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Lens-shaped surfaces and? subdivision
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Abstract Lens-shaped surfaces (with vertices of valence 2) arisexfample in au-
tomatic quad-remeshing. Applying standard Catmull-Ctarkdivision rules to a ver-
tex of valence 2, however, does not yield'a surface in the limit. When correcting
this flaw by adjusting the vertex rule, we discover a varianbse characteristic ring
is z — z2. Since this conformal ring is of degree bi-2 rather than Gt-&llows con-
structing a subdivision algorithm that works directly oe ttontrol net and generates
C? limit surfaces of degree bi-4 for lens-shaped surfacesufibér improve shape,
a number of re-meshing and re-construction options areuslisx indicating that a
careful approach pays off. Finally, we point out the analbgiween characteristic
configurations and the conformal magg™, cos z ande?.
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1 Motivation

The prescription of the original Catmull-Clark constrocti[1] for creating a new
mesh from an arbitrary existing one applies also when a xérds valencer, = 2
(Figure 2): For each facet, a new face node is computed avénage of the facet’s
old vertices; for each edge, a new edge node is introducetieaaverage of the
edge’s endpoints and the two new vertices of the faces jdiyetthe edge; and for
each vertex of valence a new vertex node is computed @@ + 2R + (n — 3)S)/n
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where( is the average of the new face nodes of all faces touching ltheestex
S and R is the average of the midpoints of all old edges incidentSo facet of
the new mesh then consists in sequence of a vertex node, amedg, a face node
and a second edge node. However, applying these rules avhen does not yield a
C' limit surface, but results in section curves such as showigare 1. Of course
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Fig. 1: Slice throughCatmull-Clark control net after 0,1,2,3,4 applications of the rules for valence
n = 2. The fluctuation is due to the -S/2 term corresponding to dsmiinant eigenvalud = —1/4 (one
of three eigenvalues of moduliig4).

valence 2 can be avoided if the mesh is interactively desigeee Section 4) but
lens-shaped surface blends do occur naturally as showgumd-16; and some recent
remeshing techniques of scanned input into quad meshe3][ibberently generate
(pairs of) vertices of valence 2 such as in Figure 13. Thid,tha intellectual pursuit
of covering all cases, no doubt motivated the earlier workhensubject [10, 7, 4].

This paper contributes the following insights into modglians-shaped surfaces
completing a given surface.

— Section 2 explains how to change the Catmull-Clark ruleshimio aC' bi-3
subdivision forn = 2.

— Section 3 uses the characteristic ring of this approacheatera bi-4 subdivi-
sion algorithm that generates(# lens-shape limit surface. While this result is
remarkable for the theory of subdivision surfaces,

— better shape can be achieved by re-meshing the input in drival-fashion
(as explained in Section 4) or by re-constructing with ptdgout according to
Section 5.

— Section 6 discusses implications on the lower boundfosubdivision and draws
a parallel to elementary conformal maps.

2 C Bicubic subdivision for n = 2

Except for the central point (and some interpretation ofrlegping rules), our new
subdivision rules in the vicinity of a vertex of valenge= 2 in the quad(rilateral)
mesh (see Figure 3) will be identical to that of Catmull-&lsubdivision. Therefore,
of the 25 x 25 subdivision matrix4, only the stencils that differ from the regular
tensor-product refinement rules need to be shown in Figure 3.



Fig. 2: Bi-3 surface ring (left) consisting of two L-shaped segmentsiddle counterclockwise indexing
of mesh pointp;, 7 =0, ..., 24, for valencen = 2; (right) refined mesh.
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Fig. 3: Stencils of bi-3 subdivision forn = 2. (Fromleft to right) circled vertex labeled '5’, '1" and '0".
Rules '5’ and '1’ are those of standard Catmull-Clark, takavgrlap into account. The default choice for
~vin’'0"is v = 1/8 so that we have a triple eigenvalugs; 3 := 1/2 sets an eigenvalue to zero.

The new rules generate a sequence of bicaBisurface rings (see Figure 2) that
is C'* at the limit point. The characteristic polynomial dfis

%(/\ — 14X — 128X — 1)2(16X — 1)%(32\ — 1)%(64\ — 1)%\!2, &)}

hi=16A% +4N(48 + 4y —3) +1—28, D := —17592186044416.



Fig. 4: Thecharacteristic ring x2 of bi-3 subdivision [eft) is of degree bi-2 andright) a sector is the

conformal map: — z2.

Forp :=1/2,~:=1/8, we haveh = (16 — 2) and we can read off the subdomi-
nant eigenvalué /4 indicating rapid contraction.

Fig. 5: Comparison by highlight lines. {op lef) control net ofy2 projected onto an elliptic paraboloid.
(top middlg Bi-3 subdivision highlight lines indicate shape probleramiliar from Catmull-Clark sub-
division. (top right) The bi-4 subdivision surface of Section 34§ but the highlight line distribution is
still unsatisfactory. ffottom lefj Bi-4 subdivision after re-meshing according to Figure H@t{om righ})
re-meshing according to Figure 12.

The exciting observation is that the sub—eigenfunctipﬁs} are of degree bi-2.
After enforcing rotational symmetry, we can set width an@jheso that a segment
of the characteristic ring is defined by the spline coeffiti€im the order of Figure 2
middle
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of the conformal map: — 22 (see Figure 4). Since the restriction of— 22 is

injective, the new bi-3 subdivision rules generate a sertaat isC' at the extraor-
dinary point. The left eigenvector of corresponding to the eigenvalueyields the
extraordinary limit point
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An example is shown in Figure %op middle Replacing the central point by an
average of its neighbois 2, 3, 4, reduces any spikiness due to the small subdominant
eigenvalue.

3 C? bi-4 subdivision

The C? bi-2 characteristic ring of the bi-3 subdivision preseritethe previous sec-
tion advertises itself asoncentric tessellation major guided subdivision [5]. Our
construction and sampling of a guide surface of degree bi-8etive subdivision
rules are sketched in Figures 8 and 9. The details are impddabtain good sur-
face quality; but they are not needed for use of the algorgime we can givan
explicit subdivision matrix, i.e. rules acting directly on the mesh.
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Fig. 6: Regular Bi-4 subdivision (top) univariate subdivision: 2-fold knots are displayed a<hldisks,
1-fold knots as circlesjhtton) tensored conversion. (black: 2,2 knot, gray: 2,1 knotleirl,1 knot)

Fig. 7: C? Bi-4 subdivision. Note that the bi-4 lens mesh has no central point of valen¢ef®. mesh
and (ight) its scaled-up refinement. The gray points are defined by aegubdivision, the black ones by
the rules (3).



By degree raising, we can switch from any bi-3 input to a bigsmwith double
knots. Figures 6 and 7 illustrate one step of 4 (double-knot) spline subdivision.
As usual, repeated application yields a contracting sexpiefsurface rings. With the
following rules, also the limit is an everywhet# surface. The coefficients; ;, 13 <
1 < 60,7 =1,...,60 of the subdivision matrix4 are defined by regular subdivision
(see gray disks in Figureright) and A;; = 0 fori = 1,...,12; 5 = 25,...,60;
so it suffices to define the stencils for coefficients 1-12gkmag as in Figure 2,
middlg. Moreover, the coefficientd;;, j = 1...24, fori = 3,4,8,9,10, 11,12 are
recovered by symmetry from the scaled columns listed befoms := 4194304,

rA1j : 8kAgj 1 KAs;: 16kAgj @ 8kA7j :
811090 5711612 1082610 13746012 3746052
712980 7604042 655140 19897458 14524470
651654 5711612 479430 7303932 3746052
712980 4098598 655140 5091390 456666
396360 2547228 578440 6720204 1288740
192300 1874136 242700 6962248 4139016
0 —1392 0 —17712 351344
126420 1874136 45300 3288936 4139016
271800 2547228 167544 2477004 1288740
126420 793616 45300 297120 —62832
0 0 0 0 0
192300 793616 242700 1342272 —62832 . 3)
11070 —12216 24030 110328 —130440
4155 53155 7995 334671 149757

0 116 0 —1404 14412
0 0 0 0 0
0 116 0 4356 14412

—5535 53155 —12015 975 149757
—8310 —12216 —15990 —258600 —130440
—5535 —41055 —12015 —127179 —33729

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

4155 —41055 7995 —63147 —33729
For example Ags := 293932 " The subdivision matrixd € R%°*50 has the charac-
teristic polynomial

a10a20a304
D
a1 :=134217728)\% — 2110592\ + 7487,

ag :=4503599617370496 )% — 75230110285824 )\
+ 62486728704\ + 410899717,
az :=288230376151711744\* — 7667169458388992)\3
+ 19671721967616A% + 397951106240\ — 1115103427,
ay :=2361183241434822606848\* — 19679041521748803584\3
+ 35225654240739328\2 + 91463875469312)\ — 286255219911,

(A= 1)(4X — 1)?(16X — 1)3(64) — 1)3(256)\ — 1)2\%,

(4)

where D is some 78-digits integer, all computed by Maple. The rodtghe poly-
nomialsa; are in modulus less thary16. This eigenspectrum is consistent with the
requirements of subdivision to &&? at the extraordinary point [8, Ch 7]. We verify
that the characteristic ringf1, f2), corresponding to subdominant eigenvalyé,
agrees with that of the bi-3 subdivision of Section 2; and tha space spanned by
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Fig. 8: Construction of a guide surfaceg. The guide surface consists of tWi# connected patches each
of degree bi-5, one per sector. We look at the top patoteft) The top segmeri of the bi-4 spline ring

is converted to Bernsteinégier (BB) form and raised to degree bi-5 to yield the boupdatab. (right)

The top sector of the characteristic rigg is translated and scaled so that the mid points and cornetspoin
of the resulting mapy fit tightly into the unit square domain of the bi-5 patghThe guide patclg is
chosen so that its top rows are of degree 2 (raised to degree B)e now match thg& x 3 jet of partial
derivatives(9{ 6§)OSMSQ of the compositiorg o Y2 to those ofb. Such sampling at thielack circled
locations defines the bottom three rows of BB-coefficientaofbpoints) of the guide patch. Sampling the
jet at thered circledlocation yields the3 x 3 derivatives that, due to the lowered degree, define the top
three rows (red points) .

Fig. 9: Sampling the guide surfaceto derive A. The characteristic ring2 is scaled by its eigenvalue
1/4 and the3 x 3 jet of partial derivative$d] 0% o< k<2 Of go i)ZQ is sampled and converted into bi-4
double knotsplinecontrol points fight). The spline control points are averaged where overlapfihg
square and diamond are the result of sampling at the locatiorieethémiddle top) by the black circles,
and those marked by a circle from a top or bottom (red circleation.

the eigenfunctions corresponding to the subsubdomingenealuel /16 is gener-
ated byf121 f1f2! f22

Figure 5top right shows an example.
4 Remeshing

Although C?2, the bi-4 construction does not yield the shape quality ooelevhope
for. This may be due to the two-sided overlap of the splindfaents of one sector



Fig. 10: Re-meshing a bi-3 to a bi-4 mesh(left) The bi-3 mesh of Figure 2 (without central point)
is degree-raised to four (with double knots) yielding thatcol net (niddlg; The bi-4 meshr{ght) of
Figure 7 (with the same combinatorial layoutlef) is then determined so that, once subdivided, it best
matches theniddlemesh in the least squares sense; i.e., minimizes the sum oksidiatances between

corresponding control points.

Fig. 11: Twomore re-meshingstrategies based on the setback strategy of Figure 10. hédtit lines
of the strategyr{ght) are clearly more monotone.

Fig. 12: Re-meshing of a lensby alternating subdivision and mergindeff) A bi-3 mesh with central
vertex of valence 2.njiddle lefj Application of one bi-3 subdivision step as in Sectionr@iddle righ)
The refined nodes, marked as quads, circles and disks, aagadeto new nodesright) The new mesh
has separated 3-valent vertices but coincides with thenaliglata and layout along the the lens’s outer
boundary. See Figure 1dght, for highlight lines on the surface.

with its neighbor (whem > 2, the left and right neighbor sector are distinct). In our
experience, simple re-meshing does not solve the problémrefore in Figure 10
a more subtle remeshing is applied (whose effect is equivatedegree elevation
when the input is a characteristic control net). Refinemétiiebi-4 mesh according
to Section 3 then yields the black points of Figure 7; the greyts are defined by
degree-elevating the input bi-3 mesh. The resulting bi-4muefines one bi-4 ring
that isC? connected to the surrounding outer ring and bi-4 subdimisan proceed.
Figure 11 shows two more re-meshing strategie#) the central edges in Figure 10,
left, are pairwise identified so that the valence 2 node disappé&mht) the central
edges are removed. Then, in both cases one Catmull-Cladkasibn is applied. We
observed that theght option results in visually significantly better surfacesother
option, the re-meshing illustrated in Figure 12, resultieiner patches, typically of
the same quality as the re-meshing of Figureright. Both options should therefore
be considered. For Figure 12, we create two valence-3 estrtithis and also the
strategy in Figure 11right, can be viewed as a local correction, via two 3-valent
vertices, of automatic quad meshing algorithms generdtimgrshapes [12].



Fig. 13: Paired lenseg(left) an elliptic paired lens mesh and thai¢ldle) characteristic configuration of
the paired lenses layoutight) remeshed as in Figure 12 (with BB-coefficients of the fill thyed).

Fig. 14:Paired lensesexample. left) bi-3 subdivision; (niddle lef}y bi-4 subdivision; (iddle righ) bi-4
subdivision after remeshing of Figure 1@ght) finite re-construction as in Figure 13.

In automatic reconstruction algorithms lenses occur irsgaich as in Figure 13,
left, which illustrates the finger tips generated by [12]. Apation of the re-meshing
of Figure 12 yields the layout of Figure 13ght. Figure 14 compares this remeshing
approach with bi-3 subdivision, bi-4 subdivision withoeimeshing and the polar
re-construction explained next.

5 Polar re-construction

Polar mesh layout has omevalent vertex surrounded by triangles, and such that the
next layer is all quads and vertices of valence 4 [6]. But a lpemof re-meshing
strategies for lens-shaped facets that we tried failed livedteyood surfaces. Indeed,
the main challenge in constructing the lens-shaped susfaite patches in polar
layout is retaining good shape. The Appendix describes #taild of apolar re-
constructionthat results in good'? surfaces (based on guided surfacing). This polar
patchwork consists of 16 patches, while the constructi@omiing to the layout of
Figure 12 consists of 48 patches. Figure 16 shows a pratgitsishaped configura-
tion that is best treated with polar re-construction. Arotbxample (that should use
polar layout or re-construction) are the finger tips of thachahown shown in [3,
Fig.10] and [2, Fig.20].
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Characteristic Conformal
configuration layout map
Section 2 valence =2 22

Section 4 pain = 2 cos z
Catmull-Clark  valence: z4/n

[6] polar e*

Table 1: Correspondence of configurations aadformalneighborhoods.

Figure 17.top left shows how the construction preserves and smoothly joins to
the pre-existing boundary data.

6 Discussion

The construction of a bi-42 subdivision surface fon = 2 does not contradict
the well-known lower bound estimate on the degree of subidnisurfaces [9]. That
estimate asserts that an everywhére subdivision surfaces with ‘L-shaped’ seg-
ments must be at least of degree bi-6. However, the proof ie{@udes the valences
n = 2,4. While the exclusion ofi = 4 is obvious, the presented biéZ? subdivision
shows that exclusion of = 2 is not an artifact of the method of proof in [9] but is
genuinely necessary.

It is unclear whethe€? subdivision forn = 2 is helpful in creating high-quality
surfaces without re-meshing: due the subdominant eigeevil, the contraction is
extremely fast and in our experiments, bi-4 subdivisiorhaitt re-meshing did not
fare as well as applying one step of the bi-3 subdivisiorofedd by re-meshing.

We also want to share our observation that simleneshingof lens-pairs to
polar layout resulted in surfaces clearly inferior to pa&iconstructedgurfaces with
the help of a guide surface. Maybe, if polar structures wdddconsidered in the
original meshing of scanned data, the results could berbette

The discussion of lens-shaped regions and pairs of lergeshr@gions completes
an interesting analogy between conformal mapsrandlent vertices in quad surface
constructions ([8] credits D. Levin for pointing to the w&hown mapz*/™ in the
subdivision context. It is also mentioned in [13]). Thismmpondence in the layout
of the parameter lines is illustrated in Figure 18 and taiedlén Table 1.
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Appendix: Polar construction details

In the polar (re-)construction, three circular B-splingdes surrounding the lens-
shape (after removal of the central vertices of Figure 1pdg) raised to degree 5
in the radial direction Figure 19 (a). The outer, black pwiate known, th& x 8
gray points will be determined. Figure 19 (b) shows one patdBernstein-Ezier
form corresponding to one sector of th& polar ring (that extends the data irC&
fashion). FormalC? prolongation of the gray points towards the center andrgisi
the circular direction to degree 6 resultsrircentral patches of bidegréex 5 such
as the one shown in Figure 19 (c). The innermost layer of tkieses patches is
collapsed to one point set to the location of the centraltgoéal circle) of the bicubic
patchwork in Figure 15 (b)). This leaves five of the six coédfits of the central
guadratic expansion undetermined, in addition to3the8 (gray) spline coefficients.
All 29 coefficients, for each coordinate separately, aremeined by minimizing the
two-norm of third derivatives of all patches.

Another alternative, shown to remove the need for one tiiandayer in Figure
17 top,right, increases the degree to bi-6 and has the inner coefficeatsing with
the additional central circular layer, determined by miizimg the the two-norm of
fourth derivatives of all patches.
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@) (b) © (d)
Fig. 15:Polar re-construction. The construction via a guide surface based on the existidgnbesh (a)
The paired lenses configuration suggests polar layout. i(B)ftches (grey) with two lens-shaped holes

yield aC? surface ring and the central point (red circle). (c) polgola. (d) Resulting surface (either of
degree 6,5 and'? or of degree 5,5 with no perceptible loss of quality, but fdiynaot C2.)

(a) input data (b) completed wing (c) cap of degree (6,5) (d) Gauss curvature and
highlight lines

Fig. 16:Wings designed for supersonic and hypersonic speeds have shdipdeand sharp trailing edges

&

(a) mesh (b) bi-5 transition + degree  (c) highlight lines (d) bi-6 cap

(6,5) cap
(f) layout of Figure 18 (c)

(e) layout of Figure 18 (d)

Fig. 17: Polar re-construction of paired lenses.tgp) Surfaces from the mesh layout of Figure 18 (b)
(extending the mesh of Figure 18ft). The input (outermost) ring is of degree bi-3. The caps have a
collapsed edge (see Appendix). The highlight lines of bgitioms are very similar.botton): Surfaces

based on the layouts Figure 18 (c), (d).
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(a) z%/™ (b) cos z (c) cos z (d) cos z (e)e*

Fig. 18: Iso-parameter lines obnformal mappings corresponding to the characteristic maps of caalonic
subdivision strategies.

(a) B-spline layers (b) BB-net of a segment of
the C2 polar ring the C2 central cap

Fig. 19:Polar construction of a transition andcentral patches of degree 6,5.

Fig. 20: Polami-6 cap.



