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Lens-shaped surfaces andC2 subdivision
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Abstract Lens-shaped surfaces (with vertices of valence 2) arise forexample in au-
tomatic quad-remeshing. Applying standard Catmull-Clarksubdivision rules to a ver-
tex of valence 2, however, does not yield aC1 surface in the limit. When correcting
this flaw by adjusting the vertex rule, we discover a variant whose characteristic ring
is z → z2. Since this conformal ring is of degree bi-2 rather than bi-3, it allows con-
structing a subdivision algorithm that works directly on the control net and generates
C2 limit surfaces of degree bi-4 for lens-shaped surfaces. To further improve shape,
a number of re-meshing and re-construction options are discussed indicating that a
careful approach pays off. Finally, we point out the analogybetween characteristic
configurations and the conformal mapsz4/n, cos z andez.
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1 Motivation

The prescription of the original Catmull-Clark construction [1] for creating a new
mesh from an arbitrary existing one applies also when a vertex has valencen = 2
(Figure 2): For each facet, a new face node is computed as the average of the facet’s
old vertices; for each edge, a new edge node is introduced as the average of the
edge’s endpoints and the two new vertices of the faces joinedby the edge; and for
each vertex of valencen a new vertex node is computed as(Q + 2R + (n − 3)S)/n
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whereQ is the average of the new face nodes of all faces touching the old vertex
S andR is the average of the midpoints of all old edges incident onS. A facet of
the new mesh then consists in sequence of a vertex node, an edge node, a face node
and a second edge node. However, applying these rules whenn = 2 does not yield a
C1 limit surface, but results in section curves such as shown inFigure 1. Of course

0 1 2 3 4

Fig. 1: Slice throughCatmull-Clark control net after 0,1,2,3,4 applications of the rules for valence
n = 2. The fluctuation is due to the -S/2 term corresponding to a subdominant eigenvalueλ = −1/4 (one
of three eigenvalues of modulus1/4).

valence 2 can be avoided if the mesh is interactively designed (see Section 4) but
lens-shaped surface blends do occur naturally as shown in Figure 16; and some recent
remeshing techniques of scanned input into quad meshes [12,3] inherently generate
(pairs of) vertices of valence 2 such as in Figure 13. This, and the intellectual pursuit
of covering all cases, no doubt motivated the earlier work onthe subject [10,7,4].

This paper contributes the following insights into modeling lens-shaped surfaces
completing a given surface.

– Section 2 explains how to change the Catmull-Clark rules to obtain aC1 bi-3
subdivision forn = 2.

– Section 3 uses the characteristic ring of this approach to create a bi-4 subdivi-
sion algorithm that generates aC2 lens-shape limit surface. While this result is
remarkable for the theory of subdivision surfaces,

– better shape can be achieved by re-meshing the input in a non-trivial fashion
(as explained in Section 4) or by re-constructing with polarlayout according to
Section 5.

– Section 6 discusses implications on the lower bound forC2 subdivision and draws
a parallel to elementary conformal maps.

2 C
1 Bicubic subdivision for n = 2

Except for the central point (and some interpretation of overlapping rules), our new
subdivision rules in the vicinity of a vertex of valencen = 2 in the quad(rilateral)
mesh (see Figure 3) will be identical to that of Catmull-Clark subdivision. Therefore,
of the 25 × 25 subdivision matrixA, only the stencils that differ from the regular
tensor-product refinement rules need to be shown in Figure 3.
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Fig. 2:Bi-3 surface ring (left) consisting of two L-shaped segments; (middle) counterclockwise indexing
of mesh pointspi, i = 0, . . . , 24, for valencen = 2; (right) refined mesh.
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Fig. 3:Stencils of bi-3 subdivision forn = 2. (From left to right) circled vertex labeled ’5’, ’1’ and ’0’.
Rules ’5’ and ’1’ are those of standard Catmull-Clark, takingoverlap into account. The default choice for
γ in ’0’ is γ = 1/8 so that we have a triple eigenvalue1/8; β := 1/2 sets an eigenvalue to zero.

The new rules generate a sequence of bicubicC2 surface rings (see Figure 2) that
is C1 at the limit point. The characteristic polynomial ofA is

h

D
(λ − 1)(4λ − 1)2(8λ − 1)2(16λ − 1)2(32λ − 1)2(64λ − 1)2λ12, (1)

h := 16λ2 + 4λ(4β + 4γ − 3) + 1 − 2β, D := −17592186044416.
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Fig. 4: Thecharacteristic ring χ2 of bi-3 subdivision (left) is of degree bi-2 and (right) a sector is the
conformal mapz → z2.

Forβ := 1/2, γ := 1/8, we haveh = λ(16λ − 2) and we can read off the subdomi-
nant eigenvalue1/4 indicating rapid contraction.

Fig. 5: Comparison by highlight lines. (top left) control net ofχ2 projected onto an elliptic paraboloid.
(top middle) Bi-3 subdivision highlight lines indicate shape problems familiar from Catmull-Clark sub-
division. (top right) The bi-4 subdivision surface of Section 3 isC2 but the highlight line distribution is
still unsatisfactory. (bottom left) Bi-4 subdivision after re-meshing according to Figure 10, (bottom right)
re-meshing according to Figure 12.

The exciting observation is that the sub-eigenfunctions[ f1

f2
] are of degree bi-2.

After enforcing rotational symmetry, we can set width and height so that a segment
of the characteristic ring is defined by the spline coefficients (in the order of Figure 2
middle)

1

4
[ 0 1 0 −1 0 4 3 0 −3 −4 −3 0 3 9 8 5 0 −5 −8 −9 −8 −5 0 5 8

0 0 2 0 −2 0 4 8 4 0 −4 −8 −4 0 6 12 18 12 6 0 −6 −12 −18 −12 −6
]
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of the conformal mapz → z2 (see Figure 4). Since the restriction ofz → z2 is
injective, the new bi-3 subdivision rules generate a surface that isC1 at the extraor-
dinary point. The left eigenvector ofA corresponding to the eigenvalue1 yields the
extraordinary limit point

(1 − β̃ − γ̃)p0 +
β̃

2

(

p1 + p3

)

+
γ̃

2

(

p2 + p4

)

, (2)

β̃ :=
12β + 8γ

14β + 16γ + 5
, γ̃ :=

2β + 8γ

14β + 16γ + 5
.

An example is shown in Figure 5,top middle. Replacing the central point by an
average of its neighbors1, 2, 3, 4, reduces any spikiness due to the small subdominant
eigenvalue.

3 C
2 bi-4 subdivision

TheC2 bi-2 characteristic ring of the bi-3 subdivision presentedin the previous sec-
tion advertises itself asconcentric tessellation mapfor guided subdivision [5]. Our
construction and sampling of a guide surface of degree bi-5 to derive subdivision
rules are sketched in Figures 8 and 9. The details are important to obtain good sur-
face quality; but they are not needed for use of the algorithmsince we can givean
explicit subdivision matrixA, i.e. rules acting directly on the mesh.
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Fig. 6: Regular Bi-4 subdivision (top) univariate subdivision: 2-fold knots are displayed as black disks,
1-fold knots as circles; (bottom) tensored conversion. (black: 2,2 knot, gray: 2,1 knot, circle: 1,1 knot)

⇒

Fig. 7: C2 Bi-4 subdivision. Note that the bi-4 lens mesh has no central point of valence 2.(left) mesh
and (right) its scaled-up refinement. The gray points are defined by regular subdivision, the black ones by
the rules (3).
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By degree raising, we can switch from any bi-3 input to a bi-4 mesh with double
knots. Figures 6 and 7 illustrate one step of bi-4C2 (double-knot) spline subdivision.
As usual, repeated application yields a contracting sequence of surface rings. With the
following rules, also the limit is an everywhereC2 surface. The coefficientsAij , 13 ≤

i ≤ 60, j = 1, . . . , 60 of the subdivision matrixA are defined by regular subdivision
(see gray disks in Figure 7right) andAij = 0 for i = 1, . . . , 12; j = 25, . . . , 60;
so it suffices to define the stencils for coefficients 1–12 (indexing as in Figure 2,
middle). Moreover, the coefficientsAij , j = 1 . . . 24, for i = 3, 4, 8, 9, 10, 11, 12 are
recovered by symmetry from the scaled columns listed below:for κ := 4194304,

κA1j : 8κA2j : κA5j : 16κA6j : 8κA7j :

811090 5711612 1082610 13746012 3746052

712980 7604042 655140 19897458 14524470

651654 5711612 479430 7303932 3746052

712980 4098598 655140 5091390 456666

396360 2547228 578440 6720204 1288740

192300 1874136 242700 6962248 4139016

0 −1392 0 −17712 351344

126420 1874136 45300 3288936 4139016

271800 2547228 167544 2477004 1288740

126420 793616 45300 297120 −62832

0 0 0 0 0

192300 793616 242700 1342272 −62832

11070 −12216 24030 110328 −130440

4155 53155 7995 334671 149757

0 116 0 −1404 14412

0 0 0 0 0

0 116 0 4356 14412

−5535 53155 −12015 975 149757

−8310 −12216 −15990 −258600 −130440

−5535 −41055 −12015 −127179 −33729

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

4155 −41055 7995 −63147 −33729

. (3)

For example,A63 := 7303932

16κ . The subdivision matrixA ∈ R
60×60 has the charac-

teristic polynomial

a1a2a3a4

D
(λ − 1)(4λ − 1)2(16λ − 1)3(64λ − 1)3(256λ − 1)2λ36,

a1 :=134217728λ2
− 2110592λ + 7487,

a2 :=4503599617370496λ3
− 75230110285824λ2

+ 62486728704λ + 410899717,

a3 :=288230376151711744λ4
− 7667169458388992λ3

+ 19671721967616λ2 + 397951106240λ − 1115103427,

a4 :=2361183241434822606848λ4
− 19679041521748803584λ3

+ 35225654240739328λ2 + 91463875469312λ − 286255219911,

(4)

whereD is some 78-digits integer, all computed by Maple. The roots of the poly-
nomialsai are in modulus less than1/16. This eigenspectrum is consistent with the
requirements of subdivision to beC2 at the extraordinary point [8, Ch 7]. We verify
that the characteristic ring(f1, f2), corresponding to subdominant eigenvalue1/4,
agrees with that of the bi-3 subdivision of Section 2; and that the space spanned by
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x̄ b̄

χ2

χ̃2ḡ

Fig. 8: Construction of a guide surfaceg. The guide surface consists of twoC2 connected patches each
of degree bi-5, one per sector. We look at the top patchḡ. (left) The top segment̄x of the bi-4 spline ring
is converted to Bernstein-B́ezier (BB) form and raised to degree bi-5 to yield the boundary datab̄. (right)
The top sector of the characteristic ringχ2 is translated and scaled so that the mid points and corner points
of the resulting map̃χ2 fit tightly into the unit square domain of the bi-5 patchḡ. The guide patch̄g is
chosen so that its top rows are of degree 2 (raised to degree 5). — We now match the3 × 3 jet of partial
derivatives(∂j

1
∂k
2
)0≤j,k≤2 of the composition̄g ◦ χ̃2 to those of̄b. Such sampling at theblack circled

locations defines the bottom three rows of BB-coefficients (black points) of the guide patch. Sampling the
jet at thered circled location yields the3 × 3 derivatives that, due to the lowered degree, define the top
three rows (red points) of̄g.

Fig. 9: Sampling the guide surfaceto deriveA. The characteristic ring̃χ2 is scaled by its eigenvalue
1/4 and the3×3 jet of partial derivatives(∂j

1
∂k
2
)0≤j,k≤2 of g ◦

1

4
χ̃2 is sampled and converted into bi-4

double knotsplinecontrol points (right). The spline control points are averaged where overlapping. The
square and diamond are the result of sampling at the locations marked (middle top) by the black circles,
and those marked by a circle from a top or bottom (red circle) location.

the eigenfunctions corresponding to the subsubdominant eigenvalue1/16 is gener-
ated byf2

1
, f1f2, f2

2
.

Figure 5,top rightshows an example.

4 Remeshing

AlthoughC2, the bi-4 construction does not yield the shape quality one would hope
for. This may be due to the two-sided overlap of the spline coefficients of one sector
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⇒ ⇐

Fig. 10: Re-meshing a bi-3 to a bi-4 mesh.(left) The bi-3 mesh of Figure 2 (without central point)
is degree-raised to four (with double knots) yielding the control net (middle); The bi-4 mesh (right) of
Figure 7 (with the same combinatorial layout asleft) is then determined so that, once subdivided, it best
matches themiddlemesh in the least squares sense; i.e., minimizes the sum of squared distances between
corresponding control points.

Fig. 11: Twomore re-meshingstrategies based on the setback strategy of Figure 10. The highlight lines
of the strategy (right) are clearly more monotone.

Fig. 12: Re-meshing of a lensby alternating subdivision and merging. (left) A bi-3 mesh with central
vertex of valence 2. (middle left) Application of one bi-3 subdivision step as in Section 2. (middle right)
The refined nodes, marked as quads, circles and disks, are averaged to new nodes. (right) The new mesh
has separated 3-valent vertices but coincides with the original data and layout along the the lens’s outer
boundary. See Figure 14,right, for highlight lines on the surface.

with its neighbor (whenn > 2, the left and right neighbor sector are distinct). In our
experience, simple re-meshing does not solve the problem. Therefore in Figure 10
a more subtle remeshing is applied (whose effect is equivalent to degree elevation
when the input is a characteristic control net). Refinement of the bi-4 mesh according
to Section 3 then yields the black points of Figure 7; the greypoints are defined by
degree-elevating the input bi-3 mesh. The resulting bi-4 mesh defines one bi-4 ring
that isC2 connected to the surrounding outer ring and bi-4 subdivision can proceed.
Figure 11 shows two more re-meshing strategies: (left) the central edges in Figure 10,
left, are pairwise identified so that the valence 2 node disappears; (right) the central
edges are removed. Then, in both cases one Catmull-Clark subdivision is applied. We
observed that theright option results in visually significantly better surfaces. Another
option, the re-meshing illustrated in Figure 12, results infewer patches, typically of
the same quality as the re-meshing of Figure 11,right. Both options should therefore
be considered. For Figure 12, we create two valence-3 vertices. This and also the
strategy in Figure 11,right, can be viewed as a local correction, via two 3-valent
vertices, of automatic quad meshing algorithms generatinglens-shapes [12].
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Fig. 13:Paired lenses(left) an elliptic paired lens mesh and the (middle) characteristic configuration of
the paired lenses layout; (right) remeshed as in Figure 12 (with BB-coefficients of the fill displayed).

Fig. 14:Paired lensesexample. (left) bi-3 subdivision; (middle left) bi-4 subdivision; (middle right) bi-4
subdivision after remeshing of Figure 10; (right) finite re-construction as in Figure 13.

In automatic reconstruction algorithms lenses occur in pairs such as in Figure 13,
left, which illustrates the finger tips generated by [12]. Application of the re-meshing
of Figure 12 yields the layout of Figure 13,right. Figure 14 compares this remeshing
approach with bi-3 subdivision, bi-4 subdivision without remeshing and the polar
re-construction explained next.

5 Polar re-construction

Polar mesh layout has onen-valent vertex surrounded by triangles, and such that the
next layer is all quads and vertices of valence 4 [6]. But a number of re-meshing
strategies for lens-shaped facets that we tried failed to deliver good surfaces. Indeed,
the main challenge in constructing the lens-shaped surfacewith patches in polar
layout is retaining good shape. The Appendix describes the details of apolar re-
constructionthat results in goodC2 surfaces (based on guided surfacing). This polar
patchwork consists of 16 patches, while the construction according to the layout of
Figure 12 consists of 48 patches. Figure 16 shows a practicallens-shaped configura-
tion that is best treated with polar re-construction. Another example (that should use
polar layout or re-construction) are the finger tips of the hand shown shown in [3,
Fig.10] and [2, Fig.20].
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Characteristic Conformal
configuration layout map
Section 2 valencen = 2 z2

Section 4 pairn = 2 cos z

Catmull-Clark valencen z4/n

[6] polar ez

Table 1: Correspondence of configurations andconformalneighborhoods.

Figure 17,top left, shows how the construction preserves and smoothly joins to
the pre-existing boundary data.

6 Discussion

The construction of a bi-4C2 subdivision surface forn = 2 does not contradict
the well-known lower bound estimate on the degree of subdivision surfaces [9]. That
estimate asserts that an everywhereC2 subdivision surfaces with ‘L-shaped’ seg-
ments must be at least of degree bi-6. However, the proof in [9] excludes the valences
n = 2, 4. While the exclusion ofn = 4 is obvious, the presented bi-4C2 subdivision
shows that exclusion ofn = 2 is not an artifact of the method of proof in [9] but is
genuinely necessary.

It is unclear whetherC2 subdivision forn = 2 is helpful in creating high-quality
surfaces without re-meshing: due the subdominant eigenvalue 1/4, the contraction is
extremely fast and in our experiments, bi-4 subdivision without re-meshing did not
fare as well as applying one step of the bi-3 subdivision followed by re-meshing.

We also want to share our observation that simplere-meshingof lens-pairs to
polar layout resulted in surfaces clearly inferior to polarre-constructedsurfaces with
the help of a guide surface. Maybe, if polar structures wouldbe considered in the
original meshing of scanned data, the results could be better.

The discussion of lens-shaped regions and pairs of lens-shaped regions completes
an interesting analogy between conformal maps andn-valent vertices in quad surface
constructions ([8] credits D. Levin for pointing to the well-known mapz4/n in the
subdivision context. It is also mentioned in [13]). This correspondence in the layout
of the parameter lines is illustrated in Figure 18 and tabulated in Table 1.
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Appendix: Polar construction details

In the polar (re-)construction, three circular B-spline layers surrounding the lens-
shape (after removal of the central vertices of Figure 15 (a)) are raised to degree 5
in the radial direction Figure 19 (a). The outer, black points are known, the3 × 8
gray points will be determined. Figure 19 (b) shows one patchin Bernstein-B́ezier
form corresponding to one sector of theC2 polar ring (that extends the data in aC2

fashion). FormalC2 prolongation of the gray points towards the center and raising
the circular direction to degree 6 results inn central patches of bidegree6 × 5 such
as the one shown in Figure 19 (c). The innermost layer of these6 × 5 patches is
collapsed to one point set to the location of the central point (red circle) of the bicubic
patchwork in Figure 15 (b)). This leaves five of the six coefficients of the central
quadratic expansion undetermined, in addition to the3× 8 (gray) spline coefficients.
All 29 coefficients, for each coordinate separately, are determined by minimizing the
two-norm of third derivatives of all patches.

Another alternative, shown to remove the need for one transition layer in Figure
17 top,right, increases the degree to bi-6 and has the inner coefficients,starting with
the additional central circular layer, determined by minimizing the the two-norm of
fourth derivatives of all patches.
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(a) (b) (c) (d)

Fig. 15:Polar re-construction. The construction via a guide surface based on the existing bi-3 mesh (a)
The paired lenses configuration suggests polar layout. (b) Bi-3 patches (grey) with two lens-shaped holes
yield aC2 surface ring and the central point (red circle). (c) polar layout. (d) Resulting surface (either of
degree 6,5 andC2 or of degree 5,5 with no perceptible loss of quality, but formally not C2.)

(a) input data (b) completed wing (c) cap of degree (6,5) (d) Gauss curvature and
highlight lines

Fig. 16:Wings designed for supersonic and hypersonic speeds have sharp leading and sharp trailing edges
[11].

(a) mesh (b) bi-5 transition + degree
(6,5) cap

(c) highlight lines (d) bi-6 cap

(e) layout of Figure 18 (d) (f) layout of Figure 18 (c)

Fig. 17: Polar re-construction of paired lenses. (top) Surfaces from the mesh layout of Figure 18 (b)
(extending the mesh of Figure 13left). The input (outermost) ring is of degree bi-3. The caps have a
collapsed edge (see Appendix). The highlight lines of both options are very similar. (bottom): Surfaces
based on the layouts Figure 18 (c), (d).
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(a)z4/n (b) cos z (c) cos z (d) cos z (e)ez

Fig. 18: Iso-parameter lines ofconformal mappings corresponding to the characteristic maps of canonical
subdivision strategies.

(a) B-spline layers (b) BB-net of a segment of
theC2 polar ring

(c) BB-net of a segment of
theC2 central cap

Fig. 19:Polar construction of a transition andn central patches of degree 6,5.

Fig. 20: Polarbi-6 cap.


