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Abstract. The transportation of prerecorded, compressed
video data without loss of picture quality requires the net-
work and video servers to support large fluctuations in band-
width requirements. Fully utilizing a client-side buffer for
smoothing bandwidth requirements can limit the fluctuations
in bandwidth required from the underlying network and the
video-on-demand servers. This paper shows that, for a fixed-
size buffer constraint, the critical bandwidth allocation tech-
nique results in plans for continuous playback of stored video
that have (1) the minimum number of bandwidth increases,
(2) the smallest peak bandwidth requirements, and (3) the
largest minimum bandwidth requirements. In addition, this
paper introduces anoptimal bandwidth allocationalgorithm
which, in addition to the three critical bandwidth allocation
properties, minimizes the total number of bandwidth changes
necessary for continuous playback. A comparison between
the optimal bandwidth allocation algorithm and other criti-
cal bandwidth-based algorithms using 17 full-length movie
videos and 3 seminar videos is also presented.
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1 Introduction

Video applications, such as video-on-demand services, rely
on both high-speed networking and data compression. Data
compression can introduce burstiness into video data streams
which can complicate the problem of network and server
resource management. For live-video applications, the prob-
lem of video delivery is constrained by the requirement that
decisions must be made on-line and that the delay between
sender and receiver must be minimized. As a result, live-
video applications may have to settle for weaker guarantees
of service or for some degradation in quality of service.
Work on problems raised by the requirements of live video
includes work on statistical multiplexing [2, 11], smooth-
ing in exchange for delay [8], jitter control [12, 13], and
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adjusting the quality of service to fit the resources avail-
able [10]. Stored video applications, on the other hand, can
take a more flexible approach to the latency of data deliv-
ery. In particular, they can make use of buffering to smooth
the burstiness introduced by data compression. Because the
entire video stream is knowna priori, it is possible to calcu-
late a complete plan for the delivery of the video data that
avoids both the loss of picture quality and the loss of network
bandwidth due to overstatement of bandwidth requirements,
making network and server scheduling easier.

The utility of prefetching is quite simple to explain. Since
the bytes for any given frame can be supplied either by
the network or by a prefetch buffer, the burstiness of the
network bandwidth requirement can be controlled by filling
the prefetch buffer in advance of each burst by delivering
more bytes across the network than needed, and draining it
in the course of the burst. The size of the prefetch buffer,
of course, determines the size of burst that can be averaged
out in this way. With a small buffer, only a limited amount
of data can be prefetched without overflowing the buffer, so
the bandwidth required of the network will remain relatively
bursty. With a larger buffer, on the other hand, there is the
possibility that most of the burstiness of a video clip can
be eliminated through prefetching. This, however, requires a
plan for prefetching the data that ensures that the large buffer
is filled in advance of bursts which place high demand upon
the buffer.

In a previous paper, we introduced the notion ofcriti-
cal bandwidth allocation(CBA), which provides plans for
smoothing the network bandwidth by utilizing a buffer of
a fixed size [6]. The critical bandwidth algorithm allows
for long sequences of monotonically decreasing bandwidth
requirements, such that, at any point during playback, the
bandwidth allocated is the minimum constant bandwidth
necessary to play back the video without buffer overflow
or underflow. In this paper, we first show that the CBA al-
gorithm results in plans for the continuous playback of video
that have (1) the minimum number of bandwidth increases,
(2) the smallest peak bandwidth requirements, and (3) the
largest minimum bandwidth requirements. We then intro-
duce (and prove) an optimal bandwidth allocation algorithm
for stored video which, in addition to the properties of the
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CBA algorithm, minimizes the total number of bandwidth
changes for continuous, uninterrupted video playback. That
is, the algorithm guarantees that the plan does not cause the
available buffer to underflow or to overflow while producing
the fewest possible changes in bandwidth.

In the following section, a description of the original
critical bandwidth algorithm is presented along with an op-
timal version of the algorithm. A proof of optimality is also
presented for the optimal bandwidth algorithm. The evalua-
tion section compares and contrasts the alternative smooth-
ing algorithms using 17 full-length Motion-JPEG-encoded
movies. Finally, a summary and conclusions about the im-
portance of smoothing to the design of network services is
presented.

2 Bandwidth allocation algorithms

In dealing with compressed video data, smoothing tech-
niques attempt to remove the burstiness with appropriate
prefetching and delay. An understanding of how burstiness
is introduced into a video stream can provide insight into the
effectiveness of the various smoothing algorithms. For prere-
corded streams compressed with algorithms such as MPEG
[1, 9], burstiness occurs at two scales: in small runs of frames
as a result of the pattern of frame types (I, P, or B) used in
compression and at a larger scale with variations in scene
content. As was originally shown, the CBA algorithm can
be an effective algorithm in smoothing variations in both
pattern and scene content burstiness [7]. In this section, we
review the critical bandwidth algorithm and prove several
of its key results. In addition, we introduce and prove the
optimal bandwidth allocation algorithm.

2.1 Critical bandwidth allocation

The CBA algorithm without regard to the smoothing buffer
size creates a bandwidth allocation plan for video data which
containsno increasesin bandwidth requirements for contin-
uous playback and does not require any prefetching of data
before playback can begin. By calculating such a bandwidth
plan, admission control is greatly simplified. That is, the net-
work manager needs to only ask – “Is there enough band-
width to start the flow of data?”. Because the CBA algorithm
calculates the minimum bandwidths that are necessary for
continuous playback, the buffer size requirement for contin-
uous playback, may be fairly substantial for long video clips.
The buffer size requirement, however, is not as large as one
required by a single constant bandwidth allocation for the
entire video. For clarity, we say that a bandwidth allocation
plan consists of runs of constant bandwidth allocations.

We can describe the intuition behind the CBA algorithm
with a geometric model. Given any map of frame sizes for a
particular movie, a graph can be drawn that has the following
function:

Fmovie(i) =
i∑
j=1

FrameSizej .

This function is the running summation of frame sizes for
the movie, and must be a monotonically increasing function

Fig. 1. Critical bandwidth allocation example. Thesolid line in the graph
shows a possible graph forFmovie(i), while thedotted lineshows a plan
determined by the CBA algorithm. Thedotted set of linesshow the CBA
algorithm’s bandwidth plan that requires four decreases in bandwidth, while
the squareson the dotted lines show the junctures between runs. The slope
of each dotted line is the bandwidth requirement for that run. The minimum
buffer size is represented by the maximum vertical distance between the
critical bandwidth allocation plan and the functionFmovie(i)

(see Fig. 1). To avoid buffer underflow, any correct plan must
have the total bandwidth received (TBR) at frame i, such
that the following condition holds for all frames, i, within
the movie:

Fmovie(i) ≤ TBR(i) .

The CBA algorithm allocates a decreasing sequence of
constant bandwidths at the minimum bandwidths necessary
to play back the video without buffer underflow. This cor-
responds to creating a convex arc from the beginning of the
movie to the end of the movie with each run starting and end-
ing on the function Fmovie(i), where the slope of each line
(run) determines the bandwidth allocation that is required
for that run (see Fig. 1). As a result, the CBA algorithm re-
sults in a plan with monotonically decreasing bandwidths
[7]. While the CBA algorithm does not observe any lim-
its in available buffer space, it does calculate the minimum
necessary buffer to play the video clip with a single mono-
tonically decreasing sequence of bandwidth allocations. The
required buffer size is determined by the maximum verti-
cal distance between the bandwidth allocation plan and the
function Fmovie(i). The magnitude of this minimum buffer
size may vary for the same clip, depending on the encoding
scheme used and the long-term burstiness that results. Note
that a plan that has a single constant bandwidth requirement
would have a minimum buffer size of at least this amount
but is generally much higher.

Formally, letCB0, CB1, . . . , CBk be the runs created
by the CBA algorithms. Then the critical bandwidthCB0,
in bytes per frame, is defined as

CB0 = max
1≤i≤N

(∑i
j=1 framej

j

)
,

whereN is the number of frames in the video clip and
framej is the size in bytes of frame numberj. Thus, the
critical bandwidth is determined by the frame,i, for which
the average frame size fori and all prior frames in the video
clip is maximized. We call frame i, which sets the critical
bandwidth, thecritical point in the video clip, orCP0. In
the case where the maximum is achieved multiple times, we
chooseCP0 to be the last frame at which it is achieved.

Starting at frameCP0 + 1, we apply the definition of the
critical bandwidth to the rest of the clip, resulting inCB1 and
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Fig. 2. Critical bandwidth allocation with a maximum buffer constraint. This figure shows a possible graph forFhi(i) andFlow(i). The total delivered
bandwidth (up to some framei), must lie betweenFhi(i) andFlow(i) or buffer overflow or underflow will occur. Thedotted linesrepresents a critical
bandwidth allocation plan that does not consider buffer overflow. Any time the allocation plan goes aboveFhi(i), buffer overflow will occur

Fig. 3a,b. Critical bandwidth and critical point example. On theleft is an example calculation of a critical point using the maximum buffer constraint in
which a bandwidth decrease is required in the next run, while on theright is a similar calculation for the case where a bandwidth increase is required in
the following run. Thefrontiers of the runs are shown withdashed lines, while the hubs are represented by thethin solid lines

Fig. 4. Bandwidth increase search example. For the calculation of runk + 1 a search is performed on the line (frontier) connectingFhi(i) andFlow(j) to
find a starting point such that the critical point for the next run is as far out in time as possible

CP1. Thus, the critical bandwidths,CBn, are determined by
a sequence of critical pointCPn, where

CBn = max
CPn−1<i≤N

(∑i
CPn−1

framej

j − CPn−1

)
.

The use of the CBA algorithm is an effective technique
to use for systems that have appropriate amounts of buffer-
ing for several reasons. First, the playback of the video can
commence immediately. Second, the admission control al-
gorithm is simple –Is there enough bandwidth to start the
channel? Third, these bandwidths are the minimum constant
bandwidth necessary for continuous playback without re-
quiring an increase in the bandwidth allocation. Finally, we
note that is possible to reduce the beginning bandwidth re-
quirement by prefetching data for the initial run.

2.2 Critical bandwidth allocation
with maximum buffer constraint

Using the critical bandwidth algorithm results in the calcula-
tion of the minimum buffer size necessary to treat the entire
video clip as a monotonically decreasing sequence of band-
width allocations. In the event that this minimum buffer size
exceeds the buffer space available, then the client must in-
crease the bandwidth in the middle of the video clip, substi-
tuting increased network bandwidth for missing buffer band-
width. The CBA with a maximum buffer constraint has the
same properties as the CBA algorithm but increases band-
width only when necessary. As a result, the CBA algorithm
with a maximum buffer constraint (referred to from now on
as the CBA algorithm), results in a plan that

1) requires no prefetching of data before playback begins
2) has the minimum number of bandwidth increase changes
3) has the smallest peak bandwidth requirement
4) has the largest minimum bandwidth requirement

Using our geometric model, we can graph the functions,
Fhi(i) andFlow(i), whereFlow(i) is the same asFmovie(i)
from the last section andFhi(i) isFlow(i) offset by the buffer
size (see Fig. 2). That is,

Fhi(i) =

 i∑
j=1

FrameSizej

 +BufferSize

and

Flow(i) =
i∑
j=1

FrameSizej .

Any valid plan must have the following condition hold for
all frames,i, within the movie:

Flow(i) ≤ TBR(i) ≤ Fhi(i) .

Thus, any bandwidth allocation plan must stay between
Flow(i) and Fhi(i) to ensure that the buffer neither over-
flows nor underflows in the course of playing the video.
In the presence of a maximum buffer constraint, the CBA
plans must be modified in the runs that violate the buffer
limitations.

In our discussion, we modify the definition of critical
points and critical bandwidths to work with a maximum
buffer constraint. Given some starting point and the buffer
occupancy at the starting point, the critical bandwidth is the
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Fig. 5a,b.Bandwidth search example. This figure shows the two representa-
tive cases that arise when the search for runk results in another bandwidth
increase required in runk + 1. In (a), Flow(m) lies on the line created by
run k − 1. In (b), Flow(m) does not lie on runk − 1

Fig. 6a,b.Bandwidth search example. This figure shows the two represen-
tative cases that arise when the search for runk results in a bandwidth
decrease required in runk + 1. In (a), Flow(m) lies on the line created by
run k − 1. In (b), Flow(m) does not lie on runk − 1

bandwidth such that the buffer limitations are not violated
for the largest number of frames. This results in a unique
run, given the initial starting conditions. Figure 3 shows two
representative examples of critical points for runs that re-
quire a decrease and increase in bandwidth in the following
run and have an initial buffer occupancy of 0 bytes. For a
run which requires a bandwidth increase in thenextrun, the
critical point is determined by a point onFhi(i), while for a
run which requires a bandwidth decrease in the next run, the
critical point is determined by a point onFlow(i). Finally, as
shown in Fig. 3, we use the termhub to refer to the part of
the run that precedes the critical point and the termfrontier
to refer to the trajectory of the run past the critical point.

To create a bandwidth plan, the CBA algorithm starts
at frame 0 with no initial buffer and calculates the critical
bandwidth and critical point for the next run. Note, we can
generally reduce the initially high bandwidth requirement by
starting with an initial buffer size> 0, but it requires that
the start playback of video to be delayed. If the critical point
is onFlow(i), then a decrease in bandwidth is required in the
next run and the critical point is used as the starting point
for the next run. If the critical point for the run is onFhi(i),
then an increase in bandwidth is required in the next run. A
search on the frontier of the run is performed for a starting
point such that the next run results in a critical point that
is as far out as possible. Thus, bandwidth decreases result
in a convex arc around points onFlow(i), while increases
involve a slightly more complicated search.

For a runk + 1 that requires an increase in bandwidth
from the last runk, the bandwidth is allocated at a slope
such that the run extends as far out in time as possible. To
implement this, a search is performed on the frontier of run
k as shown in Fig. 4. The actual search algorithm is not of
great importance in the usual case, since these searches are
relatively infrequent. One can choose to implement either

Fig. 7. Critical bandwidth allocation with maximum buffer example. This
figure shows a sample construction of the CBA algorithm with a maximum
buffer constraint. Thedotted linesrepresent the runs within the bandwidth
plan

Fig. 8.This figure shows a runi−1 that (1) requires a decrease in bandwidth
from the previous run and (2) requires an increase in the next run

a linear or binary search. This search results in one of two
cases (if it is not the last run in the movie): either an increase
or decrease in the bandwidth allocation is required for the
next run. Examples of these are shown in Figs. 5 and 6,
respectively. This results in the following two bandwidth
increase search properties.

Property 1. For a run k which (1) increases the bandwidth
requirement over runk − 1 and (2) requires an increase in
bandwidth in runk + 1, the search for runk results in a
unique run which is determined by the slope between the
pointsFlow(m) andFhi(n), wherem < n.

This property essentially says that the search for runk
as shown in Fig. 5, which results in a bandwidth increase in
run k + 1, is defined by two points, one fromFlow(i) and the
other fromFhi(i). In addition, because runk + 1 requires an
increase in bandwidth, the frontier of runk must end on a
point onFlow(i).

Property 2. For a run k which (1) increases the bandwidth
requirement over runk − 1 and (2) requires an decrease in
bandwidth in runk + 1, the search for runk results in a run
which is determined by a slope between the pointsFhi(m)
andFlow(n), wherem < n.

This property is the similar result for bandwidth de-
creases. That is, the search in runk is defined by two points,
one fromFhi(i) and the other fromFlow(i). Figure 7 shows
a sample construction using the CBA algorithm.

To recapitulate, the CBA algorithm consists of allocating
runs at their critical bandwidths. For bandwidth decreases,
the end of the run is set to the critical point and the next
run is started on the next frame. For bandwidth increases, a
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search is performed on the frontier of the last run to find a
starting point such that the critical point of the next run is
maximized. By searching for a starting point such that the
critical point is as far out in time as possible for bandwidth
increases, an important theorem about the critical bandwidth
algorithm can be derived.

Theorem 1.The critical bandwidth allocation algorithm with
a fixed maximum buffer constraint results in a plan for play-
back of video without buffer starvation or buffer overflow
that has (1) the smallest number of bandwidth increases pos-
sible, (2) the smallest peak bandwidth requirement, and (3)
the largest minimum bandwidth requirement.

Proof. Let the CBA plan consist ofn runs, each with a con-
stant bandwidth allocation. We prove the above theorem by
showing that all other plans (1) must have at least as many
bandwidth increases, (2) cannot have a smaller peak band-
width, and (3) cannot have a larger minimum bandwidth.

We first break then runs into sets of consecutive runs
which increase the bandwidth requirements from the previ-
ous run in the CBA plan. Let runi be the first run in each
set, and let each set be numbered fromi to k, i < k. Be-
cause runi is the first run in a set of bandwidth increases,
run i−1 must have decreased the bandwidth over runi−2.
This implies that runi−2 is determined by a critical point on
Flow(i) and that runi− 1 starts onFlow(i). In addition, the
critical point for runi− 1 must be onFhi(i). This situation
is shown in Fig. 8.

We now note that because runi − 1 connectsFlow(m)
andFhi(n) for somem < n, any otherbandwidth plan not
co-linear with runi − 1 must have a run that has a slope
less than that chosen by runi − 1, resulting in a smaller
bandwidth. By showing this for all the sets of consecutive
bandwidth increases, part 3 of the proof is shown. That is,
any other bandwidth plan cannot have a higher minimum
bandwidth than the CBA plan.

To show part 1 of the theorem (CBA results in the mini-
mum number of bandwidth increases), we first consider run
i − 1. We note that any other plan not co-linear with run
i − 1 must have a run that crosses runi − 1 with a lower
bandwidth requirement (smaller slope). As a result, any other
plan cannothave a run that starts on or behind the hub of
run i−1 and cross the frontier of runi−1. Thus, any other
bandwidth plan must also increase the bandwidth require-
mentbeforecrossing the frontier of runi−1 (see Fig. 8). In
the search for a runi, the CBA plan maximizes the distance
reachable by runi by performing a search along the fron-
tier of run i − 1. Because any other bandwidth plan must
increase its bandwidth before crossing the frontier of run
i − 1, it cannot cross the frontier created by runi, other-
wise, the CBA algorithm would have found the same run in
its search along the frontier of runi − 1. Because at each
step the other bandwidth plans also require an increase in
bandwidth and can never pass the frontier created by that of
the CBA plan, the set of consecutive increases is minimum.
Applying this to all the sets of consecutive increases allows
us to prove part 1 of the theorem. That is, the CBA plan
results in the minimum number of bandwidth increases.

Finally, to show that the CBA results in the minimum
peak bandwidth requirement, let us examine runk of each
set of consecutive bandwidth increases. Because the set of

runs are grouped into runs that consecutively increase the
bandwidth requirements, runk + 1 must decrease the band-
width requirement from runk. Using Property 2, we note
that the search for runk is performed along the frontier of
run k − 1, and that runk connectsFhi(m) andFlow(n) for
somem < n. Because this run connectsFhi(i) andFlow(i),
any otherbandwidth plan not co-linear with runk must have
a higher slope which crosses runk. By showing for each
set of consecutive runs that other plans cannot have a mini-
mum peak bandwidth less than the CBA plan, the CBA plan
results in the minimum peak bandwidth requirement, thus,
proving part 2 of the theorem.

To algebraically calculate the CBA plan requires the al-
location of constant bandwidth runs. The calculation of a run
requires the starting point for the run,Framestart, and the
initial buffer occupancy,Buffinit, at that starting point. To
calculate a run starting fromFramestart with initial buffer
Buffinit, let

– FrameAvei be the average frame size from the begin-
ning of the run to the ith frame within the run. This can
be defined as:

FrameAvei

=

(
(
∑j+i

j=Framestart
FrameSizej)−Buffinit

i

)

– MaxBWi be the maximum average bandwidth sustain-
able from the beginning of the run to the ith frame that
does not overflow the buffer. This can be defined as

MaxBWi = min
1≤j≤i

(
FrameAvej +

BufferSize

j

)
.

Then, the critical bandwidth for a run is defined as a
set ofk frames such that the following holds for all frames
within the run:

max
1≤j≤k

FrameAvej ≤MaxBWk ,

and such that

max
1≤j≤k+1

FrameAvej > MaxBWk+1 .

The critical bandwidth for the run is then

CB = max
1≤j≤k

FrameAvej .

To calculate the critical bandwidth plan, we start with
the first frame with no initial buffer and then calculate the
critical bandwidth for the first run. If the critical point for
the first run is alongFlow(i), then a decrease in bandwidth
is necessary or the buffer will eventually overflow. The next
run is then started at the critical point with initial buffer 0. If
the critical point for the first run is alongFhi(i), then a band-
width increase is necessary for the next run. As described
earlier, a search is then performed on the frontier of the run
for a starting point that maximizes the point reached by the
next run using the above equations. Note that this search
involves a fairly trivial calculation to find the appropriate
initial buffer for the next run.

Using the critical bandwidth algorithm with a fixed size
buffer minimizes the number of bandwidth increases re-
quired during the playback of a video clip. In addition, it
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Fig. 9. This figure shows the same sample clip from the movieSpeed. The
solid lineshows the bandwidth allocation plan using the OBA algorithm and
a 2-MB buffer, while theheavier dotted lineshows the CBA algorithm. The
main difference between the algorithms is that the OBA algorithm combines
all the bandwidth decreases into a few request

also has the smallest peak bandwidth requirement and the
largest minimum bandwidth requirement. An example of
CBA smoothing can be found in Fig. 9.

2.3 An optimal bandwidth allocation algorithm

Using the critical-bandwidth-based algorithm, it is possible
to minimize the total number of bandwidth increases for the
continuous playback of video. The CBA plans, however,
may require many adjustments that decrease the bandwidth
requirement. For networks that place a premium on inter-
acting as little with the clients as possible, the CBA can be
extended to have all the properties from Theorem 1 while
also minimizing the total number of bandwidth changes re-
quired. Theoptimal bandwidth allocation(OBA) algorithm
results in the same number of increases in bandwidth, the
same smallest peak bandwidth, and the same largest mini-
mum bandwidth as the CBA algorithm. The OBA algorithm
differs from the CBA algorithm by not returning bandwidth
to the network as soon as it has passed the critical point that
required the bandwidth. Instead, the OBA algorithm may
hold the bandwidth past the critical point for a run in order
to reduce the number of decreases in bandwidth required,
and, hence, minimizes the interactions with both the net-
work and server. As a result of this, the OBA algorithm
has very few changes in bandwidth for a moderately sized
buffer. In the rest of this section, we describe the OBA strat-
egy for the delivery of prerecorded video. We continue to
use the definitions of critical bandwidths and critical points
stated in the last section.

For our geometric model, the OBA algorithm allocates
runs by performing a search on the frontier of each run such
that the critical point for the next run is maximized. As a
result, the OBA algorithm attempts to allocate runs such
that each run maximizes the point reachable. At the end of a
particular line (run), there are two possibilities for the next
run, either increase or decrease the bandwidth requirement.
For our discussion, we ignore a run which can reach the end

of the movie. The actual bandwidth used for the last run
can be chosen so that it falls within the range of bandwidth
allocations already used, or it can be chosen in such a way as
to minimize the bandwidth or minimize the allocation time
of the channel.

For runs which require a bandwidth increase in the next
run, the same search is performed as in the CBA algo-
rithm, resulting in a search on a line connectingFhi(m) and
Flow(n), with m < n (see Figs. 5 and 6). For runs which
require a bandwidth decrease in the next run, a search at the
end of the current run results in four other possible outcomes.
These representative outcomes, which are essentially mirror
images of the four bandwidth increase cases, are shown in
Figs. 10 and 11. For a runk which decreases the bandwidth
from the last run, a search along a line that touchesFlow(m)
andFhi(n), with m < n is performed to find a starting point
for the next run that maximizes the point reachable for run
k. This new line segment maximizes the critical point for the
next run, while providing a transition from the last run to
the current run. This leads to two bandwidth decrease search
properties that are parallel to Properties 1 and 2.

Property 3. For a runk which (1) decreases the bandwidth
requirement over runk − 1 and (2) requires an increase in
bandwidth in runk + 1, the search for runk results in a run
which is determined by the slope between the pointsFlow(m)
andFhi(n), wherem < n.

This property essentially says that the search for runk
as shown in Fig. 10, which results in a bandwidth increase
in run k + 1, is defined by two points, one fromFlow(i) and
the other fromFhi(i). In addition, because runk+1 requires
an increase in bandwidth, the frontier of runk must end on
a point onFlow(i).

Property 4. For a run k which (1) decreases the bandwidth
requirement over runk − 1 and (2) requires an decrease in
bandwidth in runk + 1, the search for runk results in a run
which is determined by a slope between the pointsFhi(m)
andFlow(n), wherem < n.

This property is the similar result for bandwidth de-
creases. That is, the search in runk is defined by two points,
one fromFhi(i) and the other fromFlow(i). See Fig. 11. A
sample construction is shown in Fig. 12. Using this ”greedy”
approach in the allocation of each run within the OBA plan
results in the following theorem:

Theorem 2. For video playback allocation plans using a
fixed size buffer, for which (a) the bytes deliverable are
equal to the aggregate size of the video clip and (b) where
prefetching at the start of the movie are disallowed, the OBA
algorithm results in (1) the smallest peak bandwidth, (2)
the largest minimum bandwidth, and (3) the fewest possible
bandwidth changes.

Proof. To prove this theorem, we use the notation

[inc, inc] – for a run which increases the bandwidth from
the last run and requires an increase in bandwidth
in the next run

[inc, dec] – for a run which increases the bandwidth from
the last run and requires a decrease in bandwidth in
the next run
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Fig. 10a,b.Bandwidth search example. This figure shows the two representative cases that may result for runk which decreases the bandwidth requirement
from runk − 1, but requires a bandwidth increase for runk + 1

Fig. 11a,b.Bandwidth search example. This figure shows the two representative cases that arise when the search for runk results in another bandwidth
decrease required in runk + 1. In (a), Fhi(m) lies on the frontier created by runk − 1. In (b), Fhi(m) does not lie on the frontier of runk − 1

Fig. 12. Optimal bandwidth allocation construction example. This figure shows a sample construction of the optimal bandwidth allocation algorithm. Note,
this plan includes only four runs, while the same plan in Fig. 7 required six runs using the CBA algorithm. Theheavy solid linesshowFhi(i) andFlow(i),
while the light solid linesshow the slopes (bandwidths) selected by the optimal critical bandwidth allocation algorithm. Thedotted linesshow the lines
along which the searches were performed to maximize the critical points of the following runs

[dec, inc] – for a run which decreases the bandwidth from
the last run and requires an increase in bandwidth
in the next run

[dec, dec] – for a run which decreases the bandwidth from
the last run and requires a decrease in bandwidth in
the next run

To prove part 1 of the theorem (smallest peak band-
width), let us consider all of the [inc, dec] runs within the
OBA plan. That is, the runs that are surrounded by runs of
smaller bandwidths. Let the [inc, dec] run be runi. By Prop-
erty 2, runi is determined by a hub that runs fromFhi(m) to
Flow(n) for somem < n. We then note that any other plan
that is not co-linear with runi, must have a run that crosses
the hub of runi. Because this slope must be greater than
that fromFhi(m) to Flow(n) in order to cross it, no other
run can have a smaller bandwidth requirement that crosses
the hub of runi.

To prove part 2 of the theorem, the mirror of part 1 is
used. Let us consider all of the [dec, inc] runs within the
OBA plan. That is, the runs surrounded by runs of larger
bandwidths. Let the [dec, inc] run be run i. By Property
3, run i is determined by a hub that runs fromFlow(m) to
Fhi(n) for somem < n. We then note that any other plan
that is not co-linear with runi, must have a run that crosses
the hub of runi. Because this slope must be smaller than
that fromFlow(m) to Fhi(n) in order to cross it, no other
run can have a larger bandwidth requirement that crosses the
hub of runi.

To prove part 3 of the theorem, we show by contradiction
that the OBA algorithm results in the minimum number of
bandwidth changes. Suppose the OBA algorithm creates a
bandwidth plan,planopt, that hasX bandwidth changes in it.

Further, suppose that this plan is not optimal in the number
of bandwidth changes. Therefore, another plan,planbetter,
must exist that has fewer thanX bandwidth changes in it.
As a result, there must exist at least one run inplanbetter
that spans greater than one run fromplanopt. As will be
shown, this cannot happen.

For algorithms that do not allow prefetching, both band-
width plans must start on the first frame and have nothing
in the smoothing buffer. As a result,planopt, whether it
requires an increase or decrease in bandwidth in the next
run, results in a plan that has a critical point greater than or
equal to the first run inplanbetter. If an increase in band-
width is required in the next run,planopt picks the band-
width such that any more bandwidth would result in buffer
overflow before the critical point of the first run inplanopt.
Any less bandwidth results in a critical point that is before
the critical point of the first run inplanopt. If a decrease
in bandwidth is required in the next run, then by definition,
planopt has chosen the minimal bandwidth necessary with-
out overflow resulting in the furthest critical point possible.
Thus,planbetter cannot have a critical point that is further
out thanplanopt for the first run, and hence, cannot cross
the frontier of the first run inplanopt in the first run.

For each run after the first run,planopt starts by exam-
ining the frontier of the last run and finds a starting frame
that maximizes the critical point of the current run. This
search is always performed a line connectingFlow(i) and
Fhi(i) OR Fhi(i) andFlow(i). Because this search is on a
line that connects Fhi and Flow whichplanbetter must cross,
planbetter cannot pick a next run that is longer than the one
chosen byplanopt. Otherwise,planopt would have found it
in its search. We continue this process for all runs within the
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planopt. Because every ith run inplanbetter cannot have a
critical point further than the ith run inplanopt, planbetter
must have at least as many runs asplanopt. Therefore,
planopt results in the fewest number of bandwidth changes.

In order to algebraically construct the OBA plan, we
use the same algorithm for finding the critical bandwidth
and critical point for a run as defined in Sect. 2.2. The OBA
plan then consists of three types of allocations: the beginning
run, a run that decreases the bandwidth allocation, and a run
that increases the bandwidth allocation.

The beginning run does not have any prefetch in order
to minimize the latency between channel set-up and the be-
ginning of playback. Therefore, the first run, is set to the
critical bandwidth and critical point for the run starting at
the beginning of the movie with an initial buffer of 0. Next,
if the critical point for the run lies onFlow(i) a bandwidth
decrease is required in the second run. If the critical point
for the run lies onFhi(i) a bandwidth increase is required
in the second run.

In the calculation of a run that decreases the bandwidth
allocation, a search on the frontier of the previous run is
performed to determine how long the bandwidth should be
held past the previous run’s critical point (See Figs. 10 and
11). The search finds a frame,j, such that using the same
bandwidth allocation from the end of the last run results
in the critical point in the current run to be as far out as
possible. The bandwidth for the run is then set to the critical
bandwidth of the last run up to, and including, framej, while
the bandwidth from framej + 1 to the critical point is set
to the critical bandwidth for the run starting on framej + 1,
with the appropriate initial buffer.

In the calculation for a run that increases the bandwidth
allocation, a search on the frontier of the previous run is per-
formed to find a frame,k, such that the current run reaches
as far a frame as possible. The current run is then started on
framek and has its bandwidth allocation set to the critical
bandwidth starting from framek.

For each subsequent run, we simply apply the same algo-
rithm to determine which of the calculations to use (whether
for increasing or decreasing the bandwidth). A sample allo-
cation plan is shown in Fig. 9.

3 Evaluation of algorithms

From the point of view of network and server management,
load estimation and admission control are crucial to provid-
ing guarantees of service. These can be greatly simplified
if all channels exhibit constant behavior. In the absence of
an entirely constant bandwidth allocation, the amount each
channel strays from this constant allocation will determine
the network’s performance. Several measures that influence
this performance are the frequency of requests for increased
bandwidth, the size of these increase, and the peak band-
width requirements. The frequency and size of decreases
can be interesting as well if the network management makes
some provision for lowering a bandwidth reservation.

To compare and contrast the differences between the
critical bandwidth allocation based approaches, we digitized
and Motion-JPEG compressed 17 full-length movies and 3
seminars presented in our department to use as test data.

Our experiments confirmed our theoretical hypothesis and
showed that for a small amount of client-side buffering we
can indeed reduce the number of bandwidth changes nec-
essary to a small number. To our surprise, we found that
having 20 MB of buffer space on the client-side could re-
duce the total number of changes for any of the clips tested
to less than 10. We expect that with tighter video encodings
that take advantage of temporal redundancy between frames,
such as MPEG, that similar numbers can be achieved with
smaller buffers. In the rest of this section, we describe our
experimental set-up and the video clips that were digitized.
In addition, a more in-depth look at the performance of the
critical bandwidth allocation based algorithms is presented.

3.1 Experimental set-up

To test the effectiveness of the various smoothing algorithms,
we needed to digitize a few full-length movies. In previous
work, we found that using the critical bandwidth allocation
approach on smaller clips created plans that required no in-
creases in bandwidth and required small amounts of buffer-
ing to achieve this. To get a better representation of how
the algorithms perform, we needed to capture a larger set of
full-length movies.

Our PC testbed consists of a Pioneer Laser Disc player, a
MiroVideo DC1tv capture board, and a Pentium 90 proces-
sor with 32 MB of memory. The MiroVideo Capture board
is a Motion-JPEG compression board. We do not have the
equipment to perform rapid MPEG encodings. Because the
basic routine for encoding I-frames within an MPEG video
are derived from the JPEG compression standard, the frame
sizes for our experimental video data are roughly equiva-
lent to all I-frame encoded MPEG video movies. The CBA
and OBA algorithms are most sensitive to scene content
changes and not pattern burstiness, however, the size of the
resulting streams strongly affects the buffer requirements.
MPEG encoded video could achieve the same performance
with buffers that are approximately 4-6 times smaller. We,
therefore, expect that the results presented here are some-
what conservative compared to a system using MPEG as its
compression standard. The Miro Video board digitized the
movies at 640×480 and then subsampled them to 320×240
with guaranteed VHS picture quality.

Using our testbed, we captured 17 full-length movies at
a range of 0.85–1.61 bits per pixel. The statistics for these
videos are shown in Table 1. In digitizing the video data, we
attempted to capture a variety of different movies in order to
examine the effects each had on the smoothing algorithms.
The Beauty and the Beastvideo is an animated Walt Disney
movie, resulting in scenes with a lot of high-frequency com-
ponents as well as scenes that had large areas of constant
color. The1993 NCAA Final Fourvideo is a documentary
describing theNCAA Final Fourbasketball tournament, re-
sulting in many of the scenes with lots of detail. As a result,
the 1993 NCAA Final Fourvideo had the highest average
bit rate. The rest of the movies are a mix of conventional
entertainment containing a wide range of scene content, in-
cluding digital effects and animations. TheSeminarvideos,
as previously mentioned, contain single scenes and, thus,
have the smallest variation in frame sizes.
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Fig. 13. Critical bandwidth allocation minimum buffer requirement. This figure shows the maximum buffer requirements for the movies encoded using the
CBA algorithm with no buffer limitation

Fig. 14. Bandwidth change requests. The graphs show the total number of required bandwidth allocation change requests for the movieSpeed. The OBA
and CBA algorithms were run on the entire video clip for varying buffer sizes in 1-MB increments

Fig. 15. Bandwidth changes for all movies. This graph show the number of bandwidth changes required for all of the sample movies using a 10- and
30-MB buffer and the OBA and CBA algorithms

Fig. 16. Bandwidth decrease requests. The graphs show the total number of bandwidth allocation decrease requests for the movieSpeed. The CBA and
OBA algorithms were applied to the movie segment with different buffer capacities

3.2 Critical bandwidth allocation without buffer constraint

When sufficient buffering is available, allocating the band-
width plan using the critical bandwidth algorithm without
a buffer constraint is useful because, in a system where all
streams are using this algorithm, admission control becomes
trivial. The admission control algorithm simply sees if there
is enough bandwidth to start the flow of data. Recall that
the critical bandwidth algorithm results in a monotonically
decreasing sequence of bandwidth allocations. In addition,
the playback of the video can start once the video has been
accepted to the network.

As shown in Fig. 13, the amount of buffer required to
play back the sample videos varies quite a bit. The total
amount of buffering depends primarily on three factors, the
average size of the frames, the length of the video, and
the long-term burstiness of the video. If the movie has a

sustained area of smaller frames followed by a sustained
area of larger frames, the amount of buffering tends to be
much higher. As examples, the seminar videos require much
smaller buffer sizes, because both the size and variation
of frames sizes are small in these videos. TheE.T. videos
require proportionately larger buffers as the quality is in-
creased. Because these videos exhibit the same long-term
burstiness, the differences are due mostly to the increase in
the frame sizes within the videos. Just the average size of
frames, however, is not indicative of the minimum buffer
requirements. The movieSpeedrequires a larger buffer than
the E.T. (Quality 100) video even though both the variance
in frame sizes and the average frame sizes are smaller in the
Speedvideo. Thus, the buffer size is primarily due to the
long-term burstiness, and to a lesser degree, the length and
average frame sizes of the videos.
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Table 1. This table shows the statistics of the Motion-JPEG video clips that were digitized with the MiroVideo
capture board and used in the evaluation of the critical bandwidth algorithms

Video clip name Quality Length Ave. Bit Rate Max frame Min frame Std. dev.
(min) (Mbits/s) size (bytes) size (bytes) (bytes)

Beauty and Beast 90 80 3.04 30367 2701 3580
Big 90 102 2.96 23485 1503 2366
Crocodile Dundee 90 94 2.59 19439 1263 2336
ET 75 75 110 1.51 14269 1153 1840
ET 90 90 110 2.17 19961 2333 2574
ET100 100 110 3.78 30553 6827 3294
Home Alone II 90 115 2.73 22009 3583 2480
Honey, I Blew Up the Kid 90 85 3.32 23291 3789 3183
Hot Shots, Part Duex 90 84 3.06 29933 3379 3240
Jurassic Park 90 122 2.73 23883 1267 3252
Junior 90 107 3.36 25119 1197 3188
Rookie of the Year 90 99 2.98 27877 3531 2731
Seminar 90 63 2.07 10977 7181 592
Seminar2 90 68 2.12 12309 1103 608
Seminar3 90 52 2.26 11167 7152 690
Sister Act 90 96 2.86 24907 1457 2608
Sleepless In Seattle 90 101 2.28 16617 3207 2459
Speed 90 110 2.97 29485 2741 2707
Total Recall 90 109 2.88 24769 2741 2692
1993 Final Four Video 90 41 3.95 29565 2565 4138

3.3 Bandwidth changes

As Fig. 14 shows, the OBA algorithm results in a fewer
number of bandwidth changes than the CBA algorithm for
a given buffer size, as expected. As an example, using the
Speedvideo, a 5-MB smoothing buffer, and the OBA al-
gorithm results in 21 bandwidth changes over the 110-min
movie, while the critical bandwidth algorithm requires 37
changes in bandwidth. On average the optimal bandwidth
allocation algorithm requires a bandwidth change approxi-
mately every 5 min. After the initial start of the movie, the
Speedmovie using the OBA algorithm has a minimum run
length of approximately 1 min and 45 s and a maximum run
length of approximately 14 min. By using a 10-MB buffer
for buffering, the shortest and longest run lengths grow to
13 min and 25.5 min, respectively. As a result, a modest
amount of buffering can reduce the number of interactions
required from the network to the order of tens of minutes.

As shown in Fig. 15, the total number of bandwidth
changes required for the rest of the video data are relatively
small even for a 10-MB buffer with loosely encoded video.
For a 10-MB smoothing buffer, the movieE.T. (Quality
100) requires 23 bandwidth changes with the OBA algo-
rithm, which is the maximum number of changes required
for all the movies using the OBA algorithm. On average,
the OBA algorithm results in 73% fewer bandwidth changes
than the CBA algorithm for a 10-MB smoothing buffer and
63% fewer bandwidth changes at 30 MB. The distinction be-
tween increases and decreases in the bandwidth allocation
plan can be useful, because the requests for decreases in
bandwidth can generally be satisfied, while increases may
require further negotiations with the network. In addition,
it highlights the main differences between the various algo-
rithms.

3.4 Bandwidth decrease requests

As shown in Fig. 16, the total number of bandwidth de-
creases for theSpeedvideo are similar to the total number of
bandwidth change graph (Fig. 14). This is not entirely unex-
pected because the CBA and OBA algorithms result in the
minimum number of bandwidth increases necessary for con-
tinuous playback. Thus, a large percentage of the bandwidth
changes are due to decreases in bandwidth, which from a net-
work point of view should be easier to satisfy. In comparing
the optimal bandwidth algorithm with the critical bandwidth
algorithm, we see that the main difference between these al-
gorithms is in the number of bandwidth decreases (as shown
by the same relative differences in total bandwidth changes
and total number of decreases). The CBA algorithm allo-
cates each run at the minimum bandwidth requirement to
avoid underflow, while the optimal bandwidth starts each
run at the minimum bandwidth requirement but holds the
bandwidth past the critical point of the run to prefetch data
for the next run.

3.5 Bandwidth increase requests

For bandwidth increases, using the CBA and OBA algo-
rithms results in the same number of increases across all
buffer size constraints for each movie, as expected. As
shown in Fig. 18, the number of increases required for the
movie Speeddrops to five increases for buffers greater than
8 MB and drops to only two increases for buffers greater than
14 MB. As a result, interactions with the network for more
bandwidth are required, on average, every 21 and 55 min for
an 8- and 14-MB smoothing buffer, respectively! As shown
in Fig. 19, all the other movies exhibit similar behavior to
the Speedvideo.
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Fig. 17. Bandwidth decreases for all movies. This graph show the number of bandwidth decreases required by the OBA and CBA algorithms for 10- and
30-MB buffers for all the sample movies

Fig. 18.Bandwidth increase requests. The graph shows the total number of bandwidth allocation increase requests for the movieSpeed. The CBA and OBA
algorithms were applied to the video with different buffer capacities, all resulting in the same number of bandwidth increases

Fig. 19. Bandwidth increases for all movies. This graph shows the number of bandwidth increases required using the OBA and CBA algorithms with a
10-MB and 30-MB buffer

Fig. 20. Peak bandwidth utilization for aAll movies. This figure shows the utilization of resources allocated using the peak bandwidth requirement and the
OBA and CBA algorithms (with no initial prefetching at the start of the movie)

3.6 Peak bandwidth requirements

For systems that allocate resources based on the peak band-
width requirements, the peak bandwidth requirement can be
an important measure. While the peak bandwidth require-
ment gives the amount of resources necessary, it does not
give a method for comparing the results of different movies.
To show the effects of smoothing on our sample movies,
we have assumed that the peak bandwidth requirement is
used for the entire movie and then calculated the utilization
of the bandwidth reserved. The peak bandwidth utilization
measurements are shown in Fig. 20. From this graph, we
see that some movies (particularly the ones with low uti-
lization) do not improve their utilization of bandwidth be-
tween 10 MB and 30 MB of buffering. The main reason for
this is that the optimal bandwidth algorithm may have an
initially high bandwidth requirement in order to satisfy a
low-latency start of the video, however, once this initially

high bandwidth requirement is passed, a lower peak band-
width requirement results for the rest of the movie. To show
this, we have also graphed what we call thetumbling uti-
lization measurement, which measures the utilization of the
bandwidth reserved in the same way as the peak bandwidth
utilization measurement, with one exception. Once the peak
bandwidth requirement has passed for the entire movie, the
bandwidth can be reduced to the peak bandwidth for the
rest of the movie. An example of the tumbling bandwidth
utilization calculation is shown in Fig. 21. As Fig. 22 shows,
the tumbling bandwidth utilizations are much higher than the
peak bandwidth utilization measurements, mostly due to the
initially high bandwidth requirement of the OBA plans. The
movie Junior has the lowest utilization of all the movies.
This movie has a large burst of frames at the end of the
movie, resulting in the peak bandwidth requirement at the
end of the movie, resulting in a lower utilization than ex-
hibited by the other movies. With the exception ofJunior,
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Fig. 21. Peak utilization vs. tumbling utilization. This figure shows the
difference between the peak and tumbling utilization calculations. The
CBA plan (heavy solid line) requires 15 units of bandwidth (represented
by squares). The tumbling utilization plan always results in a utilization
greater than or equal to the peak utilization

Fig. 22. Tumbling bandwidth utilization for all movies. This figure shows
the tumbling utilization for the OBA and CBA algorithms on the sample
movies. The tumbling utilization is the same as the peak bandwidth require-
ment utilization, except once the peak bandwidth requirement is passed, a
channel may reduce its peak bandwidth requirement once the peak has
passed

it is interesting to note that the optimal bandwidth algorithm
result in utilizations between 94% and 100%, with 10 of the
movies having greater than 99% utilization.

4 Summary and conclusions

The smoothing of video data will play an important role in
the design of video playback systems. Smoothing of com-
pressed video data through prefetching allows the data deliv-
ery service to substitute buffer bandwidth for network band-
width. By smoothing the rate of video transmission through
buffering, network and server scheduling can be simplified.
In this paper, we have proven that the CBA algorithm re-
sults in plans for the continuous playback of stored video
that have (1) the minimum number of bandwidth increases,
(2) the smallest peak bandwidth requirements, and (3) the
largest minimum bandwidth requirements. We have also in-
troduced the notion of the OBA algorithm which is based
on the critical bandwidth algorithm. As we have shown, this
OBA algorithm, in addition to having the three CBA proper-
ties, also minimizes the total number of bandwidth changes
required, making the best use of the available buffer band-
width.

Many live-video applications have fairly consistent band-
width requirements across time, although compression will
lead to pattern burstiness at a small scale. This sort of video
stream can be smoothed by an algorithm with a narrow win-
dow [8]. On the other hand, streams such as stored movies
are inhomogeneous at the level of scenes within the movie.
To effectively smooth such streams, it is necessary to exam-
ine longer segments within the stream. This is the approach
taken by the CBA and the OBA algorithms. Both algorithms
aggressively prefetch data to smooth network bandwidth re-
quirements and differ on the approach used in returning
bandwidth back to the network. The critical bandwidth algo-
rithm calculates a bandwidth plan such that the bandwidth
is returned as soon as the critical point that forced the band-
width is passed. The OBA algorithm, on the other hand,
continues to hold the bandwidth until the optimal amount of
prefetch for the next run is obtained, minimizing the number
of interactions necessary with the network and server.

The choice between using the OBA algorithm and the
CBA algorithm depends on the network cost model. In some
cases, it may be more beneficial for the network to have
the clients allocate at their minimum constant bandwidth re-
quirements, making the critical bandwidth algorithm more
useful. In other cases, it may be more beneficial for the net-
work to have as few interactions with the video application
as possible, in which case, the OBA algorithm may be the
appropriate choice.

The amount of buffering needed in any system depends
upon the size of the data stream and the effectiveness of
encoding. The video clips used in our analysis do not take
advantage of inter-frame dependencies, however, these inter-
frame dependencies tend to reduce the number of bandwidth
changes required as long as the pattern of frame types is
repeating. Nonetheless, our results are indicative of the re-
sources required for smooth video delivery. These require-
ments are not large in terms of today’s workstations and
should be achievable for tomorrow’s televisions.

In the playback of video, VCR functions such as stop,
pause, rewind, and fast-forward may be required. For ac-
cesses that occur around the point of playback such as pause
or a short rewind, the buffer can be used to service some of
the requests. For these local requests, the only change nec-
essary to the bandwidth plan is that the reservations must be
moved forward in time. Because the CBA-based algorithms
have nearly constant bandwidth allocations (as exhibited by
their 90+be efficiently handled. For accesses that are more
random, the use of contingency channels can be used to re-
turn the user to the originally agreed upon bandwidth reser-
vation level [3]. A more in-depth handling of VCR functions
in bandwidth smoothing environments can be found in [4]
and [5].
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