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Abstract

In recent years, using clustering technology to realize equipment security warning is a research hotspot
in the field of data mining applications. However, due to the lack of data fusion mechanism and prior
knowledge guidance, the performance of most existing methods is limited when applied to complex
equipment such as elevator. In this paper, a novel Tensorial Multi-view Subspace Clustering with
Side constraints (TMSCS) is proposed for elevator security warning, which first introduces tensorial
multi-view subspace learning to achieve data fusion based on high-order correlation. Secondly, the
prior knowledge is formalized as side constraints between samples through adaptive graph learning,
where certain elevators is forced to have similar or dissimilar operation status. Thirdly, a unified
model combining tensorial multi-view subspace learning and adaptive graph learning is constructed to
eliminate the instability caused by phased learning. Furthermore, an efficient optimization algorithm
is designed to solve this model. Extensive experiments on several benchmark datasets demonstrate the
superiority of our method, and the experimental results on real elevator status datasets demonstrate
that our method accurately identifies the operating status of each elevator equipment.

Keywords: Multi-view clustering, Tensorial multi-view subspace learning, Adaptive graph learning, Side
constraint, Elevator security warning

1 Introduction

Different from general industrial equipment, eleva-
tor is used more widely and frequently in people’s
daily life, where its related accidents cause unbear-
able loss of property and life. Elevator security
warning is an important topic in the special equip-
ment supervision [1]. With the rapid growth of
elevator ownership, traditional security warning
methods that rely on manual detection, key indi-
cators and statistical analysis no longer meet
the practical needs. It’s necessary to improve the

efficiency and accuracy of elevator security warn-
ing through data mining technology [2–4]. On
the other hand, market or government regulators
effectively monitor the operating status of eleva-
tors through multiple data sources. By collecting
these elevator status data resources, these gov-
ernment regulators aim to comprehensively and
accurately identify the operating status of a large
number of elevator equipments at the same time.
Because of the natural semantic gap between dif-
ferent data sources and the difficulty of label
acquisition, unsupervised data fusion and learning
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method is the key technology for utilizing these
data resources.

As a typical unsupervised data fusion and
learning method, multi-view clustering (MVC)
achieves semantic-level data fusion by leveraging
the consistency and complementarity among mul-
tiple views, while obtaining the comprehensive
latent data distribution [5–11]. Many advanced
MVC methods have been proposed and some
practical cases demonstrate their effectiveness
[12–15]. For the elevator security warning task,
the status data collected from different sources
is regarded as the feature description of differ-
ent views, called multi-view elevator status data.
In [16], we construct a elevator security warn-
ing framework based on multi-view nonnegative
matrix factorization, where the security status of a
elevator equipment is determined by analyzing the
cluster in which it is located. However, the perfor-
mance of the proposed method in [16] still cannot
meet the practical elevator security warning. Two
major reasons that limit its performance include:
1) Multi-view elevator status data suffers from
low signal-to-noise ratio due to sensor failures,
transmission interference, and human tampering.
These noises and outliers severely degrade the
performance of multi-view clustering. 2) Due to
the sparse features of elevator status data, it
is difficult to obtain its latent distribution only
by unsupervised clustering models. Considering
the important guiding role of prior knowledge in
judging the elevator operation status, it is neces-
sary to incorporate the prior knowledge. Existing
tensorial multi-view clustering approaches cannot
directly handle prior knowledge properly [17–19].

To solve these problems, a novel Tensorial
Multi-view Subspace Clustering with Side con-
straints (TMSCS) is proposed in this paper.
First, tensorial multi-view subspace learning is
utilized to obtain the self-expressive subspace
representation of each view, where the tensor
low-rank constraint enhances the ability to deal
with noise by capturing high-order correlations.
Second, through adaptive graph learning, prior
knowledge is incorporated into our model as side
constraints, including must-link and cannot-link
constraints. Then, a unified model combining ten-
sorial multi-view subspace learning and adaptive
graph learning is constructed to eliminate the
instability caused by phased learning. Finally,
classical spectral clustering is conducted on the

similarity matrix obtained from our model, and
the security level of each elevator is determined
according to the clustering results. The framework
is shown in Fig. 1, and the main contributions of
this paper are summarized as follows:

• This paper proposes a unified multi-view clus-
tering model that combines tensorial multi-view
subspace learning and adaptive graph learning.
The prior knowledge is formalized as a hybrid
matrix in adaptive graph learning, containing
both must-link and cannot-link side constraints.
By forcing similarity matrix to be consistent
with this hybrid matrix, prior knowledge is
effectively integrated into our model while pre-
serving the raw data intrinsic structure.

• For low signal-to-noise ratio, the tensor low-
rank constraint is introduced to capture the
high-order correlations among multiple views.
In addition to the use of l21 norm, the subspace
representation learning of different views is not
carried out independently, but combined into a
single tensor whose global low-rank property is
achieved by tensor tucker decomposition.

• An effective algorithm based on alternating
optimization strategy is proposed to solve the
unified model. Moreover, extensive experiments
on benchmark datasets show the effectiveness of
our method, where the proposed method suc-
cessfully achieves data fusion and accurately
captures the latent distribution. Experiments
on real multi-view elevator state status datasets
validate that our method can identify the eleva-
tor security level.

The rest is organized as follows: Section 2
briefly introduces the related work including ten-
sorial multi-view clustering and Semi-supervised
multi-view clustering, Section 3 describes our pro-
posed method in detail, Section 4 records and
analyzes the experimental results, and Section 5
summarizes this paper.

2 Related Works

In the past decade, some representative research
works are proposed to improve the performance
of multi-view clustering, in which learning a ten-
sor with compact low-rank structure will well
exploit the complementary information and high-
order correlation among multi-view data. In [7],
it first treats each self-expressive subspace as a
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Fig. 1 Main framework: First, the subspace representation Z is obtained by tensorial multi-view subsapce learning, where
its global low-rank property is achieved by Tucker decomposition. Secondly, the target similarity matrix is obtained by
adaptive graph learning, where the prior knowledge includings must-link and cannot-link constraints is formalized as a
hybrid matrix. Finally, the spectral clustering is conducted on the target similarity matrix to obtain clustering results.

slice of a third-order tensor, and then imposes
tensor low-rank constraint on it. [8] proposes a
novel tensor multi-rank minimization framework
to ensure the consistency of multi-view data. In
[9], a unified multi-view clustering model that
simultaneously learns low-rank tensor represen-
tations and affinity matrices is proposed. Fur-
thermore, [20] proposes a one-step multi-view
clustering model via skinny tensor learning and
latent clustering, which enforces the synergistic
interaction between tensor representation learn-
ing and clustering processes. [10] combines Markov
chains with tensor to enhance the robustness of
low-rank tensor. In [18], a better surrogate of
tensor rank is designed, namely the tensor loga-
rithmic Schatten-p norm, which fully considers the
physical difference between singular values by the
non-convex and non-linear penalty function.

Semi-supervised multi-view clustering is also
an important research direction in the field of
cluster analysis. Through the guidance of prior
knowledge, the performance of semi-supervised
multi-view clustering model can be significantly
improved. When incorporating prior knowledge
into a specific learning model, it is necessary
to design a guidance mechanism according to
the characteristics of the specific model. In [11],
adaptive graph learning is introduced to semi-
supervised MVC, which obtains the neighbor-
hood relationship of each sample. Similarly, [21]
aims to find latent multi-view representation by
graph learning and label propagation. In [22], an
exclusive nonnegative subspace learning model is
proposed, which is extended to semi-supervised
MVC by using manifold regularization. In [16]

combines constrained nonnegative matrix factor-
ization with low-rank representation to enhance
clustering performance. [23] employs label propa-
gation mechanism based on the stream structure
to make full use of the limited label informa-
tion. In semi-supervised multi-view clustering, the
key is to establish the relationship between prior
knowledge and clustering model, that effectively
extracts knowledge from the prior information to
promote the separation between clusters.

According to the characteristics of multi-view
elevator status data, tensorial multi-view subspace
learning is extended to semi-supervised clustering
scenario in this paper. Specially, tensorial multi-
view subspace learning with low rank constraint
can deal with noise well, while the semi-supervised
mechanism based on adaptive graph learning can
greatly improve the accuracy of clustering. Based
on the above two reasons, the main motivation
of this paper is to build a unified model to
form a collaborative interaction between these
two approaches, and then improve the elevator
security warning ability.

3 Methodology

3.1 Tensorial multi-view subsapce

learning

Multi-view subspace clustering focuses on learn-
ing a latent shared subspace representation as the
common similarity matrix of multi-view data, and
then performing spectral clustering on the simi-
larity matrix to obtain clustering results. Given a
multi-view dataset {Xv}mv=1, where Xv ∈ Rdv×n
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is the feature matrix of v-th view, dv is the fea-
ture dimension of v-th view, n is the number of
samples and m is the number of views. Let Zv

and Ev respectively denote the self-expressive sub-
space representation and noises of v-th view. With
the self-expressive property, the general model of
multi-view subspace clustering is formulated as:

min
Zv,Ev

∑m

v=1
∥Ev∥+Ω(Z1, . . . ,Zm)

s.t. Xv = XvZv +Ev, ∀v
(1)

where Ω(Z1, . . . ,Zm) is the regularizer for multi-
view subspace representation with respect to dif-
ferent structural properties, such as l1 norm [24]
or nuclear norm [25]. ∥Ev∥ is the error metric of
noises and outliers. This matrix-oriented general
model is unable to explore high-order correlation
across multiple views.

Based on tensor construction technique, all
view-specific subspace representations are com-
posed into a third-order tensor, where the final
performances are jointly optimized in a mutual
manner [7, 26]. With the tensor low-rank con-
straint, the general model of multi-view subspace
clustering are formulated as follows:

min
Z,Ev

∥Z∥
⊛
+
∑m

v=1
∥Ev∥

s.t. Xv = XvZv +Ev, ∀v

Z = ψ(Z1,Z2, · · · ,Zm)

(2)

where ψ(·) merges view-specific subsapce repre-
sentations Zv into a n× n×m tensor Z. ∥Z∥

⊛
is

the tensor nuclear norm of Z, which is a convex
combination of the nuclear norms of all matrices
unfolded along each mode. ∥Z∥

⊛
imposes the low-

rank constraint to the subspace representation.

3.2 Adaptive graph learning

For a certain Xv in the above multi-view dataset,
its local structure information can be obtained by
adaptive graph learning [27–29]. Considering each
sample as a node on the graph, the connection
probability of two nodes is the similarity between
them. When xv

i and xv
j are connected with proba-

bility wv
ij , then w

v
ij represents their similarity. Let

Wv denote the connection probability matrix on
graph, and Lv = Dv−(Wv+(Wv)T )/2 denote its
corresponding Laplace matrix. Noted that Dv =

diag (dv1, d
v
2, ..., d

v
n) is the degree matrix, where

dvi =
∑n

j=1 w
v
ij is the degree of i-th node. With

local structure preservation, the adaptive graph
learning is generally as:

min
Wv

Tr((Xv)TLvXv) + ∥Wv∥
2
F

s.t. (Wv)T1 = 1, 0 ≤ Wv ≤ 1
(3)

Through simple mathematical transformation,
the above formula can be converted into:

min
Wv

∑n

i,j=1

1

2

∥

∥xv
i − xv

j

∥

∥

2

2
wv

ij + (wv
ij)

2

s.t. 1Twv
i = 1, 0 ≤ wv

i ≤ 1, ∀i
(4)

For convenience, with pvij =
1
2 ||x

v
i −x

v
j ||

2
2, then

we have the following formulation:

min
Wv

∑n

i,j=1
pvijw

v
ij +

∑n

i,j=1
(wv

ij)
2

s.t. 1Twv
i = 1, 0 ≤ wv

i ≤ 1, ∀i
(5)

Denote pv
i ∈ Rn×1 as a vector with j-th ele-

ment as pvij . Since each column wv
i in matrix Wv

is independent, Eq.(5) is equivalent to the follow-
ing quadratic programming problem, which can be
solved with a closed form solution as in [29].

min
wv

i

∥

∥

∥

∥

wv
i +

pv
i

4

∥

∥

∥

∥

2

2

s.t. 1Twv
i = 1, 0 ≤ wv

i ≤ 1, ∀i

(6)

3.3 Formulation

In elevator security warning, prior knowledge is
usually generated in the form of side constraint
between samples, which consists of must-link
and cannot-link constraints. Must-link constraint
means that two elevators should have the same
operating status and belong to the same cluster,
while the cannot-link constraint means that two
elevators should have different operating status
and belong to different clusters. Then, an hybrid
matrix W̃ with two side constraints is defined as:

w̃v
ij =







1 if (xi,xj) must link
0 if (xi,xj) cannot link
wv

ij otherwise
(7)
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To improve the structural representation abil-
ity of the obtained similarity matrix and elim-
inate the instability caused by phased learning,
a unified model combining tensorial multi-view
subspace learning and adaptive graph learning is
constructed. The target similarity matrix is forced
to agree with the above hybrid matrix to incor-
porate side constraints. The objective function is
expressed as follows:

min
Z,E,S

∥Z∥
⊛
+ α∥E∥2,1 + β

∥

∥

∥
S− W̃

∥

∥

∥

2

F

+ γ
∑m

v=1
Tr

(

(Zv)TLSZ
v
)

s.t.



















Xv = XvZv +Ev

Z = ψ
(

Z1,Z2, . . . ,Zm
)

E =
[

E1;E2; . . . ;Em
]

ST1 = 1,0 ≤ S ≤ 1

(8)

where the first two terms are the tensorial multi-
view subspace learning. E =

[

E1;E2; . . . ;Em
]

is
formed by concatenating together along the col-
umn of error metric matrices. To alleviate the
influence of noises, a structured sparsity l21 norm
regularization is imposed on E, which encour-
ages its columns to be zero. Afterwards, the low
rank property of tensor Z is achieved by using
Tucker decomposition. The second term is the
adaptive graph learning. Obviously, through this
mechanism, the local structure information of
multi-view data can be efficiently fused. In third
term, the side constraints are incorporated into
our model by minimizing the difference between
target similarity matrix S and auxiliary hybird
matrix W̃.

3.4 Optimization

Since the above non-convex objective function
is difficult to optimize directly, the Augmented
Lagrange Method with alternating direction min-
imizing strategy (AL-ADM) is adopted to solve
this problem. The other variables are always
fixed in each iteration while only one variable is
updated. To make the objective function separa-
ble, an auxiliary tensor G = ψ

(

G1,G2, . . . ,Gm
)

is introduced to replace Z, and the objective

function in Eq.(8) is transformed into:

min
Z,E,S,G

∥Z∥
⊛
+ α∥E∥2,1 + β

∥

∥

∥
S− W̃

∥

∥

∥

2

F

+ γ
∑m

v=1
Tr

(

(Gv)TLSG
v
)

s.t.































Xv = XvGv +Ev

Z = ψ
(

Z1,Z2, . . . ,Zm
)

G = ψ
(

G1,G2, . . . ,Gm
)

, G = Z

E =
[

E1;E2; . . . ;Em
]

ST1 = 1, 0 ≤ S ≤ 1

(9)

The corresponding unconstrained optimization
problem of the above function is to minimize the
following augmented Lagrangian function:

Lρ (Z;S; {Ev}
m
v=1 ; {G

v}
m
v=1) =

∥Z∥
⊛
+ α

∑m

v=1
||Ev||2,1 + β

∥

∥

∥
S− W̃

∥

∥

∥

2

F

+ γ
∑m

v=1
Tr((Gv)TLSG

v) + Φ(W,Z − G)

+
∑m

v=1
Φ((Uv)T ,Xv −XvGv −Ev)

(10)
where W and Uv are lagrange multipliers. For
ease, Φ(W ,Z−G) = ρ

2 ||Z − G||2F+ <W,Z − G >
and Φ((Uv)T ,Xv−XvGv−Ev) = ρ

2 ||X
v−XvGv−

Ev||2F+ < (Uv)T ,Xv − XvGv − Ev >, where
< ·, · > is the matrix inner product and ρ is a
penalty parameter. Next, the specific optimization
steps are derived.

For updating Gv. When other variables are
fixed, the Eq.(10) is equivalent to the following
optimization problem:

Gv∗ = min
Gv

γ
∑m

v=1
Tr((Gv)TLSG

v)

+
ρ

2
||Z − G +

W

ρ
||2F

+
ρ

2

∑m

v=1
||Xv −XvGv −Ev +

Uv

ρ
||2F

(11)
Setting the derivative with respect to Gv to 0,

its closed-form solution is:

Gv∗ =(ρ(I+ (Xv)TXv) + 2γLs)
−1

(ρZv +W + ρ(Xv)T (Xv −Ev +
Uv

ρ
))

(12)
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For updating Ev: When other variables are
fixed, as in [9], L is solved by:

E∗ =min
E

∑m

v=1
α||Ev||2,1

+
∑m

v=1
Φ((Uv)T ,Xv −XvGv −Ev)

=min
E

α

ρ
||E||2,1 +

1

2
||E− F||2F

(13)
where E is [E1;E2; ...;Ev]. F is formed by con-
catenating the matrix Fv = Xv −XvGv +Uv/ρ
vertically along the columns. Using Lemma 3.2 in
[30] can effectively solve this subproblem. In t-th
iteration, the j-th column of E is obtained by:

Et+1(:, j) =

{

∥Ft(:,j)∥2
− 1

ρt

∥Ft(:,j)∥2

Ft(:, j), if
1
ρt
< ∥Ft(:, j)∥2

0, otherwise
(14)

For updating Z: When other variables are
fixed, L is solved by:

Z∗ = min
Z∗

∥Z∥
⊛
+Φ(W,Z − G)

= ||Z − (G −
W

ρ
)||2F

s.t. Z = C×1D1×2D2×3D3, D
′
i ∗Di = I.

(15)
here we use the classical Tucker decomposition to
solve this optimization problem. In Tucker decom-
position, a tensor is represented by a core tensor
multiplied by a matrix along each mode. A third-
order tensor Z ∈ R

I×J×K can be decomposed
into three factor matrices D1 ∈ R

I×P ,D2 ∈
R

J×Q,D3 ∈ R
K×R and a core tensor C ∈

R
P×Q×R. The details are shown in Definition 3 of

[9]. As in [31], the core tensor C′ and the orthog-
onal factor matrix D′

i, i = 1, 2, 3 of G − W
ρ

are
obtained by Higher-Order Orthogonal Iteration
algorithm (HOOI). Thus, the low-rank represen-
tation Z∗ is obtained as:

Z∗ = C′ × 1D
′
1 × 2D

′
2 ×3 D

′
3 (16)

For updating S: When other variables are
fixed, L is solved by:

S∗ = min
S∗

γ
∑m

v=1
Tr((Gv)TLSG

v) + β
∥

∥

∥
S− W̃

∥

∥

∥

2

F

(17)

Algorithm 1 Tensorial Multi-view Subspace
Clustering with Side Constraints for Elevator
Security Warning (TMSCS)

1: Input Data matrix X1, X2, ..., Xv, the num-
ber of nearest neighbors k, trade-off parameter
α, β and γ, side information matrix W̃ .

2: Initialize Gv = Ev = Uv = S = Z = W = 0;
ρ = 10−1; µ = 1.5; ε = 10−3; ρmax = 1010

3: Using Eq.(6) and Eq.(7) to obatin auxiliary
hybird matrix W̃

4: while not converge do

5: for each view v do

6: Update Gv by using Eq.(12);
7: Update Ev by using Eq.(13);
8: Update S by using Eq.(20);
9: end for

10: Update Z by using Eq.(16);
11: Update Uv and W by using Eq.(21);
12: Check the convergence conditions:

13: max

{

||Xv −XvGv − Ev||∞
||Z − G||∞

}

≤ ε

14:

15: end while

16: Output Affinity matrix by (S+ ST)/2.

where the first term in the above formula can be
expanded as γ

2

∑m

v=1 (
∑n

i,j=1

∥

∥gv
i − gv

j

∥

∥

2

F
sij). For

simplicity, let bvij = ||gv
i − gv

j ||
2
2, which forms a

matrix Bv. Let A = 2W̃− γ
2βB, then the Eq.(17)

is equivalent to:

min
ST 1=1,0≤S≤1

Tr(STS)− Tr(STA) (18)

The vector form of Eq.(18) is rewritten as:

min
sT
i
1=1,0≤si≤1

∑n

i=1
(sTi si − sTi ai) (19)

where si and ai represent the i-th rows of matrices
S and A, respectively. Since each si is indepen-
dent, Eq.(19) is decomposed into n subproblems
as follows:

min
sT
i
1=1,0≤si≤1

(sTi si − sTi ai) (20)

Noted that this optimization can be solved by
Euclidean projection on the simplex method with
closed-form solution in [32].
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For Updating Uv∗,W∗, ρ∗:

Uv∗ = Uv + ρ(Xv −XvGv −Ev);

W∗ = W + ρ(Z − G);

ρ∗ = min(ρµ, ρmax)

(21)

where µ > 1 is a penalty parameter, and ρmax is
the maximum value of ρ. The entire algorithm is
summarized in Algorithm 1.

3.5 Complexity Analysis

There are four subproblems in the optimiza-
tion process of our model. Firstly, updating the
Gv requires matrix inversion and the Sylvester
equation, both of which have complexity O

(

mn3
)

and m is the number of views. Secondly, updat-
ing Ev and Uv involves matrix multiplication
with complexity O(mn2). Thirdly, updating Z
involves the Tucker decomposition with complex-
ity O(rmn2), where r is the rank of Zv. Fourthly,
updating S has complexity O(mn2). Therefore,
the total complexity is O

(

mn2 (n + r)
)

. In addi-
tion, empirical evidence from real data shows that
our algorithm has stable convergence behavior.

4 Experiment

4.1 Datasets

Here, we introduce three public datasets and three
elevator datasets along with the multi-view fea-
tures used for each. Sample images from three
public datasets are shown in Fig.2.

Three public datasets are used: ORL1, BBC-
sport2, MSRC v13. Three elevator datasets: Ele-
vator CX, Elevator WX, and Elevator 2022. The
details of all datasets are shown in Table 1. The
details of datasets are described below.

MSRC v1 is an object database which contains
210 images from 7 categories including car, bicy-
cle, airplane, building, face, tree and cow. This
experiment sets 5 types of feature, including 24-D
CM, 576-D HOG, 512-D GIST, 256-D LBP and
254-D CENT are extracted from each image.

ORL is a face database which contains 300
images of 40 distinct people. These images are

1http://www.uk.research.att.com/facedatabase.html
2http://www.uk.research.att.com/facedatabase.html
3https://www.cnblogs.com/picassooo/p/12890078.html

taken at different times with varied lighting, facial
expressions, and facial details. This experiment
sets 3 types of feature(4096 Intensity, 3304 LBP ,
and 6750 Gabor).

BBCsport contains 544 sports new articles col-
lected from 5 topical areas, which correspond to 5
classes including athletics, cricket, football, rugby
and tennis. The document is described by two
views, and dimensions of each view are 3283 and
3183 respectively.

Elevator WX is a multi-view dataset con-
tains 385 samples from Huzhou special equipment
inspection center, which collected from Wuxing
District, Huzhou City, Zhejiang Province, China.
Each sample contains three views: a production
view based on manufacturing data, an environ-
mental view based on the special equipment instal-
lation environment and a maintenance view based
on regular manual inspections. Furthermore,each
sample has a risk level, which is divided into
high-risk, medium-risk and low-risk equipments.

Elevator CX is a multi-view dataset con-
tains 427 samples from Huzhou special equipment
inspection center, which collected from Changx-
ing District, Huzhou City, Zhejiang Province,
China. Each sample in these datasets consists of
three views: production, environmental and main-
tenance. In addition, each sample has a risk level,
which is divided into high-risk, medium-risk and
low-risk equipments.

Elevator 2022 contains 709 samples is from
the elevator data collected based on the Internet
of Things equipment provided by Huzhou special
equipment inspection center in April 2022, which
collected fromWuxing District, Huzhou City, Zhe-
jiang Province, China. Each sample contains 17
operating fault information, and each fault infor-
mation is a feature. We collected 30 days’ running
information and took each day’s running infor-
mation as a view. According to the frequency
of elevator failures in practical application sce-
narios and combined with expert experience, we
divide elevators into three different levels: high-
risk, medium-risk and low-risk. Table 2 lists the
weight of fault features.

4.2 Compared methods

The method in this paper (TMSCS) compared
with other algorithms, including two multi-view

7



Fig. 2 Sample images of three used datasets

Table 1 Multi-view datasets.

Dataset Size View Cluster View1 View2 View3 View4 View5

MSRC v1 210 5 7 ms(24) ms2(576) ms3(512) ms4(256) ms5(254)
ORL 300 3 40 or1(4096) or2(3304) or3(6750) / /

BBCSport 544 2 5 bc1(3183) bc2(3203) / / /
Elevator WX 385 3 3 el1(12) el2(16) el03(307) / /
Elevator CX 427 3 3 el1(12) el2(16) el03(307) / /
Elevator 2022 709 30 3 / / / / /

nearest neighbor algorithms, one unsupervised
tensor algorithm, and three semi-supervised
algorithms. The multi-view nearest neighbor algo-
rithms include: Graph Learning for Multiview
Clustering(MVGL)[6], Multi-View Clustering
and Semi-Supervised Classification with Adap-
tive Neighbours (MLAN)[11]. The unsupervised
tensor algorithm includes: Low-Rank Ten-
sor Graph Learning for Multi-view Subspace
Clustering(LRTG)[9]. The semi-supervised algo-
rithms include: tensorial Multi-view Subspace
Representation Learning(TMSRL)[28], Con-
strained nonnegative matrix factorization for
image representation(CNMF)[33], Constrained
Low-Rank Representation for Robust Subspace
Clustering(CLRR)[34].

4.3 Results on public datasets

This paper uses three common clustering metrics
to measure the performance of the algorithms:
normalized mutual information (NMI), accuracy
(ACC), and adjusted rank index (AR), with

higher values indicating better clustering perfor-
mance. In this experiment, each algorithm was run
ten times on the datasets and presented in the
”mean ± standard deviation” format. In addition,
”-” indicates that the algorithm cannot be applied
to the dataset. The results are shown in Table 3:

• Compared with unsupervised tensor algorithm
LRTG, our method combines semi-supervised
information to get better results. The improve-
ment rates of each dataset measured by ACC
are 6%, 18%, 9%, 0.05% and 4%, respectively.

• Compared with other semi-supervised algo-
rithms (CLRR, CNMF, TMSRL), TMSCS is
better than CLRR in each dataset. It could
improve by 12%, 7%, 3%, 0.03% and 2% in
ACC. This phenomenon suggests that TMSCS
explore correlations among multiple views more
effectively. Besides, we observe that the clus-
tering performance of the proposed method is
better than most compared multi-view cluster-
ing methods. At its core, our method stacks

8



Table 2 Weight table of fault features.

Fault name Fault weight

Topping 1
Battery car alarm 1
Jump fight alarm 1
Gate area outside elevator 1
Squat Bottom 1
Safety loop in upper limit zone is disconnected 9999
Hall door cannot open trapped person 9999
Safety loop break when the elevator is running 1
Safety loop disconnected 333
Open the door in operation 1
Door opening failure 1
Open the door and take the ladder 1
Other faults that prevent the elevator from restarting 1
Door lock disconnects 333
Door closing fault 1
Trapped 333
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Fig. 3 Clustering results on three Elevator datasets with or without side information. The first three have no side infor-
mation, the last three have side information.

the subspace representation matrices of differ-
ent views into a tensor, where the low-rank
constraint could capture the global structure of
raw data.

• Compared with the nearest neighbor algo-
rithm (MLAN, MVGL), MLAN simply fuses
multiple similarity matrices. MVGL uses a

weighted fusion of multiple similarity matri-
ces. Our TMSCS uses l2,1norm to remove the
noise from each view and stacks multiple repre-
sentation matrices into a tensor, using Tucker
decomposition to uniformly explore the low-
rank properties of the tensor. This yields cleaner
representations to learn an affinity matrix. So
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Table 3 CLUSTERING RESULTS (MEAN±STANDARD DEVIATION).

Dataset Method NMI ACC AR

ORL(K=10)

CLRR (TCYB2016) 0.917±0.008 0.862±0.013 0.764±0.027
CNMF (TPNMI2016) 0.695±0.005 0.527±0.016 0.387±0.011
MVGL (TCYB2017) 0.804±0.000 0.781±0.000 0.722±0.000
MLAN (AAAI2017) 0.830±0.001 0.684±0.001 0.331±0.001
TMSRL (IJCV2020) 0.964±0.006 0.909±0.015 0.879±0.018
LRTG (TCSVT2021) 0.967±0.000 0.922±0.000 0.896±0.000

TMSCS 0.988±0.000 0.985±0.000 0.969±0.000

BBCSport(K=20)

CLRR (TCYB2016) 0.787±0.000 0.921±0.000 0.816±0.000
CNMF (TPNMI2016) 0.580±0.132 0.645±0.104 0.392±0.166
MVGL (TCYB2017) 0.820±0.000 0.857±0.000 0.759±0.000
MLAN (AAAI2017) 0.794±0.000 0.728±0.000 0.606±0.000
TMSRL (IJCV2020) 0.846±0.000 0.947±0.000 0.864±0.000
LRTG (TCSVT2021) 0.757±0.000 0.818±0.000 0.673±0.000

TMSCS 0.989±0.000 0.996±0.000 0.995±0.000

MSRC v1(K=20)

CLRR (TCYB2016) 0.896±0.000 0.952±0.000 0.891±0.000
CNMF (TPNMI2016) 0.666±0.027 0.727±0.065 0.571±0.050
MVGL (TCYB2017) 0.698±0.000 0.819±0.000 0.622±0.000
MLAN (AAAI2017) 0.662±0.000 0.681±0.000 0.504±0.000
TMSRL (IJCV2020) 0.921±0.000 0.962±0.000 0.914±0.000
LRTG (TCSVT2021) 0.830±0.000 0.895±0.000 0.775±0.000

TMSCS 0.968±0.000 0.986±0.000 0.966±0.000

Elevator WX(K=25)

CLRR (TCYB2016) 0.830±0.000 0.980±0.000 0.940±0.000

CNMF (TPNMI2016) 0.577±0.214 0.941±0.078 0.574±0.260
MVGL (TCYB2017) 0.836±0.000 0.902±0.000 0.796±0.000
MLAN (AAAI2017) 0.569±0.000 0.944±0.000 0.536±0.000
TMSRL (IJCV2020) 0.801±0.000 0.965±0.000 0.848±0.000
LRTG (TCSVT2021) 0.578±0.000 0.975±0.000 0.691±0.000

TMSCS 0.669±0.000 0.983±0.000 0.753±0.000

Elevator CX(K=20)

CLRR (TCYB2016) 0.780±0.000 0.958±0.000 0.822±0.000
CNMF (TPNMI2016) 0.599±0.272 0.902±0.096 0.567±0.375
MVGL (TCYB2017) 0.820±0.000 0.857±0.000 0.759±0.000
MLAN (AAAI2017) 0.189±0.014 0.959±0.002 0.328±0.019
TMSRL (IJCV2020) 0.518±0.000 0.964±0.000 0.683±0.000
LRTG (TCSVT2021) 0.759±0.000 0.932±0.000 0.845±0.000

TMSCS 0.352±0.000 0.974±0.000 0.405±0.000

(a) ORL (b) BBCSport (c) MSRC v1

(d) Elevator WX (e) Elevator CX (f) Elevator 2022

Fig. 4 Results of TMSCS and other algorithms with different label proportion.
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(a) Result on ORL dataset with different α (b) Result on BCCSport dataset with different α

(c) Result on ORL dataset with different β (d) Result on BCCSport dataset with different β

(e) Result on ORL dataset with different γ (f) Result on BCCSport dataset with different γ

Fig. 5 Performance of TMSCS with different values of α, β and γ.

the ACC effect of TMSCS is improved by 29%
and 14%, respectively.

4.4 Results on elevator status

datasets

We conducted further experiments on elevator
datasets. The corresponding clustering results are
shown in Fig.3: The blue, red and green points
represent devices with different risk levels. Regions
are divided according to device similarity. We ran-
domly take several samples on the cluster bound-
aries, and if these samples all belong to low-risk

devices in realistic scenarios, then we can deter-
mine that all samples within the same cluster are
low-risk devices. If a new device is added to this
cluster, it can be inferred that this device is low
risk. In addition, a comparison with other semi-
supervised algorithms (TMSRL, CNMF, CLRR)
is performed, and the average ACC value is taken
for 10 runs, and the line segment at the point
in the graph represents the standard deviation.
MVGL is used as the unsupervised base algorithm.
The specific results are shown in Fig.4, and it can
be seen that the corresponding ACC index has a
significant improvement with the increase of side
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(a) ORL (b) BBCSport (c) MSRC v1

(d) Elevator WX (e) Elevator CX (f) Elevator 2022

Fig. 6 Convergence curves over different datasets.

information. It indicates that the addition of side
information can improve the clustering effect.

4.5 Parameter analysis

In this paper, there are six parameters in the algo-
rithm: α, β, γ, k, rank, and rate. α is selected
from the set [0.1, 0.2, 0.5, 0.8, 1] to control the
noise matrix. β is selected from the set [0.1, 0.2,
0.5, 0.8, 1] to control the difference between the
target similarity matrix and hybird matrix. γ is
selected from the set [0.1, 0.2, 0.5, 0.8, 1] to con-
trol the Laplace matrix. k is used to control the
number of neighbors. rank is used to control the
rank of tensor and set rank = [50, 50, m]. 50 is
the dimension.m is the number of views. The rate
represents the percentage of side information. The
rate is set to 10% for TMSCS and 40% for the
remaining semi-supervised algorithms. The Fig.5
shows the results of ACC with different values of
α, β, γ and k on two public datasets.

4.6 Convergence analysis

To verify the convergence of TMSCS, Fig.6 shows
the convergence of the algorithm in this paper on
each dataset. In each plot, the x-axis and y-axis
indicate the number of iterations and the corre-
sponding objective function values, respectively.
It can be observed that the curve reaches con-
vergence in about 15 iterations and then becomes

stable as the number of iterations increases. It
proves that our algorithm can converge quickly
and stably in practice.

5 Conclusion

In this paper, a novel Tensorial Multi-view Sub-
space Clustering with Side Constraints (TMSCS)
is proposed for elevator security warning, which
incorporates tensorial multi-view subspace learn-
ing and adaptive graph learning to construct a
unified model. The low signal-to-noise ratio prob-
lem in multi-view elevator status data is over-
come with the help of tensor low-rank constraint.
Meanwhile, the prior knowledge is formalized as
side constraints between samples through adap-
tive graph learning, which significantly improves
the clustering performance. Experiments on sev-
eral benchmark datasets verify the superiority of
the proposed method. In addition, the experimen-
tal results on three real elevator status datasets
show that the proposed method can effectively
identify the abnormal elevator equipments.
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