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Abstract

A subcoloring is a vertex coloring of a graph in which every color class induces a disjoint union of
cliques. We derive a number of results on the combinatorics, the algorithmics, and the complexity of
subcolorings.
On the negative side, we prove that 2-subcoloring is NP-hard for comparability graphs, and that
3-subcoloring is NP-hard for AT-free graphs and for complements of planar graphs. On the positive
side, we derive polynomial time algorithms for 2-subcoloring of complements of planar graphs, and for
r-subcoloring of interval and of permutation graphs. Moreover, we prove asymptotically best possible
upper bounds on the subchromatic number of interval graphs, chordal graphs, and permutation graphs
in terms of the number of vertices.

AMS Subject Classifications: 05C15, 05C85, 05C17.

Keywords: graph coloring, subcoloring, special graph classes, polynomial time algorithm, computa-
tional complexity.

1 Introduction

We denote by G ¼ ðV ;EÞ a finite undirected and simple graph. The complement �GG
of G ¼ ðV ;EÞ is the graph on V with edge set �EE such that fu; vg 2 �EE if and only if
fu; vg 62 E. For a set of graphs G, we denote by �GG the set of complements of
graphs from G; hence G 2 G if and only if �GG 2 �GG. Let G ¼ ðVG;EGÞ and
H ¼ ðVH ;EH Þ be graphs with VG \ VH ¼ ;. The disjoint union G _[[H is the graph
with vertex set VG [ VH and edge set EG [ EH . The join G _ H of G and H is the
graph with vertex set VG [ VH and edge set EG [ EH [ ffu; vg: u 2 VG; v 2 VHgg.
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Finally, G ffl H denotes the graph that results by adding a new vertex v to the
disjoint union of G and H , and by joining v to all the vertices in G and H .

For every non-empty W � V , the subgraph of G ¼ ðV ;EÞ induced by W is denoted
byG½W �. A cliqueC of a graphG ¼ ðV ;EÞ is a non-empty subset of V such that all the
vertices ofC are pairwise adjacent, i.e.,G½C� is a complete graph. Themaximum size
of a clique inG is denoted byxðGÞ. A subset of vertices I � V is independent if no two
of its elements are adjacent. An r-coloring of the vertices of a graph G ¼ ðV ;EÞ is a
partition V1; V2; . . . ; Vr of V ; the r sets Vj are called the color classes of the r-coloring.
An r-coloring is proper if every color class is an independent set. The chromatic
number vðGÞ is the minimum value r for which a proper r-coloring exists.

Evidently, an r-coloring is proper if and only if for every color class Vj the induced
subgraph G½Vj� is the union of complete graphs of cardinality one. This awkward
reformulation leads to several interesting generalizations of the classical chro-
matic number.

� An r-coloring V1; V2; . . . ; Vr is an r-subcoloring, if for every color class the in-
duced subgraph G½Vi� is the disjoint union of complete graphs (there is no
restriction on the sizes of these complete graphs).

� An r-coloring is a cocoloring, if for every color class the induced subgraph G½Vi�
either is a clique or an independent set.

� Let F be some fixed graph. An r-coloring is an F-free coloring, if for every color
class the induced subgraph G½Vi� does not contain F as an induced subgraph.

The subchromatic number vsubðGÞ, the cochromatic number vcoðGÞ, and the F-free
chromatic number vðF ;GÞ of a graph G, is the smallest number r for which G has
an r-subcoloring, an r-cocoloring, and an F -free r-coloring, respectively. Note
that a coloring is a subcoloring if and only if it is a P3-free coloring (where Pk
denotes the path on k vertices).

In this paper, we study the algorithmic and combinatorial behavior of the sub-
chromatic number on various classes of specially structured graphs. See Appen-
dix A for definitions of these graph classes.

1.1 Known results

Finding proper colorings for various classes of perfect graphs is a long studied
and well understood problem. We refer to the book [11] of Golumbic for a
classical source on algorithmic aspects of perfect graphs. By a celebrated result of
Grötschel, Lovász & Schrijver [12], the chromatic number of a perfect graph can
be computed in polynomial time. Simple and fast algorithms are known for dif-
ferent subclasses of perfect graphs like chordal graphs, comparability graphs,
permutation graphs etc. However, even small steps away from proper coloring
towards more general concepts like subcoloring and cocoloring increase the
computational complexity of coloring enormously.
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For instance, the cochromatic number is NP-hard to compute even for permu-
tation graphs (Wagner [17]). Gimbel, Kratsch & Stewart [9] proved the NP-
hardness of computing the cochromatic number for line graphs of comparability
graphs, and they derived a polynomial time algorithm for chordal graphs. Ach-
lioptas [1] proved that for any graph F with at least three vertices and for any
fixed integer r � 2, the problem of deciding whether a given input graph has an
F -free r-coloring is NP-hard. By putting F ¼ P3, we get that r-subcoloring is NP-
hard for any fixed integer r � 2. Fiala, Jansen, Le & Seidel [8] strengthened this
hardness result to input graphs that are triangle-free, planar, and have maximum
vertex degree four. On the positive side, [8] gave polynomial time algorithms for
the subcoloring problem on cographs and on graphs of bounded treewidth.

The literature also contains a number of results on P4-free colorings: Gimbel &
Nešetřil [10] showed that P4-free r-coloring in r ¼ 2 or r ¼ 3 colors is NP-hard
even for planar input graphs. Since P4 is isomorphic to its complement �PP 4, we
conclude that P4-free coloring in 2 or 3 colors is NP-hard for complements of
planar graphs. Hoàng & Le [13] proved that P4-free 2-coloring is NP-hard for
comparability and cocomparability graphs.

Now let us list a number of useful combinatorial results from the literature on
subcolorings and cocolorings.

Proposition 1.1. For any graph G, vsubðGÞ � vcoðGÞ � minfvðGÞ; vð �GGÞg.

Proposition 1.2 (Mynhardt & Broere [16]). Let Km;m;...;m be the complete m-partite
graph containing m classes of m vertices. Then vsubðKm;m;...;mÞ ¼
vcoðKm;m;...;mÞ ¼ vðKm;m;...;mÞ ¼ m.

Proposition 1.3 (Albertson, Jamison, Hedetniemi & Locke [2]). Let G and H be
graphs with vsubðGÞ � k and vsubðHÞ � k. Then vsubðG ffl HÞ � k þ 1.

1.2 Our results

We study combinatorial, algorithmic and complexity aspects of the subcoloring
problems. In particular, we derive the following results.

� For general n-vertex graphs the subchromatic number may be Hðn= log nÞ; for
perfect graphs, permutation graphs, and cographs, it may be Hð ffiffiffi

n
p Þ; for

chordal graphs and interval graphs, it may be Hðlog nÞ. All these bounds are
best possible up to constant factors. These results are proved in Section 2.

� For complements of planar graphs 2-subcoloring is polynomially solvable
(Section 4) whereas 3-subcoloring is NP-hard (Section 3).

� For AT-free graphs, r-subcoloring is NP-hard for any fixed r � 3 (Section 3).
For comparability graphs, r-subcoloring is NP-hard for any fixed r � 2
(Section 5.1).
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� For interval graphs (Section 5.2) and for permutation graphs (Section 5.3)
r-subcoloring is polynomially solvable for any fixed r � 2.

Figure 1 summarizes some of our results and illustrates the relations between
some of the graph classes studied in this paper. Appendix A contains the defini-
tions of these graph classes.

2 Upper and Lower Bound Results

In this section we derive several bounds on the subchromatic number of graphs in
terms of their number of vertices. We first state two useful results from the
literature.

Proposition 2.1 (Albertson, Jamison, Hedetniemi & Locke [2]). For any graph G on
n vertices, vsubðGÞ � 2n=ðlog2 n� 2Þ þ Oðn=ðlog2 nÞ2Þ.

Proposition 2.2 (Erdo}s, Gimbel & Kratsch [6]). Every perfect graph G on kþ2
2

� �
� 1

vertices has cochromatic number at most k. Therefore, vcoðGÞ �
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1=4

p
� 1=2c.

As our first result, we observe that up to constant factors the upper bound stated
in Proposition 2.1 is best possible.

Lemma 2.3. For every n, there exists a graph G on n vertices with vsubðGÞ
� n=ð2 log2 nþ 1Þ.

Fig. 1. Summary of some of our results on r-subcoloring for special graph classes, and the
containment relations between these classes. [�] denotes a contribution of this paper
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Proof. We slightly modify the famous argument of Erdo}s [5]. Consider the random
graph on n vertices that contains every edge independently with probability 1/2.

A subset X of k ¼ 2 log2 nþ 1 vertices is called good, if it induces a disjoint union
of cliques, and thus constitutes a feasible color class for a subcoloring. Let us
estimate the probability that some fixed set X is good. Altogether, there are 2

k
2ð Þ

possibilities for the edges in X . Out of these exactly Bk are good, where Bk denotes
the kth Bell number that is the number of ways a set of k elements can be
partitioned into nonempty subsets. The crude upper bound Bk � k! yields that the
probability that X is good is at most k!=2

k
2ð Þ.

Therefore, the expected total number of good subsets of cardinality k is at most
n
k

� �
� k!=2

k
2ð Þ. Since n

k

� �
� nk=k! and since k ¼ 2 log2 nþ 1, a straightforward cal-

culation reveals that this expected number is strictly less than 1. Hence, there
exists a graph G in the probability space that does not contain any good subset. In
any subcoloring of G all color classes contain fewer than k vertices, and thus
vsubðGÞ > n=k. (

For perfect graphs, the subchromatic number is much smaller than n= log n:
Propositions 2.2 and 1.1 yield that for every perfect graph G on n vertices,
vsubðGÞ � vcoðGÞ � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1=4

p
� 1=2c. Erdo}s, Gimbel & Kratsch [6] observed

that the disjoint union of cliques H ¼ K1 _[[K2 _[[ � � � _[[Kk (this is a graph on kþ1
2

� �

vertices) has cochromatic number k. In every subcoloring of �HH every color class is
either a clique, or an independent set. Thus vsubð �HHÞ ¼ vcoð �HHÞ ¼ vcoðHÞ ¼ k. Since
�HH is a perfect graph (in fact, it is even a cograph and a permutation graph), we get
that up to an additive constant the bound

ffiffiffiffiffi
2n

p
is the best possible upper bound

for the subchromatic number of perfect graphs.

In the rest of this section, we will discuss interval graphs. We will show that for
interval graphs the subchromatic number is bounded by Oðlog nÞ.

Lemma 2.4. For every interval graph G on n vertices, vsubðGÞ � blog2ðnþ 1Þc. This
bound is best possible.

Proof. For the upper bound we use induction on n. The statement is clearly true
for n ¼ 1. Consider an interval representation of an interval graph G on n vertices;
without loss of generality we assume that the left endpoints of the intervals are the
integers 1; 2; . . . ; n. If n is odd, we take an arbitrary maximal clique C that con-
tains the interval with left endpoint ðnþ 1Þ=2. Then every component of G� C
contains at most ðn� 1Þ=2 vertices. We color C by one color, and we use
blog2ððnþ 1Þ=2Þc additional colors to color all these components inductively. If n
is even, a similar analysis goes through.

For showing that the bound blog2ðnþ 1Þc is best possible, we consider the fol-
lowing graphs Gk: For k ¼ 1, the graph G1 consists of one vertex. For k > 1, we
set Gk ¼ Gk�1 ffl Gk�1 where the new vertex is called v. Note that Gk has 2k � 1
vertices, and that by Proposition 1.3 vsubðGkÞ ¼ k. Moreover, Gk is an interval
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graph; its interval representation can be obtained by putting two disjoint interval
representations of Gk�1 next to each other, and by adding one long interval that
corresponds to the vertex v. (

We mention without proof that a similar inductive argument yields
vsubðGÞ ¼ Oðlog nÞ for any chordal graph G. Albertson, Jamison, Hedetniemi &
Locke [2] observed that the interval graphs Gk in the proof of Lemma 2.4 form a
class of interval graphs with unbounded subchromatic number. We now present a
stronger result on the coloring of interval graphs with forbidden subgraphs.

Lemma 2.5. For any m and r, there exists an interval graph Iðm; rÞ that does not
have a Pm-free r-coloring.

Proof. Let N ¼ RðKmþ1; rÞ be the Ramsey number that specifies the smallest
number of vertices in a complete graph such that every r-coloring of the edges of
this graph induces a monochromatic clique Kmþ1 (that is, a clique in which all
edges have the same color). Let KN be the complete graph on vertex set
f1; 2; . . . ;Ng. Let IN be the intersection graph of all closed intervals with integer
endpoints from f1; 2; . . . ;Ng. Every interval ½a; b� in IN naturally corresponds to
the edge fa; bg in KN .

Now consider an arbitrary r-coloring of the intervals in IN . This induces a corre-
sponding r-coloring of the edges in KN , and hence there exists a monochromatic
clique Kmþ1 with vertex set X with jX j ¼ mþ 1. In IN , the intervals with both
endpoints in X also form a monochromatic set IX . Since IX contains an induced
path Pm, every r-coloring of IN contains an induced monochromatic path Pm. (

3 Negative Results: AT-Free Graphs

In this section we derive a generic NP-hardness result. As corollaries to this result,
we derive the NP-hardness of 3-subcoloring for graphs with independence number
two (and hence for AT-free graphs).

For an integer p � 1 and a graph G, we denote by pG the disjoint union of p copies
of G. We start with an auxiliary lemma.

Lemma 3.1. For any graph G and for any integer p � vðGÞ, the chromatic number
vðGÞ of G coincides with the subchromatic number vsubðpGÞ of the graph pG.

Proof. It is trivial to see vsubðpGÞ � vðGÞ: Any independent set I in the graph G
translates into a clique with pjI j vertices in the graph pG. Hence, any color class in
a proper coloring of G corresponds to a feasible color class in a subcoloring of pG.

On the other hand, we claim vðGÞ � vsubðpGÞ. This statement is trivial if
vðGÞ ¼ 1, and from now on we assume that G contains at least one edge. Let
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G1;G2; . . . ;Gp denote the p disjoint copies of G in the graph pG. Consider any
coloring of pG in k < vðGÞ colors. Then every subgraph Gi contains a mono-
chromatic edge. Since k < p, there are two subgraphs Gi and Gj with i 6¼ j that
both contain a monochromatic edge of the same color. In pG, the endpoints of
these two monochromatic edges induce a monochromatic C4, and thus pG
contains a monochromatic P3. (

The following theorem is the main result of this section. It is an immediate
consequence of Lemma 3.1.

Theorem 3.2. Let G be a graph class that is closed under taking disjoint unions (that
is, G;H 2 G implies G _[[H 2 G). Let r be an integer.

If the proper r-coloring problem is NP-hard for graphs from G, then the r-subcol-
oring problem is NP-hard for graphs from �GG.

Corollary 3.3. The 3-subcoloring problem is NP-hard even when restricted to

(a) graphs with independence number at most two,

(b) AT-free graphs,

(c) complements of planar graphs.

Proof. Maffray & Preissmann [15] proved that proper 3-coloring is NP-hard even
for triangle-free graphs. The class of triangle-free graphs is closed under taking
disjoint unions, and a graph is triangle-free if and only if its complement has
independence number at most two. With this, (a) follows from Theorem 3.2.

Since the graphs with independence number at most two form a subclass of the
AT-free graphs, (b) is a consequence of (a). Finally, the class of planar graphs is
closed under taking disjoint unions, and it is well-known that proper 3-coloring of
planar graphs is an NP-hard problem. Thus, Theorem 3.2 implies (c). (

We conclude this section with some consequences of Lemma 3.1 on the hardness
of approximation of the subcoloring problem for general graphs. We rely on the
results of Feige & Kilian [7] on the hardness of approximating the chromatic
number of a graph: For any e > 0, the chromatic number of n-vertex graphs
cannot be approximated within a factor of n1�e, unless NP � ZPP.

Corollary 3.4. For any e > 0, the subchromatic number of n-vertex graphs cannot
be approximated within a factor of n1=2�e, unless NP � ZPP.

Proof. Let G be an arbitrary graph on n vertices. Then the graph nG has n2

vertices, and by Lemma 3.1 we have vðGÞ ¼ vsubðnGÞ. Now the result of Feige &
Kilian [7] completes the argument. (
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4 Positive Results: Complements of Planar Graphs

Gimbel & Nešetřil [10] showed that deciding P4-free 2-colorability of a planar
graph is NP-hard. Since the complement of P4 is again P4, this implies that P4-free
2-subcolorability is NP-hard for complements of planar graphs, too. Fiala,
Jansen, Le & Seidel [8] showed that deciding 2-subcolorability of a planar graph is
NP-hard. Surprisingly, we will show in this section that 2-subcolorability is
polynomially solvable for complements of planar graphs. This will follow as a
corollary from the main theorem of this section.

Theorem 4.1. Let ‘ � 2, and let G be a class of graphs that do not contain K‘;‘ as an
(induced or non-induced ) subgraph. Then 2-subcolorability of a graph G ¼ ðV ;EÞ in
G can be decided in polynomial time OðjV j3‘Þ.

Before giving the proof of Theorem 4.1, we state two auxiliary lemmas.

Lemma 4.2. Let Hi ð1 � i � mÞ be graphs with jHij � ‘� 1 such that the join
G ¼ H1 _ H2 _ � � � _ Hm does not contain K‘;‘ as an (induced or non-induced) sub-
graph. Then jH1j þ jH2j þ � � � þ jHmj � 3‘� 3.

Proof. Suppose otherwise, and consider a counterexample with
jH1j þ jH2j þ � � � þ jHmj � 3‘� 2. Let k be the smallest index for which
q :¼ jH1j þ jH2j þ � � � þ jHkj � ‘. Since jHkj � ‘� 1 and since jH1jþ
jH2j þ � � � þ jHk�1j � ‘� 1 by the definition of k, we conclude that q � 2‘� 2.
Therefore p :¼ jHkþ1j þ � � � þ jHmj � ‘ holds. But then the q � ‘ vertices in
H1; . . . ;Hk on one side and the p � ‘ vertices in Hkþ1; . . . ;Hm on the other side
span a K‘;‘, the desired contradiction. (

Lemma 4.3. Let G be a graph that does not contain K‘;‘ as an (induced or non-
induced ) subgraph. Then for every P3-free coloring of G, each color class C is of one
of the following two types:

(A) the join Q _ I of a graph Q with at most ‘� 1 vertices and an independent set I ;

(B) a graph R with at most 3‘� 3 vertices.

Proof. We use the fact that every P3-free graph is also P4-free, and hence a co-
graph. We consider the cograph G½C� induced by the color class C.

If G½C� is not connected, then every connected component of this P3-free graph
must consist of a single vertex. Hence, we are in case (A) with Q ¼ ;. In the
remaining cases, G½C� is a connected cograph and hence can be presented as the
join H1 _ H2 of two cographs H1 and H2 with jH1j � jH2j. Clearly, jH1j � ‘� 1
since G½C� does not contain K‘;‘. If H2 is not connected, then its vertex set induces
an independent set. If H2 is connected, then it again can be written as the join of
two cographs. By repeating this procedure over and over again, we eventually find
that G½C� can be written as the join H1 _ H2 _ � � � _ Hm, where the graphs
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H1; . . . ;Hm�1 all have at most ‘� 1 vertices, and where Hm is either a graph with at
most ‘� 1 vertices or an independent set.

If jHmj � ‘� 1, then we get from Lemma 4.2 that jCj � 3‘� 3, and we are in case
(B). If jHmj � ‘, then Hm is an independent set. Moreover,
jH1j þ jH2j þ � � � þ jHm�1j � ‘� 1, since G½C� does not contain K‘;‘ as a subgraph.
Hence, we are in case (A) with I ¼ Hm and Q ¼ H1 _ H2 _ � � � _ Hm�1. (

Proof of Theorem 4.1. For the ease of exposition, we will deal with P3-free col-
orings of graphs from the class G, instead of P3-free colorings of graphs from the
class �GG. Clearly, these two problems are equivalent. Now let G ¼ ðV ;EÞ be a
graph from G.

According to Lemma 4.3, in any P3-free 2-coloring of G both color classes must
be of type (A) or (B). This yields the three possible cases (AA), (AB), and (BB).
The two cases (AB) and (BB) involve a color class of type (B). They can be solved
simultaneously by enumerating all OðjV j3‘�3Þ candidate sets for R. In any feasible
solution, the graphs G½R� and G½V � R� both are P3-free, and this can be checked
in OðjV j3Þ time.

We are left with the case (AA) where both color classes are of type (A). In this
case we are looking for a partition of the vertex set V into four sets Q1, Q2, I1, I2
such that for i ¼ 1; 2

� 0 � jQij � ‘� 1 holds,

� G½Qi� is a P3-free graph,

� G½Ii� is an independent set,

� G½Qi� _ G½Ii� is a subgraph of G.

Note that if G½Qi� is a P3-free graph and if G½Ii� is an independent set, then also
G½Qi� _ G½Ii� is a P3-free graph.

We enumerate all OðjV j2‘�2Þ possible pairs of candidate sets for Q1 and Q2. For
each such pair, we check whether G½Q1� and G½Q2� are P3-free. If they are not, then
we move on to the next pair. If they are, then we try to split the remaining vertices
in Z :¼ V � Q1 � Q2 into the independent sets I1 and I2. A vertex z 2 Z is called
good for Ii if it is adjacent to all vertices in Qi. In any feasible solution, Ii only
contains vertices that are good for it.

If there is a vertex z 2 Z that is neither good for I1 nor for I2, then we stop and
move on to the next pair. Whenever a vertex z 2 Z is good for Ii and not good for
the other independent set I1�i, then we precolor z with color i. Then we check
whether this precoloring can be extended to a proper 2-coloring of G½Z�; this can
be done by standard methods in OðjV j þ jEjÞ time. If the precoloring can not be
extended, then we move on to the next pair. If it can be extended, then the two
proper color classes I1 and I2 together with Q1 and Q2 constitute a solution to the
P3-free coloring problem on G. (
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Since planar graphs do not contain K3;3 as a subgraph, we have the follow-
ing corollary to Theorem 4.1. Corollaries 3.3.(c) and 4.4 together provide a
complete classification of the complexity of subcolorings of complements of
planar graphs.

Corollary 4.4. The 2-subcoloring problem on complements of planar graphs is
polynomially solvable.

5 Perfect Graphs

In this section, we discuss three classes of perfect graphs. In Section 5.1 we prove
NP-hardness of r-subcolorability for every fixed r � 2 on comparability graphs.
In Sections 5.2 and 5.3, we give polynomial time dynamic programming algo-
rithms for r-subcolorability for every fixed r � 2, on interval graphs and on
permutation graphs, respectively.

5.1 Comparability graphs

In this section we prove the NP-hardness of r-subcolorings on comparability
graphs for every fixed r � 2. Our NP-hardness reduction is based on the two
graphs Source-Source (depicted to the left) and Source-Sink (depicted to the right)
in Figure 2. Both graphs have two contact vertices a and b.

Lemma 5.1. (a) The graphs Source-Source and Source-Sink are comparability
graphs.

(b) The graphs Source-Source and Source-Sink possess a 2-subcoloring, in which
no contact point receives the same color as its neighbor.

(c) In every 2-subcoloring of Source-Source and Source-Sink, the contact vertices a
and b must receive different colors.

Proof. Proof of (a). The orientations depicted in Figure 2 are transitive. Proof of
(b). The 2-colorings depicted in Figure 2 are subcolorings. Proof of (c). By
checking all possible cases. (

Statements (b) and (c) in Lemma 5.1 are extremely useful for our NP-hardness
proofs: Consider a graph G, and let x; y be a pair of vertices in G. Let the graph Gþ

result from G by adding an independent copy of a Source-Source or a Source-Sink

Fig. 2. The gadget graphs Source-Source and Source-Sink
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gadget to G, and by identifying vertex x with contact point a, and vertex y with
contact point b. Then the graph Gþ has a 2-subcoloring, if and only if G has a
2-subcoloring in which x and y receive different colors.

Theorem 5.2. The 2-subcoloring problem is NP-hard for comparability graphs.

Proof. The proof is by a reduction from the NP-complete SET SPLITTING
problem [14]: Given a finite set S and a collection C of triples over S, decide
whether there is a partition of S into two subsets S1 and S2 such that every triple in
C has a non-empty intersection with S1 and with S2.

Now let C ¼ fc1; c2; . . . ; cmg be a collection of triples over a finite set
S ¼ fs1; s2; . . . ; sng. We construct the following graph GC from C: For every
sj 2 S, there is a corresponding vertex xj 2 X . For every triple ci ¼ ðs1i ; s2i ; s3i Þ 2 C,
there are three corresponding vertices y1i ; y

2
i ; y

3
i that form a P3; there is an edge

between y1i and y2i , and there is an edge between y2i and y3i . Vertex y
2
i is called the

middle vertex of this path, and vertices y1i and y3i are called the end vertices.
Moreover, we introduce the following copies of the Source-Source and Source-
Sink gadgets:

� For every occurrence of sj in the first or third position of some triple
ci ¼ ðs1i ; s2i ; s3i Þ, the graph GC contains a copy of the Source-Source gadget; the
contact points are identified with vertex xj, and with vertex y1i (first position) or
y3i (third position), respectively.

� For every occurrence of sj in the second position of some triple ci ¼ ðs1i ; s2i ; s3i Þ,
the graph GC contains a copy of the Source-Sink gadget; the contact point b is
identified with vertex xj, and the contact point a is identified with vertex y2i .

This completes the definition of the graph GC. We argue that GC is a compara-
bility graph by considering the following orientation: All Source-Sink and Source-
Source gadgets are oriented as shown in Figure 2. The edges of the paths y1i ; y

2
i ; y

3
i

are directed towards the middle vertices y2i . In the resulting orientation, all vertices
xj 2 X and all end vertices of paths are sources, and all middle vertices of paths
are sinks. Hence, arcs incident to these vertices can not violate transitivity, and the
remaining arcs are within the gadgets.

We claim that GC has a 2-subcoloring if and only if the corresponding instance of
SET SPLITTING has answer YES.

Assume that GC has a 2-subcoloring. We construct the following set splitting: If xj
is colored 1, then sj 2 S1. If xj is colored 2, then sj 2 S2. Consider a triple
ci ¼ ðs1i ; s2i ; s3i Þ in C. If it is contained in S1 or S2, then the three vertices that
correspond to s1i ; s

2
i ; s

3
i must all have the same color, and the three vertices

y1i ; y
2
i ; y

3
i on the P3 corresponding to Ci must all have the opposite color. But then

this P3 would be monochromatic, and the coloring would not be a subcoloring.

Next assume that C possesses a set splitting of S into S1 and S2. We construct the
following coloring: If sj 2 S1, then we color vertex xj by 1. If sj 2 S2, then we color
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vertex xj by 2. Then we extend this coloring to the Source-Sink and Source-Source
gadgets according to Figure 2. It is easily checked that the resulting coloring is a
2-subcoloring of GC. This completes the proof of the theorem. (

The NP-hardness result on 2-subcoloring for comparability graphs can easily be
generalized to r-subcolorings with r � 3.

Theorem 5.3. For any r � 2, the r-subcoloring problem on comparability graphs is
NP-hard.

Proof. We proceed by induction on r. The starting case r ¼ 2 has been settled in
Theorem 5.2. So assume that we have proved the statement up to r, and that we
want to prove it for r þ 1. This will be done as follows: For every comparability
graph Gr, we construct in polynomial time a comparability graph Grþ1 such that
Gr is r-subcolorable if and only if Grþ1 is ðr þ 1Þ-subcolorable.

Let K ¼ Krþ1;...;rþ1 be the complete ðr þ 1Þ-partite graph containing r þ 1 classes
of r þ 1 vertices. Recall that by Proposition 1.2, vsubðKÞ ¼ r þ 1. We put
Grþ1 ¼ Gr ffl K where the new vertex is called v. Observe that Grþ1 is a compa-
rability graph: Gr and K are comparability graphs; we take their transitive ori-
entations, and we orient all edges that are incident with the new vertex v away
from v.

Assume that Grþ1 is subcolorable in r þ 1 colors. By Proposition 1.2 the vertices
of the graph K must use all r þ 1 colors; in particular, the color c of the new vertex
v is used in K. But this implies that color c cannot be used for the vertices of Gr,
since this would yield a monochromatic P3 in color c. Hence, the graph Gr is
subcolorable in r colors.

Now assume that Gr is subcolorable in r colors. Take this r-subcoloring, and color
the new vertex v by a new color. Color K by r þ 1 colors in such a way that every
independent class of r þ 1 vertices receives all r þ 1 colors; in other words, every
color class induces a clique of size r þ 1 in K. The resulting ðr þ 1Þ-coloring of
Grþ1 is a subcoloring. (

5.2 Interval graphs

In this section we design for every fixed r � 2 a polynomial time algorithm for the
r-subcoloring problem on interval graphs. Let G ¼ ðV ;EÞ be an interval graph
with jV j ¼ n. Without loss of generality we may assume that the left endpoints of
the intervals I1; . . . ; In that represent G are the integers 1; 2; . . . ; n. For k ¼ 1; . . . ; n
we denote by Gk the subgraph that is induced by the first k intervals I1; . . . ; Ik. For
a clique Cl in G, we denote by interðClÞ the intersection of all intervals in Cl and
by unionðClÞ the union of all these intervals. Note that interðClÞ and unionðClÞ
are also intervals.

Consider an arbitrary color class C in an arbitrary r-subcoloring of Gk. This color
class C is the union of a number q of disjoint cliques Cl1; . . . ;Clq; without loss of
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generality we assume that unionðCliÞ always lies completely to the left of un-
ionðCliþ1Þ. Now assume that we would like to extend the subcoloring to the graph
Gkþ1 by adding interval Ikþ1 (with left endpoint k þ 1) to color class C. There are
only two possibilities for doing this:

(a) If the point k þ 1 lies to the right of unionðClqÞ, then interval Ikþ1 may start a
new clique in C.

(b) If the point k þ 1 lies within interðClqÞ, then interval Ikþ1 may be added to the
rightmost clique Clq in C.

Note furthermore that the left endpoints of interðClqÞ and unionðClqÞ do not
exceed k. Hence, for deciding whether case (a) or case (b) holds, we only need to
know the right endpoints of interðClqÞ and unionðClqÞ. These observations suggest
the following dynamic programming formulation.

Every state is specified by a ð2r þ 1Þ-tuple ½k; i1; i2; . . . ; ir; u1; . . . ; ur�. Here
1 � k � n, and the variables i1; . . . ; ir and u1; . . . ; ur either specify right endpoints
of some of the intervals I1; . . . ; Ik, or they take the dummy value ‘�’. Hence,
altogether there are Oðn2rþ1Þ states. For every state, we compute a Boolean value
B½k; i1; . . . ; ir; u1; . . . ; ur�. This Boolean value is TRUE, if and only if there exists a
subcoloring of Gk with color classes C1; . . . ;Cr with the following properties for
j ¼ 1; . . . ; r: If Cj is empty, then ij ¼ uj ¼ �. And if Cj is non-empty, then ij is the
right endpoint of interðClÞ and uj is the right endpoint of unionðClÞ of the
rightmost clique Cl in color class Cj.

The values B½k; i1; . . . ; ir; u1; . . . ; ur� are computed first for level k ¼ 1, then for
level k ¼ 2, and so on up to level k ¼ n. Since in any subcoloring for Gk the
interval Ikþ1 can be added in at most two possible ways (a) and (b) to at most r
color classes, every TRUE value at level k generates at most 2r TRUE values at
level k þ 1. The graph G is r-subcolorable, if and only if there exists a TRUE value
at level n. Summarizing, we get the following theorem.

Theorem 5.4. For any fixed r, the r-subcoloring problem for an interval graph with n
vertices can be solved in Oðr � n2rþ1Þ time.

5.3 Permutation graphs

In this section we design for every fixed r � 2 a polynomial time algorithm for the
r-subcoloring problem on permutation graphs. We use a dynamic programming
approach that is quite similar to that designed for interval graphs in Section 5.2.

Let r ¼ hrð1Þ; rð2Þ; . . . ; rðnÞi be a permutation, and let G ¼ G½r� be the associated
permutation graph; see Figure 3 for an illustration. The vertices in G are denoted
by 1; . . . ; n as in the ordering on the upper line of the permutation diagram. By Gk

we denote the subgraph that is induced by the first k vertices 1; . . . ; k. For any
clique Cl in G with vertices x1 < x2 < � � � < x‘ ordered along the upper line, these
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numbers xi must show up in the reverse ordering x‘; x‘�1; . . . ; x2; x1 along the lower
line. For a clique Cl, we denote by minðClÞ and by maxðClÞ its smallest and its
largest vertex, respectively.

Consider an arbitrary color class C in an arbitrary r-subcoloring of Gk. This color
class C is the union of a number q of disjoint cliques Cl1; . . . ;Clq; without loss of
generality we assume that maxðCliÞ is always strictly smaller than minðCliþ1Þ.
Now assume that we would like to extend the subcoloring to the graph Gkþ1 by
adding vertex k þ 1 to color class C. There are only two possibilities for doing this:

(a) If on the lower line, the number k þ 1 lies to the right of minðClqÞ, then vertex
k þ 1 may start a new clique in C.

(b) If on the lower line, the number k þ 1 lies to the left of maxðClqÞ and
minðClq�1Þ doesn’t lie to the right of k þ 1, then vertex k þ 1 may be added to
the rightmost clique Clq in C.

Hence, for deciding whether case (a) or case (b) holds, we only need to know
minðClqÞ, maxðClqÞ and minðClq�1Þ, where q is the index of the rightmost clique in
C. This leads to the following dynamic programming formulation.

Every state is specified by a ð3r þ 1Þ-tuple ½k;min01;. . . ;min0r;min1;
. . . ;minr;max1; . . . ;maxr�. Here 1 � k � n, and the variables min01; . . . ;min0r,
min1; . . . ;minr and max1; . . . ;maxr either specify vertices, or take the dummy
value ‘�’. Hence, altogether there are Oðn3rþ1Þ states. For every state, we compute
a Boolean value B½k;min01; . . . ;min0r;min1; . . . ;minr;max1; . . . ;maxr�. This Bool-
ean value is TRUE, if and only if there exists a subcoloring of Gk with color
classes C1; . . . ;Cr with the following properties for j ¼ 1; . . . ; r: If Cj is empty,
then min0j ¼ minj ¼ maxj ¼ �. If Cj consists from one clique then min0j ¼ �. And
if Cj is non-empty, then minj is the smallest vertex and maxj is the largest vertex of
the rightmost clique Cl in color class Cj. If Cj contains more than one clique then
min0j is the smallest vertex of the rightmost clique Cl0 in Cj � Cl.

The values B½k;min01; . . . ;min0r;min1; . . . ;minr;max1; . . . ;maxr� are computed first
for level k ¼ 1, then for level k ¼ 2, and so on up to level k ¼ n. Since in any
subcoloring for Gk the vertex k þ 1 can be added in at most 2r possible ways,
every TRUE value at level k generates at most 2r TRUE values at level k þ 1. The
graph G is r-subcolorable, if and only if there exists a TRUE value at level n.
Summarizing, we get the following theorem.

Theorem 5.5. For any fixed r, the r-subcoloring problem for a permutation graph
with n vertices can be solved in Oðr � n3rþ1Þ time.

6 Concluding Remarks and Questions

� What is the computational complexity of r-subcoloring for cocomparability
graphs?
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� What is the computational complexity of r-subcoloring for chordal graphs?

� What is the computational complexity of 2-subcoloring for AT-free graphs? (In
Section 3, we have proved that 3-subcoloring of AT-free graphs is NP-hard).

� What is the computational complexity of r-subcoloring for interval graphs and
permutation graphs, if r is part of the input? (In Section 5, we have proved that
these problems are polynomially solvable if r is fixed and not part of the input).
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A Graph Classes

In this appendix, we collect definitions and simple properties of the graph classes
as considered in this paper. We refer the reader to the book of Golumbic [11] for

More About Subcolorings 201



broader information on perfect graphs, and to the book by Brandstädt, Le &
Spinrad [3] for additional references.

Perfect graphs. A graph G is perfect if for every induced subgraph G0 of G, the
chromatic number vðG0Þ equals the size xðG0Þ of the largest clique.

Comparability graphs. An orientation H ¼ ðV ;DÞ of an undirected graph
G ¼ ðV ;EÞ assigns one of the two possible directions to each edge e 2 E. The
orientation is transitive if ða; bÞ 2 D and ðb; cÞ 2 D implies ða; cÞ 2 D. A graph
G ¼ ðV ;EÞ is a comparability graph if there exists a transitive orientation
H ¼ ðV ;DÞ of G.

Cocomparability graphs. A graph is a cocomparability graph if it is the comple-
ment of a comparability graph.

Permutation graphs. Let r be a permutation of the set f1; 2; . . . ; ng. We think of r
as the sequence r ¼ hrð1Þ; rð2Þ; . . . ; rðnÞi, and we associate with it the following
permutation diagram: Draw two parallel horizontal lines. Write the numbers
1; 2; . . . ; n from left to right in the upper line. Write the numbers
rð1Þ; rð2Þ; . . . ; rðnÞ from left to right in the lower line. For each i 2 f1; 2; . . . ; ng,
draw the straight line segment from i in the upper line to i in the lower line. See
Figure 3 for an illustration.

The inversion graph G½r� ¼ ðV ;EÞ associated with r has vertex set
V ¼ f1; 2; . . . ; ng. There is an edge between i and j if and only if in the permu-
tation diagram the two line segments ½i; rðiÞ� and ½j; rð jÞ� intersect. Equivalently
we may say that there is an edge between i and j if and only if
ði� jÞðr�1ðiÞ � r�1ðjÞÞ < 0 holds.

An undirected graph G is a permutation graph if it is isomorphic to G½r� for some
permutation r. The permutation graphs form a subclass of the comparability
graphs. Moreover, it is known that a graph G is a permutation graph if and only if
it is both a comparability graph and a cocomparability graph.

Cographs. Cographs are the graphs that do not contain an induced P4. An
equivalent inductive definition of cographs is the following: A graph G is a

Fig. 3. The permutation diagram and the graph G½r� for r ¼ ð5; 4; 1; 2; 3Þ
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cograph, if (i) it consists of a single vertex, or if (ii) there are cographs G1 and G2

such that G ¼ G1 _[[G2, or if (iii) there are cographs G1 and G2 such that
G ¼ G1 _ G2. The cographs form a subclass of the permutation graphs.

Interval graphs. A graph G ¼ ðV ;EÞ is an interval graph if one can assign to each
v 2 V an interval Iv on the real line such that ðu; vÞ 2 E if and only if Iv \ Iu 6¼ ;.
Interval graphs form a subclass of the cocomparability graphs.

AT-free graphs. An independent set of three vertices is called an asteroidal triple
(AT) if every two of them are connected by a path avoiding the neighborhood of
the third one. A graph is AT-free if it does not contain an asteroidal triple. AT-
free graphs were introduced to generalize interval graphs and cocomparability
graphs. The class of AT-free graphs is not a subclass of the perfect graphs.
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