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Abstract

Underwater image enhancement is a technique that improves the quality of under-
water images, which makes them clearer and more realistic. However, because
of the complexity of underwater environments, underwater image enhancement
faces many challenges, such as the variation in underwater optical properties as
well as low contrast, low brightness, and color distortion in underwater images.
To extract underwater image features more effectively, this paper proposes an
underwater image enhancement algorithm called Cross Attention-based Under-
water Image Enhancement (CAUIE). The algorithm combines cross attention
and dynamic enhancement modules to build a U-Net model. Cross attention uses
a self-attention mechanism to capture the local and global information of under-
water images, thus enhancing the semantic representation of the images. The
dynamic enhancement module, by contrast, dynamically adjusts the enhance-
ment parameters according to different regions of the image to acquire detail
information. In addition, this paper introduces a contrastive regularization loss to
construct a hybrid loss function for guiding the training and optimization of the
model. The experimental results show that the proposed algorithm outperforms
the comparison algorithm in both subjective visual and objective evaluation cri-
teria. Moreover, the proposed model obtains PSNR and SSIM results of 34.86
dB and 0.996, respectively, increasing the results of the previous model by 7.97
dB and 0.099, which illustrates that the proposed algorithm can solve the color
distortion problem and recover the contrast and clarity of underwater images.

Keywords: Underwater image enhancement methods,U-Net,Cross attention
Transformer,Dynamic enhancement module,Hybrid loss function

1



1 Introduction

Because the underwater environment is complex and dynamic, underwater image pro-
cessing techniques face great challenges. Underwater images are affected by many
factors, such as light propagation, absorption and scattering as well as the concen-
tration of suspended particles in water, all of which have a huge impact on image
quality, making underwater image processing extremely difficult. Therefore, efficient
and reliable underwater image enhancement techniques are highly important for deep
exploration of the ocean.

Underwater image enhancement techniques improve three main aspects of the
visual quality of underwater images: visibility, color cast, and contrast. Previous under-
water image enhancement methods have used convolution neural networks (CNN)
and generative adversarial networks (GAN) [1] to enhance underwater images . How-
ever, a CNN is mainly used to extract local information, and it is difficult for a
CNN to extract global information. Lan et al. [2] proposed QACG that has intro-
duced attention mechanisms to extract global information, but the improvement in the
final results still needs to be increased. By contrast, Vision Transformer (ViT) [3] are
adept at extracting global information from images, although they tend to overlook
local information. Additionally, the series of Transformers using attention mechanisms
often suffer from excessive computation and a large number of parameters. To solve
this problem, this paper proposes an underwater image enhancement model based on
U-Net [4], which combines the cross attention Transformer (CAT) [5] and dynamic
enhancement modules to effectively extract features from underwater images and per-
form adaptive enhancement. In the CAT framework, a large kernel attention (LKA)
mechanism [6] is added that uses dilated convolution to simulate the attention mecha-
nism, which greatly reduces the amount of computation and parameters of the model.
To better optimize the model, a hybrid loss function is designed that includes pixel
loss, contrast regularization (CR) loss, and structural similarity (SSIM) loss to guide
the training and optimization of the model.

The experimental results show that the algorithm proposed in this paper is superior
to current mainstream algorithms in terms of the PSNR and SSIM metrics, especially
on the HICRD [7], where significant improvements were achieved. With respect to the
results of the best comparison model, the PSNR was improved by 7.97 dB and the
SSIM was improved by 0.099. On the UIEBD [8], a PSNR of 22.12 dB and SSIM of
0.889 were obtained, which are better than the results obtained by the comparison
algorithms.

2 Related Work

Recent years have witnessed two major approaches for underwater image enhancement:
methods based on prior knowledge [9–14] and methods based on deep learning [7, 15–
20].
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2.1 Underwater Image Enhancement Based on Prior

Knowledge

In the field of underwater image enhancement, methods based on prior knowledge have
been widely applied. These methods estimate the parameters of underwater imaging
models through prior assumptions.

He et al. [9] proposed an image dehazing method based on the dark channel prior
(DCP), which can directly estimate the thickness of haze and recover high-quality,
haze-free images. For underwater images, Drews et al. [10] improved DCP and pro-
posed an algorithm called UDCP, which considers the blue and green color channels
as the source of underwater visual information, obtaining significant improvements
when compared with the original DCP [9]. Peng et al. [11] proposed an underwater
image depth estimation method called IBLA, which estimates the degradation model
based on image blurriness and light absorption and uses this model to restore the
image. However, for images with distinct bright and dark regions, excessive contrast
stretching can lead to overly extreme bright and dark areas, resulting in loss of details.
Akkaynak et al. [12] proposed a new underwater image restoration model that better
conforms to the physical characteristics of underwater light and can more accurately
estimate the depth and background light of underwater scenes to improve the quality
of restored underwater images. Based on this, in 2019, they further proposed an under-
water image restoration method called Sea-thru [13], which uses RGBD images and
rectified underwater images to form a model for restoring underwater image colors.

Cao et al. [14] proposed an underwater image restoration method that uses deep
networks to estimate background light and scene depth. They designed two neu-
ral network structures, one to estimate background light and the other to estimate
scene depth, and then applied them to the underwater image formation model to
restore underwater images. This method can handle different water types and lighting
conditions, and has clear robustness and adaptability.

In summary, in existing underwater image enhancement methods based on prior
knowledge, accurately estimating the parameters of underwater image formation mod-
els still remains challenging because of the complexity and diversity of underwater
scenes.

2.2 Underwater Image Enhancement Based on Deep Learning

In recent years, deep neural networks have achieved tremendous success in com-
puter vision, which has inspired researchers to attempt to improve the performance
of underwater image enhancement using deep learning methods.

Li et al. [16] proposed a method called WaterGAN that uses GAN to generate
realistic underwater images from aerial images and depth maps for color correction
of monocular underwater images. Li et al. [17] proposed a deep underwater image
and video enhancement method based on underwater scene priors. They synthesized
underwater image training data using these underwater scene priors and designed a
lightweight CNN model to enhance images for each underwater scene type to directly
reconstruct clear underwater images and improve contrast, saturation, and brightness.
However, this method suffers from over-compensation and insufficient generalization
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capabilities. Han et al. [15] proposed an underwater image restoration model called
CWR, which utilizes contrastive learning and GAN to maximize the mutual infor-
mation in the original and restored images. This helps enhance the clarity and color
restoration of underwater images while preserving textures and structures. Li et al. [8]
constructed an underwater image enhancement benchmark dataset called the Under-
water Image Enhancement Benchmark (UIEB), and proposed a deep underwater
image enhancement network called WaterNet based on underwater scene priors. Li
et al. [18] proposed an underwater image enhancement network model called Ucolor,
which uses features from multiple color spaces and the guidance of underwater image
formation models to improve the color and contrast of underwater images. Kar et
al. [20] proposed a zero-shot image enhancement method based on Koschmieder’s
light scattering model, which restores images by controlling the perturbations in the
model without learning scene-specific or distortion-specific knowledge. This method
has achieved promising results in image dehazing, underwater image restoration,
and similar tasks. Fu et al. [19] proposed an uncertainty-inspired underwater image
enhancement model called PUIENet, which establishes an enhancement distribution
of underwater image formation models using probabilistic networks, samples multiple
enhancement predictions from it, and then predicts deterministic results through con-
sensus process. This method can handle the uncertainty in labeled reference images
and improves the clarity and color restoration of underwater images while preserving
structure and texture details.

However, despite the effectiveness of existing learning-based underwater image
enhancement methods in improving the visual results, the complexity and diversity of
underwater images means that existing models still struggle to meet practical needs.
Further research and exploration are still required in this field.

2.3 ViT

In recent years, the ViT [3] has gradually replaced CNNs in computer vision appli-
cations. A ViT divides images into patches and uses self-attention to capture global
features. However, a ViT incurs excessive computational cost and cannot extract local
information from images. To address this, the Swin Transformer [21] adopts shifted
windows to capture more features with linear computational cost. Dehazeformer [22]
combines a Swin Transformer [21] and U-Net[4], and incorporates convolutions into
the Swin Transformer to better extract image features, achieving great results in image
dehazing. Lin et al. [5] proposed a new attention mechanism called cross attention
and constructed a hierarchical network model called CAT. The key idea is to apply
attention alternately within and between image patches to reduce computational cost
and capture both local and global information.

Because the ViT [3] is complex, it is highly demanding regarding training resources
and time. In recent years, many researchers have proposed improved versions to
address this issue. For example, the pyramid vision Transformer [23] uses strided
convolutions to reduce the number of times the attention mechanism needs to be com-
puted, thus lowering the use of computational resources. MobileViT [24] combines a
ViT architecture with a CNN to create a lightweight design. Many researchers also use
MLPs to approximate the attention mechanism, as in LKA [6]. Yu et al. [25] proposed
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Poolformer and Metaformer, which are extremely lightweight ViTs that replace the
self-attention mechanism with pooling layers, but they inevitably suffer some decrease
in accuracy.

Inspired by the Dehazeformer[22] architecture and CAT’s capability to extract
global and local image information, they are combined in the proposed method. How-
ever, the self-attention[26] in CAT[5] has a large number of parameters and high
computational cost, requiring considerable computational resources, which means that
the size of the CAT model is large. To reduce the number of parameters and compu-
tational cost, the method proposed in this paper replaces the self-attention[26] in the
original CAT[5] with LKA[6].

3 Method

The proposed underwater image enhancement algorithm, Cross Attention-based
Underwater Image Enhancement (CAUIE), consists of the following three types of
modules: (1) convolution modules , (2) cross large kernel attention Transformer
(CLKAT), and (3) dynamic feature enhancement (DFE) module. The convolution
module includes common operations such as convolution, up-sampling, and down-
sampling. To improve the performance of underwater image enhancement, the model
is trained with a combination of three losses, each playing a different role.

Fig. 1 Diagram of the proposed algorithm. CAUIE is a modified 5-layer U-Net in which the con-
volution modules are replaced by CLKAT and DFE is applied before up-sampling. (b), (c), and (d)
Details of CLKAT, which primarily involves the use of the modified LKA instead of the original self-
attention in CAT. (e) Details of DFE. The input size is H ×W , and the feature map size at each
stage is indicated in the diagram.

3.1 Underwater Image Enhancement Network

CAUIE adopts a U-Net[4] structure consisting of feature extraction and image recon-
struction. The feature extraction process extracts feature representations, whereas the
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reconstruction process reconstructs the image. Fig.1 shows the overall framework of
the proposed method. First, the input image goes through a 3×3 convolution to extract
low-level features. The extracted features are then fed into the CLKAT to obtain addi-
tional feature information, which is processed by the DFE. After two up-sampling and
down-sampling processes, the feature map size is adjusted accordingly. Finally, the
image is reconstructed using a 3×3 convolution module after the CLKAT. Through-
out the process, feature fusion is used to fuse the branches after the CLKAT, DFE
module, and the original image branch to incorporate low-level features and hierarchi-
cal CLKAT features. The use of DFE improves the model’s ability to extract image
detail information, whereas CLKAT effectively captures and integrates the local and
global information in the image.

3.1.1 Cross Large Kernel Attention

The proposed CLKAT was inspired by the CAT[5] and LKA[6]. The CAT consists
of two parts: intra-position self-attention (IPSA) and cross-position self-attention
(CPSA). Because of the large number of parameters and computational overhead of
self-attention[26], we were inspired by the recent practice of using MLPs to replace
self-attention to substitute the self-attention[26] in CAT[5] with LKA [6] to create the
intra-position LKA (IPLKA) and cross-position LKA (CPLKA). The key idea of LKA
[6] is to replace the high-parameter and high-computation self-attention operation[26]
with convolution operations, such as dilated convolution and depth-wise convolution
[27], that have smaller numbers of parameter and computational overhead. In addition,
Song et al. [22] have experimentally and theoretically proven that ReLU is more suit-
able than GELU for low-level computer vision tasks. Therefore, the method proposed
in this paper improves on the attention in VAN [6] by replacing the GELU in the orig-
inal attention with ReLU. The modified architectures of CLKAT, the attention used
in the proposed method, and LKA [6] are illustrated in Fig. 1(b), (c), and (d), respec-
tively. IPLKA extracts local information from the feature maps, and CPLKA extracts
global information from the feature maps after local feature extraction. The original
CAT [5] has three sequential layers, IPSA, CPSA, and IPSA. After considering multi-
ple model designs and ablation experiments, the final design of CLKAT has two layers,
as shown in Fig.1(b). CLKAT first performs CPLKA to extract global features from
the image, followed by IPLKA to extract local information from the feature maps.
CLKAT can employ attention between image patches divided from single-channel fea-
ture maps to capture global information. The depth of CLKAT at each layer is 4, 4,
4, 2, and 1.

3.1.2 Feature Fusion Module

The feature fusion in the proposed method is a channel attention-based method that
can automatically select the most important channels and fuse the original features
and cross attention features based on the importance of each channel to the model
output. It mainly consists of concatenation, pooling, and softmax operations. Feature
fusion aims to use both the original feature information and hierarchical CLKAT
feature information to enhance feature representation.
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3.1.3 DFE

As shown in Fig.1(e), the DFE module mainly consists of deformable convolution
[28]layers, 1×1 convolution layers, and ReLU activation functions. Traditional CNN
models typically use convolution kernels with fixed and limited receptive fields, which
cannot make full use of image feature information. Although the receptive field can be
enlarged by expanding the convolution layers [4], this may cause grid artifacts in the
generated images. Our model adopts DCN [28], which adaptively adjusts the shapes
of the convolution kernels, enlarges the receptive field, and better captures relevant
feature information in the image to improve model generalization. To obtain more
detail information, two DCNs are concatenated to form the DFE module. DFE can
dynamically change the resolution and receptive field size of feature maps based on the
content and structure of the input image. This allows the network to better represent
and preserve image detail information, enhancing the expressiveness and robustness
of feature maps.

3.2 Loss Function

To effectively optimize the model, we designed a combination of multiple loss functions
to update network parameters. The losses include the following:

Pixel Loss: This loss optimizes the network at the pixel level by minimizing the
difference between the pixel values of the enhanced image and the reference image.

CR Loss [29]: This loss brings the information of the enhanced image closer to the
reference image by contrasting the information between pairs of images.

Structural Loss: This loss optimizes the network based on SSIM to accurately
restore underwater images.

The three losses are described in detail in the following sections, where denotes
the distorted input image; denotes the reference image;M (·) denotes CAUIE; and the
generated image is M (x).

3.2.1 Pixel Loss

Pixel-wise loss is fundamental for image enhancement tasks. The L1 loss is a widely
used loss function for single image restoration. We adopt the L1 loss as the pixel loss,
which is calculated as follows:

L1 =
1

w × h

∑h

i=1

∑w

j=1
|M (x) (i, j) − y (i, j)| (1)

Here, w and h denote the width and height of the generated image, respectively.

3.2.2 CR Loss

CR loss is a loss function proposed by Wu H et al. [29] for comparing overall informa-
tion based on contrastive learning. CR loss constructs two sample pairs: one consists
of the reference image and generated image and the other consists of the distorted
image and enhanced image. The two pairs are forwarded through a VGG-19 [30] to
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obtain two sets of features. The L1 losses of the two feature sets are calculated sep-
arately and weighted by coefficients for each layer to obtain the final CR loss. As an
auxiliary loss function, CR can move the generated image closer to the reference image
and farther from the distorted image. The CR loss is calculated as follows:

Lcontrastive =
∑k

v=1

∑h

i=1

∑w

j=1
wv

M (x (i, j)) − y (i, j)

M (x (i, j)) − x (i, j) + C
(2)

In Equation (2),wv is the weight for the v-th layer of the VGG-19, which was set to
[1/32, 1/16, 1/8, 1/4, 1] in our experiments.C denotes a very small constant used to
prevent division by zero errors.

3.2.3 Structural Loss

Structural loss is a loss function based on SSIM and can be used as a loss for image
restoration tasks. To improve the network’s ability to restore structural information in
underwater image enhancement, the proposed method adopts SSIM as an optimization
objective. The SSIM calculation is

SSIM (p) =
(2uη · uy + C1) · (2δηy + C2)

(

u2
η + u2

y + C1

)

·
(

δ2η · δ
2
y + C2

) (3)

and the structural loss function is

LSSIM = 1 −
1

N
·
∑

p∈P

SSIM (p) (4)

where uη and uy denote the mean values of the enhanced and reference images,
respectively,δη and δy denote the variances of the enhanced and reference images,
respectively,δηy denotes the covariance,C1 and C2 denote constants, p denotes the
pixels, and N denotes the number of pixels in image block P .

3.2.4 Mixed Loss

We use a weighted summation to calculate the total loss as the objective function for
optimizing the model, as follows:

Ltotal = α · L1 + β · Lcontrastive + λ · LSSIM (5)

Here, the weights α,β, andλwere set to 0.16, 0.84, and 0.2, respectively, in the
experiments.

4 Experiments and Analysis

To evaluate the performance of our model, comparative experiments were conducted
on two public underwater image enhancement datasets: HICRD [7] and UIEBD [8].
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HICRD[7] contains 2000 enhanced images and 6003 original images. UIEBD[8] has
950 real-world underwater images and the corresponding reference images for 890 of
these images. These two datasets cover various underwater scenes and degradations,
making them important for researching and improving underwater image enhancement
algorithms.

Table 1 Hyperparameter settings for the experiments
on the HICRD[7]

Hyperparameter Value

Training image size 1842× 980
Optimizer AdamW
momentum β1, β2 = 0.9, 0.999
Learning rate 2e-4
Learning rate schedule Cosine learning rate schedule
Batch size 2
Patch size 256× 256
Epochs number 1000

Table 2 Results of the evaluation
indicators for the HICRD

algorithm PSNR(dB) SSIM

UDCP[10] 13.31 0.493
DCP[9] 14.27 0.532
Haze-line[31] 14.69 0.423
IBLA [11] 19.42 0.463
UWCNN[8] 20.20 0.754
CycleGAN[32] 21.82 0.591
CUT[33] 26.30 0.796
CWR[15] 26.88 0.831
QACG[2] 26.89 0.897
Ours(CAUIE) 34.86 0.996

The red numbers in the table indi-
cate the best results and the numbers
underlined indicate the second best
results

We used 1700 paired images in HICRD[7] as the training set and 300 images as the
test set. The hyperparameters are listed in Table1. The experiments were conducted
using Python 3.7 and PyTorch 1.13.1+cu116. Two evaluation metrics were used to
compare the different methods: PSNR and SSIM. Both are full-reference metrics.
PSNR measures the distortion of the images, whereas SSIM measures the similarity in
structure. To evaluate the performance of CAUIE, we trained it for 1000 epochs on the
HICRD[7], and compared it with other methods in terms of quantitative metrics and
visual quality. The quantitative results on HICRD[7] are presented in Table 2, whereas
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Original image

UDCP[10]

DCP[9]

IBLA[11]

Haze-line[31]

CUT[33]

CycleGAN[32]

UWCNN[8]

CWR[15]

Ours(CAUIE)

Reference image

Fig. 2 Qualitative results obtained on the HICRD test dataset, where all examples were randomly
selected from the test dataset. We compared our model with other underwater image restoration
models. Traditional restoration methods fail to remove the green and blue color casts from the under-
water images. Our model demonstrates satisfactory visual results without content and structural loss.

the subjective visual comparisons are presented in Fig. 2. From the results, it can be
seen that on this dataset, CAUIE outperforms the previously best method QACG [2]
by 7.97 dB in PSNR and 0.099 in SSIM. From a visual comparison with other methods,
we conclude the following. DCP [9] and UDCP [10] are methods based on the DCP[9],
which effectively removes haze in images but cannot handle color distortions. Haze-
line [31] tends to lose detail or over-enhance the images, resulting in low quality and
poor visual results in the enhanced images. IBLA [11] reduces haze and enhances the
clarity of turbid underwater images, but excessive contrast stretching in some cases
can lead to saturated bright and dark regions, causing detail loss and severe color
distortions. UWCNN [17]cannot handle color distortions well, yielding results with a
greenish appearance. Compared with other methods, CUT [33], CycleGAN [32], and
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CWR [15] reduce color distortions better but may lose details, yielding blurry results.
Our method achieves results closer to the reference images. In summary, the proposed
algorithm obtains satisfactory underwater image enhancement performance, resolving
color distortions while preserving image details.

Table 3 Results of the evaluation
indicators for the UIEBD

algorithm PSNR/dB SSIM

Retinex[34] 17.53 0.773
IBLA[11] 18.51 0.762
WaterNet[8] 19.31 0.830
CUT [33] 20.34 0.765
USUIR [35] 20.31 0.841
CWR [15] 21.07 0.791
Fusion[36] 21.18 0.822
PUIENet[19] 21.86 0.870
Ours(CAUIE) 22.12 0.889

The red numbers in the table indi-
cate the best results and the num-
bers underlined indicate the second
best results

To further evaluate the effectiveness of CAUIE, we also trained it for 1000 epochs
on the UIEBD[8]. Since the image sizes in UIEBD[8] are not unified, the batch size
could only be set to 1 in this experiment. Table 3 shows a quantitative comparison of
the different methods using the evaluation metrics. The results demonstrate that our
method achieves a PSNR of 22.12dB and an SSIM of 0.889, which are slightly better
than the results of the previously best method PUIENet [19].

A visual comparison of the results on UIEBD[8] is shown in Fig. 3. Fusion [36] can
handle color distortions well, but may lose details or over-enhance the image during
Fusion[36], resulting in unnatural visual results. IBLA [11] yields color distorted results
with lost details. WaterNet [8] can adapt to different underwater images, but does not
consider degradations like noise and artifacts in its design, which affects the quality and
naturalness of the results and yields darker colors. PUIENet [19] captures underwater
information more accurately and yields more natural visual results. CAUIE achieves
results that are comparable to those of PUIENet [19] in terms of color correction and
clarity, with good visual quality.

Additionally, ablation experiments were conducted to validate the impact of dif-
ferent loss combinations, as presented in Table 4. Seven groups with different loss
functions were designed. The first group uses the L1 loss only, achieving the PSNR of
33.92 dB and the SSIM of 0.994. The second group uses SSIM loss only, achieving the
PSNR of 33.13 dB and the SSIM of 0.992. The third group uses CR loss only, giving
poor results, with the PSNR below 17, suggesting that CR loss alone is ineffective.
The fourth group uses both L1 and SSIM losses with weights of 0.16 and 0.84, respec-
tively, achieving the PSNR of 34.28 dB and the SSIM of 0.995. The fifth group uses
SSIM and CR losses with weights of 1 and 0.2, respectively, achieving the PSNR of
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Original 

image Fusion[36] IBLA[11] WaterNet[8] PUIENet[19] Ours(CAUIE)

Fig. 3 Figure 3 Qualitative results on the UIEBD, where all examples were randomly selected from
the test dataset. We compared our model with other underwater image restoration models. Traditional
restoration methods fail to remove the green and blue color casts in underwater images. Among
them, Ours and PUIENet [19] achieve the best performance, displaying superior visual results while
minimizing content and structural losses.

Table 4 Loss ablation experiments on the HICRD

L1loss SSIM loss CR loss PSNR/dB SSIM

1 0 0 33.92 0.994
0 1 0 33.13 0.992
0 0 1 Nan Nan
0.16 0.84 0 34.28 0.995
0 1 0.2 34.03 0.993
1 0 0.2 34.28 0.995
0.16 0.84 0.2 34.86 0.996

The values in the first three columns represent the
weights of the loss function, respectively

34.03 dB and the SSIM of 0.993. The sixth group uses L1 and CR losses with weights
of 1 and 0.2, respectively, achieving the PSNR of 34.28 dB and the SSIM of 0.995. The
seventh group uses all three losses, L1, SSIM, and CR, with weights of 0.16, 0.84, and
0.2, respectively, achieving the highest results: the PSNR of 34.86 dB and the SSIM
of 0.996.

A comparison of groups 1, 2, and 4 reveals that the mixed L1 and SSIM loss
outperforms the use of either alone; the results of group 3 show that using only the
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CR loss gives very poor results, with a PSNR that is less than 17. However, pairwise
comparisons of groups 1 and 5, 2 and 6, and 4 and 7 show that adding the CR loss
on top of the original loss improves the results and convergence speed. Therefore, an
analysis of the experimental data reveals that using the CR loss alone does not benefit
model optimization, but incorporating it as an auxiliary loss on top of existing losses
improves results and convergence speed.

Table 5 Experimental comparison of
ReLU and GELU

Structure PSNR/dB SSIM

CAUIE(ReLU) 34.86 0.996
CAUIE(GELU) 34.94 0.996

Song et al. [22] found that ReLU is more suitable than GELU for low-level com-
puter vision tasks such as image dehazing. To validate this conclusion, we conduct a
comparative experiment, as listed in Table 5. The first group is our proposed model
using ReLU, and the second group uses the GELU in the attention [6]. The results
confirm that using ReLU as the activation function yields better enhancement results
than GELU, increasing the PSNR by 0.19 dB.

Table 6 Results of the CLKAT structural ablation experiments

CLKAT structure Parameters FLOPs PSNR/dB SSIM

Pre IPLKA-CPLKA-Pos IPLKA 2.8M+ 126.02M+ 34.78 0.996
Pre IPLKA-CPLKA 1.9M+ 91.52M+ 30.90 0.993
CPLKA-Pos IPLKA 1.9M+ 91.52M+ 34.86 0.996

The red numbers in the table represent the best results in that evaluation metric

The basic CAT[5] structure has three layers in sequence: IPSA-CPSA–IPSA. How-
ever, when compared with previous underwater image enhancement models, it has an
excessive number of parameters. Our aim was to streamline it to obtain a model with
fewer parameters and computations while retaining the enhancement performance.
Therefore, we designed an ablation experiment with three groups: the first group uses
the original three-layer structure, Pre IPLKA–CPLKA–Pos IPLKA; the second group
removes Pos IPLKA to obtain Pre IPLKA–CPLKA; and the third group removes
Pre IPLKA to obtain CPLKA–Pos IPLKA. The results are listed in Table 6.The loss
function scheme used in this set of ablation experiments is the hybrid loss function
with the best results described above, and its weights are shown in the last row of
Table 4.

Table 7 reveals that removing Pos IPLKA reduces the number of parameters by
0.9M but also decreases performance, reducing the PSNR to 30.90. In contrast, remov-
ing only Pre IPLKA significantly reduces the number of parameters while improving
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results, achieving a PSNR of 34.86. The experiments show that the original three-
layer Pre IPLKA–CPLKA–Pos IPLKA structure is not optimal. On the bases of
these results, to reduce the computations and parameters without sacrificing accu-
racy, we modified the original three-layer CAT[5] to the optimal two-layer structure
CPLKA–Pos IPLKA.

Table 7 Results of the DFE ablation study

DFE structure Parameters FLOPs PSNR/dB SSIM

w/o DFE 1.9M+ 87.33M+ 34.41 0.995
1-layer DCN 1.9M+ 89.41M+ 30.90 0.996
2-layer DCN 1.9M+ 91.52M+ 34.86 0.996

The red numbers in the table represent the best results in that
evaluation metric

Additionally, we designed an ablation study with three groups to evaluate the
effectiveness of DFE: the first group removes the DFE, the second group uses a single-
layer DCN as the DFE, and the third group uses a two-layer DCN as the DFE in our
model. The results are presented in Table 7. It can be seen that the three groups have
negligible differences in the number of parameters and SSIM. The third group, which
achieves the best performance, is our proposed model. The second group has a PSNR
that is 0.61 dB lower than the PSNR of the third group. The first group performs
slightly worse than the second group, but has a more noticeable 0.72 dB decrease with
respect to the results of the third group.

Table 8 Comparison of the results of the different attention
mechanisms on the HICRD

Attention Dim Parameters PSNR/dB SSIM

Self-Attention[26] 4 4.23M 31.65 0.990
Pool (Pool size = 3) [25] 4 11.20K 27.89 0.946
LKA (Kernel size = 5) [6] 4 14.75K 31.33 0.991

The red numbers in the table represent the best results in that evaluation
metric

Given the excessive numbers of parameters and computations of the original
CAT[5], we conducted an experiments to reduce them and compared the results
obtained on HICRD[7], as presented in Tables 8. The loss function scheme used in
this set of ablation experiments was the L1 loss function only, and only 300 epochs of
training were performed.One approach uses the pooling layers proposed in Poolformer
[25] to replace the self-attention in the CAT. This significantly reduces the number
of parameters from 4.23M to 11.20K, and the computation for one HICRD [7] image
is reduced from 60G to 1G. However, the accuracy drops severely, from 31.65 dB to
27.89 dB. The other approach uses LKA[6] to replace self-attention in the CAT[5], as
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proposed in this paper. This also greatly reduces the number of parameters to 14.75K
and the computations to 1.3G per image, which is slightly more than the pooling
approach, but this approach maintains excellent performance, with a PSNR of 31.33
dB, which is close to the original 31.65 dB. Therefore, it achieves the goal of reducing
the parameters and computations while preserving image enhancement quality.

To maximize the performance of our model under the constraint of low computa-
tional requirements, we set the upper limit of computations to 10G and increased the
hyperparameter dimensions as much as possible to 64. The loss function is the best
performing one from previous experiments, and we increased the training epochs to
1000. This obtains the optimal results of our model on HICRD[7]: only 1.98M param-
eters, a PSNR of 34.86 dB, and an SSIM of 0.996. This is also the best result achieved
in all our experiments.

5 Conclusion

This paper proposed a new underwater image enhancement model to address the color
distortions and loss of details in underwater images. The model is based on the U-Net
architecture and incorporates CAT, LKA, and DFE modules to tackle these problems.
First, CAT effectively extracts global and local information from underwater images
and fuses them, enabling better feature capture. Second, the modified LKA greatly
reduces the numbers of parameters and computations of CAT while maintaining
accuracy. This combination improves performance while reducing the computational
burden. Additionally, the DFE module captures the detailed information of underwa-
ter images, enhancing contrast and color in the generated images for more clarity and
realism. Moreover, the CR loss was introduced into the hybrid optimization objective.
This loss enables consistency between the enhanced image and the ground truth with
respect to content, details, and color. The proposed model was evaluated on two pub-
lic underwater image datasets using subjective and objective comparisons. The results
demonstrate the superiority of our proposed algorithm over the comparison methods,
proving its effectiveness for underwater image enhancement.
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