Simple A Posteriori Error Estimators for the h-Version of the Boundary Element Method

* Samuel Ferraz-Leite 1 and Dirk Praetorius 2

¹ Vienna University of Technology Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8–10, 1040 Wien, Austria samuel.ferraz-leite@tuwien.ac.at http://www.asc.tuwien.ac.at/∼samuel ² Vienna University of Technology Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8–10, 1040 Wien, Austria dirk.praetorius@tuwien.ac.at http://www.math.tuwien.ac.at/~dirk

Key Words: BEM, a posteriori error estimation, adaptive mesh refinement, Symm's integral equation.

ABSTRACT

The h-h/2-strategy is one very basic and well-known technique for the a posteriori error estimation for Galerkin discretizations of energy minimization problems. Let ϕ denote the exact solution. One then considers

$$\eta_H := \|\phi_h - \phi_{h/2}\|$$

to estimate the error $\|\phi - \phi_h\|$, where ϕ_h is a Galerkin solution with respect to a mesh \mathcal{T}_h and $\phi_{h/2}$ is a Galerkin solution for a mesh $\mathcal{T}_{h/2}$ obtained from uniform refinement of \mathcal{T}_h . We stress that η_H is always efficient – even with known efficiency constant $C_{\text{eff}} = 1$, i.e.

$$\eta_H \leq \|\phi - \phi_h\|.$$

Reliability of η_H follows immediately from the assumption $\|\phi - \phi_{h/2}\| \le \sigma \|\phi - \phi_h\|$ with some saturation constant $\sigma \in (0,1)$. Under this assumption, there holds

$$\|\phi - \phi_h\| \le \frac{1}{\sqrt{1 - \sigma^2}} \eta_H.$$

However, for boundary element methods, the energy norm $\|\cdot\|$ is non-local and thus the error estimator η_H does not provide information for a local mesh-refinement. Recent localization techniques from [1] for $\widetilde{H}^{-\alpha}$ -norms and [3] for \widetilde{H}^{α} -norms allow to replace the energy norm in this case by h-weighted L^2 -norms resp. H^1 -norms, where h denotes the local mesh-size. In particular, this very basic error estimation strategy is also applicable to steer an h-adaptive mesh-refinement. For instance, for Symm's integral equation, the L^2 -norm based estimator

$$\mu_H := \|h^{1/2}(\phi_h - \phi_{h/2})\|_{L^2(\Gamma)}$$

is equivalent to η_H . We thus may use μ_H to steer the mesh and η_H to estimate the error.

Further simplifications of the proposed error estimators η_H and μ_H consist of replacing ϕ_h by some appropriate projection $\Pi_h \phi_{h/2}$, for instance, by use of the L^2 -projection onto the discrete space corresponding to \mathcal{T}_h .

Moreover, the error estimator η_H is proven to be equivalent to the averaging estimator in [4] and the two level estimator from [5].

Numerical experiments in 2D and 3D for first-kind integral equations with weakly-singular integral operator conclude the talk.

REFERENCES

- [1] C. Carstensen, D. Praetorius. Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind, SIAM J.Sci.Comp. 27 (2006), 1226–1260.
- [2] S. Ferraz-Leite, D. Praetorius. *Simple A Posteriori Error Estimators for the h-Version of the Boundary Element Method*, ASC Report **01/2007**, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien, 2007
- [3] S. Funken, S. Ferraz-Leite, D. Praetorius. *Averaging on large patches for integral equations in 3D*, work in progress (2007)
- [4] C. Erath, S. Funken, S. Ferraz-Leite, D. Praetorius. *Energy norm based a posteriori error estimation for boundary element methods in two dimensions*, ASC Report **07/2007**, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien, 2007
- [5] P. Mund, E. P. Stephan, J. Weisse. *Two-level methods for the single layer potential in* \mathbb{R}^3 , Computing **60** (1998), 243–266.