0.3850 0.1462 0.1378 0.1335 0.1175

30-40% 0.7069 0.2413 0.2279 0.2327 0.2068

40-50% 1.2190 0.3845 0.3754 0.3815 0.3414

SSIM↑

10-20% 0.9301 0.9560 0.9636 0.9647 0.9685

20-30% 0.8800 0.9230 0.9345 0.9356 0.9428

30-40% 0.8271 0.8875 0.9014 0.9008 0.9126

40-50% 0.7673 0.8465 0.8615 0.8598 0.8784

PSNR↑

10-20% 28.5599 32.4523 32.8730 33.2510 33.9261

20-30% 24.9911 29.2466 29.6561 29.7419 30.3553

30-40% 22.3196 26.9153 27.2547 27.1604 27.7406

40-50% 19.8954 24.8673 25.0496 24.9384 25.4944

FID↓

10-20% 10.2569 5.9819 4.9132 4.4347 5.2724
20-30% 16.1473 8.8809 8.0420 7.7946 9.9635
30-40% 23.1082 12.7015 11.5212 11.2610 15.0056
40-50% 31.8632 16.1474 16.3228 15.5680 20.9365

5 Conclusion

Since structural and textural features cannot be optimized simultaneously,
different types of images usually require different inpainting algorithms. In
view of this, we proposed a two-stage image inpainting algorithm based on
SWT and optional module CAL, to explore its application potential to various
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GT Input Pix2pix PConv DFT CAL+WL1+GAN

Fig. 5 Qualitative comparisons of our baseline method with Pix2pix, PConv and DFT on
DTD dataset with irregular masks.

types of images. Through experiments, it is found that textured (highly struc-
tured) images tend to enable (disable) the CAL module, demonstrating that
the extraction of long-distance features is helpful for the learning of textured
features. Generative adversarial network training is generally constrained by
a combination of reconstruction loss and adversarial loss. For each, we com-
pare the normal and the commonly used state-of-the-art loss. Normal loss
includes L1 loss and GAN loss, and advanced loss includes weighted L1 loss
and WGAN-GP loss. The weighted L1 loss has a large performance improve-
ment for the model, and the role of the WGAN-GP loss is less. In the future,
we plan to apply these image inpainting algorithms to medical images or spe-
cial types of images and explore the impact of frequency domain methods on
algorithm performance.
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GT Input Pix2pix PConv DFT WL1+WGAN-GP

Fig. 6 Qualitative comparisons of our baseline method with Pix2pix, PConv and DFT on
CelebA-HQ dataset with irregular masks.
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