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Abstract

Anomaly detection is an extremely challenging task in the field of visual under-
standing because it involves identifying events that deviate significantly from
normal patterns. One of the primary reasons for the difficulty of this task is the
diversity and complexity of anomalous events. Therefore, it is impossible for us
to collect all types of anomalies and label them. In recent work, weakly super-
vised methods becomes one of the optimal solutions for anomaly detection. Thus,
in this paper, we focus on weakly supervised learning and propose a dynamic
multiple-instance learning framework for video anomaly detection, which devel-
ops a dynamic ranking method combined the k-max-selection scheme to enlarge
the inter-class distance between anomalous and normal instances by only using
video-level labels. Experimental results demonstrate that our framework achieves
superior improvements on three benchmark datasets, including the ShanghaiTech
dataset, UCF Crime dataset and NUT dataset.

Keywords: Multiple-instance learning, Video anomaly detection, Dynamic ranking,
Weakly supervised learning

1 Introduction

Video anomaly detection (VAD) is a challenging task, which faces open real-world
scenarios with complex environments and various types of anomalies. It is impossible
for us to collect all abnormal events, therefore, the semi-supervised learning becomes
one of the optimal solutions for anomaly detection by using only normal training data.
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The semi-supervised models [1] [2] learn the regularity of normal events, thus these
models regard the events deviating from learned regularity as anomalies during testing.

The reconstruction-based method is one of the common representative meth-
ods in the semi-supervised learning. With continuous video frames as inputs, the
reconstruction-based method [1] usually utilizes Auto-Encoder (AE) [3] with an
encoder and a decoder to reconstruct the current input data. The encoder compresses
the input data to obtain the feature representation, while the decoder expands the
dimension of the feature representation to obtain the reconstructed frames with the
same size as the input data. The model uses the reconstruction errors between the
input data and reconstructed data as the basis of anomaly detection. However, due
to the powerful generalization capacity of AE, some anomaly data can be also recon-
structed well. In view of this, the prediction-based method [4] is proposed. According
to this method, normal events can be predicted by continuous video frames at previ-
ous moments and conform to certain developmental regularity, while abnormal events
deviate from this regularity. Compared with the reconstruction-based method, the
prediction-based method uses the AE, the Generative Adversarial Network (GAN)
[5], the Variational Autoencoder (VAE) [3], the Conditional VAE (CVAE) [6] or other
neural networks with generative functions to generate the future video frame. The
prediction error is used to measure whether the future video frame is abnormal.
Recent works combine the above two mainstream paradigms to form hybrid models
for anomaly detection task [7] [8] [2], and we believe that the hybrid models can be
more robust to abnormal events.

One of the key challenges is that the collection of enormous labeled data is labor
intensive and time-consuming. Therefore, in order to meet the challenge, amount of
studies focus on weakly supervised methods that only needs video-level labels instead
of frame-level labels. This is significant because it is much easier to annotate a mount of
videos by assigning only video-level labels. Weakly supervised learning methods com-
monly take the anomaly detection as a Multiple Instance Learning (MIL) task. These
methods could be traced to the work in [9], which introduced the UCF Crime dataset
and a MIL method for VAD. Afterwards, a multiple instance self-training method [10]
was developed for the discriminative representation by using weak labels. In order to
weaken the inter-batch combination, a novel random batch-selection approach [11] was
proposed in basis of a clustering assisted weakly supervised network. Specially, some
works combined the weekly supervised methods with attention mechanisms in both
spatial and temporal domains. Further, iterative supervised or weak/self-supervised
learning methods [12] [13] were presented for effective anomaly detection.

Beside the above methods, several specifically designed methods for VAD were
developed. An online anomaly detection strategy [14] was proposed by combining the
transfer learning and the any-shot learning with a few labeled normal videos. An
adversarial learning scheme [15] was introduced to overcome the lack of anomalous
data by using pseudo-abnormal samples. Some works [16] [17] focused on developing
novel learning losses to learn discriminative features for VAD models. Specially, a
center-guided discriminative learning loss was proposed for an anomaly regression net
to reduce the intra-class distances between normal instances.
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We are interested in learning discriminative features for VAD models. Different
to the work in [17], we develop a dynamic multiple-instance ranking method based
on k-max selection scheme for the proposed framework, which focuses on optimizing
the learning loss to enlarge the inter-class distance between anomalous and normal
instances. Specifically, we adopt k-max selection scheme to optimize the multiple
instance ranking process. We propose a novel dynamic ranking function to enforce the
positive bags far apart from the negative bags in terms of anomaly scores, and ensure
two negative bags closer than one positive bag and one negative bag. In addition, we
explore the impact of different components of our framework on the performance of
VAD.

Our main contributions are as follow:

• We propose a dynamic multiple-instance learning framework named Dy-MIL for
VAD by only using video-level labels.

• Specially, we develop a dynamic ranking method for Dy-MIL to enlarge the inter-
class distance between anomalous and normal instances.

• The proposed framework achieves superior improvements on popular benchmark
datasets, including the ShanghaiTech dataset, UCF Crime dataset and NUT
dataset..

The remainder of this paper is organized as follows: Section 2 introduces the details
of the proposed Dy-MIL framework. Section 3 reports the experimental results and
ablation studies on three benchmark datasets. Finally, Section 4 gives the conclusions.

2 Proposed Method

2.1 Problem definition

Given a dataset, V = {vm}Mm=1 denotes the training set with M videos. The MIL
scheme only use video-level labels, which are denoted as Y = {ym}Mm=1, where y ∈
(0, 1) and y = 1 if at least one anomaly presents in the video, else y = 0. Each video
is represented as a bag, while an anomaly video with y = 1 as a positive bag, and
a normal video with y = 0 as a negative bag. Then, each bag is split into a fixed
number of temporal segments that are denoted as instances in the bag. A positive bag
is denoted as bp with positive instances {pi}

ti
i=1

, while a negative bag is denoted as bn
with negative instances {ni}

ti
i=1

, where ti denotes the number of instances in the i-th
bag. The predicted anomaly score of a video bag is represented as {si}tii=1

, where si

is the anomaly score of the i-th video instance.

2.2 Dynamic multiple-instance learning framework

2.2.1 Framework overview.

As shown in Fig. 1, we develop a dynamic multiple-instance ranking method for the
proposed framework, which focuses on optimizing the learning loss to enlarge the
inter-class distance between anomalous and normal instances. First, each video is
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Fig. 1 Overview of Dy-MIL framework. bp denotes a positive bag, and bp+1 denotes the
next positive bag in temporal continuous. bn and b∗n denotes two different negative bags.The
fully connected neural network is trained by adopting the proposed dynamic ranking loss
L(bp, bn), the smooth loss Lsmooth and the sparse loss Lsparse. s∗ represents the anomaly
score of the video bag, and ∆∗ represents the difference between two anomaly scores.

denoted as a bag. Here, bp+1 denotes the next positive bag of bp in temporal continu-
ous. bn and b∗n denotes two different negative bags. Then, we extract visual features
for each video instance by using Vision-and-Language Bidirectional Encoder Repre-
sentation from Transformers (ViLBERT) [18], which is a vision transformer model.
Finally, we train a 3-layer fully connected neural network by adopting the proposed
dynamic ranking method, which computes the dynamic ranking loss L(bp, bn) as the
basis component of instance anomaly scores. s∗ represents the anomaly score of the
video bag, and ∆∗ represents the difference between two anomaly scores. Lsmooth

and Lsparse denotes the smooth loss and the sparse loss, respectively. Finally, the
dynamic ranking loss, the smooth loss and the sparse loss are combined to the final
loss L. Noted that the proposed MIL framework is based on the dynamic ranking
method, thus named Dy-MIL.

2.2.2 Dynamic MIL ranking.

For anomaly detection, we train models to obtain higher anomaly scores for anomaly
instances than normal ones. However, we only have video-level labels instead of
instance-level labels. Inspired by the work in [9] that proposes the highest anomaly
scores in positive bags and negative bags can be ranked, we propose a novel dynamic
ranking method.

Different from [9], we develop k-max selection scheme to obtain the k-max anomaly
scores. We adapt sp > sn to the following objective function, which is defined as

mean(sk−max
p ) > mean(sk−max

n ), (1)

where sk−max
p and sk−max

n represent k-max anomaly scores in the positive bag and
in the negative bag, respectively. mean traverses over video instances with k-max
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anomaly scores in each bag. The sk−max
∗

is defined as











sk−max
∗

= {qji |j = 1, 2, ..., ki},

qi = sort(si),

ki = ⌈ti/β⌉,

(2)

where β is a hyperparameter, ti is the number of instances in the i-th video bag.
Instead of ranking by using only instances with the highest anomaly score in each
video bag, we rank in basis of the instances with k-max anomaly scores in the positive
bags and in the negative bags.

It should be noted that the value of k depends on the number of instances in the
video bag as shown in the last line of Equation 2, thus it varies dynamically. This is
why we call this ranking method as dynamic MIL ranking.

By using Equation 1, we aim to enforce the positive bags far apart from the negative
bags in terms of anomaly scores. In addition, we want two negative bags are closer
than one positive bag and one negative bag. Therefore, we develop the Equation 1 as
follows

|mean(sk−max
p )−mean(sk−max

n )| > |mean(sk−max
n )−mean(sk−max

n∗ )|. (3)

Considering |mean(sk−max
n ) − mean(sk−max

n∗ )| is greater than 0, Equation (3) guar-
antees Equation 1. Further, in order to prevent over-fitting, we relax the Equation (3)
as Equation (4), which is defined as

|mean(sk−max
p )−mean(sk−max

n )| > µ|mean(sk−max
n )−mean(sk−max

n∗ )|, (4)

where µ represents the relax parameter.

2.2.3 Loss function

. The ranking loss is defined by the hinge-loss formulation as

Lrank = max(0, 1−mean(sk−max
p ) +mean(sk−max

n )

+µ|mean(sk−max
n )−mean(sk−max

n∗ )|). (5)

To ensure the temporal smoothness and the sparsity of scores of positive bags, the
loss function is adapted as

L(Bp, Bn) = Lrank + λLsmooth + γLsparse (6)

= Lrank + λ
∑

p∈Bp

(sp − sp+1) + γ
∑

n∈Bn

sn,

where
∑

p∈Bp
(sp − sp+1)) is the constraint on the temporal smoothness,

∑

n∈Bn
sn is

the sparsity constraint, and λ, γ are balance parameters. The losses from k-max scored

5



Fig. 2 Anomaly examples from three benchmark datasets. The first row is from the ShanghaiTech
dataset, the second row is from the UCF Crime dataset, and the last row is from the NUT dataset.

video instances on both positive and negative bags are back-propagated, which forces
the network to train a generalized model to predict high scores for anomaly instances.

Finally, the final loss function is given as

L(W ) = L(Bp, Bn) + ω||W ||F , (7)

where W is the model weight and ω represents a balance parameter. || ∗ ||F denotes
the Frobenius norm.

3 Experimental Results and Analysis

We evaluate our method on three challenging datasets, including the ShanghaiTech
dataset [19], the UCF Crime dataset [9], and the NUT dataset [16]. Table. 1 shows
the detailed differences between these three benchmark datasets, and Fig. 2 presents
anomaly examples from these three benchmark datasets. We compare our proposed
method with the previous methods, and evaluate the effects of different modules
through ablation experiments.
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Table 1 Comparison of popular benchmark datasets.

Datasets Frames abnormal videos Scenes Length FPS
ShanghaiTech 317398 130 13 217min 24
UCF Crime 13769300 950 13 128h 30

NUT 38044 100 10 29min 15

3.1 Datasets

ShanghaiTech dataset [19]. It consists of 437 videos with 330 for training and the
remaining 107 for testing. This dataset involves 130 abnormal events including objects
other than pedestrians and violent sports in 13 different scenes, such as vehicle intru-
sion, chasing and fighting. This dataset is 220 minutes long.
UCF Crime dataset [9]. It contains 1900 real-world surveillance videos with 13
real-world anomalies, and half of the data are normal and the other half are abnormal.
Specifically, the training set consists of 800 normal videos and 810 abnormal videos,
while the testing set contains the remaining videos. This dataset is the largest scale
one for VAD with 128 hours long in total.
NUT dataset [16]. It is a multi-views real-world anomaly detection dataset with
large variations in scenes. It covers 10 abnormal events with 10 videos for each
abnormal event, and includes 70 normal videos and 100 abnormal ones, e.g. weapon,
intrusion, and arson. The training set covers 50 normal videos and 80 abnormal videos,
while the testing set contains the remaining ones. Totally, this dataset is 29 minutes
long. The shortest video is 1.7 seconds duration, and the longest one is 58.8 seconds
duration.

3.2 Evaluation metrics and implementation details

For fair comparisons, we choose the same evaluate metrics to previous state-of-the-
art methods [20]. First, the frame-level Receiver Operating Characteristic (ROC) is
calculated with various thresholds. Then, the corresponding Area Under Curve (AUC)
is accumulated for evaluating the performance of our model. The higher the AUC
value is, the better the performance is.

We adapt the MIL [9] as the baseline, which only needs bag-level labels. We first
divide each video bag into 32 non-overlapping instances, and then extract ViLBERT
features [18] for each 16-frame video clip by using the pre-trained model on the con-
ceptual captions dataset [21]. Note that we calculate the average of all clip features
within each instance as the instance feature. Finally, these instance features with
1,024-dimensional are fed into a 3-layer fully connected neural network, whose layers
has 512 units, 32 units and 1 unit, respectively. We use 60% dropout regularization
[22] between these three fully connected layers, and the ReLU activation [23] and Sig-
moid activation [24] for the first layer and the last layer, respectively. For optimizing
the model, Adagrad optimizer [25] with the starting learning rate of 0.001 is used. A
mini-batch with 30 positive bags and 30 negative bags is selected randomly. The learn-
ing loss is computed by using the Equation (6) and (7). We set µ = λ = γ = 8× 10−5,
ω = 1× 10−2, and β = 4 for the best performance.
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Table 2 AUC (%) of the Dy-MIL framework on benchmarks.

Methods ShanghaiTech UCF Crime NUT
Binary classifier [9] - 50.0 64.2
Conv-AE [26] 60.9 50.6 65.1
Sparse [27] - 65.5 80.3
AR-Net [28] 85.4 - 81.9
CLAWS [11] 89.7 83.0 -
MIL [9] 86.3 75.4 82.1
MILR [29] 88.6 76.7 83.7
MIST [10] 93.1 81.4 -
MIL-Atten [30] 87.8 76.2 83.8
Dy-MIL(ours) 90.5 78.9 86.1

Table 3 Ablation studies of main components on UCF Crime.

Ablation experiments k-max new loss ViLBERT AUC(%)
Dy-MIL ✓ ✓ ✓ 78.9

Dy-MILk - ✓ ✓ 77.5
Dy-MILl ✓ - ✓ 77.1
Dy-MILv ✓ ✓ - 78.0
Dy-MILkl - - ✓ 76.0
Dy-MILlv ✓ - - 76.8
Dy-MILkv - ✓ - 77.2
baseline - - - 75.4

Table 4 Ablation studies of β on the UCF
Crime dataset.

β 2 3 4 5 6
AUC (%) 76.3 78.2 78.9 78.4 77.5

3.3 Experimental results and ablation studies

3.3.1 Results and analysis.

To demonstrate the superior performance of the proposed method, we compare our
method with current methods. Table 2 presents the quantitative comparison in differ-
ent methods on AUC. As shown in Table 2, Dy-MIL achieves the best result on the
NUT dataset, exceeding the second best one by 2.3%, and the second best result on
the ShanghaiTech dataset. Our model outperforms the baseline by about 4% on all
three datasets, while visual features of the proposed model is 1024-dimentional com-
pared to 4096-dimentional in the baseline. And our model outperforms MIL-Atten,
the baseline combined with attention scheme, which demonstrates the efficient of pro-
posed dynamic scheme compared to the attention scheme. Although our model is not
the best compared to CLAWS and MIST, their visual features are 2048 dimensional
that is double of our model. Moreover, MIST uses pseudo labels to assist detection.

As shown in Fig. 3, we give some detected anomaly scores in example frames. The
first three examples are success ones, and the last one is a failure case. The orange
arrows point to the video frames when anomalies occur, and the red arrow points
to a false positive. The light blue shadow shows the ground-truth corresponding to
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Fig. 3 Detected anomaly scores of Dy-MIL in video frames. The orange arrows point to the
video frames when anomalies occur, and the red arrow points to a false positive. The ground-truth
corresponding to anomalies are denoted in the light blue shadow. The last one is a failure case.

anomalies. The success examples show that the anomaly scores increase according to
anomalies occur and decrease when the anomalies disappear. In the failure case, the
video frame is blurred at the moment that leads to an increase in the abnormal score.
Thus, our method is not robust to poor video frame quality.

3.3.2 Ablation studies.

In order to validate the effectiveness of main components in our model, we develop
six ablation studies, including the k-max scheme, the new ranking loss, and the
ViLBERT features. On the first three ablation studies, we replace k-max, new loss
and V iLBERTfeatures with max, the loss as Equation 1, and C3D features, sep-
arately. We denote these three ablations as Dy-MILk, Dy-MILl and Dy-MILv. On
our fourth to sixth ablation studies, we replace two items of k-max, new loss and
V iLBERTfeatures, which are denoted as Dy-MILkl, Dy-MILlv and Dy-MILkv,
respectively. Table 3 shows that all AUC values of six ablation studies are lower than
Dy-MIL and higher than the baseline. Therefore, our framework and the new loss
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function are feasible. Moreover, we develop studies on the effectiveness of hyperpa-
rameter β as shown in Table 4. The results show that the optimal value of β is 4.

3.3.3 Computational time.

All experiments are performed on an NVIDIA GeForce GTX 1080 GPU and an Intel
Core (TM) i7-8700K CPU @ 3.70GHz×12. The running speed is about 10fps. Thanks
to the low dimensional of ViLBERT features, compared with the baseline, the fully
connected neural network has only half of the parameters and FLOPs (0.5M number
of parameters and 2.1M FLOPs).

4 Conclusions

To meet the key challenge that the collection of labeled data is labor intensive and
time-consuming for video anomaly detection, we proposed a dynamic multiple-instance
learning framework, which only required video-level labels for training. Specially, we
developed a dynamic ranking method that was combined with the k-max selection
scheme and the novel ranking function for the proposed framework, which focused on
optimizing the learning loss to enlarge the inter-class distance between anomalous and
normal instances. Experimental results showed that our framework achieved superior
performance on three challenging benchmark datasets.
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