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Abstract

A network that o�ers deterministic, i.e., worst-case, quality-of-service (QoS) guarantees to

variable-bit-rate (VBR) video must provide a resource reservation mechanism that allocates

bandwidth, bu�er space, and other resources for each video stream. Such a resource reservation

scheme must be carefully designed, otherwise network resources are wasted. A key component for

the design of a resource reservation scheme is the tra�c characterization method that speci�es

the tra�c arrivals on a video stream. The tra�c characterization should accurately describe the

actual arrivals so that a large number of streams can be supported; but it must also map directly

into e�cient tra�c policing mechanisms that monitor arrivals on each stream. In this study, we

present a fast and accurate tra�c characterization method for stored VBR video in networks

with a deterministic service. We use this approximation to obtain a tra�c characterization that

can be e�ciently policed by a small number of leaky buckets. We present a case study where

we apply our characterization method to networks that employ a dynamic resource reservation

scheme with renegotiation. We use traces from a set of 25-30 minute MPEG sequences to

evaluate our method against other characterization schemes from the literature.
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1 Introduction

With the advent of integrated-services packet-switching networks, it has become feasible to design

multimedia networks that can transmit compressed variable-bit-rate (VBR) video in real time.

Since video has strict quality-of-service (QoS) requirements, a multimedia network must maintain

a resource reservation scheme [10] that can allocate network resources for each video stream. In

this study we consider resource reservation schemes for QoS networks with a deterministic service,

that is, a service that can provide worst-case delay guarantees to all packets on a video stream.

Since overallocating resources to a stream results in a low network utilization, a resource reservation

scheme must be carefully designed.

The amount of resources to be reserved for a video stream is largely dependent on the tra�c

characterization method used to describe the tra�c on a video stream. For a deterministic service

we require a deterministic tra�c characterization method that gives an upper bound on the tra�c

[7, 9, 17, 26, 34]. The selection of particular tra�c characterization method must trade-o� between

the following design goals:

1. Accuracy: The tra�c characterization method should describe the actual tra�c on a stream

as accurately as possible. A pessimistic characterization will overestimate the resource re-

quirements of a stream, resulting in poor network utilization. Recently, several tra�c char-

acterization methods for VBR video have been proposed that can express the complex timely

correlations of VBR video sequences [11, 12, 16, 28, 29].

2. Simplicity: Tra�c policing mechanisms which ensure that all tra�c submitted to the network

conforms to its tra�c characterization must be able to operate at the speed of the transmission

links. Therefore, the tra�c characterization method must be simple enough so that fast tra�c

policing algorithms can be designed.

3. Speed: The e�ort to compute a tra�c characterization for a video stream must be reasonably

small. While tra�c characterization for stored video can be computed o�-line, networks that

o�er dynamic renegotiation of tra�c parameters (see Section 6) require availability of fast

tra�c characterization algorithms.

Possibly, the single most important approach to tra�c characterization of VBR video is derived

from the so-called leaky bucket1 which describes tra�c in terms of rate and burstiness parameters.

With leaky bucket tra�c characterizations, the worst-case tra�c on a stream is given in terms of

piecewise-linear functions [7]. Since each leaky bucket can be implemented with a single counter

and a single timer [27], the tra�c policing algorithm for a single leaky bucket satis�es the demand

for simplicity.

In a previous study [34] we showed that concave piecewise-linear functions (\leaky buckets")

can also satisfy the need for accuracy. However, the number of leaky buckets needed for an accurate

1In this paper, a leaky bucket [33] is equivalent to the Generic Cell Rate Algorithm (GCRA) as speci�ed in [1].
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characterization was too large to be of practical value. For example, up to a dozen leaky buckets

were needed to accurately characterize an MPEG-I video stream [34]. Since practical considera-

tions limit the number of available leaky buckets to a small value, e.g., the limit is two for ATM

streams [1], methods are needed that yield an accurate VBR tra�c characterization, yet, with only

a small number of leaky buckets.

In this study, we will show that concave piecewise-linear functions can be used for tra�c char-

acterization of VBR video tra�c while satisfying all the goals of accuracy, simplicity, and speed.

We present an algorithm that takes as input a VBR video sequence and generates the parameters

for a speci�ed number of leaky buckets. Using empirical examples, we will demonstrate that three

leaky bucket are su�cient to produce tra�c characterizations leading to utilizations within 91% of

the best possible characterization. The computation time necessary to generate a tra�c charac-

terization for a feature length movie is less than a second, thus, satisfying the demand for a fast

characterization method.

The presented work is based on an observation of a characteristic of MPEG video traces. Study-

ing `best-possible' time-invariant bounds, so-called empirical envelopes [34], of several 30-minute

MPEG traces, we found that the �rst few hundred data points of the empirical envelope can

provide a tra�c characterization that has almost the same accuracy as the entire envelope with

40,000 points. In other words, we are able to show that, for the purposes of deterministic tra�c

characterization, complete information on a video trace is retained in very few parameters.

The tra�c characterization method in this paper will be evaluated against existing methods that

have applied leaky buckets for VBR video characterizations. Note, however, that most methods

proposed in the literature do not strive for high network utilization as a design goal, and, instead,

select the tra�c parameters according to network resource availability. Also, most studies use

only a single leaky bucket [23, 25, 28, 29, 31]. Pancha and El Zarki [25] choose parameters by

�xing the burstiness parameter of a leaky bucket according to available bu�er space. In [3], the

choice of the tra�c parameters depends on the relative availability of unallocated bandwidth and

bu�er space. An approach discussed by Guillemin et. al. in [15] assigns relative importance

parameters � and � to bu�er space and bandwidth, respectively; the parameters are selected such

that the product of burstiness and rate is minimized. Guillemin et. al. [15] presented two

heuristic algorithms that select leaky bucket parameters to approximate an \ideal" probabilistic

tra�c characterization, the so-called time-� quantile function. The heuristic algorithms take an

approach to tra�c characterization that is similar to ours, in that they �rst determine a function

that describes the tra�c on a stream and then choose parameters based on this function.

Finally, we want to point to studies that have explored the bene�ts of reducing the burstiness

of VBR video tra�c by either (1) shaping the tra�c by spacing packets before submitting them

to the network [13, 18, 19] or (2) sending packets early with respect to their playback time at the

receiving application via workahead smoothing [24, 29, 32]. These techniques involve modi�cation

of the tra�c that is submitted to the network by bu�ering at either the sender, receiver, or a

combination of both. While shaping and smoothing techniques have been shown to increase the
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achievable network utilization, these methods are orthogonal to the tra�c characterization problem

studied in this paper. Note that even after tra�c is shaped or smoothed, a characterization method

such as the one developed in this paper must be available to determine an accurate and policable

characterization for the tra�c submitted to the network.

The remainder of this paper is structured as follows. In Section 2 we review the issues involved in

deterministic tra�c characterizations for VBR video tra�c. We present our tra�c characterization

method in Sections 3 and 4. In Section 3 we describe a method for approximating the empirical

envelope using only a small number of envelope parameters. In Section 4 we present an algorithm

for reducing the number of leaky buckets of a given tra�c characterization. In Section 5 we evaluate

our characterization method by comparing it with previously proposed schemes. In Section 6 we

discuss a case study where we apply our method to construct a so-called deterministic renegotiation

scheme. In Section 7 we summarize the �ndings of this paper.

2 Deterministic Tra�c Characterizations

In this section, we review the key concepts of tra�c characterizations for a deterministic service,

referred to as deterministic tra�c characterizations. We �rst provide necessary background on

deterministic tra�c characterizations. Then we discuss our previous work with Zhang and Knightly

[34] on best possible deterministic tra�c characterizations for tra�c traces with so-called empirical

envelopes.

2.1 Subadditive Tra�c Characterizations

Let A denote the actual tra�c on a stream, where A[�; � + t] denotes the tra�c arrivals in time

interval [�; �+ t]. Then, a worst-case characterization of the tra�c A is given by a characterization

function A� which provides an upper bound on A. A characterization function A� should satisfy

two important properties, namely time-invariance and subadditivity [7, 22].

A function A� provides a time-invariant bound for A if for all times � � 0 and t � 0 the following

holds [7]:

A[�; � + t] � A�(t) (1)

Since a time-invariant function A� bounds the maximum tra�c over any time interval of length t,

the tra�c description is independent of the starting time of a stream. A characterization function A�

is subadditive if it satis�es the following inequality:

A�(t1) +A�(t2) � A�(t1 + t2) 8t1; t2 � 0 (2)

A subadditive characterization function allows the arrivals on a stream to attain the bound given

by A�. In other words, it is feasible that A[�; � + t] = A�(t) for any t � 0. Even though character-

ization functions that are time-invariant but not subadditive have been proposed in the literature,
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(b) Cumulative tra�c and characterization functions.

Figure 2: Functions A, E� and HE� for an actual MPEG trace.

that, for all subadditive characterization functions A� that satisfy Equation (1), E� is minimal,

that is, E�(t) � A�(t) for all t. The empirical envelope E� is obtained as follows [2, 34]:

E�(t) = sup
��0

A[�; � + t] 8t � 0 (5)

To obtain the empirical envelope of a given video sequence consisting of N frames with �xed

inter-frame time r, we assume that frames are fragmented into 53-byte ATM cells with a payload

of 48 bytes each, and these cells are transmitted at equally-spaced intervals over the frame time r.

If the sequence of frame sizes of a video sequence is given by ff1; f2; : : : ; fNg, then the empirical

envelope E� can be constructed by calculating [34]:

E�(ir) = max
0<k<N�i+1

k+i�1X
j=k

fj for i = 1; 2; : : :N (6)

Note that Equation (6) de�nes N parameters fE�(ir) j 1 � i � Ng for the empirical envelope,

where E�(r) is equal to the largest frame in the video sequence, E�(2r) is equal to the largest

two-frame sequence, etc. The values of the empirical envelope at times that are not multiples of

the frame time are obtained by spacing the cells in E�(ir) � E�((i � 1)r) evenly over the frame

time [(i� 1)r; ir].

Policing of the empirical envelope E� is impractical since it has one parameter for each frame

of a video sequence, resulting in about 1,800 parameters per minute of video. In [34], we solved

this problem by taking the concave hull of E�, which we denote by HE� [34]2 we obtain a (~�; ~�)-

model tra�c characterization [34]. Since HE� is the smallest piece-wise linear function larger

than E� [6], HE� is the most accurate tra�c characterization that can be policed by leaky buckets.

In Figure 2 we illustrate the tra�c characterization method from [34] for a trace of 250 frames from

an MPEG movie. In Figure 2(a) we plot the number of cells (with 48-byte payloads) as a function

of the frame sequence numbers. In Figure 2(b) we illustrate the cumulative arrivals A for the trace

in Figure 2(a), the empirical envelope E� of the trace, and its concave hull HE�.

2In this document, we use H to denote the concave hull operator, that is, Hf is the concave hull of the function f .
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A drawback of the concave hull HE� is that it generates too many piecewise-linear segments.

In most of our examples, the concave hull of the empirical envelope had more than ten piecewise-

linear segments, resulting in a requirement for as many leaky buckets to police a single video stream.

Clearly, this violates the requirement for simplicity of the tra�c characterization methods.

As a second drawback, the computation of the empirical envelope, needed for deriving the

concave hull, is computationally expensive. The number of operations required to compute all N

parameters of the empirical envelope E� for a video sequence with N frames is O(N2). Since N is

generally large, e.g., it exceeds 200,000 for most feature-length motion pictures, it is not possible

to calculate the empirical envelope in real-time, violating the requirement for a speedy calculation

of the characterization functions.

In the next sections, we will provide solutions that overcome these drawbacks. The resulting

characterization method will satisfy all of the requirements for accuracy, simplicity, and speed, that

we speci�ed in Section 1.

3 Approximating the Empirical Envelope with Extrapolations

In this section we show that accurate tra�c characterizations can be calculated without computing

the entire empirical envelope. We present two methods for obtaining viable characterization func-

tions that are derived from only the �rst k parameters of the empirical envelope, i.e., E�(r); E�(2r);

: : : ; E�(kr). Both methods construct a characterization function through extrapolation of the �rst

k values of the empirical envelope.

We �rst discuss the best-possible extrapolation based on the �rst k parameters of E�. Then we

present a simple characterization that can be obtained with a fast extrapolation technique. The

evaluation of the extrapolation methods at the end of this section will show that with k � 200 the

extrapolation methods will result in very accurate tra�c characterizations.

3.1 Largest Subadditive Extrapolation

Any viable characterization function obtained from the �rst k parameters of the envelope must be

at least as large as the empirical envelope E� for all times t. Since we know that E� is a subadditive

function, the best extrapolation is given by the largest subadditive extrapolation of fE�(ir)g1�i�k.

We denote this largest subadditive extrapolation by E�
k , where E

�
k is obtained by calculating:

E�
k(ir) =

8<
:
E�(ir) for i � k

min
1�j<i

fE�
k(jr) + E�

k((i� j)r)g for i > k
(7)

E�
k is equal to the empirical envelope for the �rst k frame times, and E�

k is de�ned for subsequent

times by exploiting the requirement for subadditivity of E�
k .
3

3Note that equation (7) only de�nes E�k for times that are multiples of the frame time r. Similar to the production

of the empirical envelope in Equation (6), the values for intermediate values of E�k are determined by spacing cells

evenly over each frame.
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Although the function E�
k is the tightest characterization function that can be obtained directly

from the �rst k parameters of the envelope, the production of E�
k is expensive. Speci�cally, we see

from Equation (7) that the number of computations required to construct E�
k is O(N2), the same

number required for computing the empirical envelope itself. Since we seek an approximation that

can be computed e�ciently, we search for other approximation schemes, and we will use E�
k as a

benchmark.

3.2 Repetition Extrapolation

Next we present a more e�cient approach to obtain a deterministic tra�c characterization based

on knowledge of only the �rst k frames of the empirical envelope. Consider the function that is

obtained by simply repeating the �rst k parameters fE�(ir)g1�i�k for all times t. We call such a

function the repetition extrapolation, which we denote by R�
k. R

�
k is given as follows:

R�
k(t) = b

t

kr
cE�(kr) + E�(t� b

t

kr
c(kr)) for t � 0 (8)

Observe that R�
k can be immediately obtained from the �rst k parameters of the envelope, and so

the computational complexity of computing R�
k is O(kN).

However, although R�
k provides a time-invariant bound on the tra�c arrivals A in terms of

Equation (1), it is not necessarily subadditive, and, hence, does not satisfy our requirement for

a viable tra�c characterization. Therefore, an additional step is required to make the repetition

extrapolation a viable characterization. The steps are summarized as follows.

� Step 1: Calculate the repetition extrapolation R�
k given by Equation (8).

� Step 2: Determine a subadditive function from the repetition extrapolation R�
k by taking the

concave hull of R�
k. Since the concave hull HR

�
k is a concave function, it is clearly subadditive.

Recall that the concave hull is a piecewise linear function that can be expressed in terms of

the (~�; ~�) model.

A problem that remains to be solved is the potentially large number of leaky buckets needed

to police the concave hull HR�
k . We defer our solution to this problem to Section 4. In the next

subsection we present an empirical evaluation of the extrapolation methods of Subsections 3.1 and

3.2

3.3 Evaluation

Here we evaluate the accuracy of tra�c characterizations E�
k and HR�

k as approximations of the

empirical envelope using actual traces of MPEG-compressed video. We want to �nd answers to the

following questions:

� How closely do the largest subadditive extrapolation from Subsection 3.1 and the repetitive

extrapolation from Subsection 3.2 approximate the empirical envelope for di�erent values

of k?
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Figure 3: Characterization functions.

� How well does the repetitive extrapolation serve as an approximation of the best possible

(largest subadditive) extrapolation?

� How much information of the empirical envelope is needed by the extrapolations to generate

an accurate characterization?

We use two MPEG traces in the evaluation: one from the entertainment �lm Jurassic Park

(\Park"), and the second from a news broadcast (\News"). These sequences were encoded in

software with the Berkeley MPEG-encoder [30]. Both Park and News are thirty-minute video

sequences with a frame size of 384x288 and frame pattern IBBPBBPBBPBB. We note that News

generates burstier tra�c than Park; the ratio of the peak rate to the average rate for News and

Park are 6 and 4, respectively.

To address the �rst and second question above we show in Figures 3(a) and 3(b) the charac-

terization functions for the News and Park traces. The �gures depict the empirical envelope E�

as well as E�
k and HR�

k for k 2 f1; 5; 50; 500; 2000g. For each characterization function, we plot

the cumulative number of cells as a function of the frame sequence number. In both graphs, the

empirical envelope E� is shown as a bold solid curve, while the functions E�
k and HR

�
k are depicted

by dotted and dashed curves, respectively. As expected, the approximation functions estimate the

empirical envelope E� accurately as k is increased.

A key observation from Figure 3 is that HR�
k � E�

k for most values of k; only HR�
5
and E�

5
for

the News sequence in Figure 3(b) di�er considerably. Since E�
k is the tightest tra�c characterization

that can be produced from k frames of the empirical envelope, we conclude that the concave hull

of the repetition extrapolation HR�
k is an accurate approximation of E�

k .

To address our third question above, we next consider the maximum resource utilization that

can be achieved at a video multiplexer that uses characterization functions HR�
k . We assume that

the multiplexer operates at rate r = 155 Mbps, and that the packet scheduling method of the

multiplexer is FCFS. Let d denote the maximum delay bound of a video stream. Then a set C of
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Figure 4: Utilization comparison.

streams can be supported by a FCFS multiplexer without delay bound violations if and only if [7]:

d �
X
j2C

A�
j (t)� t � r ; 8t � 0 (9)

Figure 4 illustrates the network utilization obtained at a multiplexer using E� as well asHR�
k for

various values of k. All streams at a multiplexer are assumed to be of the same type (either Park or

News) and have identical delay bounds (in the range 0 � d � 500 msec). For each characterization,

we plot both the maximum number of admissible streams as well as the link utilization as a function

of the delay bounds of those streams. For example, Figure 4(b) shows that the characterization

function HR�
2
can be used to support 61 News streams for delay bounds larger than 35 ms, thereby

utilizing 18% of the 155 Mbps transmission link. Note that the maximum link utilization that is

available for a deterministic service is below 50%. However, the unused bandwidth can be utilized

by other tra�c classes, such as best-e�ort tra�c [10] or predictive tra�c [5].

The general trend in both graphs is that the number of streams accepted using HR�
k as the

characterization function increases with k. An important observation is that the function HR�
200

admits the same number of streams as the empirical envelope E� for delay bounds up to 500

milliseconds. Thus, we can use our approximation functionHR�
k based on the �rst 200 parameters of

the envelope (i.e.,HR�
200

) to characterize both video sequences for the delay bound range considered;

we achieve the same utilization using HR�
200

as we would using the empirical envelope with 40,000

parameters.

However, while the function HR�
k provides an accurate tra�c characterization for VBR video,

the number of leaky buckets required to enforce HR�
k may be excessive. For example, 12 leaky

buckets are needed to police HR�
200

for the News sequence (i.e., HR�
200

� B�
12
). To solve this

problem, we next present an algorithm that reduces the number of leaky buckets needed to police

a video stream.

10



4 An Algorithm for Reducing the Number of Leaky Buckets

The discussion in the last section has shown that the repetitive extrapolation approach yields an

accurate tra�c characterization. However, the concave hull of the extrapolation generated a large

number of piecewise linear segments, up to 12 for the examples in Section 3. Since actual networks

typically limit the number of leaky buckets that are available for monitoring a stream to only two

or three [1], we present a method to reduce the number of leaky buckets needed for policing. The

problem of reducing the number of leaky buckets is expressed as follows:

Given an n-piecewise linear function B�
n, �nd an m-piecewise linear function B�

m

with m < n such that B�
m(t) � B�

n(t) for all t � 0.

Since we want to select a function B�
m that is `close' toB�

n, we introduce a cost function �(B
�
n; B

�
m)

to express the \di�erence" between B�
n and B�

m. With � we can formulate our problem as the so-

lution to the following optimization problem.

Optimization Problem. Given an n-piecewise linear function B�
n �nd the m-

piecewise linear function B�
m that minimizes �(B�

n; B
�
m) with m < n subject to the

constraint: B�
m(t) � B�

n(t) for all t � 0.

The goal for selecting a cost function � is that the characterization function B�
m allows the

admittance of a large number of streams. However, the selection of a `good' cost function � is not

obvious. For example, since the burstiness of VBR video limits the number of admitted streams at

small delay bounds, it is important that the function B�
m approximates B�

n closely for small values

of t. We have evaluated a large set of cost functions4 and found that the following function yields

excellent results.

�(B�
n; B

�
m) =

Z T

0

B�
m(t)� B�

n(t)

B�
n(t)

dt; (10)

where T bounds the time interval over which the cost � is selected. In our examples, T was selected

to the time interval that corresponds to 200 frame times.

Since the above cost function does not allow us to solve the optimization problem directly, we

present a heuristic algorithm that �nds an approximate solution.

The heuristic algorithm is presented in Figure 5. The initialization of the pairs (�i; �i) is

shown in Steps 2 through 5 of Figure 5. Observe that the initial values are m pairs selected from

f(�j ; �j) j j = 1; : : : ; ng of B�
n. The heuristic improves the initial selection by altering the (�i; �i)-

pairs using the iteration shown in Steps 6 through 11 of the �gure. In each iteration step, the (�i; �i)-

pairs are modi�ed to reduce the cost function �. The iteration terminates when the cost cannot

be signi�cantly reduced. The crucial step of the algorithm is Step 9, where a single pair (�l; �l) is

modi�ed to minimize the cost function subject to the constraint that B�
m(t) � B�

n(t) 8t. During

this step, the values of all pairs f(�i; �i) j i 6= lg are kept constant, and the pair (�l; �l) is selected

4The results of the evaluation are presented in Appendix A.
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Input: An n-piecewise linear function B�
n
, given by parameters

f(�j ; �j) j j = 1; : : : ; ng with �i � �j and �
i
� �

j
whenever i < j, an

integer m (m < n), a cost function �, and a sensitivity parameter �.

Output: An m-piecewise linear function B�
m
, given by m parameters

f(�i; �i) j i = 1; : : : ;mg.

1. Procedure Parameterize (B�
n
, m, �, �)

2. For i = 1 To m /* Initialize (�i; �i) */

3. �i  �b in
m
c

4. �i  �b in
m
c

5. End For

6. Do /* Greedy modi�cations */

7. Cost  �

8. For i = m Down To 1

9. Select (�i; �i) to minimize �, where �i�1 � �i � �i+1

10. End For

11. While ( Cost � � > � )

12. Output B�
m
 min1�i�mf�i + �itg

13. End Procedure

Figure 5: Parameterization algorithm.

such that �l�1 < �l < �l+1 (with boundary conditions �1 � 0 and �m � �n). Note that the choice

of �l is dependent on �l.

Remarks: In the empirical evaluation presented in Section 5, we select the (�i; �i) pair of

minimum cost in Step 9 through an exhaustive search through all possible values of �i. However,

with �i expressed in terms of �i, it is possible to write � with �i as the only independent variable,

and the selection can be determined analytically by setting @�
@�i

= 0. Also, while we do not make

guarantees on the running time of the algorithm, the examples that we ran converged rapidly. In

all examples, no more than six iterations were required even when we set � = 0.

5 Empirical Evaluation

We are now ready to evaluate our fast tra�c characterization method for VBR video sources by

comparing it with other tra�c characterization schemes from the literature. The steps of our

approximation method are summarized in Figure 6.

With the results from Sections 3 and 4, we compute a piecewise-linear function B�
m based on

Repetition
Extension

Concave
Hull

Heuristic
Algorithm

 k R*   H R*    = {E* (jr) | j = 1, ..., k} B*      k    n B*     m

Figure 6: Overview of tra�c characterization method.

the function HR�
200

� B�
n. Recall from the results of Figure 4 that for k � 200, the concave hull

12



HR�
k provided results that were identical to those attained with the (best possible) characterization

using the empirical envelope E�.

We evaluate the characterization method using the MPEG video traces Park and News described

in Section 3.3 and a single FCFS multiplexer at a switch that operates at 155 Mbps. As before, we

use the condition in Equation (9) as the admission control test.

We compare our tra�c characterization with previously proposed schemes for generating leaky

bucket parameters. In the following, we discuss the schemes and their parameters:

(a) Peak-rate: A peak-rate characterization is determined by a single rate parameter �1 which

is assumed to be the ratio of the size of the largest video frame fj and the inter-frame time r,

i.e., �1 =
1

r
max
0<j�N

fj .

(b) Dual bucket: This scheme results from a straightforward calculation of two leaky buckets

pairs (�1; �1) and (�2; �2). The �rst pair describes the peak rate with �1 as described in

(a) and �1 = 0. The second pair describes the average rate with �2 = 1

N �r

PN
j=1 fj and

�2 = inffx j x+ �2t � E�[�; � + t]; 8t; � � 0g.

(c) Fixed burst: This scheme was outlined in [25] and uses a pair (�2; �2) with the burst

parameter �2 set equal to a \reasonable" bu�er size suggested to be 1000 cells. We have

improved the scheme by adding a cell-spacer that enforces the peak rate. We obtain as

leaky bucket parameters: �1 as in (a), �1 = 0, �2 = 1000 cells and �2 = inffy j �2 + yt �

E�[�; � + t]; 8t; � � 0g.

(d) Concave hull: The concave hull approach in [34] selects the �rst m (�; �) pairs from the

concave hull of the empirical envelope. The scheme was outlined in Section 2.

(e) Product: The Product scheme from [15] uses a peak rate �1 and a pair (�2; �2), where �2

and �2 are chosen from the candidate set of leaky buckets f(�; �) j �+�t � E�[�; �+t]; 8t; � �

0g such that the product �2 � �2 is minimized.

(f) Maximumdistance: This scheme from [15] uses the peak rate �1 and a pair (�2; �2) where �2

is selected such that � = sup
t
f
1

t
(�2+�2�M

�
� (t))g is minimized. The quantityM�(t)=t speci�es

the rate of the video sequence over multiple time scales t. More precisely, if Nt denotes a

random variable specifying the number of packets generated over any interval of length t,

then M�(t) speci�es with probability 1� � the maximum tra�c arrivals n in any interval of

length t: M�(t) = inffn; PrfNt � ng � �g [15, 31]. This heuristic attempts to minimize the

maximum di�erence between M�(t)=t and the `normalized' leaky bucket (�2 + �2t)=t. Since

we are interested in worst-case bounds, we need to set � = 0.

We evaluate the accuracy of an arbitrary characterization function A� as follows. We assume

that all tra�c has the same tra�c characterization A� and identical delay bounds, and we compute

the maximum number of admissible streams for all delay bounds as before. Since we wish to evaluate
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the ability of a particular characterization function to approximate the empirical envelope, we plot

the ratio of the number of admissible streams using A� to the number obtained using the empirical

envelope E�, all as a function of the delay bound. In particular, for a given function A� we plot:

Utilization Ratio(A�; d) =
# admissible streams with A� at delay bound d

# admissible streams with E� at delay bound d
(11)

Since no characterizations A� will admit more streams than the empirical envelope, the metric in

(11) allows us to determine how closely a particular characterization approximates the empirical

envelope. For example, a tra�c characterization A� that admits the same number of streams as

the empirical envelope would result in a constant curve Utilization Ratio(A�; d) = 1.

Figures 7(a) and 7(b) show the utilization ratios of Park and News streams, respectively, for

the entire suite of tra�c characterizations described above.

The results for our heuristic characterization are shown in Figure 7 as thick dashed and solid

lines for m = 2 and andm = 3 (�; �) pairs, respectively. For two (�; �) pairs, note that our heuristic

yields a poor utilization for small delay bounds, while it is superior to other characterizations for

most delay bounds greater than 50 ms. This poor utilization at smaller delay bounds is due to the

fact that our heuristic does not select a (�; �) pair with � = �peak. With three (�; �) pairs, our

heuristic achieves a utilization ratio of over 95% and 91% for all delay bounds in the Park and

News sequences, respectively.

Notice the poor performance of the three characterizations Peak, Dual Bucket, Product in both

graphs. Recall that the Dual Bucket scheme, which selects one bucket for the peak rate and one

bucket for the average rate, is the scheme proposed for policing ATM tra�c [1]. While a peak-rate

characterization yields relatively high utilizations for small delay bounds, it results in a utilization

ratio of less than 40% for delay bounds greater than 60 ms for these video sequences. The additional

leaky bucket employed in Dual Bucket and Product does not yield signi�cant utilization gains.

The tra�c characterization obtained with our heuristic method form = 3 leaky buckets is clearly

the best characterization under consideration. For m = 2 leaky buckets our method provides the

best results if the delay bounds are large (d � 100 msec). Since our characterization method can

compute the parameters of the characterization in a fraction of the time needed by most other

schemes, we conclude that the newly proposed method has the best overall performance.
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6 Case Study: VBR Service with Deterministic Renegotiation

Dynamic resource allocation schemes are motivated by studies showing that correlations of VBR

video tra�c occur over long time scales due to the extended duration of scenes [12, 20, 21]. By

renegotiating the tra�c characterization, for example, after each scene change, one can more ac-

curately specify the tra�c on a stream, resulting in a tighter characterization and hence higher

network utilization. Since a renegotiation scheme requires multiple tra�c characterizations for a

single stream, a fast tra�c characterization scheme such as the one described in this paper is needed

to renegotiate tra�c parameters.

In this section we present and evaluate a new approach to dynamic resource allocation schemes,

called deterministic renegotiation, that applies the tra�c characterization method described in the

previous sections.

6.1 Renegotiation of Tra�c Characterizations

Most renegotiation schemes that have been proposed attempt to renegotiate the tra�c characteriza-

tion of a stream whenever its long-term rate changes signi�cantly [4, 14, 35]. Chong et. al. address

the problem of predicting the rate changes of a live video source [4]. They consider both a recursive

least-square method and an neural network approach for the prediction. In [14], Grossglauer et.

al. propose a Renegotiated Constant Bit Rate (RCBR) scheme for both stored and live video which

adds renegotiation and bu�er monitoring to a static CBR service. They present algorithms for

partitioning a video sequence into segments based on cost functions for both bandwidth allocation

and number of renegotiations. Zhang and Knightly study a renegotiated VBR service for both

stored and live video in [35]. Their algorithm for stored video proceeds by identifying the worst-

case segment of the video sequence, characterizing this worst-case segment, and then repeatedly

applying the procedure on the remaining video sequence after this worst-case segment is removed.

Although the above renegotiation schemes were shown to increase network utilization signi�-

cantly, they all share a common drawback. Since these schemes calculate a tra�c characterization

independently for each video segment, it is possible that a stream needs to increase its resource al-

location even if su�cient resources are not available. In such a scenario, the renegotiation requests

cannot be accommodated, and either the video quality or the QoS must be compromised, resulting

in a violation of the worst-case guarantees in a deterministic service.

In contrast, the deterministic renegotiation scheme proposed here ensures that the tra�c char-

acterization for a stream does not increase. That is, renegotiation always involves a release of

network resources. In this case, all renegotiation requests can be satis�ed and deterministic QoS

guarantees are always maintained.

6.2 Deterministic Renegotiation

We assume that the characterization functions for a VBR video stream are newly negotiated at the

renegotiation instants �0; �1; : : : ; �u, where �i < �j if i < j. Let A�
�i
denote the characterization
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function that is negotiated at time �i. Characterization functions A�
�i
must satisfy two criteria

in order to qualify for a deterministic renegotiation scheme. First, the tra�c characterization A�
�i

must provide a bound on the worst-case tra�c for the remainder of the video sequence, that is, for

all i:

A�
�i
(t) � A[�i + �; �i+ � + t] 8�; t � 0 (12)

Second, to ensure that all renegotiation requests can be satis�ed, a newly-computed tra�c charac-

terization may not request additional resources, that is, we enforce that for all �i < �j :

A�
�i
(t) � A�

�j
(t) for all t � 0 (13)

The condition in Equation (12) ensures that any function A�
�i
is a viable characterization function,

while equation (13) guarantees that the renegotiation requests can always be satis�ed. To show

that a set of tra�c characterizations fA�
�i
g can be used in a deterministic renegotiation scheme, it

is su�cient to show that Equations (12) and (13) are satis�ed.

Consider the class of characterization functions fE�
�i
g, where E�

�i
de�nes the empirical envelope

of the sequence A for all times t � �i:

E�
�i
(t) = sup

��0

A[�i + �; �i + � + t] 8t � �i (14)

If a renegotiation occurs �i time units into a video sequence, the resource allocation can be

calculated according to E�
�i
. However, the functions E�

�i
are similar to the empirical envelope E� in

that they employ a large number of parameters that are expensive to compute. In the next section

we show how to apply our fast tra�c characterization method to approximate these functions fE�
�i
g.

To illustrate the potential gain of deterministic renegotiation we show for the Park and the

News video sequence, how the tra�c characterization changes as it is renegotiated. We consider

the characterizations fE�
�i
g, where �i = i minutes for i = 0; : : :T � 1 and T is the length of the

movie in minutes. Since the Park and News sequences are 28 and 25 minutes long, respectively,

we consider 28 di�erent tra�c characterizations for Park and 25 for News. The resulting functions

are depicted in Figure 8. In the �gures, we only plot tra�c characterizations E�
i that are visibly

smaller than all tra�c characterizations E�
j with j < i.

Figures 8(a) and 8(b) show that the decrease of fE�
�i
g for increasing values of i can be

substantial. The deterministic renegotiation scheme exploits this decrease of the functions in fE�
�i
g.

Thus, network capacity becomes available that can be utilized by other connections.

6.3 Application of the Fast Video Characterization Method

At each renegotiation instant �i we apply our characterization method by performing the following

steps:

1. Calculate R�
k;�i

, the repetition extrapolation of the �rst k parameters of E�
�i
.
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Figure 8: Characterization functions E�
�i
.

2. Determine the concave hull HR�
k;�i

= B�
�i;n

.

3. Apply Algorithm 1 in Figure 5 to obtain a function B�
�i;m

with m < n.

It is easy to verify that each HR�
k;�i

satis�es Equation (12) and (13). However, since the

heuristic algorithm as presented determines a function B�
�i;m

based only onHR�
n;�i

, and independent

of the previous approximation B�
�i�1;m

, it is possible that the algorithm in Figure 5 selects an

approximation with B�
�i;m

> B�
�i�1;m

for some values of t. Thus, the condition in Equation (13)

does not necessarily hold. Therefore, we suppress renegotiation attempts at times �i whenever

B�
�i�1;m

(t) < B�
�i;m

(t) for some t.

6.4 Empirical Examples

We present examples based on MPEG video sequences to demonstrate the impact of renegotiation

on the achievable network utilization. We attempt to �nd answer the following questions:

� What is the gain in utilization achievable with a deterministic negotiation scheme?

� What is the frequency of renegotiation needed to obtain a gain in network utilization?

We do not address the question of optimally selecting the renegotiation instants. In our experiments,

all renegotiation instants are equally spaced over the length of a video sequence.

As in previous sections, we consider a single 155 Mbps FCFS multiplexer. The multiplexer is

loaded with the MPEG streams Park and News, all with the same delay bound d. To evaluate the

performance gain attainable with deterministic renegotiation, we assume that the starting time of

video streams are uniformly distributed over the duration of the sequence.

Starting with an empty multiplexer, we add streams to the multiplexer, where each stream has

a randomly selected starting time. We continue adding streams as long as the admission control

test from Equation (9) is satis�ed, that is, as long as all streams are guaranteed a worst-case delay

bound of d. We record the maximum number of admissible streams. This process is repeated 1000
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7 Concluding Remarks

The tra�c characterization used for VBR video streams has a signi�cant impact on the number of

admissible streams in a multimedia network with a deterministic service. We presented a method

for tra�c characterization based on the empirical envelope of a video sequence that uses a two-step

process. We �rst approximated the empirical envelope with a characterization that can be policed

by some number of leaky buckets, and we then determined the �nal characterization that can be

policed by a small, �xed number of leaky buckets. Using twoMPEG-compressed video sequences, we

demonstrated that our characterization method determines accurate characterizations that admit

a large number of streams. With the caveat that our experimental evaluation is based on only a

small number of video traces, the experiments in this paper gave the following insights:

� For the MPEG video sequences considered in the paper, we saw that as few as 200 parameters

of the empirical envelope out of a total of 40,000 are su�cient to yield a characterization that

admits the same number of streams as the empirical envelope. This observation suggests

that the relevant information of an MPEG sequence is contained in a small segment of the

empirical envelope.

� Using our heuristic algorithm, three leaky buckets were shown to be su�cient to admit nearly

the same number of streams as the empirical envelope. Based on the good performance of

our heuristic algorithm, it may not be worthwhile to investigate more complex algorithms for

video characterization.

� Our evaluation in Section 5 showed that a dual leaky bucket scheme with a parameter selection

as de�ned by the ATM Forum [1], i.e., one bucket for the peak rate and one bucket for the

average rate, yields poor network utilization. However, the poor performance is not due to

the fact that only two leaky buckets are used, but rather to a poor selection of leaky bucket

parameters. Using a better heuristic algorithm such as the one developed in this paper, one

can achieve markedly higher performance.

� In [34], the numerical examples indicated that a large number of leaky bucket pairs were

needed to approximate the empirical envelope. Using our method, the number of leaky

buckets needed to achieve performance similar to the envelope is small. This discrepancy can

be explained as follows. First, the heuristic algorithm presented here is superior to the concave

hull approach from [34]. Second, we note that the examples in this paper only consider delay

bounds up to 500 ms, while the examples in [34] consider delay bounds up to 2000 ms. For a

larger delay bound range, additional leaky buckets are necessary to closely approximate the

empirical envelope.

� The deterministic resource renegotiation scheme that we describe is distinguished from pre-

vious approaches in that it is appropriate for services that provide constant video quality and

deterministic QoS guarantees. The experimental data suggests that the expected utilization

gain from deterministic renegotiation is 20{35%.
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A Evaluation of Cost Function

We have evaluated a number of candidate cost functions of the following general form:

�(B�
n; B

�
m) =

Z T

0

(B�
m(t)�B�

n(t))
�

(t+ 1)�B�
n(t)



dt; (15)

where T determines the time interval over which the cost � is selected, and �, �, and 
 are

weights that determine the shape of the cost function. For example, a selection of (2; 0; 0) for

the (�; �; 
)-tuple minimizes the squared di�erence of B�
m and B�

n.

We evaluated the the following choices for parameters (�; �; 
):

(1; 0; 1) (1; 1; 0) (2; 0; 0)

(2; 1; 1) (2; 0; 2) (2; 2; 0).

The evaluation was done in a similar fashion as the experiments in Section 3. We consider

the MPEG traces News and Park, that are transmitted over a 155 Mbps FCFS multiplexer. As

input function function B�
n we chose the concave hull HR�

200
, thus, T (15) is set to frame times.

We always ran the heuristic algorithm to produce m-piecewise linear functions B�
m with m = 2

or m = 3. We evaluated the cost functions using the utilization ratio de�ned in Equation (11) as

performance parameter. The results of the evaluation are shown in Figures 10 and 11.

Comparing Figure 10 and Figure 11, it is very noticeable that m = 3 leaky buckets yield much

better results than m = 2 leaky buckets. With two leaky buckets as in Figures 10(a) and (b),

the (1; 0; 1) and (2; 1; 1) characterizations have a high utilization ratio for delay bounds greater

than 50 ms. With three leaky buckets as in Figures 11(a) and (b), four of the characterizations

have a utilization ratio of higher than 80% over the entire delay bound range [0; 500ms]. For (1; 0; 1)

we obtain a utilization ratio � 90% over the entire delay bound range.

Based on these experiments, the (1; 0; 1) cost function (shown in all graphs as a solid line)

appears to be the best choice. In all four graphs, observe that the utilization ratio for the (1; 0; 1)

characterization is above 90% for a large range of delay bounds.
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Figure 10: Evaluation of cost functions for m = 2 leaky buckets.
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Figure 11: Evaluation of cost functions for m = 3 leaky buckets.
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