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ABSTRACT
Efficient indexing and retrieval of digital video is an impor-
tant function of video databases. One powerful index for
retrieval is the text appearing in them. It enables content-
based browsing. We present our methods for automatic seg-
mentation of text in digital videos. The output is directly
passed to a standard OCR software package in order to
translate the segmented text into ASCII. The algorithms we
propose make use of typical characteristics of text in videos
in order to enable and enhance segmentation performance.
Especially the inter-frame dependencies of the characters
provide new possibilities for their refinement. Then, a
straightforward indexing and retrieval scheme is intro-
duced. It is used in the experiments to demonstrate that the
proposed text segmentation algorithms together with exist-
ing text recognition algorithms are suitable for indexing and
retrieval of relevant video sequences in and from a video
database. Our experimental results are very encouraging
and suggest that these algorithms can be used in video
retrieval applications as well as to recognize higher seman-
tics in videos.

KEYWORDS: video processing, character segmentation,
character recognition, OCR, video indexing, video content
analysis

1  INTRODUCTION

There is no doubt that video is an increasingly important
modern information medium. Setting free its complete
potential and usefulness requires efficient content-based
indexing and access. One powerful high-level index for
retrieval is the text contained in videos. This index can be
built by detecting, extracting and recognizing such text. It
enables the user to submit sophisticated queries such as a
listing of all movies featuring John Wayne or produced by
Steven Spielberg. Or it can be used to jump to news stories
about a specific topic, since captions in newscasts often pro-
vide a condensation of the underlying news story. For exam-
ple, one can search for the term “Financial News” to get the

financial news of the day. The index can also be used
record the broadcast time and date of commercials, help
the agents checking to see that a client’s commercial 
been broadcasted at the arranged time on the arranged 
vision channel. Many other useful high-level applicatio
are imaginable once text can be recognized automatic
and reliably in digital video.

In this paper we present our methods for automatic text s
mentation in digital videos. The output is directly passed
a standard OCR software package in order to translate
segmented text into ASCII. We also demonstrate that th
two processing steps enable semantic indexing and retrie
To ensure better segmentation performance our algorith
analyze typical characteristics of text in video. Interfram
dependencies of text incidences promise further refineme

Text features are presented in Section 2, followed by
description of our segmentation algorithms in Section
which are based on the features stated in Section 2. Infor
tion about the text recognition step is given in Section
Then, in Section 5 we introduce a straightforward indexi
and retrieval scheme, which is used in our experiments
demonstrate the suitability of our algorithms for indexin
and retrieval of video sequences. The experimental res
of each step - segmentation, recognition and retrieval - 
discussed in Section 6. They are investigated independe
for three different film genres: feature films, commercia
and newscasts. Section 7 reviews related work, and Sec
8 concludes the paper.

2  TEXT FEATURES

Text may appear anywhere in the video and in different c
texts. It is sometimes a carrier of important information,
other times its content is of minor importance and 
appearance is only accidental. Its significance is related
the nature of its appearance. We discriminate between 
kinds of text: scene text and artificial text. Scene text
appears as a part of and was recorded with the sc
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whereas artificial text was produced separately from the
video shooting and is laid over the scene in a post-process-
ing stage, e.g. by video title machines.

Scene text (e.g. street names or shop names in the scene)
mostly appears accidentally and is seldom intended (An
exception, for instance, are the commercials in the new
James Bond movie). However, when it appears unplanned,
it is often of minor importance and generally not suitable for
indexing and retrieval. Moreover, due to its incidental and
the thus resulting unlimited variety of its appearance, it is
hard to detect, extract and recognize. It seems to be impossi-
ble to identify common features, since the characters can
appear under any slant, tilt, in any lighting and upon straight
or wavy surfaces (e.g. on a T-shirt). Scene text may also be
partially occluded.

In contrast, the appearance of artificial text is carefully
directed. It is often an important carrier of information and
herewith suitable for indexing and retrieval. For instance,
embedded captions in TV programs represent a highly con-
densed form of key information on the content of the video
[23]. There, as in commercials, the product and company
name are often part of the text shown. Here, the product
name is often scene text but used like artificial text. There-
fore, in this paper we concentrate on extraction of artificial
text. Fortunately, its appearance is subjected to many more
constraints than that of scene text since it is made to be read
easily by viewers.

The mainstream of artificial text appearances is character-
ized by the following features:

• Characters are in the foreground. They are never par-
tially occluded.

• Characters are monochrome.
• Characters are rigid. They do not change their shape,

size or orientation from frame to frame.
• Characters have size restrictions. A letter is not as large

as the whole screen, nor are letters smaller than a cer-
tain number of pixels as they would otherwise be illegi-
ble to viewers.

• Character are mostly upright.
• Characters are either stationary or linearly moving.

Moving characters also have a dominant translation
direction: horizontally from right to left or vertically
from bottom to top.

• Characters contrast with their background since artifi-
cial text is designed to be read easily.

• The same characters appear in multiple consecutive
frames.

• Characters appear in clusters at a limited distance
aligned to a horizontal line, since that is the natural
method of writing down words and word groups.

Our text segmentation algorithms are based on these fea-
tures. However, they also take into account that some of
these features are relaxed in practice due to artifacts caused
by the narrow bandwidth of the TV signal or other technical
imperfections.

3  TEXT SEGMENTATION

Prior to presenting our feature-based text segmentat
approach we want to outline clearly what the text segmen
tion step should do. This not only affects the algorithm
employed during the text segmentation but also those wh
can be used during the text recognition step. Unlike in o
previous work [10][11], where individual characters sti
may consist of several regions of different colors after t
text segmentation step, and most related work, the objec
of the text segmentation step here is to produce a bin
image that depicts the text appearing in the video (see F
ure 9). Hence, standard OCR software packages can be 
to recognize the segmented text.

Note that all processing steps are performed on color ima
in the RGB color space, not on grayscale images.

3.1 Color Segmentation

Most of the character features listed in Section 2 cannot
applied to raw images; rather, objects must be already av
able. In addition, some of the features require that act
characters be described by exactly one object in order to 
criminate between character and non-character objects.

Therefore, in an initial step, each frame is to be segmen
into suitable objects. The character features monochroma
ity and contrast with the local environment qualify as 
grouping and separation criterion for pixels, respective
Together with a segmentation procedure which is capable
extracting monochrome regions that contrast highly to th
environment under significant noise, suitable objects can
constructed. Such a segmentation procedure preserves
characters of artificial text occurrences. Its effect on mul
colored objects and/or objects lacking contrast to their lo
environment is insignificant here. Subsequent segmenta
steps are likely to identify the regions of such objects 
non-character regions and thus eliminate them. 

As a starting point we over-segment each frame by a sim
yet fast region-growing algorithm [27]. The threshold valu
for the color distance is selected by the criterion to preclu
that occurring characters merge with their surrounding
Hence, the objective of the region-growing is to strict
avoid any under-segmentation of characters (under nor
conditions).

By and by, then, regions are merged to remove the over-s
mentation of characters while at the same time avoid
their under-segmentation. The merger process is based
the idea that the use of standard color segmentation a
rithms such as region-growing [27] or split-and-merge [6]
improper in highly noisy images such as video frames, sin
these algorithms are unable to distinguish isotropic ima
structures from image structures with local orientatio
Given a monochrome object in the frame under high ad
tive noise, these segmentation algorithms would always s
up the object randomly into different regions. It is the obje
tive of the merger process to detect and merge such ran
split-ups of objects.
4
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We identify random split-ups via a frame’s edge and orienta-
tion map. If the border between two regions does not coinci-
dent with a roughly perpendicular edge or local orientation
in the close neighborhood, the separation of the regions is
regarded as incidentally due to noise, and they are merged.
The advantage of edges over orientation is that they show
good localization but may not be closed and/or too short to
give a reliable estimate of the angle of the edge. In contrast,
local orientation shows poor localization but determines
precisely the angle of contrast change. Together they allow
to detect most random split-ups of objects.

Edges are localized by means of the Canny edge detector
extended to color images, i.e. the standard Canny edge
detector is applied to each image band. Then, the results are
integrated by vector addition. Edge detection is completed
by non-maximum suppression and contrast enhancement.
Dominant local orientation is determined by the inertia ten-
sor method as presented in [7].

The color segmentation is completed by merging regions of
similar colors. This segmentation algorithms yields an
excellent segmentation of a video with respect to the artifi-
cial characters. Usually most of them will now consist of
one region. 

Note, that the color segmentation employed can be classi-
fied as an inhomogeneous and anisotropic segmentation
algorithm which preserves fine structures such as characters.
More details about this segmentation step can be found in
[9].

3.2 Contrast Segmentation

For our task a video frame can also be segmented properly
by means of the high contrast of the character contours to
their surroundings and by the fact that the strength of the
stroke of a character is considerably less than the maximum
character size.

For each video frame a binary contrast image is derived in
which set pixels mark locations of sufficiently high absolute
local contrast. The absolute local color contrast at position
I(x,y) is measured by

,

where  denote the color metric employed (here City-blo
distance), Gk,l a Gaussian filter mask, and r the size of the
local neighborhood. 

Next, each set pixel is dilated by half the maximu
expected strength of the stroke of a character. As a result
character pixels as well as some non-character pixels wh
also show high local color contrast are registered in 
binary contrast image (see Figure 2). Likewise for color se
mentation, the contrast threshold is selected in such a w
that, under normal conditions, all character-pixels are ca
tured by the binary contrast image.

Finally, all regions which overlap by less than 80% with th
set pixels in the binary contrast image are discarded.

3.3 Geometry Analysis

Characters are subjected to certain geometric restrictio
Their height, width, width-to-height ratio and compactne
do not take on any value, but usually fall into specific rang
of values. If a region’s geometric features do not fall in
these ranges of values the region does not meet the req
ments of a character region and is thus discarded. 

The precise values of these restrictions depend on the ra
of the character sizes selected for segmentation. In 
work, the geometric restrictions have been determin
empirically based on the bold and bold italic versions of t
four TrueType fonts Arial, Courier, Courier New and Time
New Roman at the sizes of 12pt, 24pt, and 36 pt (4*3*4 =
fonts in total). The measured ranges of width, height, wid
to-height ratio and compactness are listed in Table 1. 

Figure 1: Result of the color segmentation

Geometric Restriction Min Max

width 1 31

height 4 29

width-to-height-ratio 0.56 7.00

Contrastabs color, x y,( ) Gk l, Ix y, I– x k– y l–,⋅

l r–=

r

∑
k r–=

r

∑=

 

Figure 2: Contrast Segmentation
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Since we have assumed that each character consists of
exactly one region after the color segmentation step, the
empirical values can be used directly to rule out non-charac-
ter regions. All regions which do not comply with the mea-
sured geometric restrictions are discarded. Since the 24
fonts analyzed are only a small sample of all possible fonts,
the measured ranges were extended slightly. The following
ranges have been used to describe potential character
regions:

•

•

•

•

The segmentation result after applying the geometric restric-
tions to the sample video is shown in Figure 3.

3.4 Texture Analysis

Text appearances are distinguished by a characteristic spa-
tial pattern on the word and text line level: In at least one
direction, the direction of writing, periodically strong con-
trast fluctuations can be notified. This periodicity is peculiar
to words and text lines. 

This particular texture pattern of text was already used in [8]
to separate text columns from images, graphics and other
non-text parts of a document. In this work, however, it is
used to separate text within images. Also, and unlike in [22],
it is not used as the first feature in the text segmentation pro-
cess. This has several advantages. The color segmentation
identifies many large color regions touching the characters.
Thus, by simply eliminating those regions which do not
comply with the geometric features of characters, parts of

the characters’ outlines can be cut out precisely. If, howev
text were segmented first by means of its characteristic t
ture, we would lose this advantageous feature of the co
segmentation. Especially the large non-character regi
would be reduced to small left-overs which often could n
longer be ruled out by their geometric features.

Against a (more or less) uniform background one c
observe that the direction of the contrast fluctuatio
changes rhythmically. In most cases, this regular alternat
of the contrast direction can also be observed in text sup
imposed on an inhomogeneous background since it is t
often surrounded by a type of aura. This aura is usua
added during video production to improve the legibility (se
“Buttern” in Figure 4(a)). Exploiting this feature in a suit
able manner enables edges between non-character regio
be distinguished from edges between a character and a 
character region. 

In detail, the texture analysis consists of two steps:

1. The extraction of potential words or lines of text and t
estimate of their writing direction.

2. The test whether the potential words and lines of te
exhibit frequent contrast alternations in the estimat
writing direction.

Potential words and lines of text can be determined 
enlargement of the potential character regions of a suita
size. Due to the great proximity of the characters of a wo
and sometimes also between the words in a text line, th
regions are merged into a so-called potential word cluster.
Note that often a small number of non-character regions 
merged into potential word clusters, and sometimes n
character regions merge into a cluster on their own. T
amount of enlargement necessary depends on the ave
running width (i.e. the size of the character spaces), which
turn is influenced by the character size. In the experimen
the necessary expansion was determined experimentall
be 2 pixels.

Next, the writing direction within a potential word cluster i
to be estimated. Unlike existing approaches, we do 
assume that text is aligned horizontally [19][22]. Althoug
this assumption is quite reasonable in many cases, it rest
the application domain of the text segmentation algorith
unnecessarily. 

The previous segmentation steps having already separ
the words from large non-character regions, the writi
direction of a word cluster can then be estimated via 
direction of its main axis. This is defined as the ang

compactness 0.21 1.00

Geometric Restriction Min Max

Table 1:Empirical measured ranges of values using 24 
bold TrueType fonts

height 4 90,[ ]∈

width 1 120,[ ]∈

ratio 0.4 1,[ ]∈

compactness 0.15 1,[ ]∈

Figure 3: Result after the analysis of the regions’ geometric
features (246 regions left)

Figure 4: Example of text surrounded by a blue aura t
improve readability (a) and its writing direction
automatically determined (b)

(a) (b)
6
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between the x axis and the axis, around which the word
cluster can be rotated with minimum inertia (see Figure
4(b)). In accordance with [7], this direction is determined by

with the moments

.

Two cases are to be considered more precisely:

1. The moments of inertia of the main and secondary axis
(designated J1 and J2) differ only insignificantly (J1/ J2
<1.5). This happens only in the case of very short words
such as the word “IN”. Since in this case the estimated
direction is likely to deviate greatly from the actual
writing direction (e.g. diagonal for “IN”), clusters with
J1/ J2 <1.5 are never rejected.

2. Errors as to the estimated writing direction may also
appear for short words and J1/ J2 >= 1.5 if the word
cluster takes on a crooked form due to an unfavorable
character sequence such as “You”. However, the magni-
tude of the inaccuracy of the estimated writing direction
keeps within a scope of  degree. Thus, it can be
expected that most characters in a word cluster are still
cut by the main axis. Together with the necessary toler-
ance in the selection of edges in writing direction in the
subsequent texture analysis step, no special precautions
are necessary.

Once the writing direction of a potential word cluster has
been determined, the texture can be analyzed. Decisive for
the exact parameters of the texture analysis of a cluster is the
required minimal number Nmin of characters which have to
be in close vicinity to each other in writing direction. In gen-
eral, we demand that at least 2Nmin edges have to be present
within a range of 2CmaxDist. In the experiments the parame-
ters were set to Nmin = 2 and CmaxDist = 1.5 * (max. charac-
ter width) = 46. The edges and their directions were
determined by means of the Canny operator, extended to
color images.

Numerous non-character regions, which are difficult to
identify in the preceding steps, can now be found and
removed by means of texture analysis. The result for the
sample video is depicted in Figure 5.

3.5 Motion Analysis

Another feature of artificial text occurrences is that they
either appear statically at a fixed position on the screen or
move linearly across the screen. More complicated motion
paths are extremely improbable between the on- and disas-
sembly of text on the screen. Any other, more complex
motion would make it much harder to track and thus read
the text, and this would contradict the intention of artificial
text occurrences. This feature applies both to individual
characters and whole words. Note, however, that in com-

mercials this rule is sometimes broken intentionally in ord
to carry an unconscious message to the spectators. 

It is the objective of motion analysis to identify region
which cannot be tracked or which do not move linearly, 
order to reject them as non-character regions. Unlike in 
previous system [10][11] and all other related work, th
object here is to track the characters not only over a sh
period of time but over the entire duration of their appea
ance in the video sequence. This enables us to ext
exactly one bitmap of every text occurring in the video -
feature which e.g. is needed by our video abstracting sys
[12]. Motion analysis can also be used to summarize 
multiple recognition results for each character to impro
the overall recognition performance. 

In addition, a secondary objective of motion analysis is th
the output should be suitable for standard OCR softw
packages. Essentially this means that a binary image m
be created.

Formation of Character Objects

A central term in motion analysis is the character object C.
It gradually collects from contiguous frames all thos
regions which belong to one individual character. Since 
assume that a character consists of exactly one region
image after the color segmentation step, at most one reg
per image can be contained in a character object. 

A character object C is described formally by the triple
. A stands for the feature values of the regio

which were assigned to the character object and which 
employed for comparison with other regions,  for th
frame number interval of the regions’ appearance and v for
the estimated and constant speed of the character in pixels/
frame.

In a first step, each region ri in frame n is compared against
each character object  constructed from th
frames 1 to n-1. To this are compared the mean color, si
and position of the region ri and the character objects

. In addition, if a character object consists o
at least two regions, each candidate region ri is checked

φ 1
2
---arc

2m1 1,
m2 0, m0 2,–
---------------------------tan=

mp q, x1 µx1
–( )p

x2 µx2
–( )q

x1 x2,
∑=

20±

Figure 5: Result after texture analysis (242 areas)

A a e,[ ] v, ,( )

a e,[ ]

Cj j, 1 … J, ,{ }∈

Cj j, 1 … J, ,{ }∈
7



whether it fits smoothly into a linear motion path of the
character object.

If a region is sufficiently similar to the best-matching char-
acter object, a copy of that character object will be created,
and the region added to the initial character object. We need
to copy the character object before assigning a region to it
since, at most, one region ought to be assigned to each char-
acter object per frame. Due to necessary tolerances in the
matching procedure, however, it is easy to assign the wrong
region to a character object. The falsely assigned region
would block that character object for the correct region. By
means of the copy, however, the correct region can still be
matched to its character object. It is decided at a later stage
in motion analysis, whether the original character object or
one of its copies is to be eliminated.

If a region does not match to any character object existing so
far, a new character object will be created and initialized
with the region. 

Also, if a region best fits to a character object that consists
of fewer than three regions, a new character object is created
and initialized with the region. This prevents a possible
starting region of a new character object from being sucked
up by a still shorter and thus unstable character object.

Finally upon the processing of frame n, all character objects
which offend against the features of characters are elimi-
nated. In detail 

• all copies of a character object are discarded which
were created in frame n-1 but not continued in frame n
as well as 

• all character objects which could not be continued dur-
ing the last 6 frames or whose forecasted location lies
outside the frame 
and

• whose regions do not fit well to each other, (note
that the requirements are less strict during the
construction of the character object, becoming
more restrictive once a character object is fin-
ished.), 

• which are shorter than 5 frames, 
• which consist of fewer than 4 regions or
• whose regions move faster than 9 pixels/frame.

The values of the parameters were determined experimen-
tally. 

After processing all frames of the video sequence some
character objects will represent a subset of some larger char-
acter objects. This peculiarity results directly from the
design of the formation procedure for character objects.
Whenever a region was added to a character object consist-
ing of fewer than 3 regions, a new character object (initial-
ized with that region) was created, too. Thus, two character
objects C1 and C2 are merged if , ,
and .

Formation of Text Objects

In order to, firstly, eliminate character objects standing
alone which either represent no character or a character of

doubtful importance, and secondly, to group character
objects into words and lines of text, character objects are
merged into so-called text objects. A valid text object

 is formed by at least three character
objects which approximately 

1. occur in the same frames, 
2. show the same (linear) motion,
3. are the same mean color, 
4. lie on a straight line and 
5. are neighbors.

These grouping conditions result directly from the features
of Roman letters.

We use a fast heuristics to construct text objects: At the
beginning all character objects belong to the set of the char-
acter objects to be considered. Then, combinations of three
character objects are built until they represent a valid text
object. These character objects are moved from the set of the
character objects into the new text object. Next, all character
objects remaining in the set which fit well to the new text
object are moved from the set to the text object. This pro-
cess of finding the next valid text object and adding all fit-
ting character objects is carried out until no more valid text
objects can be formed or until all character objects are
grouped to text objects.

To avoid splintering multi-line horizontal text into vertical
groups, this basic grouping algorithm must be altered
slightly. In a first run, only text objects are constructed
whose characters lie roughly on a horizontal line. The mag-
nitude of the gradient of the line must be less than 0.25. In a
second run, character groups are allowed to run into any
direction.

During our experiments we noticed that a character is some-
times described by two valid character objects which regis-
ter the character in different but interleaved frames (see
Figure 6). In a further processing step, such character
objects are merged.

a1 e1,[ ] a2 e2,[ ]⊆ v1 v2∼
A1 A2⊆

Ti Ci1
… Cin i( )

, ,{ }=

region 
in 

frame n

Figure 6: Merging two interleaved character objects
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The text objects constructed so far are still incomplete. The
precise temporal range  of occurrence of each charac-
ter object Ci of a text object are likely to differ somewhat. In
addition, some character objects have gaps at frames in
which, for various reasons, no appropriate region was found.

The missing characters are now interpolated. At first, all
character objects are extended to the maximum length over
all character objects of a text object, represented by

. The missing regions
are interpolated in two passes: a forward and a backward
pass. The backward pass is necessary in order to predict the
regions missing at the beginning of a character object. This
procedure is depicted in Figure 7.

Visual Presentation of the Results

Motion analysis delivers detailed information about which
text occurs when and where. In order to enable further pro-
cessing in a most flexible way, three different kinds of out-
put images are created:

1. A binary image per frame showing the extracted char-
acters at their original location (see Figure 8)

2. A binary image per frame showing each extracted text
object on a new line. The relative positions of the char-
acters within a text object are preserved (see Figure 9).

3. A binary and color image showing all text objects
extracted from the video sequence (see Figure 10). We
call this representation a text summary.

4  TEXT RECOGNITION

For text recognition we incorporated the OCR-Software
Development Kit Recognita V3.0 for Windows 95 into our

implementation. Two recognition modules are offered: one
for typed and one for handwritten text. Since most artificial
text occurrences appear in block letters, the OCR module for
typed text was used to translate the rearranged binary text
images into ASCII text. The recognized ASCII text in each
frame was written out into a database file. 

Due to the unusually small character size for such software
packages, the recognition performance partially varied con-
siderably, even from frame to frame as illustrated in Figure
11.

Principally, the recognition result can be improved by taking
advantage of the multiple instances of the same text over
consecutive frames, because each character in the text often
appears somewhat altered from frame to frame due to noise,
and changes in background and/or position. Combining their
recognition results into one final character result might
improve the overall recognition performance. However, as
we will see in the next section, it is not needed by our index-
ing scheme.

5  INDEXING AND RETRIEVAL

The upcoming question is how to use the text recognition
result to index and retrieve digital videos. A related question

ai ei,[ ]

min ai1
… ain i( )

, ,{ } max bi1
… bin i( )

, ,{ },[ ]

Figure 7: Completion of character objects (CO)
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Figure 8: Binary image per frame at original location

Figure 9: Rearranged binary image per frame
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Figure 10:Text summary

frame n

frame n+1

Figure 11: Bildein- und Textausgabe zweier aufeinanderfolgender Videobilder
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with significant impact on the answer to the original ques-
tion is what minimal text recognition quality should we
assume/demand?

Numerous different font families in all sizes, and sometimes
even artistic fonts, are used in artificial text in digital videos.
Therefore, OCR errors are very likely. We also have to deal
with many garbage characters which result from non-char-
acter regions that could neither be eliminated by our system
nor by the OCR module. Consequently, our indexing and
retrieval scheme should deal well with a poor recognition
quality.

Indexing

The indexing scheme is quite simple. The recognized char-
acters for each frame are stored after deletion of all text lines
with fewer than 3 characters. The reason for this deletion is
that, as experience shows, text lines with up to two charac-
ters are produced mainly by non-character objects and, even
if not, consist of semantically weak words such as “a”, “by”,
“in”, “to”.

Retrieval

Video sequences are retrieved by specifying a search string.
Two search modes are supported:

• exact substring matching and
• approximate substring matching.

Exact substring matching returns all frames with substrings
in the recognized text that are identical to the search string.
Approximate substring matching tolerates a certain number
of character differences between the search string and the
recognized text. For approximate substring matching we use
the Levenshtein distance L(A,B) between a shorter search
string A and longer text string B. It is defined as the mini-
mum number of substitutions, deletions and insertions of
characters needed to transform A into a substring of B [20].
For each frame we calculate the minimal Levenshtein dis-
tance. If the minimal distance is below a certain threshold,
the appearance of the string in the frame is assumed. Since it
can be expected that long words are more likely to contain
erroneous characters, the threshold value depends on the
length of the search string A.

For instance, if a user is interested in commercials from
Chrysler, he/she uses “Chrysler” as the search string 
specifies the allowance of up to one erroneous character
four characters, i.e. the allowance of one edit operat
(character deletion, insertion, or substitution) to convert t
search string “Chrysler” into some substring of recogniz
text.

The retrieval user interface of our system is depicted in F
ure 12. In the “OCR Query Window” the user formulate
his/her query. The result is presented in the “Query Res
Window” as a series of small pictures. Multiple hits withi
one second are grouped into one picture. A single click o
picture displays the frame in full resolution, while a doub
click starts the external video browser.

Figure 12:Retrieval user interface
11
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6  EXPERIMENTAL RESULTS

In this chapter we discuss two things: Firstly, the perfor-
mance of our text segmentation and recognition algorithms,
and secondly their suitability for indexing and retrieval.
Since text is used differently in different film parts and/or
film genres, both issues are dealt with separately for three
exemplary video genres:

• feature films (i.e. pre-title sequences, credit titles and
closing sequences with title and credits),

• commercials, and
• newscasts.

Ten video samples for each class have been recorded, add-
ing up to 22 minutes of video. They were digitized from
several German and international TV broadcasts as 24-Bit
JPEG images at a compression ratio of 1:8, a size of 384 by
288 pixels and at 25 fps. All JPEG images were decoded
into 24-bit RGB images.

6.1 Text Segmentation

Before processing each video sample with our text segmen-
tation algorithms, we manually wrote down the text appear-
ing in the samples and the frame number range of its
visibility. Then we processed all ten video samples with our
segmentation algorithms and investigated whether or not a
character had been segmented. To be more precise: we mea-
sured the quality of our segmentation with regard to the
main objective not to discard character pixels. The results
for each video genre are averaged and summarized in Table
2. The segmentation performance is high for title sequences
or credit sequences and newscasts, ranging from 88% to
96%. 

It is higher for video samples with moving text and/or mov-
ing background than for video samples where both are sta-
tionary. In the latter case our algorithms cannot profit from
multiple instances of the same text in consecutive frames,
since all instances of the same character have the same
background. Moreover, motion analysis cannot rule out
background regions. Thus, the segmentation performance is
lower. Stationary text in front of a stationary scene can often
be found in commercials. Therefore, segmentation perfor-
mance in commercials is lower (66%).

The elimination of non-character pixels is measured by the
reduction factor. It specifies the performance of the segmen-
tation algorithms with regard to our secondary objective: the
reduction of the number of pixels which have to considered
during the recognition process. The amount of reduction has
a significant impact on the quality of character recognition
and on speed in the successive processing step. The reduc-
tion factor is defined as 

It ranges from 0.04 to 0.01, thus demonstrating the go
performance of the text segmentation step. More details 
given in [9].

6.2 Text Recognition

The performance of the text recognition step is evaluated
two ratio measurements:

• the ratio of the characters recognized correctly to
the total number of characters and

• the ratio of the additional garbage characters to
the total number of characters.

We call the ratios character recognition rate (CRR) and gar-
bage character rate (GCR), respectively. However, their
exact values have to be determined manually on a tedious
basis, frame by frame. Thus, we approximate their values by
the following formulas, whose values can be calculated
automatically from the manually determined values of text
appearances in the segmentation experiments and the calcu-
lated recognition result.

where

for , Wf the set of all words
actually appearing in frame f and tf the text recognized in
frame f. 

Note that the garbage character rate (GCR) is only defined
for frames in which text occurs. For frames lacking text we
cannot relate the garbage characters to the total number of
characters. Thus, we just count their number per text-free
frame and call it the garbage character count (GCC).

reduction factoravg

1
# of frames in video
------------------------------------------------

# of pixels left in frame f
# of pixels in original frame f
----------------------------------------------------------------------∑⋅=

title sequences or 
credit sequences

commercials newscasts

# of frames 2874 579 3147

# of characters 2715 264 80

thereof seg-
mented

2596 (96%) 173 (66%) 79 (99%)

RFavg
0.04 0.01 0.01

Table 2: Segmentation results

CRRavg
1

# of frames with text
-------------------------------------------------- CRRf

f video∈〈 〉 f contains text〈 〉∧
∑⋅=

GCRavg
1

# of frames with text
-------------------------------------------------- GCRf

f video∈〈 〉 f contains text〈 〉∧
∑⋅=

CRRf 1
1

Wf
--------–

L w tf,( )
w

-----------------

w Wf∈
∑⋅≈

GCRf max 0
# of recognized characters in frame f

# of actual characters in frame f
---------------------------------------------------------------------------------------- 1–,

 
 
 

≈

f video∈〈 〉 f contains text〈 〉∧

GCCavg
1

# of frames without text
---------------------------------------------------------

# of recognized characters in frame f

〈 〉 〈 〉
∑⋅

=
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The measurements show that the recognition rate is fairly
low, ranging from 41% to 76% (see Table 3). Also, the gar-
bage count is quite high for frames without text, especially
for our samples of newscasts and commercials due to their
many stationary scenes with stationary text. This observa-
tion gives us a strong lead for future research: A computa-
tionally cheap detection method for text-free frames has to
be developed that can reduce the GCC considerably.

OCR errors and misses originate from the narrowness of
current OCR package software with respect to our domain.
They are not adjusted to the very small font sizes used in
videos nor to the specific mistakes of the text segmentation
step. 

A peculiarity of the Recognita OCR engine can be noticed
when comparing the GCR and GCC values. While non-
character regions are easily discarded by the OCR engine in
frames with text, it has significant difficulties in text-free
frames. Thus, the GCC exploded for commercials and news-
casts, in which most of the frames were text-free in contrast
to the title sequences or credit sequences.

6.3 Retrieval Effectiveness

Retrieval effectiveness is the ability of information retrieval
systems to retrieve only relevant documents. Applied to our
domain, we measure the effectiveness of finding all video
locations depicting a query word while curbing the retrieval
of false locations prompted by recognition errors or garbage
strings generated from non-characters regions which sur-
vived both in the segmentation and recognition steps.

There exist two well-accepted measures for the evaluation
of retrieval effectiveness. These have been adjusted to our
purpose: recall and precision [17]. Recall specifies the ratio
of the number of relevant video locations found to the total
number of relevant video locations in the video database;
precision specifies the ratio of the number of relevant
retrieval results to the total number of returned video loca-
tions. We assume that a video location depicting the search
text is retrieved correctly if at least one frame of the frame
range has been retrieved in which the query text appears.

Table 4 depicts the measured average values for recall and
precision. They are calculated from the measured recall and
precision values, using each word that occurs in the video
samples as a search string. The recall value for approximate
substring matching ranges from 0.54 to 0.82, i.e we get 54%
to 82% of the relevant material, which is quite high. Also
the precision value is considerable. Thus, our proposed text
segmentation and text recognition algorithms can be effec-
tively used to retrieve relevant video locations. The retrieval
application in Figure 12 gives an example.

6.4 Availability

Code for running the text segmentation algorithms will be
available at publishing time via FTP from the host ftp.infor-
matik.uni-mannheim.de in the directory /pub/MoCA/. In
addition, readers interested in seeing some of the video clips
can retrieve them from http://www.informatik.uni-man-
nheim.de/informatik/pi4/projects/MoCA/MoCA_TextRec-
ognition/.

7  RELATED WORK

Numerous reports have been published about indexing and
retrieval of digital video sequences, each concentrating on
different aspects. Some employ manual annotation [5][2],
others compute indices automatically. Automatic video
indexing generally uses indices based on the color, texture,
motion, or shape of objects or whole images [3][18][24].
Sometimes the audio track is analyzed, too, or external
information such as story boards and closed captions is used
[13]. Other systems are restricted to specific domains such
as newscasts [24], football, or soccer [4]. None of them tries
to extract and recognize automatically the text appearing in
digital videos and use it as an index for retrieval.

Existing work on text recognition has focused primarily on
optical recognition of characters in printed and handwritten
documents in answer to the great demand and market for
document readers for office automation systems. These sys-
tems have attained a high degree of maturity [14]. Further
text recognition work can be found in industrial applica-
tions, most of which focus on a very narrow application
field. An example is the automatic recognition of car license
plates [21]. The proposed system works only for characters/
numbers whose background is mainly monochrome and
whose position is restricted. 

There exist some proposals regarding text detection in and
text extraction drom complex images and video. In [19],
Smith and Kanade briefly propose a method to detect text in
video frames and cut it out. However, they do not deal with
the preparation of the detected text for standard optical char-
acter recognition software. In particular, they do not try to
determine character outlines or segment the individual char-
acters. They keep the bitmaps containing text as they are.
Human beings have to parse them. They characterize text as
a “horizontal rectangular structure of clustered sharp edg
[19] and use this feature to identify text segments. Th
approach is completely intra-frame and does not utilize 

video type
title sequences or 
credit sequences

commercials newscasts

CRR 0.76 0.65 0.41

GCR 0.09 0.14 0.46

GCC 0 25.44 16

Table 3: Recognition results

video type
exact substring 

matching
approx. substring 

matching

recall precision recall precision

title sequences or 
credit sequences

0.60 0.71 0.78 0.54

commercials 0.47 0.73 0.54 0.65

newscasts 0.64 0.95 0.82 0.60

Table 4: Retrieval results.
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multiple instances of the same text over successive frames
to enhance segmentation and recognition performance.

Yeo and Liu propose a scheme of caption detection and
extraction based on a generalization of their shot boundary
detection technique for abrupt and gradual transitions to
locally restricted areas in the video [23]. According to them,
the appearance and disappearance of captions are defined as
a localized cut or dissolve. Thus, their approach is inher-
ently inter-frame. It is also very cheap computationally since
it operates on compressed MPEG videos. However, captions
are only a small subset of text appearances in video. Yeo and
Liu’s approach seems to fail when confronted with general
text appearance produced by video title machine, such as
scroll titles, since these text appearances cannot just be clas-
sified by their sudden appearance and disappearance. In
addition, Yeo and Liu do not try to determine the characters’
outline, segment the individual characters and translate
these bitmaps into text. 

Zhong et. al. propose a simple method to locate text in com-
plex images [26]. Their first approach is mainly based on
finding connected monochrome color regions of certain
size, while the second locates text based on its specific spa-
tial variance. Both approaches are combined into a single
hybrid approach.

Wu et. al. propose a four-step system that automatically
detects text in and extracts it from images such as photo-
graphs [22]. First, text is treated as a distinctive texture.
Potential text locations are found by using 3 second-order
derivatives of Gaussians on three different scales. Second,
vertical strokes coming from horizontally aligned text
regions are extracted. Based on several heuristics, strokes
are grouped into tight rectangular bounding boxes. These
steps are then applied to a pyramid of images generated
from the input images in order to detect text over a wide
range of font sizes. The boxes are then fused at the original
resolution. In a third step, the background is cleaned up and
binarized. In the fourth and final step, the text boxes are
refined by repeating steps 2 and 3 with the text boxes
detected thus far. The final output produces two binary
images for each text box and can be passed by any standard
OCR software. Wu et. al. report a recognition rate of 84%
for 35 images.

Another interesting approach to text recognition in scene
images is that of Ohya, Shio, and Akamatsu [15]. Text in
scene images exists in 3-D space, so it can be rotated, tilted,
slanted, partially hidden, partially shadowed, and it can
appear under uncontrolled illumination. In view of the many
possible degrees of freedom of text characters, Ohya et al.
restricted characters to being almost upright, monochrome
and not connected, in order to facilitate their detection. This
makes the approach of Ohya et al. feasible for our aim,
despite their focus on still images rather than on video. Con-
sequently they do not utilize the characteristics typical of
text appearing in video. Moreover, we focus on text gener-
ated by video title machines rather than on scene text.

8  CONCLUSIONS

We have presented our new approach to text segmenta
and text recognition in digital video and demonstrated 
suitability for indexing and retrieval. The text segmentatio
algorithms operate on uncompressed frames and make
of intra- and inter-frame features of text appearances in d
tal video. The algorithm has been tested on title sequen
of feature films, newscasts and commercials. The perf
mance of the text segmentation algorithms was always h

Unlike in our previous work [10][11], where individua
characters still may consist of several regions of differe
colors after the text segmentation, the objective of the c
rent text segmentation was to produce a binary image t
depicted the text appearing in the video. Hence, this enab
standard OCR software packages to be used to recognize
segmented text. Moreover, the tracking of characters o
the entire duration of their appearance in a video sequenc
a feature unique to our text segmentation algorithms t
distinguishes them from all other related work.

The recognition performance of the OCR-Software Dev
opment Kit Recognita V3.0 for Windows 95 on our tex
segmented video was sufficient for our simple indexin
scheme. We demonstrated the usefulness of the recogn
results for retrieving relevant video scenes.

Many new applications of our text segmentation algorithm
are conceivable. For instance, they can be used to find
beginning and end of a feature film, since these are fram
by title sequences (pre-title and closing sequence). Or t
can be used to extract its title [12]. In addition, the locati
of text appearances can be used to enable fast-forward
fast-rewind to interesting parts of a video. This particul
feature might be useful when browsing commercials a
sportscasts. Together with automatic text recognition alg
rithms, the text segmentation algorithms might be used
find higher semantics in videos. 
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