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Abstract

HOM4PS-2.0 is a software package in FORTRAN 90 which implements the
polyhedral homotopy continuation method for solving polynomial systems. It
updates its original version HOM4PS in three key aspects: (1) New method for
finding mixed cells, (2) Combining the polyhedral and linear homotopies in one
step, (3) New way of dealing with the curve jumping. Numerical results show
that this revision leads to a spectacular speed-up, ranging up to the 50’s, over its
original version on all bench mark systems, especially for large ones. It surpasses
established packages in this category, such as PHCpack [25] and PHoM [8], in
speed by huge margins.

1 Introduction

For a system of polynomials P (x) = (p1(x), . . . , pn(x)) with x = (x1, . . . , xn) , write

pj(x) =
X
a∈Sj

cj,ax
a, j = 1, . . . , n,

where a = (a1, . . . , an) ∈ Nn, cj,a ∈ C∗ = C\{0} and xa = xa1
1 · · ·xan

n . Here Sj, a finite
subset of Nn, is called the support of pj(x), and S = (S1, . . . , Sn) is called the support
of P (x).
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Based on Bernshtein’s combinatorial root count [1], the polyhedral homotopies are estab-
lished in 1995 [9] to approximate all the isolated zeros of P (x) = (p1(x), . . . , pn(x)) by
the homotopy continuation method. It yields a drastic improvement over the classical lin-
ear homotopies for solving sparse polynomial systems. The software package HOM4PS,
developed over the years by a group led by T.Y.Li at Michigan State University, imple-
mented this approach for solving polynomial systems. While the detailed description of
the algorithms in HOM4PS was not formally published, the code is widely considered to
be much superior in speed to the published codes PHCpack [25] and PHoM [8] which
also implemented the polyhedral homotopy method for solving polynomial systems.

In this article, we shall elaborate the details of the most updated version of HOM4PS, we
call it HOM4PS-2.0, which greatly upgrades its original version, leading to a spectacular
speed-up as shown in § 6.

There are three major revisions in HOM4PS-2.0:

• Mixed cell computations

When the polyhedral homotopy is employed to find all isolated zeros of P (x) =
(p1(x), . . . , pn(x)), the process of locating all the mixed cells during the mixed vol-
ume computation plays a crucially important role [13, 14, 15]: The mixed volume
determines the number of solution paths which need to be traced and the mixed
cells provide starting points of the solution paths. Calculating the mixed cells (and
thus the mixed volume) of the support of P (x) consumes a large part of the com-
putation and therefore dictates the efficiency of the method as well as the scope of
its applications. In 2005, a software package, MixedVol [7], emerged which led
the existing codes for the mixed volume computation by a great margin in speed.
However, soon after MixedVol was published, T. Mizutani, A. Takeda and M.
Kojima [19] developed a more efficient algorithm which overshadowed MixedVol
in speed by a big amount. Most recently T.L.Lee and T.Y.Li [12] embedded the
novel idea of dynamic enumerations of mixed cells in [19] into MixedVol and a
new code, MixedVol-2.0, was produced which regains the lead by a substantial
margin. Naturally, we adopt this new algorithm for the mixed cell computation in
HOM4PS-2.0 and will outline the algorithm in § 2.

• Combining the polyhedral and linear homotopies in one step

The polyhedral homotopy method implemented in HOM4PS for solving polyno-
mial system P (x) = (p1(x), . . . , pn(x)) consists of two main steps: (1) A polyno-
mial system Q(x) = (q1(x), . . . , qn(x)) = 0 having the same monomials as P (x)
but with randomly chosen coefficients is solved by polyhedral homotopies. (2) A
linear homotopy H(x, t) = (1− t)γQ(x)+ tP (x), t ∈ [0, 1] with generically chosen
γ ∈ C, is used to find all isolated zeros of P (x). By Bernshtein’s theorem [1], the
number of solution paths which need to be traced in the first step is the mixed
volume of the support of P (x). This number remains the same for the second step.
All together the total number of homotopy paths that need to be traced is twice
the mixed volume of the support of P (x). In HOM4PS-2.0, those two steps were
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combined in one step so that the total number of curves that need to be traced is
simply the mixed volume of the support of P (x). While this idea was originally
suggested in [9], it had not been successfully implemented in HOM4PS because
of the involved numerical difficulties in efficiency and stability. In HOM4PS-2.0,
we successfully dealt with the problems by applying the transformation s = ln t,
yielding a family of smooth solution paths of a homotopy H̄(x, s) = 0, each
parametrized by s ∈ (−∞, 0]. We will explain the details in § 3. This strategy
was independently developed in [10].

• Dealing with the ‘Curve Jumping’

Theoretically, with probability 1, two homotopy paths do not cross each other.
But, in practice, when tracing two homotopy paths that are very close to each
other, it is possible that the curve jumping can happen and may thus result in
the missing of zeros. Though a sophisticatedly designed path tracing algorithm
seldom encounters this problem, very seldom indeed, we have zero tolerance for
the occurrence of a missing zero. In HOM4PS, the numerically attained zeros
were compared with each other in a quite straightforward manner to determine
possible curve jumping, followed by retracing the corresponding paths with smaller
step sizes. The detecting method used there could potentially cost a substantial
amount of computing time for large systems where over millions of homotopy paths
need to be traced. In the new version, HOM4PS-2.0, solutions are divided into
many groups so that only solutions in the same group need to be compared with
each other. This technique provides quite a big saving in the computing time,
especially for large systems. More details follow in § 4.

In addition to those key revisions given above, § 5 lists several new aspects in our al-
gorithms in HOM4PS-2.0 which appeared in HOM4PS in a less sophisticated manner.
This includes schemes in evaluating polynomials and their partial derivatives in § 5.1,
in scaling the coefficients of the polynomial systems in § 5.2 and in treating the end
games in § 5.3. Numerical results are shown in § 6. The speed-ups of our new pack-
age HOM4PS-2.0 over its original version HOM4PS on those bench mark polynomial
systems are shown in § 6.2. As the speed-up increases when the size of the system be-
comes bigger, it can reach over 50’s for large systems. Furthermore, HOM4PS-2.0 can
handle much larger systems in a tolerable time than its original version. In § 6.3, we
compare our new code with the existing packages, PHCpack [25] and PHoM [8] which
also implemented the polyhedral homotopy method for solving polynomial systems. As
exhibited, HOM4PS-2.0 leads in speed by huge margins.

2 Mixed cell computations

For polynomial system P (x) = (p1(x), . . . , pn(x)) with support S = (S1, . . . , Sn), let
ωj : Sj → R be a random lifting function on Sj which lifts Sj to its graph Ŝj =
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{â = (a, ωj(a)) : a ∈ Sj} ⊂ Rn+1 for j = 1, . . . , n. For α̂ = (α, 1) ∈ Rn+1, where
α = (α1, . . . , αn) ∈ Rn, let < â, α̂ > denote the usual inner product in Euclidean space.

A collection of pairs {a1, a
′
1} ⊂ S1, . . . , {an, a

′
n} ⊂ Sn is called a mixed cell if there exists

α̂ = (α, 1) ∈ Rn+1 with α ∈ Rn such that

〈âj, α̂〉 =
¬
â′j, α̂

¶
< 〈â, α̂〉 for a ∈ Sj\

¦
aj, a

′
j

©
, j = 1, . . . , n,

and α is called the inner normal of this mixed cell. For 1 ≤ i ≤ n, ê = {â, â
′} ⊂ ÒSi,

is called a lower edge of ÒSi if there exists α̂ = (α, 1) ∈ Rn+1 for which the following
relations hold:

< â, α̂ > = < â′, α̂ > ≤ < b̂, α̂ > ∀ b ∈ Si \ {a, a′}.
Denote the set of all lower edges of ÒSi by L(ÒSi). For k distinct integers {i1, . . . , ik} ⊂
{1, . . . , n},ÒEk = (êi1 , . . . , êik), 1 ≤ k ≤ n, where êij = {âij , â

′

ij
} ⊂ ÒSij for j = 1, . . . , k, (1)

is called a level-k subface of Ŝ =
�
Ŝ1, . . . , Ŝn

�
(or simply “level-k subface”) if there exists

α̂ = (α, 1) ∈ Rn+1 such that for each j = 1, . . . , k¬baij , bα¶ =
¬ba′ij , bα¶ ≤ 〈ba, bα〉 ∀ a ∈ Sij\

¦
aij , a

′
ij

©
.

For a level-k subface ÒEk = (êi1 , . . . , êik) of ÒS = (ÒS1, . . . , ÒSn) with 1 ≤ k < n

where êij = {âij , â
′
ij
} ∈ L(ÒSij) for j = 1, . . . , k, we say that the lower edge êik+1

=

{âik+1
, â

′
ik+1

} ∈ L(ÒSik+1
) for certain ik+1 ∈ {1, 2, . . . , n} \ {i1, · · · , ik} extends the level-k

subface ÒEk if ÒEk+1 = (êi1 , . . . , êik+1
) is a level-(k + 1) subface of Ŝ = (Ŝ1, . . . , Ŝn). We

say ÒEk is extensible in such situations.

A main strategy for finding mixed cells is the extension of level-k subfaces ÒEk of Ŝ =�
Ŝ1, . . . , Ŝn

�
starting from k = 1 and an extensible ÒEk when k = n − 1 yields mixed

cells of S = (S1, . . . , Sn), induced by elements in ÒSin . In [5, 6, 7, 16], the order of this
extension i1, i2, . . . is predetermined and fixed, that is, one always starts from extending
lower edge ê1 of Ŝ1 to a level-2 subface (ê1, ê2) with ê2 ∈ L(ÒS2), then extend (ê1, ê2)
to a level-3 subface (ê1, ê2, ê3) with ê3 ∈ L(ÒS3) . . . etc. Software package MixedVol
[7] for the mixed cells computation that was adopted in the original HOM4PS was
developed along this line of approach.

In [19], the novel idea of dynamic enumeration of all mixed cells emerged where dynamic
means that the order of the subface extension will not stay fixed. To extend a particular
level-k subfaceÒEk = (êi1 , . . . , êik), 1 ≤ k < n, where êij = {âij , â

′

ij
} ∈ L(ÒSij) for j = 1, . . . , k, (2)

one searches among M : = { ÒSl : l ∈ {1, . . . , n}\{i1, . . . , ik}} for ÒSik+1
that has

minimal number of suitable points where only lower edges consisting of points among
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them can possibly extend ÒEk to a level-(k + 1) subface. The main strategy suggested
in [19] for finding such ÒSik+1

is the removal of those points in each ÒSl ∈ M which have

no chances to be part of a lower edge in L(ÒSl) that can extend ÒEk, and select the one
with minimal remaining points as Ŝik+1

.

For level-k subface ÒEk = (êi1 , . . . , êik) where êij = {âij , â
′
ij
} ∈ L(ÒSij) for j =

1, . . . , k, let Q := {i1, . . . , ik} ⊂ {1, . . . , n}. For a fixed l ∈ {1, . . . , n}\Q, let bbv be a
particular point in ÒSl, and consider the set of constraints:

〈baµ, bα〉 =
¬ba′µ, bα¶ ∀ µ ∈ Q

≤ 〈ba, bα〉 ∀ ba ∈ ÒSµ\
¦baµ, ba′µ© (3)¬bbv, bα¶ ≤

¬bb, bα¶ ∀ bb ∈ ÒSl\
¦bbv

©
in terms of unknowns bα = (α, 1) ∈ Rn+1. Apparently, when the set of constraints in (3)
is infeasible, then there is no b̂µ in ÒSl such that {b̂v, b̂µ} can extend ÒEk to become a

level-(k+1) subface, and therefore b̂v can be safely removed from Ŝl. For the feasibility
of the set of constraints in (3), consider the linear programming (LP) problem

(P) Max 〈r, α〉
Subject to (3)

where r ∈ Rn is any fixed vector. By the duality theorem, the feasibility of the inequal-
ities in (3) can be determined by the boundedness of the duality of the LP problem in
(P), which can be checked by standard techniques in the textbooks.

The superiority of the resulting software DEMiCs-0.95 in computing mixed cells with
the dynamic enumeration was reported in [19]. Soon after, this idea was embedded in
the original MixedVol and a new code MixedVol-2.0 was developed which improves
the speed of DEMiCs-0.95 by a substantial margin as shown in [12]. Employing the
polyhedral homotopy method for solving polynomial systems, locating all mixed cells
always plays a critically important role [13, 14, 15]. The new adoption of MixedVol-
2.0 for the mixed cell computation in HOM4PS-2.0 is certainly one of the main factors
accountable for its considerable speed-up.

3 Constructing the polyhedral-linear homotopy

For polynomial system P (x) = (p1(x), . . . , pn(x)) with

pj(x) =
X

a∈Sj

cj,ax
a, j = 1, . . . , n,
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let Q(x) = (q1(x), . . . , qn(x)) = 0 be a polynomial system having the same monomials
as P (x) but with randomly chosen coefficients, i.e., qj(x) =

P
a∈Sj

c̄jax
a where c̄ja

are randomly chosen complex numbers. In HOM4PS this system is first solved by
using a polyhedral homotopy ÒQ(x, t) = (q̂1(x, t), . . . , q̂n(x, t)), t ∈ [0, 1] with a random
lifting given by ω = (ω1, . . . , ωn), ωj : Sj → R; i.e., q̂j(x, t) =

P
a∈Sj

c̄jax
atωj(a) for

j = 1, . . . , n. Then a linear homotopy H(x, t) = (1 − t) γ Q(x) + t P (x), t ∈ [0, 1]
with generically chosen complex γ, is constructed, the so-called cheater’s homotopy [17]
(or the coefficient-parameter continuation [21]). It is known that all isolated solutions
of P (x) = 0 can be obtained by following the smooth solution paths of H(x, t) = 0
emanating from the solutions to Q(x) = 0 found above.

In HOM4PS-2.0, these two steps were combined in one step by considering the polyhedral-
linear homotopy

H(x, t) = (h1(x, t), . . . , hn(x, t)), x = (x1, . . . , xn), t ∈ [0, 1]

where
hj(x, t) =

X
a∈Sj

((1− t)c̄ja + tcja)x
atωj(a), j = 1, . . . , n.

Note that H(x, 1) = P (x). For a given mixed cell C = ({a11, a12}, . . . , {an1, an2}) with
inner normal α ∈ Rn, where {aj1, aj2} ⊂ Sj for each j = 1, . . . , n, after applying
the change of variables x = ytα where y = (y1, . . . , yn) and xj = yjt

αj for j =
1, . . . , n, and keeping the variable x in place of y, we reach the homotopy H̃(x, t) =
(h̃1(x, t), . . . , h̃n(x, t)), t ∈ [0, 1], where for j = 1, . . . , n

h̃j(x, t) =
X
a∈Sj

[(1− t)c̄ja + tcja]x
at<â,α̂>, with â = (a, wj(a)) for a ∈ Sj.

Letting
βj = min

a∈Sj

< â, α̂ > for j = 1, . . . , n

and “factoring out the lowest power of t ” yields Ĥ(x, t) = (ĥ1(x, t), . . . , ĥn(x, t)), where
t ∈ [0, 1] and

ĥj(x, t) =
X
a∈Sj

[(1− t)c̄ja + tcja]x
at(<â,α̂>−βj), for j = 1, . . . , n. (4)

Note that we still have Ĥ(x, 1) = P (x), because x(1) = y(1). In following the solution
paths of Ĥ(x, t) = 0 by the prediction-correction method, the first step of the predictor
at t = 0 cannot be taken if a power of t in Ĥ(x, t) is less than one, since Ĥt(x, t) would
then be undefined at t = 0. If the minimum power of t in (4) is, say, t0.01, then changing
variables with T = t0.01 would solve the immediate problem. But it would reduce
numerical stability and computational efficiency if large powers of t , such as t1,000,
were also contained in Ĥ(x, t). Then the tangent vector ẋ = Ĥ−1

x ∗ Ĥt would contain
the terms in the order of 100, 000∗t99999 which, if evaluated at any t ∈ [0, 1), would give
0. Close to 1, however, the tangent vector would become extremely steep, and step sizes
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for following the homotopy path would have to be correspondingly minuscule. Actually
this sort of problems already exist when “the polyhedral step” and “the linear step” are
split as implemented in HOM4PS, they become multiply amplified when the combined
polyhedral-linear homotopy is used. Ironically, the difference between the computing
time of these two approaches is almost negligible most of the time notwithstanding the
number of paths which need to be followed differs by a half between them.

In HOM4PS-2.0, we address this problem by applying the transformation s = ln t in
(4), resulting in the homotopy H̄(x, s) = (h̄1(x, s), . . . , h̄n(x, s)), s ∈ (−∞, 0], where

h̄j(x, s) =
X
a∈Sj

[(1− es)c̄ja + escja]x
aes∗(<â,α̂>−βj) for j = 1, . . . , n.

Recall that mixed cell C = ({a11, a12}, {a21, a22}, . . . , {an1, an2}) with inner normal
α ∈ Rn satisfies the relations

< âj1, α̂ > = < âj2, α̂ >,

< âj1, α̂ > < < â, α̂ > ∀ â ∈ Ŝj \ {âj1, âj2}, j = 1, . . . , n.

So, in each h̄j(x, s), there are exactly two powers of e equal to 0, namely, for each
j = 1, . . . , n,

βj = min
a∈Sj

< â, α̂ > = < âj1, α̂ > = < âj2, α̂ > .

Therefore at s = −∞, H̄(x,−∞) becomes a binomial system,

c̄11x
a11 + c̄12x

a12 = 0,
...

c̄n1x
an1 + c̄n2x

an2 = 0,

having |det (a11 − a12, . . . , an1 − an2)| number of nonsingular isolated solutions which
provide the starting points for following the solution paths of H̄(x, s) = 0 from s =
−∞ to 0. We will not detail the standard procedure for solving binomial systems here,
see [13, 15].

Since H̄(x, s) = Ĥ(x, es), thus for H̄(x(s), s) = 0 we have

dH̄

ds
(x(s), s) =

d

ds
Ĥ(x, es) = Ĥx

dx

ds
+ Ĥte

s = 0. (5)

It follows that
dx

ds
|s=−∞ = 0 and the values of x(s) stay close to invariant for large neg-

ative s. Thus, to keep H̄(x, s) ≈ 0, we choose s0 so that terms e s0∗(<â,α̂>−βj) for a ∈
Sj \{aj1, aj2} are negligible for all j = 1, . . . , n, say on the order of 10−8, as our starting
s value for following the solution paths of H̄(x, s) = 0. Since s ∈ (−∞, 0] the dominant
or largest term with base e and exponent s ∗ (< â, α̂ > −βj) in the polynomial

h̄j(x, s) =
X
a∈Sj

[(1− es)c̄ja + escja]x
aes∗(<â,α̂>−βj)
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for all j = 1, . . . , n is given by

µ := exp(s ∗
�

min
a∈Sj\{aj1,aj2}

(< â, α̂ > −βj)

�
), for j = 1, . . . , n.

Setting µ = 10−8 and solving for s, yields

s0 =
−8 ln 10

mina∈Sj\{aj1,aj2}
j∈{1,2,...,n}

(< â, α̂ > −βj)
.

Tracing solution paths x(s) of H̄(x, s) = 0 from s0 will reach isolated zeros of P (x)
when s reaches 0. As this is quite different from following paths in [0,1], one must move
more aggressively, especially when the magnitude of s0 is very large. From (5),

dx

ds
= −Ĥ−1

x Ĥt e
s, with Ĥ(x, t) as in (4) and t = es.

So
dx

ds
is small for large negative s0, which justifies the adoption of a large step size at

s0, say δ0 =
−s0

3
, making s1 = s0 + δ0. It is then followed by a standard prediction-

correction algorithm at s1 for tracing homotopy paths. In general, at sk, we choose

initial step size δk = min{δk−1,
−sk

3
}, namely, the step size remains the same as that of

the previous stage, but not excessively large - not over a third of the remaining distance.
When two consecutive points on the path are available along with their tangents to
the path, we use the cubic Hermite interpolation rather than the Euler method as
our predictor, followed by the Newton corrector. As usual, step sizes are adjusted by
the chosen tolerance parameters. For instance, normally it takes no more than three
iterations for Newton corrector to converge within the desired accuracy. Therefore if the
number of Newton’s iterations for the correction is > 3, the step size will be cut in half
to minimize the possibility that the beginning predictor estimate was too far away from
the curve. On the other hand, if in two consecutive stages the step sizes were not cut,
we assume the curve is flat at this moment and will take the initial step size to be the
minimum of doubling the previous step size and a third of the remaining distance to 0.

As mentioned before, combining linear and nonlinear homotopies to reduce the number
of solution paths needed to be followed in the polyhedral homotopy method by half
was originally suggested back in 1995 [9]. However, this idea has not been successfully
implemented in HOM4PS because of the involved stability and efficiency problems. Ad-
dressing those difficulties by the transformation s = ln t and parameterizing the solution
paths by s ∈ (−∞, 0] in HOM4PS-2.0 as shown above, a substantial improvement in
algorithmic efficiency and stability has been achieved as evidenced by the results of
intensive numerical experiments. This combination strategy is particularly important
when the polyhedral homotopies are used to solve large problems where mixed volumes
of the systems are more than millions.
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4 On curve jumping

Following two very close homotopy paths may increase the chance of curve jumping that
can occur at each stage of the prediction and correction. When Euler’s method, or the
cubic Hermite interpolation, is applied to predict a beginning estimate for the Newton
correction of one homotopy path, the resulting point may become too close to the other
homotopy path. Thus the correction sequence will converge to a point that is not on the
desired path. Subsequently, continued with the prediction-correction procedure, we are
in effect following the second path which will also be traversed independently beginning
with its own starting point. From the numerical results, it looks as though two different
curves each with different starting points both reach the same solution. On the other
hand, reaching the same solution may not indicate the occurrence of curve jumping
because of possible singular solutions. For example, when solving cyclic-8 [2] and cyclic-
9 [2] systems by the homotopy method, both have more than one curve leading to the
same singular solution that lies on a positive dimensional solution component.

Before dealing with the curve jumping, we wish, in the first place, to minimize the chance
for curve jumping to happen during the curve tracing procedure. In HOM4PS-2.0, a
more sophisticated selection for the tolerance parameters is designed for dynamically
determining step size during the curve following. For instance, for Newton correction
at s = sk, we consider any two consecutive iteration points x(m) and x(m+1) too far

apart from each other if the relative error
‖ x(m+1) − x(m) ‖

‖ x(m) ‖
> 10%. In this situation,

we will repeat the prediction-correction process with the step size being cut in half. In
addition, as mentioned before, if more than 3 steps of Newton’s iterations were required
to converge within the desired accuracy, we yet again cut the step size in half to minimize
the possibility that the beginning predictor estimate was too far away from the curve.
As shown in Table 1 in § 6.1, these collective treatments greatly decrease the occurrences
of curve jumping. In fact, they never appear in most of the systems we solved.

To check if curve jumping occurs, we must verify all the attained solutions to see if
there are two solutions that are very close to each other. We may, for instance, consider
two solutions to be numerically identical if the relative error of these two solutions is
less than a chosen parameter ε0 > 0. In HOM4PS, this task was done in a quite
straightforward manner, essentially each pair of solution points were compared. This
will naturally become very costly when the number of solutions is big, say 100,000. Then
there are 100, 000 ∗ 99, 999/2 solution pairs, and the relative error of each pairs must
all be computed.

In HOM4PS-2.0, we divide all the solutions into different groups and only check so-
lution pairs within the same group for closeness. For each isolated solution point
z = (z1, . . . , zn) ∈ Cn we will focus on the imaginary part of its first component
z1 = A1 + B1i where A1, B1 ∈ R. The decimal representation of B1 always has a
positive or negative sign associated with it and the solutions will be divided into groups
that are characterized by this sign as well as the chosen and fixed k-th digit and (k+1)-
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th digit after the decimal point of the decimal representation of B1. Each digit place has
ten possibilities {0, 1, 2, . . . , 9}. So in total, the solution set is divided into 200 groups,
and each group of solution points is characterized by having the same sign, the same
k-th digit bk and (k + 1)-th digit bk+1 of the decimal representation of the imaginary
part of its first component. Obviously, to locate solution pairs that are numerically
identical, one only needs to compare solution pairs within the same group.

Along the same line, the number of groups can certainly be increased if one wishes to
deal with even bigger solution set. Our numerical results show that this technique for
the curve jumping detection chopped off a big amount of computing time of HOM4PS
especially when solving big systems.

Now, after two (or more) numerically identical solutions are detected, call it x̄, we
first check the smallest singular value σ of the Jacobian matrix Px(x) evaluated at x̄.
When σ is bigger than a chosen threshold ε1 > 0, then the solution x̄ will be considered
isolated and nonsingular. The curve jumping clearly occurs. In such cases, we retrace
the two associated curves with smaller step sizes. When σ < ε1, and the solution x̄ is
isolated, we will infer that the two curves reach the same solution x̄ and curve jumping
does not occur. However, we can not rule out the possibility of the curve jumping if the
solution x̄ is a nonsingular point lying on a higher dimensional solution component Z.
A point z ∈ Z is called nonsingular if

rankC
∂ (p1, . . . , pn)

∂ (x1, . . . , xn)
(z) = n− dim Z. (6)

To differentiate those cases, the algorithm developed in [11] is used to determine the
dimension of the solution component to which the solution x̄ belongs first, followed by
checking the rank condition of x̄ in (6). For the rank revealing of the Jacobian, we use
the scheme developed in [18] rather than calculating the whole SVD (Singular Value
Decomposition) of the matrix.

When x̄ is singular, it commonly attracts more than one different solution curves as in
solving cyclic-4 and cyclic-8 systems [11]. Curve jumping is only allowed to exist if x̄ is
nonsingular.

5 Miscellaneous

5.1 Evaluating polynomials and derivatives

The prediction-correction process for following the homotopy paths of H̄(x, s) = (h̄1(x, s),
. . . , h̄n(x, s)) = 0 where for j = 1, . . . , n,

h̄j(x, s) =
X
a∈Sj

[(1− es)c̄ja + escja]x
aes∗(<â,α̂>−βj) and xa = xa1

1 . . . xan
n ,
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requires the computation of H̄(x, s), H̄s(x, s), and the matrix H̄x(x, s) for fixed s.
What is essentially involved in evaluating H̄(x, s), H̄s(x, s) and H̄x(x, s) at a given
point x = (x1, . . . , xn) are the evaluations of multivariate polynomials and their par-
tial derivatives. In HOM4PS, a multivariate polynomial g(x1, . . . , xn) was evaluated via
Horner’s rule for univariate polynomials. By factoring out a variable, say x1, g(x1, . . . , xn)
becomes a polynomial in x1 with coefficients in C[x2, . . . , xn]. By the same principle,
those coefficients, as polynomials in one less variable, were evaluated by factoring out
another variable. This may continue until the variables are exhausted.

If multivariate polynomials are evaluated in this manner, the repeated computation
of the same powers of some variables seems inevitable. For instance, for the system
P = (p1(x1, x2, x3), p2(x1, x2, x3), p3(x1, x2, x3)) where

p1 = 2 ∗ x6
1 + 3 ∗ x4

2 + 5 ∗ x5
3 − 1

p2 = 3 ∗ x6
1 ∗ x4

2 + 2 ∗ x6
1 ∗ x5

3 + 4 ∗ x4
2 ∗ x5

3 − 5

p3 = 5 ∗ x6
1 ∗ x4

2 ∗ x5
3 − 7,

x6
1, x4

2, and x5
3 appear in all p1, p2, and p3 . When the above rule is applied, those

quantities must repeatedly be computed.

For j = 1, . . . , n, let

MaxDeg(j) = max{aj|(a1, . . . , an) ∈ S1 ∪ · · · ∪ Sn}
= maximum power of the variable xj appearing in the entire

polynomial system

and

M = max
j=1,...,n

MaxDeg(j)

= the largest power of all the variables in the entire polynomial system.

In HOM4PS-2.0, a table T of size n×M is established to store all possible powers of
xj, j = 1, . . . , n which may appear in H̄(x, s), H̄s(x, s), and H̄x(x, s).

Table T

x1 x2
1 . . . x

MaxDeg(1)
1

x2 x2
2 . . . x

MaxDeg(2)
2

...
... . . .

...

xn x2
n . . . xMaxdeg(n)

n

The first row of T stores the monomials x1, x2
1, . . . , x

MaxDeg(1)
1 , the second row stores

the monomials x2, x2
2, . . . , x

MaxDeg(2)
2 , and similarly, the last row stores the monomi-

als xn, x2
n, . . . , x

MaxDeg(n)
n . Since H̄x(x, s) contains the partial derivatives of xa =

11



xa1
1 · · ·xan

n that appear in H̄(x, s), and since H̄s(x, s) contains the same xa = xa1
1 · · ·xan

n

as H̄(x, s), table T stores all possible powers of xj appearing in all of H̄(x, s), H̄s(x, s),
and H̄x(x, s). The value of a monomial evaluated at a point x = (x1, . . . , xn) can eas-
ily be obtained from table T . For example, for n = 3, the quantity of x2

1x
3
2x3 is

T (1, 2) ∗ T (2, 3) ∗ T (3, 1).

For the above system, we have MaxDeg(1) = 6, MaxDeg(2) = 4, MaxDeg(3) = 5
and hence M = 6. The 3× 6 table T is given as follows:

Table T

x1 x2
1 x3

1 x4
1 x5

1 x6
1

x2 x2
2 x3

2 x4
2

x3 x2
3 x3

3 x4
3 x5

3

and those powers that are involved in any monomial evaluations, no matter how often
they appear, will never be repeatedly computed.

5.2 Scaling of the coefficients

Certain polynomial systems, such as cohn 2 and cohn 3 [4], have large coefficients. Large
magnitudes in coefficients will result in large magnitudes in tangent vectors of the ho-
motopy paths. This will effect the efficiency of the curve tracing because smaller step
sizes need to be taken to follow the homotopy paths. The idea of scaling the system to
reduce the magnitudes of the coefficients of the polynomials first appeared in [20]. We
shall illustrate our scaling method by way of an example.

Example Consider the following system of two equations in two unknowns

8000 x2
1x

2
2 − 2000 x1 + 1 = 0 (7)

5000 x1x2 − 30 = 0. (8)

To scale the variables, let x1 = 10c1z1 and x2 = 10c2z2, and to scale the equations,
multiply (7) by 10c3 and multiply (8) by 10c4 . This gives

10c3(8000 ∗ 102c1+2c2 z2
1z

2
2 − 2000 ∗ 10c1z1 + 1) = 0

10c4(5000 ∗ 10c1+c2 z1z2 − 30) = 0.

Or,

10E1z2
1z

2
2 − 10E2z1 + 10E3 = 0

10E4z1z2 − 10E5 = 0

12



where

E1 = 2c1 + 2c2 + c3 + log10(8000)

E2 = c1 + c3 + log10(2000)

E3 = c3

E4 = c1 + c2 + c4 + log10(5000)

E5 = c4 + log10(30).

To have the numerical stability afforded by coefficients centered about unity, we want
each Ei to be close to 0. Furthermore, to reduce variability among the magnitude of
the coefficients in each equation, we want the difference between each pair of E ′

is in an
equation to be close to 0. Thus, setting

r1 ≡ E2
1 + E2

2 + E2
3 + E2

4 + E2
5

r2 ≡ [(E1 − E2)
2 + (E2 − E3)

2 + (E1 − E3)
2] + [(E4 − E5)

2],

we wish to minimize r = r1 + r2. More explicitly,

r = (2c1 + 2c2 + c3 + log(8000))2 + (c1 + c3 + log(2000))2 + c2
3 (9)

+(c1 + c2 + c4 + log(5000))2 + (c4 + log(30))2

+(c1 + 2c2 + log(8000)− log(2000))2 + (2c1 + 2c2 + log(8000))2

+(c1 + log(2000))2 + (c1 + c2 + log(5000)− log(30))2.

While in [20] r is considered as a second degree polynomial in four unknowns c1, c2, c3, c4

and is minimized by the solution of

∂r

∂ci

= 0 for i = 1, 2, 3, 4,

we rewrite r in (9) as

r =






























0BBBBBBBBBBBBBBB@

2 2 1 0
1 0 1 0
0 0 1 0
1 1 0 1
0 0 0 1
1 2 0 0
2 2 0 0
1 0 0 0
1 1 0 0

1CCCCCCCCCCCCCCCA| {z }
A

�
c1

c2

c3

c4

�
| {z }

x

−

0BBBBBBBBBBBBBBB@

− log(8000)
− log(2000)

0
− log(5000)
− log(30)

log(2000)− log(8000)
− log(8000)
− log(2000)

log(30)− log(5000)

1CCCCCCCCCCCCCCCA| {z }
b






























2

2

(10)

= ‖ Ax− b ‖2
2 ,
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and consider its minimization as a linear least squares problem. With the solution of
this least squares problem c1 = −3.3437, c2 = 1.3495, c3 = 0.0427, and c4 = −1.5909,
the original equations then become

0.9064 z2
1z

2
2 − z1 + 1.1033 = 0

1.2996 z1z2 − 0.7695 = 0.

Clearly, the new system has coefficients with magnitudes smaller than those of the
original one. They are closer to unity and to each other. When solutions z = (z1, z2)
of the new system are located, the solutions x = (x1, x2) can be attained by applying
the transformation x1 = 10c1z1 and x2 = 10c2z2.

5.3 The end game

Some of the homotopy paths x(s) of H̄(x, s) = 0 for s ∈ (−∞, 0] may diverge, or go
to ∞, as s approaches 0. (In fact, solving systems like reimer-n [24] by the homotopy
continuation method, the majority of homotopy paths diverge.) Tracing divergent paths
usually consumes a multiple computing time. Typically near the end of the solution path,
very small step sizes must be taken to determine the convergence of the path. For a
more efficient method, write

xj(s) = aj(1− es)
ωj
m (1 +

∞X
i=1

aij(1− es)
i
m ), j = 1, . . . , n (11)

where m, called the cyclic number, is a positive integer and ω = (ω1, . . . , ωn) ∈ Zn. It
was shown in Morgan et al. [22] that such expansions exist for each path in the neigh-
borhood of s = 0. Taking the logarithm of the absolute value of both sides of equation
(11) yields

log |xj(s)| = log |aj|+
ωj

m
log(1− es) +

∞X
i=1

bij(1− es)j. (12)

Here
P∞

i=1 bij(1−es)j is the Taylor expansion of log(1+
P∞

i=1 aij(1−es)
i
m ). During the

process of homotopy continuation, a sequence of points x(sk), −∞ < s0 < s1 < · · · ≤ 0
were generated. Choose two consecutive sk and sk+1 close to 0, say 1 − esk < 10−6.
By equation (12),

log |xj(sk)| − log |xj(sk+1)|
log |1− esk | − log |1− esk+1|

=
ωj

m
+ O(1− esk).

Therefore
ωj

m
may be estimated by the left hand side of the above equation when sk

is close to 0.

In HOM4PS, so is in PHCpack [25], the convergence (or divergence) of a path x(s) =
(x1(s), . . . , xn(s)) when s → 0 is determined by

14



1. If wj < 0 for certain j ∈ {1, . . . , n}, then
ωj

m
< 0, and the path component

xj(s) diverges. Hence the path x(s) diverges when s → 0.

2. If wj ≥ 0 ∀ j = 1, . . . , n, then
ωj

m
≥ 0 ∀ j and all path components xj(s)

converge. Hence the path x(s) converges when s → 0.

Newly inserted in our HOM4PS-2.0 is the observation that when 0 <
ωj

m
< 1 for

certain j then lim
s→0

�����dxj(s)

ds

����� = ∞ which implies the divergence of the component xj(s),

hence the divergence of the path x(s) when s → 0. We thus split the second item
above as follows:

2.1 If wj = 0 ∀ j = 1, . . . , n, , then
ωj

m
= 0 ∀ j and all path components xj(s)

converge. Hence the path x(s) converges when s → 0.

2.2 If 0 <
ωj

m
< 1 for certain j ∈ {1, . . . , n}, then the path component xj diverges

and hence the path x(s) diverges when s → 0.

2.3 If
ωj

m
≥ 1 ∀ j = 1, . . . , n, then all path components xj(s) converge and hence

the path x(s) converges when s → 0.

Our numerical results show that this splitting provides a much accurate judgement in
many situations.

6 Numerical results

To demonstrate the performance of HOM4PS-2.0 and to compare it with the existing
packages HOM4PS, PHCpack [25] as well as PHoM [8] which implemented the poly-
hedral homotopy method, we will focus on those size-expandable bench mark systems
listed in Table A. All the computations in this section were carried out on a Dell PC
with a Pentium 4 CPU of 2.2GHz, 1GB of memory. Results presented are mainly re-
stricted to those systems that can be solved within 12 hours of cpu time. The package
HOM4PS-2.0 is written in FORTRAN 90. The code as well as its Matlab interface are
available at: http://www.math.msu.edu/∼li/Software.htm

For some of the systems listed in Table A, such as katsura-n and reimer-n, the mixed
volume of each system is the same as its total degree (or the Bézout number). Obviously,
in such situations, rather than employing the polyhedral homotopy for solving those
systems, they should be solved directly by following the total degree number of solution
paths of the classical linear homotopies H(x, t) = (1−t)γ Q(x)+t P (x) = 0 with generic
γ ∈ C where Q(x) = (q1(x), . . . , qn(x)) with

15



eco-n [20] Total degree = 2 · 3n−2

(x1 + x1x2 + · · ·+ xn−2xn−1)xn − 1 = 0
(x2 + x1x3 + · · ·+ xn−3xn−1)xn − 2 = 0

...
xn−1xn − (n− 1) = 0

x1 + x2 + · · ·+ xn−1 + 1 = 0

noon-n [23] Total degree = 3n

x1(x2
2 + x2

3 + · · ·+ x2
n − 1.1) + 1 = 0

x2(x2
1 + x2

3 + · · ·+ x2
n − 1.1) + 1 = 0

...
xn(x2

1 + x2
2 + · · ·+ x2

n−1 − 1.1) + 1 = 0

cyclic-n [2] Total degree = n !

x1 + x2 + · · ·+ xn = 0
x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 = 0

x1x2x3 + x2x3x4 + · · ·+ xn−1xnx1 + xnx1x2 = 0
...

x1x2 · · ·xn − 1 = 0

katsura-n [3] Total degree = 2n

2xn+1 + 2xn + · · ·+ 2x2 + 2x1 − 1 = 0
2x2

n+1 + 2x2
n + · · ·+ 2x2

2 + x2
1 − x1 = 0

2xnxn+1 + 2xn−1xn + · · ·+ 2x2x3 + 2x1x2 − x2 = 0
2xn−1xn+1 + 2xn−2xn + · · ·+ 2x1x3 + x2

2 − x3 = 0
...

2x2xn+1 + 2x1xn + 2x2xn−1 + · · ·+ 2xn/2x(n+2)/2 − xn = 0 (if n is even)
2x2xn+1 + 2x1xn + 2x2xn−1 + · · ·+ x2

(n+1)/2 − xn = 0 (if n is odd)

reimer-n [24] Total degree = (n + 1) !

2x2
1 − 2x2

2 + · · ·+ (−1)n+12x2
n − 1 = 0

2x3
1 − 2x3

2 + · · ·+ (−1)n+12x3
n − 1 = 0

...
2xn+1

1 − 2xn+1
2 + · · ·+ (−1)n+12xn+1

n − 1 = 0

Table A The polynomial systems
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q1 = a1x
d1
1 − b1, d1 = degree of p1(x),

...
qn = anx

dn
n − bn, dn = degree of pn(x)

and randomly chosen (a1, . . . , an, b1, . . . , bn) ∈ C2n [15]. In this way, with no polyhedral
homotopy method involved in solving the systems requires no costly, very costly for
large systems indeed, mixed cell computations. Moreover, homotopies being straightly
linear in the homotopy parameter t may avoid the s = ln t transformation for the
parameter used in the linear-polyhedral homotopy combinations. This can also reduce a
considerable amount of cpu time for large systems. We also implemented the algorithm
for solving polynomial systems by the classical linear homotopies given above as an
option in HOM4PS-2.0, just as in PHCpack.

6.1 The performance of HOM4PS-2.0 in dealing with curve
jumping and diverging paths

# of curve # of isolatedSystem CPU time Mixed volume
jumpings solutions

eco-17 22m23s 32,768 - 32,768

eco-18 1h51m30s 65,536 - 65,536

noon-10 1m27s 59,029 - 59,029

noon-11 5m32s 177,125 2 177,125

noon-12 27m29s 531,417 2 531,417

noon-13 3h7m10s 1,594,297 10 1,594,297

katsura-15 7m03s 32,768 2 32,768

katsura-16 16m25s 65,536 - 65,536

katsura-17 40m48s 131,072 - 131,072

katsura-18 1h35m47s 262,144 - 262,144

katsura-19 3h50m48s 524,288 4 524,288

katsura-20 8h58m00s 1,048,576 4 1,048,576

cyclic-9 44s 11,016 - 5,994

cyclic-10 2m47s 35,940 - 34,940

cyclic-11 19m40s 184,756 - 184,756

cyclic-12 1h36m40s 500,352 - 367,488

reimer-7 1m58s 40,320 - 2,880

reimer-8 30m43s 362,880 - 14,401

reimer-9 7h52m40s 3,628,800 14 86,415

Table 1: The performance of HOM4PS-2.0.

17



Listed in Table 1 is the performance of HOM4PS-2.0 on solving all those bench mark
systems in Table A. From the 4th column in the table, one can see that the occurrences
of curve jumping have been mostly diminished for HOM4PS-2.0. We must note here that
curving jumping never appears for systems in each system category with sizes smaller
than that were listed in the table. On the other hand, we only need to retrace 10 paths
(among 1,594,297 paths) for noon-13, 4 paths (among 1,048,576 paths) for katsura-20
and 14 paths (among 3,628,800) for reimer-9 due to curve jumping. Moreover, when
retracing was necessary, no homotopy paths need to be retraced more than once, while,
as reported in [8], multiple retracings were required very often for the software package
PHoM [8] to deal with curve jumping.

As shown in the table, when solving reimer-n systems, most homotopy paths diverged.
For example, the mixed volume, or the total number of paths we must follow, of the
reimer-8 system is 362,880, but the number of its isolated solutions is just 14,401. While
it’s normally costly in tracing diverging paths, HOM4PS-2.0 is capable of determining
those divergent homotopy paths very efficiently with the end game criteria discussed in
§ 5.3 as the cpu times in the table show.

The results displayed in Table 1 are the results that solved all the polynomial systems
by the polyhedral homotopy method. As mentioned before, we may solve katsura-n and
reimer-n systems by the classical linear homotopis because the mixed volume of each
system agrees with its total degree. As a comparison, we list in Table 2 the results of
solving those systems by both the classical linear homotopy option and the polyhedral
homotopy option in HOM4PS-2.0. While the proof is not available at this moment, by
the observation on a collective numerical data from intensive experiments on noon-n
systems, the total degree of each such system and its mixed volume satisfy:

total degree = 3n = mixed volume + 2 n.

So, when n becomes large, the difference between them becomes very slim relatively.
Therefore we also include them in the table. Apparently, as it shows, if the closeness
of the mixed volume and the total degree of the system can be revealed ahead of time,
sometimes HOM4PS-2.0 can handle much bigger systems within tolerable time.

For reimer-n systems, the cpu time for finding mixed cells is very minimal (less than 1
second most of the times). While tracing the same number of curves, the differences in
the cpu times of the classical linear homotopy and the polyhedral homotopy in the table
indicate that nonlinear homotopies can be costly for large systems.
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CPU time # of isolatedSystem Total Degree
Linear Polyhedral solutions

noon-10 59,029 + 20 1m27s 5m12s 59,029

noon-11 177,125 + 22 5m32s 23m27s 177,125

noon-12 531,417 + 24 27m29s 1h28m00s 531,417

noon-13 1,594,297 + 26 3h7m10s 7h02m10s 1,594,297

katsura-15 32,768 7m03s 1h50m26s 32,768

katsura-16 65,536 16m25s - 65,536

katsura-17 131,072 40m48s - 131,072

katsura-18 262,144 1h35m47s - 262,144

katsura-19 524,288 3h50m48s - 524,288

katsura-20 1,048,576 8h58m00s - 1,048,576

reimer-7 40,320 1m58s 2m49s 2,880

reimer-8 362,880 30m43s 36m43s 14,401

reimer-9 3,628,800 7h52m40s 8h47m42s 86,415

Table 2: Comparison of the classical linear homotopy and
the polyhedral homotopy in HOM4PS-2.0

6.2 HOM4PS-2.0 vs. HOM4PS

Table 3 lists the numerical results that compare HOM4PS-2.0 with HOM4PS. Since
the classical linear homotopy method was not implemented in HOM4PS, the table only
displays the results that used the polyhedral homotopy method uniformly on all the
systems.

As it shows, HOM4PS-2.0 is considerably faster than HOM4PS, and the speed-up ra-
tio increases by quite a bit as the mixed volume of the polynomial system increases.
Recall that for a specific system HOM4PS-2.0 only needs to trace the mixed volume
number of homotopy paths, while twice of this amount of paths need to be traced in
HOM4PS. Moreover, HOM4PS-2.0 is much more powerful in dealing with larger sys-
tems. For instance, originally HOM4PS can not solve noon-13 system within tolerable
time, whereas HOM4PS-2.0 followed over 1.5 million curves in 7 hours.
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Mixed Volume CPU time Speed-upSystem
(# of paths) HOM4PS HOM4PS-2.0 ratio

eco-15 8,192 33m25s 2m25s 13.8

eco-16 16,384 2h55m12s 6m35s 26.6

eco-17 32,768 - 22m23s -

eco-18 65,536 - 1h51m30s -

noon-9 19,665 21m41s 1m15s 17.3

noon-10 59,029 3h20m45s 5m12s 38.6

noon-11 177,125 - 23m27s -

noon-12 531,417 - 1h28m00s -

noon-13 1,594,297 - 7h02m10s -

katsura-12 4,096 43m54s 1m42s 25.8

katsura-13 8,192 3h40m54s 4m56s 44.8

katsura-14 16,384 - 25m15s -

katsura-15 32,768 - 1h50m26s -

cyclic-9 11,016 8m37s 44s 11.8

cyclic-10 35,940 58m02s 2m47s 20.9

cyclic-11 184,756 - 19m40s -

cyclic-12 500,352 - 1h36m40s -

reimer-7 40,320 7m47s 2m49s 2.8

reimer-8 362,880 1h44m18s 36m43s 2.8

reimer-9 3,628,800 - 8h47m42s -

Table 3: Comparison of HOM4PS and HOM4PS-2.0

6.3 HOM4PS-2.0 vs. PHCpack and PHoM

Listed in Table 4 is the comparison of the performance of HOM4PS-2.0 and PHCpack
[25]. The implementation of solving polynomial systems by the classical linear homo-
topies is also available in PHCpack. Therefore the comparisons listed in Table 4 on
noon-n, katsura-n and reimer-n systems whose mixed volume and total degree of each
system are the same (or almost the same for noon-n systems) are the results by using the
classical linear homotopy option in each package. Our powerful code MixedVol-2.0 [12]
for computing mixed cells has no place in this computation because no mixed cell com-
putations are required. Nonetheless, as it stands, HOM4PS-2.0 still leads PHCpack in
speed by a big margin in those situations.

For eco-n and cyclic-n systems, there is a considerable difference, sometimes huge, be-
tween the mixed volume and the total degree of the system. So, we must employ the
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polyhedral homotopy here. When the PHCpack was tested, we used its fastest option,
as indicated in the package, which utilizes MixedVol [7] for mixed cell computations.

CPU time Speed-up # of isolatedSystem Total degree
PHCpack HOM4PS-2.0 ratio solutions

eco-14 1,062,882 1h26m04s 52.9s 97.6 4,096

eco-15 3,188,646 3h55m23s 2m25s 97.4 8,192

eco-17 28,697,814 - 22m23s - 32,768

eco-18 86,093,442 - 1h51m30s - 65,536

noon-9 19,683 33m28s 22.2s 90.5 19,665

noon-10 59,049 2h33m27s 1m27s 105.8 59,029

noon-11 177,147 - 5m32s - 177,125

noon-13 1,594,323 - 3h7m10s - 1,594,297

katsura-14 16,384 2h49m00s 2m52s 59.0 16,384

katsura-15 32,768 8h22m45s 7m03s 71.3 32,768

katsura-16 65,536 - 16m25s - 65,536

katsura-20 1,048,576 - 8h58m00s - 1,048,576

cyclic-9 362,880 3h50m48s 44s 314.7 5,994

cyclic-10 3,628,800 11h00m23s 2m47s 237.2 34,940

cyclic-11 39,916,800 - 19m40s - 184,756

cyclic-12 479,001,600 - 1h36m40s - 367,488

reimer-6 5,040 15m08s 9.6s 94.5 576

reimer-7 40,320 3h45m43s 1m58s 114.7 2,880

reimer-8 362,880 - 30m43s - 14,401

reimer-9 3,628,800 - 7h52m40s - 86,415

Table 4: Comparison of HOM4PS-2.0 and PHCpack

Table 5 compares the performance of HOM4PS-2.0 and PHoM [8]. The implementation of the
classical linear homotopy for solving polynomial systems is not available in PHoM. Therefore
all the results listed in Table 5 used the polyhedral homotopy method on all the systems.
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CPU time Speed-up # of isolatedSystem Total degree
PHoM HOM4PS-2.0 ratio solutions

eco-13 354,294 2h39m31s 19s 503.7 2,048

eco-14 1,062,882 9h57m15s 52.9s 677.4 4,096

eco-15 3,188,646 - 2m25s - 8,192

eco-18 86,093,442 - 1h51m30s - 65,536

noon-8 6,661 54m18s 19s 171.5 6,645

noon-9 19,683 5h01m06s 1m15s 240.9 19,665

noon-10 59,049 - 5m12s - 59,029

noon-13 1,594,323 - 7h02m10s - 1,594,297

katsura-11 2,048 1h21m13s 28s 174.0 2,048

katsura-12 4,096 4h00m09s 1m42s 141.3 4,096

katsura-13 8,192 - 4m56s - 8,192

katsura-15 32,768 - 1h50m26s - 32,768

cyclic-8 40,320 32m32s 6.8s 287.0 1,152

cyclic-9 362,880 - 44s - 5,994

cyclic-12 479,001,600 - 1h36m40s - 367,488

reimer-6 5,040 1h14m50s 12.1s 371.0 576

reimer-7 40,320 - 2m49s - 2,880

reimer-9 3,628,800 - 8h47m42s - 86,415

Table 5: Comparison of HOM4PS-2.0 and PHoM

Table 6 provides the maximum sizes of the systems that can be solved by PHCpack, PHoM,
and HOM4PS-2.0 within 12 hours of cpu time. The total degree of the system is given in the
parenthesis. As it shows, HOM4PS-2.0 can solve systems of much larger size than the other
two packages.

Maximum solvable sizeSystem
PHoM PHCpack HOM4PS-2.0

eco - 14 (1,062,882) 15 (3,188,646) 18 (86,093,442)

noon - 9 (19,683) 10 (59,049) 13 (1,594,323)

katsura - 12 (2,048) 15 (32,768) 20 (1,048,576)

cyclic - 8 (40,320) 10 (3,628,800) 12 (479,001,600)

reimer - 6 (5,040) 7 (40,320) 9 (3,628,800)

Table 6: Maximum sizes of polynomial systems that can solved by
PHCpack, PHoM, and HOM4PS-2.0 within 12 hours of cpu time
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