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Abstract. 

 

To simplify the task of building distributed
streaming applications, we propose a new abstraction for
information flow—Infopipes. Infopipes make information
flow primary, not an auxiliary mechanism that is hidden
away. Systems are built by connecting pre-defined compo-
nent Infopipes such as sources, sinks, buffers, filters, broad-
casting pipes, and multiplexing pipes. The goal of Infopipes
is not to hide communication, like an RPC system, but to

 

reify

 

 it: to represent communication explicitly as objects that
the program can interrogate and manipulate. Moreover, these
objects represent communication in application-level terms,
not in terms of network or process implementation.

 

Key words: 
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1 Introduction

 

Recent years have witnessed a revolution in the way people
use computers. In today’s Internet-dominated computing
environment, information exchange has replaced computa-
tion as the primary activity of most computers. This revolu-
tion began with the use of the world wide web for accessing
relatively static information. It has continued with the emer-
gence of streaming applications, such as video and music on
demand, IP-telephony, Internet radio, video conferencing and
remote surveillance systems. Recent traffic studies (Chesire
et al. 2001; Thompson et al. 1997) show that these applica-
tions are already major consumers of bandwidth on the Inter-
net and are likely to become dominant in the near future. The
advent of interconnected, embedded and sensor-based
systems will accelerate the development and deployment of
new streaming applications.

The salient characteristics of streaming applications are
their extensive use of communication among distributed
components and their real-time interaction with real-world
processes. Consequently, developers of streaming applica-

tions spend much of their time reasoning about the communi-
cations and I/O behaviour of their systems. This change of
emphasis from computation to communication is the motiva-
tion for our research. 

This paper describes 

 

Infopipes

 

, a new abstraction,
together with associated middleware and tools, for simplify-
ing the task of constructing streaming applications. The moti-
vation for developing Infopipes as middleware is to provide a
single set of abstractions with a uniform interface that can be
made available on a diverse set of hosts and devices. Wide
availability is important for streaming applications because,
by their nature, they tend to span many potentially heteroge-
neous computers and networks, and interact with many dif-
ferent devices. The abstractions must also be appropriate to
the problem domain: they should expose the primitives
useful in that domain, and control and hide the unnecessary
details. 

The essence of streaming applications is creation and
management of information flows via producer-consumer
interactions among potentially distributed components.
Hence, communication is a primary concern and should be

 

exposed,

 

 not hidden. Moreover, it is application level infor-
mation that must be communicated, not low-level data, so
exposing low-level network abstractions is inappropriate.

Exposing the basic communication elements, such as
sources, sinks and routes, is inadequate: streaming applica-
tions are frequently also concerned with the quality of service
(QoS) of that communication. For example, the correct exe-
cution of a streaming media application is often critically
dependent on the available bandwidth between the server and
client. Adaptive applications may actively monitor this QoS
aspect and adapt the media quality dynamically to match
their bandwidth requirements to the available bandwidth
(Jacobs and Eleftheriadis 1998; Karr et al. 2001; McCanne et
al. 1997; Walpole et al. 1997). When constructing streaming
applications these timing and resource management-related
tasks tend to be the source of much of the complexity, since
they touch on aspects of the environment that differ among
applications, and even among different deployments of the
same application. In contrast, the computation-intensive
aspects of the application, such as media encoding andCorrespondence to: A.P.Black
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decoding, can often be addressed using standard components.
The desire to reify communication rather than hide it is in

contrast to many distributed systems middleware platforms
that are based around remote procedure call (RPC) mecha-
nisms (ISO 1998; OMG 1998b; OSF 1991; Sun 2002). Of
course, it is also undesirable and unmanageable to expose all
of the underlying details of communication. In general, infor-
mation-flow application developers will not want to reimple-
ment low-level protocol functionality — such as marshalling,
fragmentation, congestion control, ordered delivery and
reliability — for every application they build. Thus, what we
would like to do is to find a way to factor and pre-package
such functionality so that it can be selected when needed to
ensure a particular property. This emphasis on component-
based composition and property composition is a central
characteristic of the Infopipe approach.

This approach to dealing with the complexities of com-
munication can be re-applied when dealing with the com-
plexities of scheduling computation. Since timing is critical
for many streaming applications, they need some way to
control it. However, it is neither desirable nor necessary to
expose application developers to all of the ugly details of
thread management, scheduling, and synchronization.
Instead we attempt to expose the QoS-related aspects of
scheduling and hide the unnecessary details.

Thus, our primary goal for Infopipes is to select a suitable
set of abstractions for the domain of streaming applications,
make them available over a wide range of hardware and
operating systems, and allow tight control over the properties
that are important in this domain while hiding the unneces-
sary details. 

A further goal, which we discovered to be important
through our own experiences building real-time streaming
applications, is the ability to monitor and control properties
dynamically and in application-specific terms. This capabil-
ity enables applications to degrade or upgrade their behav-
iour 

 

gracefully

 

 in the presence of fluctuations in available
resource capacity. Since graceful adaptation is an applica-
tion-defined concept it cannot be achieved using a one-size-
fits-all approach embedded in the underlying systems soft-
ware. The alternate approach of exposing system-level
resource-management information to application developers
introduces unnecessary complexity into the task of building
applications. Therefore, the goal for a middleware solution is
to map system-level resource management details into appli-
cation-level concepts so that adaptive resource management
can be performed by application components in application-
specific terms.

A final goal for Infopipe middleware is to support tools
that automatically check the properties of a composite
system. For example, important correctness properties for a
pipeline in a streaming application are that information be
able to flow from the source to the sink, that latency bounds
are not exceeded and that the quality of the information
meets the requirements. Even though individual Infopipe
components may exhibit the necessary properties in isolation,
it is often non-trivial to derive the properties of a system that
is composed from these components.

The remainder of this paper presents more detail about
our ongoing research on Infopipes. Section 2 discusses the

Infopipe model, loosely based on a plumbing analogy, and
describes the behaviour of various basic Infopipe compo-
nents. Section 3 discusses some of the properties that are
important for composite Infopipes and introduces some pre-
liminary tools we have developed. Section 4 discusses the
implementation. Some example Infopipe applications are
presented in section 5. Section 6 discusses related work, and
section 7 concludes the paper.

 

2 The Infopipe Model and Component Library

 

Infopipes are both a model for describing and reasoning
about information-flow applications, and a realization of that
model in terms of objects that we call Infopipe components.
It is central to our approach that these components are real
objects that can be created, named, configured, connected
and interrogated at will; they exist at the same level of
abstraction as the logic of the application, and this expose the
application-specific information flows to the application in
its own terms. For example, an application object might send
a method invocation to an Infopipe asking how many frames
have passed through it in a given time interval, or it might
invoke a method of an Infopipe that will connect it to a
second Infopipe passed as an argument. 

An analogy with plumbing captures our vision: just as a
water distribution system is built by connecting together pre-
existing pipes, tees, valves and application-specific fixtures,
so an information flow system is built by connecting together
pre-defined and application-specific Infopipes. Moreover, we
see Infopipes as a useful tool for modelling not only the com-
munication of information from place to place, but also the
transformation and filtering of that information. The Infopipe
component library therefore includes processing and control
Infopipes as well as communication Infopipes. We can also
compose more complex Infopipes with hybrid functionality
from these basic components. Our goal is to provide a rich
enough set of components that we can construct information
flow networks, which we call Infopipelines, for a wide
variety of applications.

 

2.1 Anatomy of an Infopipe

 

Information flows into and out of an Infopipe through 

 

Ports

 

;

 

push

 

 and 

 

pull

 

 operations on these ports constitute the
Infopipe’s data interface. An Infopipe also has a control inter-
face that allows dynamic monitoring and control of its prop-
erties, and hence the properties of the information flowing
through it. Infopipes also support connection interfaces that
allow them to be composed, 

 

i.e.

 

, connected together at run-
time, to form Infopipelines. The major interfaces required for
an object to be an Infopipe are shown in Fig. 1.

It is central to our approach that Infopipes are 

 

composi-
tional

 

. By this we mean that the properties of a pipeline can
be calculated from the properties of its individual Infopipe
components. For example, if an Infopipe with a latency of
1 ms is connected in series with an Infopipe with a latency of
2 ms, the resulting pipeline should have a latency of 3 ms —
not 3.5 ms or 10 ms. 

Compositionality requires that connections between com-
ponents are 

 

seamless

 

: the cost of the connection itself must
be insignificant. Pragmatically, we treat a single procedure
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call or method invocation as having insignificant cost. In
contrast, a remote procedure call, or a method that might
block the invoker, have potentially large costs: we do not
allow such costs to be introduced automatically when two
Infopipes are connected. Instead, we encapsulate remote
communication and flow synchronization as Infopipe com-
ponents, and require that the client include these components
explicitly in the Infopipeline. In this way the costs that they
represent can also be included explicitly.

Other properties may not compose so simply as latency.
For example, CPU load may not be additive: memory local-
ity effects can cause either positive or negative interference
between two filters that massage the same data. While we do
not yet have solutions to all of the problems of interference,
we do feel strongly that addressing these problems requires
us to be explicit about all of the stages in an information
flow.

 

2.2 Control Interfaces

 

The control interface of an Infopipe exposes and manages
two sets of properties: the properties of the Infopipe itself,
and the properties of the information flowing through it. To
see the distinction, consider an Infopipe implemented over a
dedicated network connection. The bandwidth of this
Netpipe is a property of the underlying network connection.
However, the actual data flow rate, although bounded by the
bandwidth, may vary with the demands of the application.

We regard both pipe and flow properties as control prop-
erties because they are clearly related. Indeed, expressing
pipe properties such as bandwidth in application-level terms
(

 

e.g.

 

, frames per second rather than bytes per second)
requires information about the flow.

Different kinds of Infopipe provide different control
interfaces. For example, we have 

 

fillLevel

 

 for buffers and

 

slower

 

 and 

 

faster

 

 for pumps. We are investigating the
properties and control information that should be maintained

in Infopipes and in information flows to support comprehen-
sive control interfaces. 

 

2.3 Ports

 

To be useful as a component in an Infopipeline, an Infopipe
must have at least one 

 

port

 

. Ports are the means by which
information flows from one Infopipe to another, and are cat-
egorized by the direction of information flow as either

 

Inports

 

 (into which information flows, indicated by the

symbol ) or 

 

Outports

 

 (from which information flows,

indicated by the symbol ).
Each Infopipe has a set of named 

 

Inports

 

 and a set of
named 

 

Outports

 

; each port is owned by exactly one
Infopipe. For straight-line pipes, both the Inport set and the
Outport set have a single element, which is named 

 

Primary

 

. 

 

OutPorts

 

 have a method 

 

anInPort

 

 that sets up a
connection to 

 

anInPort

 

. 

 

Infopipes

 

 also have a 
method, which is defined as connecting the primary 

 

OutPort

 

of the upstream pipe to the primary

 

 InPort

 

 of the down-
stream pipe.

Information can be passed from one Infopipe to another
in two ways. In 

 

push mode

 

, the Outport of the upstream com-
ponent invokes the method 

 

push: anItem

 

1

 

 on the Inport of
the downstream component, as shown in Fig. 2(a). In 

 

pull

Cloning
clone answers a disconnected copy of this Infopipe 

Data
pull answers an item obtained from this Infopipe.
push: anItem push an item into this pipe

Connection
--> aPortOrInfopipe connect my Primary outport to aPortOrInfopipe 

Port Access
inPort answers my Primary Inport
inPortAt: name answers my named inport
inPorts answers a collection containg all of my inports
outPort answers my primary Outport
outPortAt: name answers my named Outport
outPorts answers a collection containg all of my outports
nameOfInPort: anInPort answers the name of anInPort
nameOfOutPort: anOutPort answers the name of anOutPort
openInPorts answers a collection containing all of my Inports that are not connected
openOutPorts answers a collection containing all of my Outports that are not connected

Pipeline Access
allConnectedInfoPipes answers a collection containing all of the Infopipes in the same Infopipeline as myself.
inConnectedTo answers a collection containing all of the Infopipes that are directly connected to my Inports
outConnectedTo answers a collection containing all of the Infopipes that are directly connected to my Outports

Fig. 1 Principal interfaces of an Infopipe

push: anItem

↑ ack

QP

Fig. 2 . (a) Illustrates push mode communication; (b) illustrates pull 
mode communication

SR

pull

↑ anItem
(a) (b)

–>>
–>>
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mode,

 

 shown in Fig. 2(b),

 

 

 

the situation is dual: the Inport of
the downstream component invokes the 

 

pull 

 

method of the
Outport of the upstream component, which replies with the
information item. The ports 

 

P

 

 and 

 

S

 

 (coloured  in the
figure) invoke methods; we say that they are 

 

positive

 

. Ports 

 

Q

 

and 

 

R

 

 (coloured ) execute methods when invoked; we say
that they are 

 

negative

 

. In a well-formed pipeline, connected
ports have opposite direction and opposite polarity. Any
attempt to connect, for example, an Inport to another Inport,
or a positive port to another positive port, should be rejected.

It is not obvious that Infopipes need the concept of port.
Indeed, our first prototypes of “straight line” Infopipes did
not have ports: a pipe was connected directly to its upstream
and downstream neighbours, and each pipe had two connec-
tion methods, 

 

input:

 

 and

 

 output: 

 

However, the introduc-
tion of 

 

Tees

 

, that is, pipes with multiple inputs and outputs,
would have made the connection protocol more complex and
less uniform. Ports avoid this complexity, and turn out to be
useful in building 

 

RemotePipes 

 

and 

 

CompositePipes

 

 as
well, as we shall explain later.

 

2.4 Common Components

 

Fig. 3 illustrates some Infopipe components. 

 

Sources

 

 are
Infopipes in which the set of Inports is empty; whereas 

 

Sinks

 

have an empty set of Outports. 

 

Tees

 

 are Infopipes in which
one or both of these sets have multiple members. These ports
can be accessed by sending the Tee the messages

 

 inPortAt:
aName

 

 and 

 

outPortAt: aName

 

; the ports can then be con-
nected as required. Figure 4 shows an example

 

. 

 

In addition,
we can identify various other Infopipes.

 

  –

 

A 

 

buffer

 

 is an Infopipe with a negative Inport, a negative

Outport, and some storage. The control interface of the
buffer allows us to determine how much storage it should
provide, and to ascertain what fraction is in use.

 

  –

 

A 

 

pump

 

 is an Infopipe with a positive Inport and a posi-
tive Outport. Its control interface lets us set the rate at
which the pump should consume and emit information
items.

 

  –

 

A 

 

remote pipe

 

 is an Infopipe that transports information
from one address space to another. Although the Infopipe
abstraction is at a higher level than that of address space,
a middleware implementation must recognize that a host
program executes in an address space that is likely to

 

1. We follow the Smalltalk convention of using a colon (rather than paren-
thesis) to indicate where an argument is required. Often, as here, we will 
provide an example argument with a meaningful name.

"Create some Infopipes"
source := SequentialSource new.
pump := Pump new.
multicastTee := MulticastTee new.
mixTee := MixTee new.
sink := Sink new.

"Connect them"
source —>> pump —>> multicastTee.
(multicastTee outPortAt: #Primary) —>> (mixTee inPortAt: #Primary).
(multicastTee outPortAt: #Secondary) —>> (mixTee inPortAt: #Secondary).
mixTee —>> sink.

"Make data items flow."
pump startPumping: 1000.

"result pipeline"

Fig. 4 : Building a pipeline with Tees

source buffer sink

pump

filter split tee merge tee

remote pipe

Fig. 3 . Some Infopipe components
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encompass only part of the Infopipeline. Remote pipes
bridge this gap; the Inport and Outport of a remote pipe
exist in different address spaces, and the remote pipe
itself provides an information portal between those
address spaces. 

Remote pipes can be constructed with different polari-
ties, reflecting the different kinds of communication
path. An IPCPipe between two address spaces on the
same machine might provide reliable, low-latency, com-
munication between a negative Inport and a positive
Outport; such a pipe emits items as they arrive from the
other address space. A Netpipe that connects two
address spaces on different machines has two negative
ports and provides buffering; items are kept until they
are requested by the next connected Infopipe in the
downstream address space.

An important aspect of component-based systems is the
ability to create new components by aggregating old ones,
and then to use the new components as if they were primi-
tive. Composite pipes provide this functionality; any con-
nected sub-network of Infopipes can be converted into a
CompositePipe, which clients can treat as a new primitive.

In order for clients to connect to a composite pipe in the
same way as to a primitive Infopipe, without knowing any-
thing about its internal structure, and indeed without
knowing that it is a composite rather than a primitive, a com-
posite pipe must have its own ports. We call these ports
ForwardedPorts. The ForwardedPorts are in one-to-one
correspondence with, but are distinct from, the open ports of
the sub-components. We cannot use the same object for the
ForwardedPort and the real port because the real port is
owned by the sub-component while the ForwardedPort is
owned by the CompositePipe itself. Figure 5 shows the
internal structure of a composite pipe. From the outside, it is
just an ordinary Infopipe with two Inports and two Outports.
Open ports of different sub-components may have the same
name, but their ForwardedPorts must have different names
because the ports of an Infopipe must be distinguishable.

One inevitable difference between composite and primi-
tive Infopipes is that the former need more complex initial-
ization: the internal structure of the Composite must be
established before it can be used. It is therefore convenient to
adopt a prototype-oriented style of programming, where a
Composite is first constructed and then cloned to create as
many instances as required. To support this style uniformly,
all Infopipes (not just composite pipes) have a clone method,
which makes a pipe-specific set of choices about what
parameters to copy and what parameters to re-initialize. For
example, when a Pump is cloned, the pumping rate is copied
from the prototype, but the ports of the clone are left open.

3 From Pipes to Pipelines: Analysis & Tools 

3.1 Polarity Checking and Polymorphism

The concept of port polarity introduced in section 2.3 is the
basis for several useful checks that an Infopipeline is well-
formed.

From the polarity of an Infopipe’s ports we can construct
an expression that represents the polarity of the Infopipe
itself. We use a notation reminiscent of a functional type sig-
nature. Thus, a buffer, which has a negative Inport and a neg-
ative Outport, has a polarity signature – → –, while a pump,
which has two positive ports, has signature + → +. 

Whereas Buffers seem to be inherently negative and
Pumps inherently positive, some components can be mod-
elled equally well with either polarity. For example, consider
the function of a defragmenter that combines a pair of infor-
mation items into a single item. Such functionality could be
packaged as a – →+ Infopipe, which accepts a sequence of
two items pushed into its Inport and pushes a single item
from its Outport. However, the same functionality could also
be packaged as a + →– Infopipe, which pulls two items into
its Inport and replies to a pull request on its Outport with the
combined item.

Rather than having two distinct Infopipes with the same
functionality but opposite polarities, it is convenient to
combine both into a single component, to which we assign
the polarity signature . This should be read like a type
signature for a polymorphic function, with an implicit uni-
versal quantifier introducing the variable . It means that
the ports must have opposite polarities. For example, if a
filter with signature  is connected to the Outport of a
pump with signature + → +, the  would be instantiated as –
and the  as +, and hence the filter would acquire the
induced polarity – → +.

The polarity-checking algorithm that we have imple-
mented is very similar to the usual polymorphic type check-
ing and inference algorithm used for programming
languages (Cardelli 1987). The main extension is the addi-
tion of a negation operation.

3.2 Ensuring Information Flow

Polarity correctness is a necessary condition for information
to flow through a pipeline. For example, if two buffers (both
with signature – → –) were directly connected, it would
never be possible for information to flow from the first to the
second. The polarity check prohibits this. In contrast, a pipe-
line that contains a pump (with signature + → +) between the
two buffers will pass the polarity check, and will also permit
information to pass from the first buffer to the second.

Fig. 5 : Internal Structure of a CompositePipe

Forwarded ports

Boundary of CompositePipe

α α→

α

α α→
α

α
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However, polarity correctness is not by itself sufficient to
guarantee timely information flow. In studying these issues,
it is useful to think of an Infopipeline as an energy flow
system. Initially, energy comes from pumps, and other com-
ponents with only positive ports, such as positive sources.
Eventually, energy will be dissipated in buffers and sinks.

Components such as broadcast tees, which have signa-

ture , can be thought of as amplifying the energy in

the information flow, since every information item pushed
into the tee causes two items to be pushed out. However, a
switching tee, which redirects its input to one or other of its
two Outports, is not an amplifier, even though it has the same
polarity signature. This can be seen by examining the flows
quantitatively. If the input flow has bandwidth  items/s,
aggregate output from the broadcast tee is  items/s,
whereas from the switching tee it is  items/s. Similar argu-
ments can be made for droppers and tees that aggregate infor-
mation; they can be thought of as energy attenuators.

From these considerations we can see that the “energy”
flow in a pipeline cannot be ascertained by inspection of the
polarities of the components alone. It is also necessary to
examine the quantitative properties of the flow through the
pipeline, such as information flow rates.

3.3 Buffering, Capacity and Cycles

So far, our discussions have focused on linear pipelines and
branching pipelines without cycles. However, we do not wish
to eliminate the possibility of cyclic pipelines, where outputs
are “recycled” to become inputs. Examples in which cycles
may be useful include implementation of chained block
ciphers, samplers, and forward error correction.

It appears that a sufficient condition to avoid deadlock
and infinite recursion in a cycle is to require that any cycle
contains at least one buffer. This condition can easily be
ensured by a configuration-checking tool. The polarity check
will then also ensure that the cycle contains a pump. How-
ever, this rule may not be a necessary condition for all possi-
ble implementations of pipeline components, and it remains
to be seen if it will disallow pipeline configurations that are
useful and would in fact function correctly.

Three other properties that one might like to ensure in a
pipeline are (1) that no information items are lost, unless
explicitly dropped by a component, (2) that the flow of infor-
mation does not block, and (3) that no component uses
unbounded resources. However, although it may be possible
to prove all of these properties for certain flows with known
rate and bandwidth, in general it is impossible to maintain all
three. This is because a source of unbounded bandwidth can
overwhelm whatever Infopipes we assemble to deal with the
flow — unless we allow them unbounded resources. We are
investigating the use of Queuing Theory models to do quick
checks on pipeline capacity.

3.4 The Infopipe Configuration Language

We have prototyped a textual pipeline configuration language
by providing Infopipe components with appropriate opera-
tors in the Smalltalk implementation. This can be viewed as

an implementation of a domain-specific language for pipe-
line construction by means of a shallow embedding in a host
language.

The most important operator for pipeline construction is
, which, as mentioned in section 2.3, is understood by

both Infopipes and Ports. This enables simple straight-line
infopipes to be built with one line of text, such as
SequentialSource new ->> (p := Pump new) ->> Sink
new. The ability to name the Inports and Outports of an
Infopipe explicitly permits us to construct arbitrary topolo-
gies with only slightly less convenience, as has already been
illustrated in Fig. 4.

Using an existing programming language as a host pro-
vides us with a number of benefits, including the use of host
language variables to refer to Infopipes, such as p in the
above example. Because Smalltalk is interactive, the
Infopipe programmer can not only start the pipeline (by
issuing the control invocation p startPumping), but can also
debug it using host language facilities. For example, p
inspectPipleine will open a window (shown in Fig. 6) that
allows the programmer to examine and change the state of
any of the Infopipes in the pipeline.

4 Implementation Issues

4.1 Threads and Pipes

One of the trickiest issues in implementing Infopipes is the
allocation of threads to a pipeline. Port polarity in the
Infopipe abstraction has a realtionship to threading, but the
relationship is not as simple as it may at first appear.

A component that is implemented with a thread is said to
be active. Clearly, a pump is active. In fact, any component
that has only positive ports must be active, for there is no
other way in which it can acquire a thread to make invoca-
tions on other objects.

A very straightforward way of implementing a pump with
a frequency f Hz is to generate a new thread every  sec-
onds, and to have each such thread execute the code

outport push: (inport pull)
exactly once. The objection to this approach is that it may
generate many threads unnecessarily, and thread creation is
often an expensive activity. Moreover, because it is possible

–
+

+

b
2b

b

Fig. 6 Inspecting a simple straight pipeline

–>>

1 f⁄
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for many threads to be active simultaneously, every con-
nected component must behave correctly in the presence of
concurrency. In essence, this implementation gives each
information item its own thread, and may thus have good
cache locality.

An alternative approach is to give the pump a single
thread, and to have that thread execute

outport push: (inport pull).
strokeDelay wait

repeatedly, where strokeDelay wait suspends the caller for
the appropriate inter-stroke interval. However, with the usual
synchronous interpretation for method invocation, the pump
has no idea how long it will take to execute outport push:
or inport pull. Thus, it cannot know what delay is appro-
priate: the value of the delay is a property of the pipeline as a
whole, not a local property of the pump.

From the perspective of a particular component making a
synchronous invocation, the time that elapses between
invoking push: or pull on an adjacent component is an
interval in which it has “loaned” its thread to others in the
pipeline; we call this interval the thread latency. Note that
thread latency, like thread, is an implementation-level con-
cept, and is quite distinct from information latency, the time
taken for an information item to pass through a component.
Thread latency can be reduced by adding additional threads,
provided that sufficient CPU time is available, and the CPU
scheduler is willing to make it available. Information latency
is harder to reduce!

Consider a number of passive components I1, I2,… In,
that are connected in series. Suppose that each Ii has polarity
– → +, and that it performs some transformation on the
information that is pushed into it that takes time ti. The trans-
formed information item is then pushed into component Ii+1.
If all of the push messages are synchronous, the time that
elapses between invoking push: on I1 and receiving the
reply

is given by .

Now suppose that a pump P is connected to the Inport of
I1, as shown in Fig. 7. If the required interval between
strokes of the pump, tp= , is less than , then the
single threaded version of the pump will be unable to main-
tain the specified frequency. It will be necessary to use mul-
tiple threads in the pump, and other components in the
pipeline will need to incorporate the appropriate synchroni-
zation code to deal correctly with this concurrency. (The
pump may also need to use multiple CPUs; this depends on
the proportion of  during which the processor is actually
busy. If some of the In access external devices, may be
much greater than the CPU time used by In.)

Thread latency is an important
parameter not only for pumps but also
for other Infopipes. Consider a broad-
cast Tee that accepts an information
item at its negative Inport and repli-
cates it at two or more positive Out-
ports. This can be implemented with
two threads, which will give the Tee’s push: method the
lowest thread latency, zero threads, in which case the pushes
that the Tee performs on its downstream neighbours will be
serialized, or one thread, which can be used either to provide
concurrency at the Outports, or to reduce the Tee’s thread
latency at its Inport.

It should now be clear that allocating the right number of
threads to a pipeline is not an easy problem. If there are too
few, the pipeline may not satisfy its rate specification; if
there are too many, we may squander resources in unneces-
sary bookkeeping and synchronization. Application pro-
grammers are relieved of the task of thread allocation by
working with Pumps and similar high-level abstractions and
dealing instead with application domain concepts such as
stroke frequency. But this leaves the Infopipe implementa-
tion the responsibility to perform thread allocation.

We have considered two approaches. The first, which we
have prototyped, is entirely dynamic. Pump uses a timer to
wake up after the desired stroke interval. It keeps a stack of
spare threads; if a thread is available, it is used to execute the
stroke. If no thread is available, a new thread is created.
Once the thread has completed the stroke, it adds itself to the
stack (or deletes itself if the stack is full).

The second approach, which we have not yet imple-
mented, analyses the pipeline before information starts to
flow. The components adjacent to the pump are asked for
their thread latencies, the total thread latency for pull and
push is computed. If this is less than tp, we know that a single
thread should be sufficient, and simpler single threaded pipe-
line components can be utilized.

4.2 Creating Polymorphic Infopipes

A Polymorphic Infopipe must have methods for both pull
and push:, and the behaviour of these methods should be
coherent, in the sense that the transformation that the
Infopipe performs on the information, if any, should be the
same in each case.

Although Polymorphic Infopipes are clearly more useful
than their monomorphic instances, it is not in general a
simple matter to create push: and pull methods with the
required correspondence. Fig. 8 shows sample code for a
Defragmenter. We assume that the component has a method
assemble: i1 and: i2 that returns the composite item
built from input fragments i1 and i2. The pull method,
which implements the +→– funtionality, and the push:
method, which implements the – →+ funtionality, both use
the assemble:and: method, but, even so, it is not clear how
to verify that pull and push: both do the same thing.

Indeed, a third implementation style is possible, provid-
ing the +→+ polarity; this is shown in Fig. 9. This Defrag-
menter understands neither pull nor push:, but instead has
an internal thread that repeatedly executes stroke.

It is clearly undesirable to have to write multiple forms of

ttotal ti
i 1=

n

∑=

Fig. 7 : A pump drives a series of transformation Infopipes.
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the same code, particularly when there must be semantic
coherence between them. We can avoid this in various ways.

  – Most simply, we can eliminate polymorphic pipes com-
pletely. In this situation, the defragmenter would be writ-
ten with whatever polarity is simplest, probably +→–. If
a different polarity is required, this would be constructed
as a composition of more primitive infopipes. For exam-
ple, a buffer, a +→– defragmenter and a pump could be
composed to create a –→+ defragmenter.

  – The second approach is to use a layer of middleware to
“wrap” whichever method is most easily written by
hand, in order to generate the other methods. This is pos-
sible because the hand-written methods do not send mes-
sages to the adjacent components directly, but instead
use a level of indirection. For example, the Defragmenter
pull method sends pull to its own inport rather than
pull to the upstream component. A clever implementa-
tion of inport pull can actually wait for the upstream
component to send a push: message. We have explored
this solution in some depth; coroutines rather than
threads are used whenever possible to avoid scheduling
overhead (Koster et al. 2001b).

  – A third possibility is to automatically transform the
source code, so that one version would be written by
hand and the others generated automatically. Even with
the simple example shown in Fig. 8, this seems to be
very hard; in the general case, we do not believe that it is
feasible. The difficulty is that the transformation engine
would need to “understand” all of the complexity of a
general-purpose programming language like Smalltalk or
C++.

  – It is possible that this objection could be overcome by
using a domain-specific source language, with higher-
level semantics and more limited expressiveness. From a
more abstract form of the method written in such a lan-
guage, it might be possible to generate executable code
in whatever form is required. This approach is currently
under investigation.

4.3 Netpipes

Netpipes implement network information flows using what-
ever mechanisms are appropriate to the underlying medium
and the application. For example, we have built a low-
latency, unreliable Netpipe using UDP.

A Netpipe has the same polarity and data interface as a
buffer; this models the existence of buffering in the network
and in the receiving socket. However, the control interface of
a Netpipe is different, since it reflects the properties of the
underlying network. For example, the latency of a Netpipe
depends on the latency of its network connection and the
capacity of its buffer. 

The motivation for Netpipes to allow Infopipe middle-
ware components in two different address spaces to connect
to each other. It is certainly true that an existing distributed
computing platform, such as remote method invocation or
remote procedure call, would allow such connections. How-
ever, if we used such a platform, we could be hiding the com-
munication between the address spaces, and thus giving up
any ability to control it — which was the reason that we orig-
inally created Infopipes. We would also be violating the
seamless connection property described in section 2.1.

However, it is not necessary to reimplement an entire dis-
tributed computing environment in order to retain control
over the information flow in a Netpipe. Instead, we have
bootstraped the Netpipe implementation by using the features
of an existing environment, such as naming and remote
method invocation.

A Netpipe is an Infopipe with an Inport in one address
space and an Outport in another, as shown in Fig. 10. This
means that the Inport can be in the same address space as its
upstream neighbour, and thus invocations of push: can use
seamless local mechanisms for method invocation. Similarly,
the Outport is in the same address space as its downstream
neighbour, which can seamlessly invoke pull on the Net-
pipe. The Netpipe object itself, containing the buffering and
the code, is co-located with the Outport.

Our prototyping environment, Squeak Smalltalk (Guzdial
2001; Squeak 2000), is equipped with a remote method invo-
cation package called S2S, which stands for “Squeak to
Squeak”. S2S provides access transparency and location

Defragmenter››pull
| item1 item2 |
item1 := inport pull.
item2 := inport pull.
↑ self assemble: item1 and: item2.

Defragmenter››push:item
isFirst 
ifTrue: [buffer := item]
ifFalse: [
outport push: 
(self assemble: buffer and: item) ].

Fig. 8 : Methods of a polymorphic defragmenter

Defragmenter››stroke
| item1 item2 |
item1 := inport pull.
item2 := inport pull.
outport put: (self assemble: item1 

and: item2) 

Defragmenter››startPumping: period
self strokeInterval: period.
[[ self stroke.
strokeDelay wait] repeatForever] fork 

Fig. 9 : Defragmenter in the + →→→→ + style
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transparency in a similar way to CORBA and Java RMI. A
local proxy can be created for a remote objects; the proxy
can then be invoked without callers needing to be aware that
they are really using a remote object—except that the call is
several orders of magnitude slower.

We take care that we use S2S only to configure and name
Infopipe components, and not for transmitting information
through the pipeline. For example, a Netpipe uses S2S to
create an Inport on the remote machine, and an S2S proxy
for this inport is stored in the Netpipe. However, when the
Inport needs to push information into the Netpipe, it uses a
custom protocol implemented directly on UDP.

In this way we arrange that Infopipes exhibit access
transparency: the same protocol is used to establish local
and remote Infopipe connections. However, we choose not to
provide location transparency: connections between adja-
cent Infopipes must be local, and the  method checks
explicitly that the ports that it is about to connect are co-
located. Without this check, ports in different address spaces
could be connected directly: information would still flow
through the pipeline, but the push: or pull of each item
would require a remote method invocation. As well as being
very much less efficient, this would mean that the applica-
tion would have no control over network communication.

Instead of signalling an error in the face of an attempt to
connect non-co-located ports, an alternative solution would
be to introduce a Netpipe automatically. We have not
pursued this alternative, because in practice it is usually
important for the programmer to be aware of the use of the
network. For example, it may be necessary to include
Infopipe components to monitor the available QoS and adapt
the information flow over the Netpipe accordingly.

Fig. 11 shows the code for setting up a MIDI pipeline
using a Netpipe. The first two statements obtain S2S proxies
for the source and pump objects that already exist on a
remote machine called MusicStore. We will refer to these
proxies as s and p, The third statement builds a Netpipe
from MusicStore to the local machine. The fifth statement,
source —>> pump —>>…, constructs the pipeline. It is inter-
esting to see in detail how this is accomplished.

The invocation  is sent to source, which is a local
proxy for remote object s. S2S translates this into a remote
method invocation on the real object s on MusicStore.
Moreover, because the argument, pump, is a proxy for p, and
p is co-located with s, S2S will present p (rather than a

proxy for pump) as the argument to the  invocation. The
method for —>> will then execute locally to both s and p, cre-
ating a connection with no residual dependencies on the
machine that built the pipeline.

A similar thing happens with netPipe. Although
netPipe itself is local, its Inport is on the host MusicStore.
Thus, the connection between p and netPipe’s Inport is
also on MusicStore. Information transmitted between
netPipe’s Inport and OutPort does of course traverse the
network, but it does not use S2S; it uses a customized trans-
port that is fully encapsulated in and controlled by netPipe.

4.4 Smart Proxies

When information flows from one address space to another,
it is necessary not only to agree on the form that the informa-
tion flow should take, but also to install the Infopipe compo-
nents necessary to construct that flow. For example, a
monitoring application that produces a video stream from a
camera should be able to access a logging service that
records a video in a file as well as a surveillance service that
scans a video stream for suspicious activity. In the case
where the video is sent to a file, the file sink and the camera
might be on the same machine, and the communication
between them might be implemented by a shared-memory
pipe. In the case of the surveillance application, the commu-
nication could involve a Netpipe with compression, encryp-
tion and feedback mechanisms over the Internet.

Notice that the Infopipe components that need to be co-
located with the camera are different in these two cases.
Since we wish to allow Infopipes to be dynamically estab-
lished, we must address the problem of how such compo-

Fig. 10 : Working with a Netpipe

a netpipe

a proxy of
the in-port

remote message
passing in S2Sconnection

between Infopipes

machine Bmachine A
data flow
in UDP

the in-port of
the netpipe

–>>

–>>

source := 's2s://MusicStore/source1' asRemoteOjbect.
pump := 's2s://MusicStore/pump1' asRemoteObject.
netPipe := Netpipe from: 's2s://MusicStore/'.
sink := MIDIPlayer new.
source —>> pump —>> netPipe —>> sink.
monitor := Monitor monitored: netPipe 

controlled: pump.
pump startPumping: 100.
monitor startMonitoring: 1000.
sink startPlaying.

Fig. 11 : Code for a streaming MIDI pipeline

–>>
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nents are to be installed and configured.
Koster and Kramp proposed to solve this problem in a

client-server environment by using dynamically loadable
Smart Proxies (Koster and Kramp 2000). Their idea is that
the server functionality is partly implemented on the client
node; this enables the server to control the network part of
the pipeline, as shown in Fig. 12. At connection setup, the
server chooses a communication mechanism based on infor-
mation about the available resources. A video server, for
instance, could use shared memory if it happens to be on the
same node as the client, a compression mechanism and UDP
across the Internet, or raw Ethernet on a dedicated LAN. It
then transmits the code for a Smart Proxy to the address
space containing the client. In this way, application specific
remote communication can be used without making the
network protocol the actual service interface; that would be
undesirable because all client applications would have to
implement all protocols used by any server to which they
may ever connect. Smart Proxies enable the service interface
to be described at a high level using an IDL. Client applica-
tions can be programmed to this interface as if the server
were local, although they actually communicate with the
proxy.

The idea of Smart Proxies can be generalized and applied
to Infopipes (Koster et al. 2001a). Since there are high-level
interfaces between all elements of a pipeline, the granularity
of composition can be finer. It is not necessary to send to the
consumer address space a monolithic proxy implementing
every transformation that needs to be performed on the infor-
mation stream. Instead, it may be possible to compose the
required transformation from standard pipeline elements that
may already be available on the consumer side. Thus, it is
sufficient to send a description or blueprint of the required
proxy, and if necessary to send small specialized Infopipes

that implement those pieces of the pipeline that are not
already available.

5 Some Example Infopipelines

5.1 The Quasar Video Pipeline

The Quasar video pipeline is a player for adaptive MPEG
video streaming over TCP. It supports QoS adaptation in both
temporal and spatial dimensions. MPEG-1 video is
transcoded into SPEG (Krasic and Walpole 1999) to add
spatial scalability through layered quantization of DCT data.
To suit the features of TCP, MPEG video is delivered in a pri-
ority-progress stream (Krasic et al. 2001), which is a
sequence of packets, each with a timestamp and a priority.
The timestamps expose the timeliness requirements of the
stream, and allow progress to be monitored; the priorities
allow informed dropping in times of resource overload.

The Quasar video pipeline is shown as an Infopipeline in
Fig. 13. At the producer side (the top part of the figure), the
video frames first flow through an SPEG transcoding filter,
and are buffered. The QoS mapper pulls them from the buffer
and gives each packet a priority according to the importance
of the packet and the preference of the user. For example, the
user might be more concerned with spatial resolution than
with frame rate, or vice versa. A group of prioritized packets
are pushed in priority order into the Reordering buffer. The
Dropper is a filter that discards stale packets, and low priority
packets, when the network is unable to deliver them in time.

The producer and consumer pipelines are connected by a
TCP Netpipe. On the consumer side (at the bottom of the
figure) the Reordering buffer arranges packets in time order.
The Detranscoder and decoder are filters that convert the
packets to MPEG and then to image format, after which they
are pushed into the Playing buffer. The Synchronizer pulls
them from that buffer at the time that they are required, and
presents them to the Video sink. The audio stream is handled
in a similar way; the two streams are merged and split using
Tees. The Controller coordinates the rates of all the compo-
nents through control interfaces.

5.2 The MIDI Pipeline

The MIDI pipeline (see Fig. 14) was built using some exist-
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Fig. 12 : Smart Proxies
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ing libraries from the Squeak Smalltalk system. The Squeak
MIDI player buffered an entire MIDI file before playing it.
We adapted this player to deal with streaming data and
wrapped it as three Infopipe components: the MIDISource,
the MIDIFilter, and the MIDISink.

The MIDISource reads “note-on” and “note-off” com-
mands from a MIDI file; the MIDIFilter combines a note-on
command and its corresponding note-off command to gener-
ate a note event, which consists of a key and its duration. The
MIDISink plays a stream of note events. To make the MIDI
player stream over the Internet, we needed only to insert two
pre-existing Infopipe components: a pump and a UDP net-
pipe. To ensure that the MIDISink plays smoothly, we added
a controller that monitors the fill level of the Netpipe and
adjusts the pumping rate accordingly. In this prototype, the
connections to the controller were not implemented using
Infopipes; whether they should be is an open question.
Instead, we used direct method invocation, which means that
invocations from the controller to the pump used S2S, which
is very much slower than an Infopipe. We found that a buffer
sufficient to hold 30 note events produced smooth playout
while still minimizing the number of control messages. 

6 Related Work

Some related work aims at integrating streaming services
with middleware platforms based on remote method invoca-
tions such as CORBA. The CORBA Telecoms specification
(OMG 1998a) defines stream management interfaces, but
not the data transmission. Only extensions to CORBA such
as TAO’s pluggable protocol framework allow the use of dif-
ferent transport protocols and, hence, the efficient imple-
mentation of audio and video applications (Mungee et al.
1999). Asynchronous messaging (OMG 2001a) and event
channels (OMG 2001b) allow evading the synchronous
RMI-based interaction and introduce the concurrency
needed in an information pipeline. Finally, Real-time
CORBA (OMG 2001a; Schmidt and Kuhns 2000), adds pri-
ority-based mechanisms to support predictable service
quality end to end. As extensions of an RMI-based architec-
ture these mechanisms facilitate the integration of streams
into a distributed object system. Infopipes, however, provide
a high-level interface tailored to information flows and more
flexibility in controlling concurrency and pipeline setup.

Structuring data processing applications as components
that run asynchronously and communicate by passing on
streams of data items is a common pattern in concurrent pro-
gramming (see, for example, reference (Lea 1997)). Flow-
Based Programming applies this concept to the development
of business applications (Morrison 1994). While the flow-

based structure is well-suited for building multimedia appli-
cations, it must be supplemented by support for timing
requirements. Besides integrating this timing control via
pumps and buffers, Infopipes facilitate component develop-
ment and pipeline setup by providing a framework for com-
munication and threading.

QoSDREAM uses a two-layer representation to construct
multimedia applications (Naguib and Coulouris 2001). On
the model layer, the programmer builds the application by
combining abstract components and specifying their QoS
properties. The system then maps this description to the
active layer consisting of the actual executable components.
The setup procedure includes integrity checks and admission
tests. The active-layer representation may be more fine-
grained than the model specification introducing additional
components such as filters, if needed. In this way, the system
supports partially automatic configuration. While the current
Infopipe implementation provides less sophisticated QoS
control, it provides a better modelling of flow properties by
explicitly using pumps and buffers.

Blair and co-workers have proposed an open architecture
for next-generation middleware (Blair et al. 1998; Eliassen
et al. 1999). They present an elegant way to support open
engineering and adaptation using reflection, a technique bor-
rowed from the field of programming languages (Blair and
Coulson 1998). In their multimedia middleware system,
TOAST (Eliassen et al. 2000; Fitzpatrick et al. 2001) they
reify communication through open bindings, which are
similar to our remote pipes. The scope of this work is wider
than that of Infopipes, which are specialized for streaming
applications.

The MULTE middleware project also features open bind-
ings (Eliassen et al. 2000; Plagemann et al. 2000) and sup-
ports flexible QoS (Kristensen and Plagemann 2000). It
provides applications with several ways to specify QoS
using a mapping or negotiation in advance to translate
among different levels of QoS specification. In our approach
we typically use dynamic monitoring and adaptation of QoS
at the application-level to implicitly manage resource-level
QoS.

Ensemble (van Renesse et al. 1997) and Da CaPo (Vogt
et al. 1993) are protocol frameworks that support the compo-
sition and reconfiguration of protocol stacks from modules.
Both provide mechanisms to check the usability of configu-
rations and automatically configure the stacks. Unlike these
frameworks for local protocols, Infopipes use a uniform
abstraction for handling information flows from source to
sink, possibly across several network nodes. Moreover, the
application controls the pipeline setup.

The Scout operating system (Mosberger and Peterson
1996) combines linear flows of data into paths. Paths
provide an abstraction to which the invariants associated
with the flow can be attached. These invariants represent
information that is true of the path as a whole, but which
may not be apparent to any particular component acting only
on local information. This idea—providing an abstraction
that can be used to transmit non-local information—is appli-
cable to many aspects of information flows, and is one of the
principles that Infopipes seek to exploit. For instance, in
Scout paths are the unit of scheduling, and a path, represent-
ing all of the processing steps along its length, makes infor-

MIDISink MIDIFilter Pump Netpipe 

Controller 

MIDISource 

Fig. 14 : The MIDI pipeline
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mation about all of those steps available to the scheduler.

7 Summary and Future Work

Infopipes are a subject of continuing research; the work
described here does not pretend to be complete, although
early results have been encouraging. The applications that
have driven the work described here have primarily been
streaming video and audio. However, Infopipes also form
part of the communications infrastructure of the Infosphere
project (Liu et al. 2000; Pu et al. 2001), and we intend that
Infopipes are also useful for applications such as environ-
mental observation and forecasting (Steere et al. 2000) and
continual queries (Liu et al. 1999).

We have been pursuing three threads of research simulta-
neously. The first, which pre-dates the development of
Infopipes themselves, is the design and implementation of a
series of video players that stream video over the Internet,
adapting their behaviour to make the best possible use of the
available bandwidth (Cen et al. 1995; Cowan et al. 1995;
Inouye et al. 1997; Koster 1996; Krasic and Walpole 2001;
Staehli et al. 1995). The second thread is related to the under-
lying technologies that support streaming media, in particu-
lar, adaptive and rate-sensitive resource scheduling (Li et al.
2000; Steere et al. 1999a; Steere et al. 1999b) and congestion
control (Cen et al. 1998; Li et al. 2001a; Li et al. 2001b). It is
these technologies that enable us to design and build the
Infopipes that are necessary for interesting applications.

The final thread is a prototyping effort that has explored
possible interfaces for Infopipes in an object-oriented setting.
We have used Squeak Smalltalk as a research vehicle; this
has been a very productive choice, as it enabled us to quickly
try out — and discard — many alternative interfaces for
Infopipes before settling on those described here. The Squeak
implementation is not real-time, but it is quite adequate for
the streaming MIDI application (section 5.2). 

We are currently embarked on the next stage of this
research, which involves weaving these threads together into
a fabric that will provide a new set of abstractions for stream-
ing applications. We are in the process of using the Infopipe
abstractions described here to re-implement our video pipe-
lines on a range of platforms including desktop, laptop and
wireless handheld computers as well as a mobile robot. We
are also exploring kernel-level support for Infopipes under
Linux, with a view to providing more precise timing control
and an application-friendly interface for timing-sensitive
communication and device I/O.
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