
Noname manuscript No.
(will be inserted by the editor)

Inverse 1-center location problems with edge length
augmentation on trees

Behrooz Alizadeh · Rainer E. Burkard ·
Ulrich Pferschy

Received: date / Accepted: date

Abstract This paper considers the inverse 1-center location problem with edge length

augmentation on a tree network T with n + 1 vertices. The goal is to increase the

edge lengths at minimum total cost subject to given modification bounds such that a

prespecified vertex s becomes an absolute 1-center under the new edge lengths. Using

a set of suitably extended AVL-search trees we develop a combinatorial algorithm

which solves the inverse 1-center location problem with edge length augmentation in

O(n log n) time. Moreover, it is shown that the problem can be solved in O(n) time if

all the cost coefficients are equal.

Keywords network center location · inverse optimization · combinatorial optimiza-

tion · AVL-search tree

1 Introduction

Facility location problems belong to basic optimization models in the field of operations

research and have received strong theoretical interest due to their relevance in practice.

These problems involve determining the optimal locations of one or more new facilities

in network systems or in space in order to fulfill the demands of customers. For detailed

The first author acknowledges financial support by the NAWI-Project in joint cooperation
between Graz University of Technology and Karl-Franzens University of Graz under the grant
F-NW-MATH-05. This research has also been supported by the Austrian Science Fund (FWF)
Project P18918-N18.

B. Alizadeh
Graz University of Technology, Institute of Optimization and Discrete Mathematics, Steyr-
ergasse 30, 8010 Graz, Austria. E-mail: alizadeh@opt.math.tugraz.at
Sahand University of Technology, Faculty of Basic Sciences for Engineering, Department of
Applied Mathematics, Tabriz, Iran. E-mail: alizadeh@sut.ac.ir

R.E. Burkard
Graz University of Technology, Institute of Optimization and Discrete Mathematics, Steyr-
ergasse 30, 8010 Graz, Austria. E-mail: burkard@opt.math.tugraz.at

U. Pferschy
University of Graz, Department of Statistics and Operations Research, Universitaetsstr. 15,
8010 Graz, Austria. E-mail: pferschy@uni-graz.at

2

surveys on location problems the reader is referred to the books of Daskin [8], Drezner

et al. [9], Francis et al. [10], Love et al. [19] and Mirchandani et al. [20].

Two well-known location problems are the 1-median and 1-center location model.

While the goal of the 1-median problem is to minimize the sum of (weighted) distances

between a facility and its customers, the 1-center location problem seeks to minimize the

maximum among the (weighted) distances to the customers. Such minimax location

problems occur when the best location of an emergency service, a hospital, a fire

station, a police office, a bank branch or another facility center has to be found. One

of the most important variants of the 1-center location model is the classical network

1-center location problem which is stated in the following way. Let a connected graph

G = (V (G), E(G)) with vertex set V (G) and edge set E(G) be given. Every edge

e ∈ E(G) has a positive length `(e). Moreover, for any vertex v ∈ V (G) let w(v) be a

nonnegative vertex weight. We say that point p lies in G, p ∈ G, if p coincides with

a vertex or lies on an edge of G. In the classical network 1-center location problem

we want to find a point p ∈ G such that the maximum (weighted) distance from any

vertex v ∈ V (G) to point p becomes minimum, or,

minimize max
v∈V (G)

w(v)d`(v, p)

subject to p ∈ G, (1)

where d`(v, p) denotes the shortest path distance from v to p with respect to the edge

lengths `. A point p∗ which solves problem (1), is said to be an absolute 1-center

location. If in problem (1) point p is restricted to be a vertex, then we say that the

optimal solution p∗ is a vertex 1-center location of G.

The inverse version of optimization problems, particularly inverse location problems

have found significant interest in recent years. Given a feasible solution for a location

problem, the inverse location problem is concerned with modifying parameters of the

original problem at minimum total cost within certain modification bounds such that

the given feasible solution becomes optimal with respect to the new parameter values.

For a detailed survey on inverse optimization problems see the article by Heuberger

[16]. In the context of location problems Cai et al. [6] proved that the inverse 1-center

location problem with edge length modification on general unweighted directed graphs

is NP-hard, while the underlying center location problem is solvable in polynomial

time. In 2004, Burkard et al. [4] considered inverse p-median problems and showed

that discrete inverse p-median location problems can be solved in polynomial time,

when p is fixed and not an input parameter. They proposed a greedy-like O(n log n)

time algorithm for the inverse 1-median problem with vertex weight modification on

tree networks. Hatzl [17] as well as Galavii [11] showed later that this problem can

actually be solved in O(n) time. Moreover, Burkard et al. [4] proved that the inverse 1-

median problem on the plane under Manhattan (or Chebyshev) norm can be solved in

O(n log n) time. Later the same authors [5] investigated the inverse 1-median problem

with vertex weight modification and unit cost on a cycle. They showed that this problem

can be solved in O(n2) time by using methods from computational geometry. In 2007,

Gassner [12] suggested an O(n log n) time solution method for the inverse 1-maxian (or

negative weight 1-median) problem with edge length modifications on tree networks.

The inverse Fermat-Weber problem was studied by Burkard et al. [3]. The authors

derived a combinatorial approach which solves the problem in O(n log n) time for unit

cost and under the assumption that the prespecified point that should become a 1-

median does not coincide with a given point in the plane. Galavii [11] showed in his

3

Ph.D. thesis that the 1-median on a path with pos/neg weights lies in one of the vertices

with positive weights or lies in one of the end points of the path. This property allows

to solve the inverse 1-median problem on a path with negative weights in O(n) time.

Gassner [13] considered an inverse version of the convex ordered median problem and

showed that this problem is NP-hard on general graphs, even on trees. Further, it

was shown that the problem remains NP-hard for unit weights or if the underlying

problem is a k-centrum problem (but not, if both of these conditions hold). The inverse

unit-weight k-centrum problem with unit cost coefficients on a tree can be solved in

O(n3k2) time.

Recently Alizadeh and Burkard [1] investigated the inverse 1-center location prob-

lem on tree networks in which one is allowed to increase or reduce the edge lengths.

They showed that the problem can be solved in O(n2) time by an exact algorithm

provided that no essential topology change occurs on the tree. Dropping this condi-

tion, they proposed an O(n2r) time exact algorithm for the general case where r is the

compressed depth of the underlying tree.

In this paper we consider the inverse 1-center location problem with edge length

augmentation (a special case of the problem investigated in [1]) on a tree in which the

aim is only to increase the edge lengths of the given tree at minimum total cost with

respect to modification bounds so that a prespecified vertex s becomes an absolute

1-center. We propose new solution algorithms with improved time complexities.

This article is organized as follows: In Section 2 we recall the fundamental properties

of the classical network 1-center problem and formulate the inverse 1-center location

problem with edge length augmentation. Then we derive a basic solution idea for the

problem under investigation. In Subsection 3.1 we introduce a data structure based on

AVL-search trees which can be used to develop an O(n log n) time exact algorithm in

Subsection 3.2. Finally, in Section 4 we propose a linear time solution method for the

case that all the cost coefficients are equal.

2 Problem formulation and basic solution idea

Let an undirected tree network T = (V (T), E(T)) with vertex set V (T), |V (T)| = n+1,

and edge set E(T) be given such that every edge e ∈ E(T) has a positive length `(e). Let

s be a prespecified vertex on T . We want to increase the edge lengths at minimum total

cost such that s becomes the absolute 1-center. Suppose that we incur the nonnegative

cost c+(e) if `(e) is increased by one unit. Moreover, we assume that it is not possible

to increase the edge lengths arbitrarily but every increased edge length must satisfy an

upper bound `upp(e). For convenience, let

`+(e) = `upp(e)− `(e) for all e ∈ E(T).

Thus we can state the inverse 1-center location problem with edge length augmentation

on the given tree network T as follows:

Increase the edge lengths `(e), e ∈ E(T), by an amount x(e) with ˜̀(e) = `(e)+x(e)

such that the following statements (i), (ii) and (iii) are fulfilled:

(i) Vertex s becomes an absolute 1-center of T with respect to ˜̀, i.e.,

max
v∈V (T)

d˜̀(v, s) ≤ max
v∈V (T)

d˜̀(v, p) for all p ∈ T.

4

(ii) The linear cost function
∑

e∈E(T) c+(e)x(e) becomes minimum.

(iii) The new edge lengths lie within given modification bounds

`(e) ≤ ˜̀(e) ≤ `upp(e) for all e ∈ E(T).

Hence, the inverse 1-center location problem on the tree network T can be for-

mulated as the following nonlinear semi-infinite optimization model with an infinite

number of nonlinear constraints:

minimize
∑

e∈E(T)

c+(e)x(e)

subject to max d˜̀(v, s) ≤ max d˜̀(v, p) for all p ∈ T,

˜̀(e) = `(e) + x(e) for all e ∈ E(T), (2)

x(e) ≤ `+(e) for all e ∈ E(T),

x(e) ≥ 0 for all e ∈ E(T).

The above problem is a special case of the more general inverse 1-center location

problem where also reduction of edge lengths is allowed. For the latter Alizadeh and

Burkard in [1] proposed an O(n2r), r < n, time solution algorithm. However, we are

now going to use the specific structure of (2) in order to develop faster algorithms. In

case of arbitrary cost coefficients, we develop an O(n log n) time algorithm. The case

of equal costs can be solved in O(n) time. Both algorithms are based on the following

optimality criterion, the so-called midpoint-property, introduced by Handler [15]:

Theorem 1 (midpoint-property)

In an unweighted tree network the midpoint of a longest path is an absolute 1-center.

The closest vertex to the absolute 1-center is a vertex 1-center of the given network.

Furthermore, Handler [15] proved the following Lemma:

Lemma 2 The absolute 1-center of an unweighted tree network is unique.

Considering Theorem 1 and Lemma 2, we conclude that for solving the inverse

1-center location problem on a given tree T , it is sufficient to increase the edge lengths

of T at minimum total cost within the given bounds until the vertex s becomes the

midpoint of a longest path on T with respect to the new edge lengths.

Let deg(s) denote the degree of the prespecified vertex s. If deg(s) = 0, then s

is the absolute 1-center of T . If deg(s) = 1, then the problem has no solution and s

can not become the absolute 1-center of T . Therefore, we assume that deg(s) ≥ 2. We

partition T into nontrivial subtrees T1, ..., Tdeg(s) such that

T =

deg(s)⋃

i=1

Ti , Ti ∩ Tj = s for 1 ≤ i, j ≤ deg(s), i 6= j.

Now let P0 be a longest path from s to one of the leaves of T . Assume w.l.o.g. that

P0 ⊆ T1. Define

T ′ =

deg(s)⋃

i=2

Ti

5

Let P = {P1, ..., Pñ}, ñ ≤ n− 1, be the set of all paths from s to the leaves of the

subtree T ′. Moreover, we denote the length of a path Pi by `(Pi). As an immediate

consequence of the Lemmas 4.1 and 4.2 provided by Alizadeh and Burkard [1] we get

the following lemma describing which edges of T must be considered for modification:

Lemma 3 Edge lengths are only increased along a path Pk, k ∈ {1, . . . , ñ}, whose

length `(Pk) can be increased at minimum total cost to the target value `(P0).

Based on the above considerations we are now going to develop a combinatorial

algorithm with improved running time for the inverse 1-center location problem with

arbitrary costs.

3 Inverse 1-center location problem with arbitrary costs

First let us to define

ξi = `(P0)− `(Pi) for i = 1, ..., ñ,

where ξi is the amount by which the length of Pi must be increased to be equal to

`(P0). For every Pi ∈ P , i = 1, ..., ñ, let

E(Pi) = {ei
1, ..., ei

ri
}, 1 ≤ ri ≤ n.

Corresponding to any path Pi ∈ P , i = 1, ..., ñ, we define the following linear program-

ming model which is able to increase the length of Pi at minimum total cost such that

s becomes the midpoint of a longest path in T .

(LPi) minimize

ri∑

j=1

c+(ei
j)x(ei

j)

subject to

ri∑

j=1

x(ei
j) = ξi

x(ei
j) ≤ `+(ei

j) for j = 1, ..., ri,

x(ei
j) ≥ 0 for j = 1, ..., ri.

If we introduce the new notations

`ij = `+(ei
j) , xj =

x(ei
j)

`+(ei
j)

and cij = c+(ei
j)`

+(ei
j) for j = 1, ..., ri,

then problem (LPi) can be written as

(CKPi) minimize Zi =

ri∑

j=1

cijxj

subject to

ri∑

j=1

`ijxj = ξi,

0 ≤ xj ≤ 1 for j = 1, ..., ri,

6

where `ij , ξi and cij are positive real numbers. Problem (CKPi) is a continuous knap-

sack problem in minimization form (see e.g. [18, Sec. 13.3.3]). For solving the inverse

1-center location problem on the tree network T , it is sufficient to find all optimal

objective values Z∗i , i = 1, . . . , ñ, and then determine

k ∈ argmin{Z∗i : i = 1, . . . , ñ}.
The path Pk corresponding to problem (CKPk) will be the best candidate for edge

length modification and thus the optimal solution of the inverse 1-center location prob-

lem on tree T can be obtained from the optimal solution of the problem (CKPk).

It is well known that the solution of a continuous minimization knapsack problem

with capacity c and n items, each of them defined by a profit pj and a weight wj ,

j = 1, . . . , n, can be derived by simply sorting the items in increasing order of their

profit to weight ratios (cf. [18]).

Lemma 4 After renumbering the items of a continuous minimization knapsack prob-

lem such that p1
w1

≤ p2
w2

≤ . . . ≤ pn
wn

, the optimal solution vector x∗ is given by

x∗j = 1, for j = 1, . . . , b− 1,

x∗b = 1
wb

(
c−∑b−1

j=1 wj

)
,

x∗j = 0, for j = b + 1, . . . , n,

where the break item b is given by the smallest index such that
∑b

j=1 wj > c.

Moreover, Balas and Zemel [2] gave an algorithm to compute the break item and thus

the optimal solution x∗ in linear time based on the linear time median algorithm.

Lemma 5 The break item b and the optimal solution x∗ of a continuous minimization

knapsack problem can be computed in O(n) time.

A simple way of finding the optimal objective values Z∗i , i = 1, ..., ñ, is to solve

all the problems (CKPi), i = 1, ..., ñ, separately. Based on Lemma 5 the overall time

complexity of this approach is O(n2).

But we are interested in finding an exact solution method with lower complexity.

Our construction is based on the fact that neighboring paths (as they are determined

by a depth-first search ordering of leaves) are likely to differ only in a small number of

edges. Therefore, we keep the edges corresponding to every knapsack problem (CKPi),

i.e. every path Pi, i = 1, ..., ñ, organized in an AVL-search tree Tavl
i . Moving from one

AVL-tree to the next, i.e. from one path to the next, requires only a limited number

of update operations. Thereby, we will develop a solution algorithm which solves the

inverse 1-center location problem with edge length augmentation in O(n log n) time.

3.1 Construction of AVL-search trees Tavl
i

We will refrain from going into the technical details of AVL-trees, which can be found

e.g. in [14], and concentrate on their application to our problem. This will require some

extension of their original concept. An AVL-search tree Tavl
i is a binary tree such that

each node is an object (key, info) where “key” is called the key field of the node, and

“info” is called the information element containing pointers to all adjacent nodes and

additional data about the structure of the tree. This tree satisfies the following two

properties:

7

– Binary search-tree property:

For each node α of Tavl
i , if α′ is a node in the left subtree of α, then the key field

of α′ is not less than the key field of α. If α′ is a node in the right subtree of α,

then the key field of α is not less than the key field of α′.
– Height balance property:

For each node α of Tavl
i , the height of the left and right subtrees of α differ by at

most 1.

Pointers to missing child or parent nodes are set to NULL. In our application, each

node of Tavl
i corresponds to exactly one item of the problem (CKPi), i.e. one edge of

Pi. In every node α of Tavl
i we also store the following information thus augmenting

the standard model:

jα : corresponding item of α in (CKPi), i.e. an index j ∈ {1, . . . , ri}
cα: cost coefficient of the corresponding item of α in (CKPi) given by cijα

wα: weight of the corresponding item of α in (CKPi) given by `ijα

keyα: (key field of α) efficiency of the corresponding item of α in (CKPi) which is equal

to the value cα
wα

leftα: pointer to the left child node of α in Tavl
i

rightα: pointer to the right child node of α in Tavl
i

Cα: sum of costs over all nodes of the subtree rooted at α (including cα)

Wα: sum of weights over all nodes of the subtree rooted at α (including wα)

It will turn out that we can search for the break item of (CKPi) in the AVL-search

tree Tavl
i in O(log n) time. We will generate all trees Tavl

i , i = 1, ..., ñ, in the order of

discovering the leaves corresponding to the paths Pi, i = 1, ..., ñ, in the subtree T ′ in

a depth-first search manner by performing the following algorithm:

Algorithm Cons(AVL): constructs all AVL-search trees Tavl
i

(i) Perform a depth-first search procedure on T ′ and explore all the edges of a path

P1 until its endpoint is discovered. Construct the AVL-search tree Tavl
1 by |E(P1)|

insertion operations for these edges. Let i = 1.

(ii) Construct Tavl
i+1 from Tavl

i for i = 1, ..., ñ− 1:

Perform |E(Pi)\E(Pi+1)| removal operations on Tavl
i for edges in E(Pi)\E(Pi+1).

Insert new nodes into Tavl
i corresponding to the edges in E(Pi+1)\E(Pi) by per-

forming |E(Pi+1)\E(Pi)| insertion operations resulting in the tree Tavl
i+1. After every

insertion and removal operation rebalancing by rotations is executed to maintain

the height balance property. This effects at most O(log n) nodes.

Update the information of the nodes of Tavl
i+1.

The main extension of our data structure from the classical AVL-tree model are the

fields Cα and Wα concerning the subtrees rooted in every node. Since the rebalancing

operation consists of rotations, which change the structure of at most logarithmically

many nodes, these values can be reconstructed in O(log n) time during every rebalanc-

ing step.

The following lemma describes the required total time for the construction of all

AVL-search trees Tavl
i (see e.g. [14]):

Lemma 6 In an AVL-search tree Tavl
i every insertion, removal and rebalancing oper-

ation is performed in O(log |E(Tavl
i)|) time.

8

Lemma 7 All AVL-search trees Tavl
1 , ..., Tavl

ñ are constructed in O(n log n) total time.

Proof The performance of the depth-first search procedure on T ′ takes O(n) time.

During the construction of Tavl
1 , ..., Tavl

ñ , every edge e ∈ E(T ′) is inserted and removed

at most once which according to Lemma 6 takes O(n log n) time in total. At most 2n

rebalancing operations take O(log n) time each, and they also require the updating of

information in O(log n) nodes. This yields a total running time of O(n log n).

3.2 An O(n log n) time solution algorithm

In the continuous knapsack problem (CKPi) we say that an item j ∈ {1, ..., ri} is

packed in the knapsack if xj > 0. Based on a given AVL-search tree Tavl
i representing

problem (CKPi) with capacity cap = ξi we can compute the break item and the optimal

objective value Zi as follows:

Let α = root of Tavl
i . If the inequality

Wrightα
≥ cap (3)

holds, then item jα can not be packed into the knapsack. Hence all the packed items in-

cluding the break item will be items corresponding to some nodes of the subtree rooted

in rightα of Tavl
i . In this case we set α := rightα and repeat the above procedure.

Otherwise, if

Wrightα
+ wα ≥ cap, (4)

then we conclude according to Lemma 4 that jα is the break item of (CKPi) and all

the items in the subtree rooted in rightα must be packed in the knapsack. The packing

of these items in the knapsack increases the objective value of problem (CKPi) by the

amount

Crightα
+

cap−Wrightα

wα
cα.

On the other hand, if both (3) and (4) do not hold, then it means that an optimal

solution of the problem (CKPi) includes item jα completely and also all the items on

the subtree rooted in rightα, describing an increase in the objective value of (CKPi)

by the amount

Crightα
+ cα.

Moreover, the optimal solution contains the packing of the items on some nodes of the

subtree rooted in α := leftα. In this case we update the capacity cap by

cap := cap−Wrightα
− wα,

and perform the above procedure with respect to the new α and cap.

Note that the algorithm terminates if either (3) does not hold and (4) is satisfied

or α = NULL. In the first case the algorithm finds the optimal objective value Z∗i and

a break item of the knapsack problem (CKPi). In the second case (CKPi) is infeasible

and we assign Z∗i := M , where M is a very big value.

The preceding considerations are summarized in Algorithm 1.

Lemma 8 Given an AVL-search tree Tavl
i , 1 ≤ i ≤ ñ, Algorithm 1 runs in O(log n)

time.

9

Algorithm 1 Finds the break item bi and the optimal objective value Z∗i of problem

(CKPi) using the AVL-search tree Tavl
i .

1: cap := ξi; Z∗i := 0

2: α := root of T avl
i

3: repeat
4: if Wrightα ≥ cap then
5: α := rightα
6: else if Wrightα + wα ≥ cap then

7: Z∗i := Z∗i + Crightα +
cap−Wrightα

wα
cα

8: bi := jα; stop
9: else

10: Z∗i := Z∗i + Crightα + cα

11: cap := cap−Wrightα − wα

12: α := leftα
13: if α = NULL then
14: Z∗i := M ; stop
15: end if
16: end if
17: until forever

Proof Every execution of the repeat-loop runs in O(1) time. Since this loop is iterated

at most O(log n) times on the AVL-search tree Tavl
i the total running time of the

algorithm is bounded by O(log n).

The proof of correctness of Algorithm 1 is given in the following theorem:

Theorem 9 Algorithm 1 correctly finds the optimal objective value of the knapsack

problem (CKPi) for any i = 1, ..., ñ.

Proof For a given i ∈ {1, ..., ñ}, let α1, ..., αri , be the set of nodes of the AVL-search

tree Tavl
i in the ordering they are visited by an inorder tree walk (see Cormen et al. [7,

p. 254]). It follows from the search tree property of Tavl
i that

keyα1 ≤ keyα2 ≤ ... ≤ keyαri
,

where keyαj =
cαj

wαj
.

By the conditions in lines 4 and 6 Algorithm 1 finds a node αbi
such that

bi−1∑

j=1

wαj < cap and

bi∑

j=1

wαj ≥ cap,

where cap = ξi. But this is exactly the definition of the break item of (CKPi) given

in Lemma 4. Applying Lemma 4 further we can state the optimal solution of the

underlying continuous minimization knapsack problem as

xj = 1, for j = 1, . . . , bi − 1,

xbi
= 1

wαbi

(
cap−∑bi−1

j=1 wαj

)
,

xj = 0, for j = bi + 1, . . . , ri.

(5)

Plugging the values of (5) into the objective function of (CKPi) yields

Z∗i =

bi−1∑

j=1

cαj +
cap−∑bi−1

j=1 wαj

wαbi

cαbi
, (6)

10

which is exactly the expression computed in line 7 of Algorithm 1. Recalling that

cα = cijα
and wα = `ijα

the statement of the theorem follows.

Recall that for solving the inverse 1-center location problem under investigation,

we need to choose the best candidate path Pk by

k ∈ argmin{Z∗i : i = 1, ..., ñ}, (7)

and then derive the optimal solution of the continuous knapsack problem (CKPk). To

do so we put together the pieces developed so far and run Algorithm Cons(AVL). At

the end of each of its iterations when we have fully constructed an AVL-tree Tavl
i we call

Algorithm 1 to compute Z∗i . Taking the minimum value over all Z∗i we identify Z∗k .

If Z∗k = M the problem is infeasible, otherwise we have obtained the break item bk of

(CKPk) and compute the optimal solution vector x∗ of (CKPk) according to Lemma 4

in linear time. Finally, we set the optimal solution of the original problem (2) as

x∗(e) =

{
`+(e)x′(e) if e ∈ {ek

1 , ..., ek
rk
},

0 otherwise,

where

x′(ek
j) = x∗j for j = 1, . . . , rk.

Altogether we get the following theorem:

Theorem 10 The inverse 1-center location problem with edge length augmentation

can be solved in O(n log n) time on a tree with n edges.

Proof The above observations imply that the optimal solution of the inverse 1-center

location problem is given by Z∗k as defined in (7). Obviously, this value is derived by

taking the minimum over all ñ executions of Algorithm 1.

The time complexity follows from Lemma 7 and the at most n executions of Algo-

rithm 1 each of them requiring O(log n) time as stated in Lemma 8.

4 Inverse 1-center location problem with equal costs

In this section we assume that all the cost coefficients assigned to the edge lengths

of the tree network T are equal. We will show that this special case of the inverse

1-center location problem on trees can be solved efficiently in O(n) time. Observe that

the maximum permissible amount by which the length `(Pi) can be increased is given

by

`+(Pi) =
∑

e∈E(Pi)

`+(e).

Now we let

I = {i : `+(Pi) ≥ ξi, i = 1, ..., ñ}.
Clearly, by increasing the length of every path Pi, i ∈ I, we can fulfill the midpoint-

property on the tree network T . But the best candidate path Pk for edge length mod-

ification is determined by

k ∈ argmax{`(Pi) : i ∈ I}.

11

Hence, the prespecified vertex s becomes the absolute 1-center of T at minimum total

cost if we increase the length of Pk by the amount ξk. Since all the cost coefficients

assigned to the edge lengths are equal, it is not necessary to consider an ordering for

increasing the length of edges of the best candidate path Pk. On the other hand, note

that the computation of all amounts `+(Pi), i = 1, ..., ñ, takes O(n) total time if we

traverse the given tree network T in a depth-first search manner. Moreover, the set I

and the index k are determined in O(n) time. Therefore, we conclude:

Theorem 11 The inverse 1-center location problem with edge length augmentation

can be solved in O(n) time on a tree with n edges provided that all cost coefficients are

equal.

References

1. B. Alizadeh and R.E. Burkard, The inverse 1-center location problem on a tree, Technical
Report 2009-03, Graz University of Technology, 2009.

2. E. Balas, E. Zemel, An algorithm for large zero-one knapsack problems, Operations Re-
search, 28 (1980) 1130–1154.

3. R.E. Burkard, M. Galavii and E. Gassner, The inverse Fermat-Weber problem, Technical
Report 2008-14, Graz University of Technology, 2008.

4. R.E. Burkard, C. Pleschiutschnig and J. Zhang, Inverse median problems, Discrete Opti-
mization, 1 (2004) 23–39.

5. R.E. Burkard, C. Pleschiutschnig and J. Zhang, The inverse 1-median problem on a cycle,
Discrete Optimization, 5 (2007) 242–253.

6. M.C. Cai, X.G. Yang and J.Z. Zhang, The complexity analysis of the inverese center
location problem, Journal of Global Optimization, 15 (1999) 213–218.

7. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 2nd
ed., MIT Press, 2001.

8. M.S. Daskin, Network and Discrete Location: Modeles, Algorithms and Applications, John
Wiley, New York, 1995.

9. Z. Drezner and H.W. Hamacher, Facility Location, Applications and Theory, Springer
Verlag, Berlin, 2004.

10. R.L. Francis, L.F. McGinnis and J.A. White, Facility Layout and Location, An Analytical
Approach, Prentice Hall, Englewood Cliffs, 1992.

11. M. Galavii, Inverse 1-Median Problems, Ph.D. Thesis, Institute of Optimization and Dis-
crete Mathematics, Graz University of Technology, Graz, Austria, 2008.

12. E. Gassner, The inverse 1-maxian problem with edge length modification, J. Combinatorial
Optimization, 16 (2007) 50–67.

13. E. Gassner, An inverse approach to convex ordered median problems in trees, Technical
Report 2008-16, Graz University of Technology, 2008.

14. M.T. Goodrich, R. Tamassia and D. Mount, Data Structures and Algorithms in C++,
John Wiley and Sons, New York, 2003.

15. G.Y. Handler, Minimax location of a facility in an undirected tree graph, Transportation
Science, 7 (1973) 287–293.

16. C. Heuberger, Inverse combinatorial optimization: A survey on problems, methods, and
results, Journal of Combinatorial Optimization, 8 (2004) 329–361.

17. J. Hatzl, personal communication, 2006.
18. H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer, 2004.
19. R.F. Love, J.G. Morris and G.O. Wesolowsky, Facilities Location: Models and Methods,

North-Holland, New York, 1988.
20. B.P. Mirchandani, R.L. Francis, Discrete Location Theory, John Wiley, New York, 1990.

