
Computing manuscript No.
(will be inserted by the editor)

DSOL: A Declarative Approach To Self-Adaptive Service
Orchestrations

Gianpaolo Cugola · Carlo Ghezzi ·
Leandro Sales Pinto

Received: date / Accepted: date

Abstract Service Oriented Computing (SOC) has brought a simplification
in the way distributed applications can be built. Mainstream approaches,
however, failed to support dynamic, self-managed compositions that would
empower even non-technical users to build their own orchestrations. Indeed,
because of the changeable world in which they are embedded, service com-
positions must be able to adapt to changes that may happen at run-time.
Unfortunately, mainstream SOC languages, like BPEL and BPMN, make it
quite hard to develop such kind of self-adapting orchestrations. We claim that
this is mostly due to the imperative programming paradigm they are based on.
To overcome this limitation we propose a radically different, strongly declara-
tive approach to model service orchestration, which is easier to use and results
in more flexible and self-adapting orchestrations. An ad-hoc engine, leveraging
well-known planning techniques, interprets such models to support dynamic
service orchestration at run-time.

1 Introduction

When first proposed, the principles behind Service Oriented Architectures
(SOAs) and the Service Oriented Computing (SOC) paradigm held the promise
to solve the complexity behind programming large-scale, distributed applica-
tions. By orchestrating [1] existing services through easy to use languages,
even non-technical users were promised to be empowered with the ability of
creating their own added-value services. Unfortunately, after some years of
research, technological developments, and experience, we are still far from
reaching these goals: “service orchestration” is still a difficult and error-prone
art that requires sophisticated skills.

Politecnico di Milano
Dipartimento di Elettronica e Informazione - DEI
Piazza Leonardo Da Vinci, 32 - 20133, Milano, Italy E-mail:
{cugola,ghezzi,pinto}@elet.polimi.it

2 Gianpaolo Cugola et al.

The main source of complexity has to do with the fact that service orches-
trations live in a very unstable world, in which changes occur continuously
and unpredictably. If not adequately managed, these changes inevitably lead
to failures. As an example, orchestrations may fail because the target services
they invoke have been discontinued by their providers, because they became
unreachable through the currently used interconnection network, or because
new versions have been deployed, which are incompatible with the previous
ones. It is therefore fundamental that the orchestration could respond to such
kinds of changes, finding an alternative strategy to achieve its goal.

The traditional way to achieve such kind of adaptation is by explicitly
programming the orchestration and by heavily using exception handling tech-
niques to manage failures when they occur. This is quite hard per-se and
cannot be done by inexperienced users. In addition, using mainstream SOC
languages, the alternative ways to achieve the orchestration’s goal cannot be
separate from the exception handling code. This brings further complexity and
results in orchestration models that are hard to read and maintain.

We strongly argue that the main reason behind this complexity has to do
with the very nature of the languages used to define service orchestrations by
current mainstream SOC. Indeed, the mainstream languages used to define
service orchestrations, like BPEL [2] and BPMN [3], too closely resemble tra-
ditional programming languages, with their imperative style of programming
that requires service architects to take care of every aspect in the control flow
among services: from the most general to the most specific ones. Service com-
positions must explicitly define all the different routes to go from the initial
to the final state of the orchestration, and they have to forecast and explic-
itly manage in advance all possible faults and exceptions that may happen at
run-time.

This severe limitation of the state-of-practice in service orchestration has
been recognized by part of the research community, which is proposing Auto-
mated Service Composition (ASC) as an alternative approach. Unfortunately,
we find that this alternative also has limitations. Indeed, the number of dif-
ferent approaches that fall under the ASC umbrella can be roughly classified
in two main groups [4,5]. The first includes approaches that aim at reaching a
fully automatic construction of the orchestration from a large (potentially uni-
versal) set of semantically-rich service descriptions, to be interpreted, selected,
combined, and executed by the orchestration engine. This should happen with-
out the intervention of the service architect, whose role is fully subsidized by
the engine itself. The second group of proposals is less ambitious, leaving to
service architects the goal of defining an abstract model of the orchestration,
which the engine interprets and makes concrete by selecting and invoking the
actual services to accomplish each task. We claim that none of the two ap-
proaches completely solve our problem. The former works in specific, restricted
domains, but can hardly be applied in more general settings, since it requires
all services to be semantically described with enough details to allow the en-
gine to choose and combine them in the right way to satisfy the users’ goals.
The latter is too restrictive, as it relies on the service architect to provide

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 3

an abstract yet detailed enough model of the orchestration, often using lan-
guages like BPEL and BPMN, whose structure is the ultimate source of the
problems1.

In this paper we illustrate a different approach. We follow the mainstream
path that suggests human intervention to model service orchestrations through
an ad-hoc language, but we abandon the imperative style of currently available
languages in favor of a strongly declarative alternative, called DSOL - Declar-
ative Service Orchestration Language. DSOL allows an orchestration to be
modeled by describing: (i) a set of abstract actions, which provide a high-level
description of the elementary activities that are typical of a given domain, (ii)
a set of concrete actions, which map the abstract actions to the actual steps to
be performed to obtain the expected behavior (typically, invoking an external
service), and (iii) the goal of the orchestration that has to be built.

DSOL models are executed by DEng - the DSOL Engine, an ad-hoc ser-
vice orchestration engine, which leverages automatic planning techniques to
elaborate, at run-time, the best sequence of activities (i.e., service invocations)
to achieve the goal. Whenever a change happens in the external environment,
which prevents execution to be completed, DEng behaves in a self-healing
manner. Through dynamic re-planning and advanced re-binding mechanisms
it finds an alternative path toward the goal and continues executing it. DEng
is fully implemented in Java and it is available for downloading2.

In the rest of the paper we describe our approach in details and show,
through a running example, the advantages it provides against the traditional
SOC paradigm to support self-adaptation.

The next section introduces the example we will use throughout the paper
to motivate our new approach, which we briefly describe in Section 3. Sec-
tion 4 provides a detailed description of DSOL, the orchestration language
we propose, and its execution environment DEng. Section 5 focuses on case
studies. Finally, Section 6 discusses related work and Section 7 provides some
conclusions and draws future lines of research.

2 Motivations

To illustrate the limitations of existing SOC approaches and to motivate the
need for a paradigm shift like the one we propose, this section introduces an
example, which we will also use throughout the paper to describe our proposal.
The idea is to design a service to buy tickets for a (night) event and to arrange
the transportation from the city where the user lives to the city where the
event is scheduled, plus the related accommodation. Such a service is built as
an orchestration of existing external services, through which one can buy the
ticket, book the transportation, and book the accommodation. In particular,
we consider the following requirements:

1 We will come back to this issues in Section 6, while discussing related work.
2 DEng is available at http://www.dsol-lang.net

4 Gianpaolo Cugola et al.

1. The system shall initially ask the user to provide her relevant data, the
city where she lives, the event she wants to attend, the credit card data
to pay for the ticket, and the desired transportation and accommodation
types.

2. Purchase of the ticket shall precede other actions, since the purpose of the
trip is to participate in the event.

3. Transport purchase shall precede accommodation reservation. Transporta-
tion can be arranged either by plane, train, or bus. If the participant does
not express a preference for a specific transportation type, plane, train,
and finally bus will be tried, in this order.

4. Choice of accommodation shall have the following options: hotel and hostel,
in this order of preference, unless explicitly chosen by the user.

5. The transportation and the accommodation must be booked for the same
period. The preferred option is to book the transportation in such a way
that the participant arrives at the event’s location the day before the event
and departs the day after, booking two nights at a nearby hotel/hostel,
taking her time to visit the place. The other choice is to book the outbound
transportation for the same day of the event and returning the day after,
thus requiring accommodation for a single night.

Looking at the requirements of the service to implement it is clear that
the overall goal can be accomplished in several ways, although there is some
preferred (partial) ordering among the different actions that build the orches-
tration. In particular, some paths are alternative w.r.t. others (e.g., if the par-
ticipant has no preference for transportation, booking a train is only required
if there are no flights available), while others have to be done in sequence
(e.g., the action of booking the transportation has to come before the action
of booking the accommodation). Moreover, several things can go wrong at
run-time: services may fail, the transportation could be available for the day
before the event, but the accommodation could be available only for the night
of the event, thus requiring transportation booking to be undone, and so on.

Implementing this kind of orchestration using BPEL—the de-facto stan-
dard language for service orchestration—is hard because the language adopts
the imperative programming style we deprecated in the previous section, forc-
ing service architects to explicitly code all possible action flows, and to forecast
all possible exceptions. To illustrate this fact, Listing 1 shows a code snippet
that expresses the alternatives for booking the transportation. The control
flow relies on the fact that the external web services invoked to perform each
single step return true if they are successfully executed, and false otherwise.
The return value is then bound to a variable, e.g., flightBooked. Afterwards,
the value of this variable is tested, and if it is false the next alternative is ex-
ecuted; otherwise, the other alternatives are skipped. Together with this logic
we also had to code the compensation handlers to undo the effects of booking
the transportation in case the accommodation for the same period could not
be booked.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 5

Although this is just a small fragment of the orchestration we consider,
which is by itself quite a simple example, it is easy to see how convoluted
and error prone the process of defining all possible alternative paths turns out
to be. Things become even more complex when run-time exceptions, like an
error in invoking an external service, enter the picture and we have to add
the code to effectively manage them, e.g., by invoking alternative services. We
argue that the main reasons behind these problems is that the orchestration
language too closely resembles traditional imperative programming languages
with their need to explicitly program the flow of execution, while the code
for fault and compensation handling is mixed with the main code, further
reducing the overall readability of the resulting code.

Another important point to highlight is that this approach makes it im-
possible to introduce new, alternative paths of actions, when during orchestra-
tion’s execution something unexpected happens, such that none of the initially
provided options are able to accomplish the orchestration’s goal. Every possi-
ble problem has to be anticipated and managed at design time.

To mitigate these problems, we present a novel approach for service orches-
tration in which process activities and goals are described using a declarative
language, while planning techniques are used at run-time to determine how
the different tasks have to be executed to achieve the goals and how to re-
plan in case of faults (either expected or unexpected ones). The next section
overviews this approach.

3 Our Approach in a Nutshell

Service orchestrations are modeled in BPEL and BPMN as monolithic pro-
grams, which capture the entire flow of execution from the start of the or-
chestration to the invocation of the elementary services in charge of executing
each step. DSOL adopts a radically different approach. Indeed, the DSOL
service orchestration model includes different aspects, which are defined sepa-
rately, possibly by different stakeholders, each bringing their own competences.
Specifically, as shown in Figure 1, a service orchestration includes the following
elements:

– the definition of the orchestration interface, i.e., the signature of the service
that represents the entry point to the orchestration;

– the goal of the orchestration, declaratively expressed by a domain expert,
not necessarily competent in software development, as a set of facts that
are required to be true at the end of the orchestration;

– the initial state, which models the set of facts one can assume to be true
at orchestration invocation time. This is described by the same domain
expert who formulates the goal;

– a set of abstract actions, which model the primitive operations that can be
invoked to achieve a certain goal and are typical of a certain domain. They
are described using a simple, logic-like language that can be mastered even
by non-technical domain experts;

6 Gianpaolo Cugola et al.

. . .
<scope name= ' EventP lann ing '>
<scope name= ' BookTranspo r ta t i on '>
< i f>
<c o n d i t i o n>
<!−− p r e f e r r e dT r a n s e qua l s a i r p l a n e or

p r e f e r r e dT r a n s i s n u l l −−>
</ c o n d i t i o n>
<scope name= ' BookF l i gh t '>
<compensat ionHand le r>
<!−− Cance l f l i g h t r e s e r v a t i o n −−>

</ compensat ionHand le r>
<i n voke o p e r a t i o n= ' bookF l i g h t '

i n p u tV a r i a b l e= ' t r a n s p o r t a t i o nD e t a i l s '

ou t pu tVa r i a b l e= ' f l i g h tBook e d ' . . . />
</ scope>

</ i f>
< i f>
<c o n d i t i o n>
<!−− p r e f e r r e dT r a n s e qua l s t r a i n or

(p r e f e r r e dT r a n s i s n u l l and not f l i g h tBook e d) −−>
</ c o n d i t i o n>
<scope name= ' BookTrain '>
<compensat ionHand le r>
<!−− Cance l t r a i n r e s e r v a t i o n −−>

</ compensat ionHand le r>
<i n voke o p e r a t i o n= ' bookTra in '

i n p u tV a r i a b l e= ' t r a n s p o r t a t i o nD e t a i l s '

ou t pu tVa r i a b l e= ' t r a i nBooked ' . . . />
</ scope>

</ i f>
< i f>
<c o n d i t i o n>
<!−− p r e f e r r e dT r a n s e qua l s bus or

(p r e f e r r e dT r a n s i s n u l l and not f l i g h tBook e d and
not t r a i nBooked) −−>

</ c o n d i t i o n>
<scope name= 'BookBus '>
<compensat ionHand le r>
<!−− Cance l bus r e s e r v a t i o n −−>

</ compensat ionHand le r>
<i n voke o p e r a t i o n= ' bookBus '

i n p u tV a r i a b l e= ' t r a n s p o r t a t i o nD e t a i l s '

ou t pu tVa r i a b l e= ' busBooked ' . . . />
</ scope>

</ i f>
< i f>
<c o n d i t i o n>
<!−− not (t r a i nBooked or f l i g h tBook ed or busBooked) −−>

</ c o n d i t i o n>
<throw faultName= ' Transpor ta t ionNotBooked ' />

</ i f>
</ scope>

</ scope>
. . .

Listing 1 Booking transportation in BPEL

– a set of concrete actions, one or more for each abstract action, written
by a software engineer to map abstract actions into the concrete steps
required to implement the operation modeled by the abstract action, e.g.,
by invoking an external service or executing some code.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 7

Fig. 1 The DSOL approach to service orchestration

At orchestration invocation time the DSOL Interpreter translates the goal,
the initial state, and the abstract actions into a set of rules and facts used by
the Planner to build an abstract plan of execution, which lists the logical steps
through which the desired goal may be reached. This plan is taken back by the
Interpreter, which enacts it by associating each step (i.e., each abstract action)
with a concrete action that is executed, possibly invoking external services.
If something goes wrong (e.g., an external service is unable to accomplish the
expected task or it returns an exception), the Interpreter first tries a different
concrete action for the abstract action that failed, otherwise it invokes the
Planner again to try a different course of action. In the extreme case, the
service architect may intervene to add new abstract/concrete actions to be
used to solve very complex situations.

This brief description shows the main advantages of our approach w.r.t.
traditional ones:

1. We achieve a clear separation among the different aspects of an orches-
tration: from the more abstract ones, captured by goals, initial state, and
abstract actions, to those closer to the implementation domain, captured
by concrete actions.

2. We meet one of the original goals of SOC; i.e., we involve users who are
not expert in software development into the cycle.

3. By focusing on the primitive actions available and letting the actual flow
of execution to be automatically built at run-time through the Planner,
we allow orchestration designers to focus on the general aspects that are
typical of a certain domain and remain stable over time, ignoring the pecu-

8 Gianpaolo Cugola et al.

liarities of a specific orchestration, which may change when requirements
change. This last aspect also holds the promise to increase reusability, since
the same abstract and concrete actions can be reused for different orches-
trations within the same domain.

4. By separating abstract and concrete actions, with several concrete actions
possibly mapped to a single abstract action, we allow the DSOL Interpreter
to find the best implementation for each orchestration step and to try
different routes if something goes wrong at run-time, in a fully automated
way.

5. Because abstract actions only capture the general rules governing the order-
ing among primitive actions, the Interpreter, through a careful re-planning
mechanism, can automatically overcome potentially disruptive and unex-
pected situations happening at run-time.

6. The modularity and dynamism inherent in the DSOL approach allow the
orchestration model to be easily changed at run-time, by adding new ab-
stract/concrete actions when those available do not allow to reach the
orchestration’s goal.

4 DSOL and the DEng Tool in Detail

Hereafter we provide a detailed description of the DSOL language and its
orchestration engine, focusing on the dynamic adaptation capabilities they
offer.

4.1 Abstract Actions

Abstract actions are high-level descriptions of the primitive actions available
in a given domain, which we use as the building blocks of orchestration plans.
They are modeled in an easy-to-use, logic-like language, in terms of their
signature, precondition, and postcondition.

Listing 2 illustrates the abstract actions involved in modeling our Event
Planning reference scenario. To clarify the structure of actions we take the
bookFlight case as an example. The action signature includes its name and a
list of arguments. In the example, bookFlight(From, To, Arrival, Departure).
The precondition is expressed as a list of facts that must be true in the
current state for the action to be enabled. In our example we use the ex-
pressions city(From), city(To), date(Arrival), and date(Departure) to
constrain the values of the parameters of the action, while we use the facts
preferredTrans(airplane) and ticketBought to express the fact that the
bookFlight action must be invoked only if the user has chosen the airplane as
its preferred transportation and that the ticket must have been already bought.
Following the preconditions are the postconditions, which model the effects of
the action on the current state of execution by listing the facts to be added to
the state and those to be removed. In our example, when bookFlight is exe-
cuted the fact transportationBooked(From, To, Arrival, Departure) is

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 9

ac t i on buyT icke t (Event ,PD)
pre : e v en t (Event) , paymentDeta i l s (PD)
post : t i c k e tBough t

ac t i on bookF l i g h t (From ,To , A r r i v a l , Depar tu re)
pre : c i t y (From) , c i t y (To) , date (A r r i v a l) , date (Depar tu re) ,
t i c ke tBought , p r e f e r r e dT r a n s (a i r p l a n e)
post : t r a n s po r t a t i o nBook ed (From ,To , A r r i v a l , Depar tu re)

ac t i on bookTra in (From ,To , A r r i v a l , Depar tu re)
pre : c i t y (From) , c i t y (To) , date (A r r i v a l) , date (Depar tu re) ,
t i c ke tBought , p r e f e r r e dT r a n s (t r a i n)
post : t r a n s po r t a t i o nBook ed (From ,To , A r r i v a l , Depar tu re)

ac t i on bookBus (From ,To , A r r i v a l , Depar tu re)
pre : c i t y (From) , c i t y (To) , date (A r r i v a l) , date (Depar tu re) ,
t i c ke tBought , p r e f e r r e dT r a n s (bus)
post : t r a n s po r t a t i o nBook ed (From ,To , A r r i v a l , Depar tu re)

ac t i on bookHote l (C i ty , CheckIn , CheckOut)
pre : c i t y (C i t y) , date (CheckIn) , date (CheckOut) ,
a t (C i ty , CheckIn , CheckOut) , preferredAccomm (h o t e l)
post : accommodationBooked (Ci ty , CheckIn , CheckOut)

ac t i on bookHos te l (C i ty , CheckIn , CheckOut)
pre : c i t y (C i t y) , date (CheckIn) , date (CheckOut) ,
a t (C i ty , CheckIn , CheckOut) , preferredAccomm (h o s t e l)
post : accommodationBooked (Ci ty , CheckIn , CheckOut)

Listing 2 The abstract actions for the Event Planning example

added to the state while no facts are removed (removed facts, when present,
are designed using the “~” symbol).

Facts in our language are expressed as propositions, characterized by a
name and a set of parameters. The latter represent the relevant objects of
the domain. More specifically, parameters that start with an uppercase letter
are considered as unbound objects and must be replaced by actual instances,
i.e., those which start with a lowercase letter, to generate an execution plan.
For instance, if at any point of plan generation the fact city(event.city)

is added to the state, the object event.city becomes available to be bound
either to the From or To generic parameters in the bookFlight action.

In some cases it is necessary to relate different states of a domain, e.g., to
specify that when a certain situation arises new facts could be deduced. To
model these situations we introduce seam actions. Unlike standard abstract
actions, seam actions do not have a concrete counterpart, as they do not
model an actual step of the orchestration, but rather a logical relation among
facts in the domain. Listing 3 shows the seam actions used in the example
scenario. Consider the onTransportationBooked case as an example. This
action models the fact that after transportation is booked we may assume that
the user will be at destination from the date of arrival till the date of departure.
Similarly, the seam action setTransportationPreference models the fact
that if the user does not express any preference about the transportation
mode then all the three means (airplane, train, and bus) are equally possible.

10 Gianpaolo Cugola et al.

seam ac t i on e x t r a c t E v e n t I n f o rma t i o n
pre : e v en t (even t)
post : c i t y (even t . c i t y) , date (even t . date) , date (even t . dayA f t e r) ,

date (even t . dayBe fo re)

seam ac t i on s e tT r a n s p o r t a t i o nP r e f e r e n c e
pre : p r e f e r r e dT r a n s (empty)
post : p r e f e r r e dT r a n s (a i r p l a n e) , p r e f e r r e dT r a n s (t r a i n) , p r e f e r r e dT r a n s (bus)

seam ac t i on se tAccommodat ionPre fe rence
pre : accommodation (empty)
post : accommodation (h o t e l) , accommodation (h o s t e l)

seam ac t i on onTranspor ta t i onBooked (From ,To , A r r i v a l , Depar tu re)
pre : t r a n s po r t a t i o nBook ed (From ,To , A r r i v a l , Depar tu re)
post : a t (To , A r r i v a l , Depar tu re)

Listing 3 The seam actions for the Event Planning example

s t a r t t r u e

goa l
t i cke tBought ,
t r a n s po r t a t i o nBook ed (p a r t i c i p a n t C i t y , e ven t . c i t y , e ven t . dayBefore ,

e ven t . dayA f t e r) ,
accommodationBooked (even t . c i t y , e ven t . dayBefore ,

e ven t . dayA f t e r)
or

t i cke tBought ,
t r a n s po r t a t i o nBook ed (p a r t i c i p a n t C i t y , e ven t . c i t y ,

e ven t . date , e ven t . dayA f t e r) ,
accommodationBooked (even t . c i t y , e ven t . date , even t . dayA f t e r)

Listing 4 Initial state and goal for the Event Planning example

Another important use of seam actions is to increase reusability of abstract
actions coming from different models when they use different terms to express
the same concept, i.e., to move from one ontology to another.

4.2 Orchestration Goal and Initial State

Besides abstract actions, the initial state and goal are also needed to produce
an orchestration plan. The former models the state from which the orchestra-
tion starts, while the latter represents the desired state to reach after executing
the orchestration. The goal may actually include a set of states, which reflect
all the alternatives to accomplish the goal of the orchestration, listed in order
of preference. The Planner will try to build a plan that satisfies the first goal;
if it does not succeed, it will try to satisfy the second goal, and so on.

The initial state and goal of the Event Planning scenario described in
Section 2 are illustrated in Listing 4. In this case the initial state is empty,
while the goal models the acceptable results of our example, in the preferred
order as specified in Section 2.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 11

@WebService
pub l i c i n t e r f a c e EventP lann ing {
pub l i c vo id p l an (
@WebParam(name=” c i t y ”)
S t r i n g p a r t i c i p a n t C i t y ,
@WebParam(name=” even t ”)
Event event ,
@WebParam(name=” paymentDeta i l s ”)
PaymentDeta i l s pd ,
@WebParam(name=” p r e f e r r e dT r a n s ”) @Concrete
Transpor tat ionMode t ranspo r ta t i onMode ,
@WebParam(name=”preferredAccomm”) @Concrete
AccommodationType accommodationType

}

Listing 5 The Event Planning orchestration interface

buyT icke t (event , pd)
bookF l i g h t (p a r t i c i p a n t C i t y , e ven t . c i t y , e ven t . dayBefore , even t . dayA f t e r)
bookHote l (even t . c i t y , e ven t . dayBefore , e ven t . dayA f t e r)

Listing 6 A possible plan for the Event Planning example

4.3 Orchestration Interface

To formalize how the orchestration is exposed as a web service, DSOL uses a
Java interface properly annotated with JAX-WS [6] verbs to let the Interpreter
automatically build the WSDL of the service.

The same annotations, in particular @WebParam, are also used by the In-
terpreter to create a set of additional facts to be passed to the Planner.
As an example, from the orchestration interface of our reference scenario,
shown in Listing 5, the Interpreter builds the facts city(participantCity),
event(event), and paymentDetails(pd), which introduce new objects to be
used in generating the plan. The other two arguments of the interface are also
transformed into facts for the Planner, but in a different manner. As they are
annotated as @Concrete, their actual value (as passed by the client and trans-
formed into a string using the toString Java method) is used, not the formal
parameter name. Hence, if the client invokes the service with a value airplane
for the transportationMode parameter, the fact preferredTrans(airplane)
is added to the set of facts passed to the Planner. Similarly, if a null value is
used, the fact preferredTrans(empty) is used. The same will happen for the
accommodationType argument.

Using these facts, plus the goals and initial state presented in the previous
section, together with the abstract and seam actions, the Planner is able to
build a plan, like the one presented in Listing 6 for our reference example3. It
includes a list of abstract actions that can lead from the initial state to a state
that satisfies an orchestration goal (the first one in our case). Notice that:

3 We omit the seam actions from the plan as they do not represent steps to be actually
performed (e.g., invoking external services) at run-time.

12 Gianpaolo Cugola et al.

@Action (name=” bookF l i g h t ” , s e r v i c e=” f l i g h t ”)
@ReturnValue (” t r a n s p o r t a t i o nD e t a i l s ”)
pub l i c a b s t r a c t T r a n s p o r t a t i o nD e t a i l s b ookF l i g h t (

S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e) ;

Listing 7 The bookFlight service action

(i) when several sequences of actions could satisfy the preferred orchestration
goal, the Planner chooses one, non deterministically; (ii) although the plan is
described as a sequence of actions, the Interpreter is free to execute them in
parallel, by invoking each of them as soon as their precondition is satisfied.

4.4 Concrete Actions

Concrete actions are the executable counterpart of abstract actions. They
are intended to be specified by a different actor, i.e., a technical person with
programming skills, once the abstract actions have been identified and specified
by the domain expert.

In the reference implementation of the DSOL engine, concrete actions are
implemented through Java methods using the ad-hoc annotation @Action to
refer to the abstract actions they implement. In general, several concrete ac-
tions may be bound to the same abstract action. This way, if the currently
bound concrete action fails, i.e. it returns an exception, the DSOL Interpreter
haves other options to accomplish the orchestration step specified by the failed
abstract action.

Among concrete actions, we distinguish between service actions and generic
actions. The former are abstract methods directly mapped to external services.
As an example see Listing 7. The special attribute service of the @Action

annotation specifies the external service to invoke, while a hot-pluggable mod-
ule of the Interpreter: (the Service Selector in Figure 1), is responsible for
taking this information and finding the specified service to be invoked. This
way, service actions may represent different kinds of services, e.g., SOAP or
RESTful, while the Interpreter can be easily extended to support other SOA
technologies.

Unlike service actions, generic actions are ordinary Java methods to be
used as utilities every time an abstract action cannot be implemented by sim-
ply invoking an external service. As an example, when the parameters of the
abstract action to implement have to be pre-processed before being passed
to an external service or when more than one service have to be invoked to
realize the abstract action. Listing 8 shows two generic actions (code omitted
for simplicity) to implement the buyTicket abstract action. Notice the use
of the @When annotation to guide the Interpreter in choosing among different
concrete actions for the same abstract action, based on the actual state of the
orchestration.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 13

@Action (” buyT icke t ”)
@When(”pd . method . e qu a l s (CREDIT CARD)”)
pub l i c vo id buyT i ck e tC r ed i tCa rd (Event evt ,

PaymentDeta i l s pd){
// Buy t i c k e t and pay wi th c r e d i t ca rd

}

@Action (” buyT icke t ”)
@When(”pd . method . e qu a l s (BANK TRANSFER) ”)
pub l i c vo id buyT icke tBankTrans f e r (Event evt ,

PaymentDeta i l s pd){
// Buy t i c k e t and pay wi th bank t r a n s f e r

}

Listing 8 The buyTicket generic action

The actual state of the orchestration is represented by the abstract objects
manipulated by the Planner and by the concrete (i.e., Java) objects manipu-
lated by the Interpreter at run-time. Both are kept by the Interpreter into the
Instance Session. This is a key-value database, which maps each abstract ob-
ject used by the Planner and referenced inside the plan with a corresponding
concrete object. When the orchestration is invoked, the values passed by the
client are associated with the corresponding abstract objects and they are used
to start populating the Instance Session. When the Interpreter must invoke
a concrete action to execute the next step of the plan, it uses the Instance
Session to retrieve the Java objects to pass to the action, while the value re-
turned by the action, if any, is kept into the Instance Session, mapped to the
abstract object whose name is given through the @ReturnValue annotation
(see Listing 7 for an example). This way the abstract plan produced by the
Planner is concretely executed by the Interpreter, step by step.

4.5 Failures and Compensation Actions

The ability to tolerate—both expected and unexpected—exceptions to the
standard flow of actions is fundamental for a system that has to operate in an
open, dynamic world. To pursue this goal, we provide both specific language
constructs and ad-hoc run-time facilities.

Among the former we already mentioned the ability of associating differ-
ent concrete actions to the same abstract action. This gives the Interpreter
the ability to try different options to realize each step of a plan. Indeed, when
an abstract action A has to be executed, the Interpreter tries the first con-
crete action implementing A. If this fails (e.g., it returns an exception) it tries
the second one, and so on. As an example, imagine that our reference or-
chestration model includes two concrete actions mapped to the same abstract
action bookFlight. The first, shown in Listing 7, invokes the external service
flight, while the second invokes a different external service. Now suppose
that the provider of the flight service has changed its interface. When the
Interpreter executes the bookFlight abstract action, the concrete action it is

14 Gianpaolo Cugola et al.

@Action (name=” bookF l i g h t ” , s e r v i c e=” f l i g h t ” ,
compensat ion=t rue)

pub l i c a b s t r a c t vo id c a n c e l F l i g h t R e s e r v a t i o n (
@ObjectName (” t r a n s p o r t a t i o nD e t a i l s ”)
T r a n s p o r t a t i o nD e t a i l s f l i g h t D e t a i l s

) ;

Listing 9 The cancelFlightReservation compensation action

bound to fails, but this does not stop the orchestration execution. In fact, the
Interpreter automatically captures the exception and tries the second concrete
action, which invokes a different external service, which hopefully is available
and executes correctly.

If, however, none of the available concrete actions is able to execute cor-
rectly, a second mechanism is available, which involves the ability of building
an alternative plan when something bad happens at run-time. That is, if the
Interpreter is unable to realize a step (i.e., an abstract action invoked with
specific parameters) of the current plan, it invokes the Planner again forcing
it to avoid the failed step. This way a new plan is computed that does not
include the step that was impossible to realize. By comparing the old and the
new plan, considering the current state of execution, the Interpreter is able to
calculate the set of actions that need to be compensated (i.e., undone) as they
have already been executed but are not part of the new plan. As an example,
consider the case where the outbound flight has been booked for the day be-
fore the event (and the inbound flight for the day after) according to the plan
in Listing 6, but neither a hotel nor a hostel are available the day before the
event. In such a situation, the Interpreter invokes the Planner again, which
produces a new plan that reaches the second goal in Listing 4. This requires
the bookFlight action to be compensated because the new plan requires the
flight to be booked for the same day of the event.

Since the design of compensating actions usually requires application level
knowledge, DSOL allows service architects to explicitly define them for each
defined concrete action. Listing 9 shows how to compensate the bookFlight

action. We notice how compensation actions use the same syntax of con-
crete actions, with the special compensation=true attribute. By default, com-
pensation actions are invoked using the same parameters of the action to
compensate. For those cases where it is necessary to use different parame-
ters, they can be taken from the Instance Session using the @ObjectName

annotation, as shown in Listing 9, which invokes the compensation action
cancelFlightReservation with the TransportatioDetails returned by the
bookFlight action it undoes.

Notice how in this example we used a further mechanism provided by DSOL
to increase robustness of the orchestration, namely the ability to specify mul-
tiple goals for each orchestration (see Section 4.2). This opportunity has been
leveraged by the Planner at run-time, to build a new plan that automatically
bypasses the failed step.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 15

In summary, by combining the ability to specify different implementations
(i.e., concrete actions) for each step of a plan, with the ability to rebuild failed
plans in search of alternative courses of actions, possibly achieving different,
still acceptable goals, our language and run-time system allow robust orches-
trations to be built in a natural and easy way. Indeed, by combining these
mechanisms, DSOL orchestrations are able to automatically get around fail-
ures and any other form of unexpected situation, by self-adapting to changes
in the external environment.

This goal is also achieved thanks to the DSOL approach to modeling or-
chestrations, which focuses on the primitive actions typical of a given domain
more than on the specific flow of a single orchestration. This approach max-
imizes the chance that when something bad happens, even if not explicitly
anticipated at modeling time, the actions that may overcome the situation
have been modeled and are available to the Planner and Interpreter.

4.6 The DEng Tool

DEng, the DSOL execution engine, is organized into three main components:
the Interpreter, the Planner, and the Service Selector.

The Interpreter is the core of the tool, being responsible for the execution of
the orchestration. Essentially, it replies to requests coming from the clients by
interpreting the orchestration modeled in DSOL, with the help of the Planner
and Service Selector.

The Interpreter is built on top of Apache CXF [7], an open-source service
framework. Apache CXF supports all the service-related parts inside DEng.
It is responsible for building the service model (i.e., the WSDL of the or-
chestration) from the orchestration interface specified in DSOL. Furthermore,
it handles all the communication between external clients and the orchestra-
tion, including support for several transport protocols, e.g. HTTP, Servlet, and
JMS, and a variety of web service specifications including WS-Addressing, WS-
Policy, WS-ReliableMessaging, and WS-Security. Apache CXF is also used to
invoke the SOAP-based services that implement DSOL’s service actions, as it
provides a dynamic way to invoke such services, without the need for creat-
ing stub and data classes in advance. Conversely, to invoke RESTful services
the Interpreter leverages the Apache Http Components [8], which support the
different HTTP methods.

When a client submits a request to a DSOL orchestration, the Interpreter
forwards the request to a class that implements the orchestration interface.
This generic implementation is automatically built by the Interpreter at run-
time, using the Code Generation Library (CGLIB) [9]. Its role is to read the
meta-data of the called method and the actual values of the parameters and,
based on this information, build the initial state of the orchestration and initi-
ate the Instance Session with the key-value pairs that correspond to the actual
parameters. Then, it retrieves the abstract actions and goals associated with
the invoked method and passes them to the Planner.

16 Gianpaolo Cugola et al.

The Planner is a hot-pluggable component of DEng, which is accessed by
the Interpreter through a generic interface. The current DEng prototype uses
an ad-hoc planner, built as an extension of JavaGP [10,11], an open-source
implementation of the Graphplan [12] planner. The JavaGP planner was ex-
tended to support multiple goals and the possibility of setting the initial state
of the plan at run-time. The JavaGP planner was also modified to introduce
the ability of inhibiting the use of some steps in the plan, i.e., those that in
the DSOL model are mapped to concrete actions whose invocation failed.

Using the initial state and the abstract actions provided by the Interpreter,
the Planner builds a plan to reach the specified goal and returns it to the
Interpreter, which enacts it by linking each step of the plan to the concrete
actions that implement it. Classes that contain concrete actions (methods
annotated with @Action) are parsed once for all at orchestration start-up,
and they are stored in memory using a Hash Map binding the name of the
each abstract action with the list of concrete actions (i.e., Java methods) that
implement it. In such a way, when a step of the plan needs to be executed, all
available implementations can be retrieved in constant time.

To actually invoke concrete actions, the Interpreter parses the next step of
the plan extracting the name of the abstract action involved and the names of
the objects to pass as parameters. The former is used to retrieve the concrete
actions to invoke from the Map mentioned above, while the latter are used to
retrieve, from the Instance Session, the actual object instances to be used as
parameters. Notice that concrete actions are invoked one by one until one is
found that completes successfully. The return value of such concrete action is
stored into the Instance Session, making it available to the following step of
the orchestration.

As explained in Section 4.5, if none of the concrete actions completes suc-
cessfully, the Interpreter starts a new interaction with the Planner in order to
find a new plan. In this interaction, the Interpreter first informs the Planner
of the steps that cannot be used any more (those corresponding to abstract
actions for which no concrete actions are available) and then it requests a new
plan. When the new plan is built, the Interpreter compares it with the old
one to figure out if they have steps in common that have already been exe-
cuted and if there are actions that have to be compensated. The corresponding
compensation actions are executed before proceeding with the new plan.

Notice that some of the concrete actions to be invoked when enacting a
plan may be “service actions” (see Section 4.4) modeled as properly annotated
abstract Java methods. For such methods an implementation is created at run-
time using the previously mentioned CGLIB. In particular, the Interpreter
uses the meta-data of the called method to request the Service Selector for
services that match the given identifier. Once the services are selected, they
are invoked using the dynamic clients front-end provided by Apache CXF in
case of SOAP-based services, and using Http Components in case of RESTful
services. The parameters used to invoke the service are the same passed to the
concrete action (which were retrieved from the Instance Session as explained

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 17

above). The object returned by the service, if any, is used as a return value of
the concrete action and it is stored into the Instance Session for later use.

As it happens for the Planner, the Service Selector was also designed to be
a hot-pluggable component that can be replaced according to specific needs
of the users. Currently, the Service Selector is implemented as a database of
service descriptions, which can be managed at run-time through a specific
API that allows new services to be added or existing ones to be removed. For
each SOAP-based service known to the engine, this database holds information
such as the service endpoint (WSDL), the port and the operation that must be
invoked. For RESTful services, it holds the service endpoint (URL), the HTTP
method to be used (GET, POST, PUT, DELETE) and the media type (our
current prototype supports both XML and JSON) used to exchange messages.

Finally, service orchestrations written in DSOL can be deployed in two
different ways. First they can be packaged as a Web application to be deployed
in any Servlet container, such as Tomcat or Jetty. The second option is to use
an embedded server, running as a standalone application. The first option
has to be preferred when the orchestration is part of a Web application that
includes its own HTML GUI as a front-end. The second option is easier to use
as it relies on our DEng prototype only, not requiring any external component.

5 Case Studies and Evaluation

This section is divided in three parts. The first takes various examples of or-
chestrations from the literature and compares their implementation in DSOL
and BPEL. The second does the same but taking AO4BPEL [13] and JOpera [14]
as a reference. The goal is to show the advantages of DSOL w.r.t. two mature
research proposals that address the same limitations of BPEL that we address
with DSOL. The last part of the section focuses on performance, showing how
the use of a planner to automatically decide the actual flow of the orchestration
at run-time in practice is not a threat to scalability.

5.1 Comparison with BPEL

To reinforce the benefits provided by DSOL we take several examples from the
literature and study how they can be implemented in DSOL and the differences
between DSOL and a state-of-the-practice language such as BPEL.

5.1.1 The DoodleMap Example

DoodleMap [15] is a poll service used to make choices about places, with a map
view of the selected locations. DoodleMap is built by composing the services
provided by Yahoo! Local Search [16], Doodle poll service [17], and Google
Static Maps [18]. The Yahoo! Local Search service is used to find places in a
given location based on some criteria; for example, find available restaurants

18 Gianpaolo Cugola et al.

in the center of Milan. The results are used as choices for the Doodle poll
service, which will create the poll, and as markers for the Google Static Maps,
which will create and return an image map including the selected places.

At first, one could say that DoodleMap is a simple example but we argue
that this is true only because it was not designed to be fault tolerant. For
example, the service provided by Yahoo! Local Search only works if the queried
location is inside the United States, taking the whole service to fail when the
user searches for a location abroad. To overcome this limitation, one could
replace this service by the one provided by Google Places [19] that works for
more countries. However, there are situations in which even Google Places
could fail, for example if it is temporarily unavailable or if it returns an empty
list of places. In general, one way to implement a fault tolerant orchestration is
to provide alternatives for the involved services, possibly in a straightforward
manner. Accordingly, in our example we will include both Yahoo! Local Search
and Google Places.

Unfortunately, the APIs provided by these two services are not compatible,
so this situation cannot be addressed as a late binding problem. Yahoo! Local
Search can be invoked directly with the search criteria and the location as pro-
vided by the user, while Google Places does not accept a textual location but
needs geographic coordinates as the reference for the search. This is a common
situation: including an alternative to a service also implies changing the work-
flow to introduce new accessory services, which were not originally required
but are now needed to correctly execute the replacing service. In our case,
before invoking Google Places we have to invoke a geocoding service to trans-
late the location provided in human-readable form by the user in geographic
coordinates, e.g., Yahoo! PlaceFinder [20] or Google Geocoding [21].

Listing 10 illustrates how the scenario presented above would be written in
BPEL, applying the traditional approach that achieves fault tolerance through
exception handling mechanisms. A Boolean variable is declared (line 3) to
determine whether Google Places (together with Google Geocoding) should
be used or not. Initially the value of this variable is set to false and it is
changed to true as soon as the fault handler (lines 6-15) attached to the
scope Yahoo (lines 5-17) is enabled. This will happen when the Yahoo! Local
Search service fails (line 16). Notice how the code, despite the simplicity of
the example, is hard to read and how it would increase in complexity as we
start adding other alternatives to this and the other services that are part
of the overall orchestration. Furthermore, the order in which the alternatives
are invoked, i.e., the fact that Yahoo! Local Search has to be preferred to
Google Places, is hard-coded into the orchestration and it is relatively difficult
to change.

Listing 11 illustrates how the same sub-scenario would be written in DSOL,
with a major focus on the abstract actions involved. The action findAvailablePlacesByLocation

models services in which places are searched by location, as Yahoo! Local
Search, while the action findAvailablePlacesByCoordinates models the
case in which nearby places are located based on geographic coordinates, e.g.
Google Places. Finally, the action getCoordinates models services that take

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 19

1<scope>
2 <v a r i a b l e s>
3 <v a r i a b l e name= ' i n v ok eGoog l eP l a c e s ' t ype= ' x s d : b o o l e a n ' />
4 </ v a r i a b l e s>
5 <scope name= 'Yahoo '>
6 <f a u l t H a n d l e r s>
7 <c a t c hA l l>
8 <a s s i g n>
9 <copy>

10 <from>t r u e ()</ from>
11 <to v a r i a b l e= ' i n v ok eGoog l eP l a c e s ' />
12 </ copy>
13 </ a s s i g n>
14 </ c a t c hA l l>
15 </ f a u l t H a n d l e r s>
16 <!−− i n voke Yahoo ! Loca l Search −−>
17 </ scope>
18 < i f name= ' Goog l eP l a c e s '>
19 <c o n d i t i o n>$ i n v ok eGoog l eP l a c e s</ c o n d i t i o n>
20 <sequence>
21 <!−− i n voke Google Geocoding −−>
22 <!−− i n voke Google P l a c e s −−>
23 </ sequence>
24 </ i f>
25<scope>

Listing 10 Alternatives implemented in BPEL for the DoodleMap scenario

a human-readable location and transform it in geographic coordinates. If the
goal of this part of the orchestration is to find the list of available places, which
we could model with the DSOL fact listofplaces(availablePlaces), the
Planner may satisfy it in two ways: searching places directly by location or
first transforming the location into coordinates and then searching places using
these coordinates. DEng will try the former route first and, if it fails, it would
try the second one. All this happens at run-time and it is fully automatic:
the domain expert focused on the available alternatives without the need for
explicitly programming the exception handling code.

As for the order in which the alternatives are tested, it can be left unspeci-
fied or it can be explicitly modeled, through an accurate use of the goal. As an
example, one could use the facts bylocation and bycoordinates provided by
the abstract actions findAvailablePlacesByLocation and findAvailablePlacesByCoordinates,
respectively, to write a goal (see Listing 12) that lists, as two different subgoals,
the two alternatives, thus making the preferred order among them explicit: first
try to find places by location, then by coordinates.

Another important point to highlight is how easily the DSOL code can be
reused. Imagine a variant of the original DoodleMap example in which the user
is equipped with a GPS device and the location to use is the current one. To
address this case we have to change the orchestration interface and the overall
workflow. The former receives the location as geographic coordinates instead
of using a string, while the latter can now invoke the Google Places directly
but it needs a reverse-geocoding service before invoking Yahoo! Local Search.
In DSOL, this variant of the original orchestration can be modeled by fully
reusing the actions part of the original model and adding the new abstract

20 Gianpaolo Cugola et al.

ac t i on f i n dA v a i l a b l e P l a c e sB y L o c a t i o n (Locat ion , Query)
pre : s e a r c hLo c a t i o n (Loca t i on) , s ea rchQuery (Query)
post : l i s t o f p l a c e s (a v a i l a b l e P l a c e s) , b y l o c a t i o n

ac t i on ge tCoo rd i n a t e (Loca t i on)
pre : s e a r c hLo c a t i o n (Loca t i on)
post : s e a r c hCoo r d i n a t e (Coo rd i na t e)

ac t i on f i n dA v a i l a b l e P l a c e sB yCo o r d i n a t e (Coord inate , Query)
pre : s e a r c hCoo r d i n a t e (Coo rd i na t e) , s ea rchQuery (Query)
post : l i s t o f p l a c e s (a v a i l a b l e P l a c e s) , b y c oo r d i n a t e

Listing 11 Alternatives implemented in DSOL for the DoodleMap scenario

goa l
l i s t o f p l a c e s (a v a i l a b l e P l a c e s) , b y l o c a t i o n

or
l i s t o f p l a c e s (a v a i l a b l e P l a c e s) , b y c oo r d i n a t e

Listing 12 Using multiple goals to define ordering of actions

ac t i on g e tLo ca t i o n (Coo rd i na t e)
pre : s e a r c hCoo r d i n a t e (Coo rd i na t e)
post : s e a r c hLo c a t i o n (l o c a t i o n)

Listing 13 Reverse geocoding abstract action

action shown in Listing 13. It is the Planner that chooses which actions to
invoke and in which order to satisfy the goal of the original orchestration or
the goal of the new one.

Continuing with the DoodleMap example, we must now use the returned
list of places to invoke the poll and the map service. As they are not related
to each other, they can be invoked in parallel. However, before invoking those
services, we need to transform the list of places into a list of choices compatible
with the poll service and a list of markers compatible with the map service.
Besides this, as the poll service is a stateful service it needs to be undone (i.e.,
compensated) if for any reason the whole orchestration fails.

In BPEL, as shown by Listing 14, all these issues have to be addressed
together. The <flow> statement (lines 7-23) is used to specify that activities
related to the map and poll services must be invoked in parallel, while the
<sequence> statement (lines 9-12 and 18-21) indicates that the inner activ-
ities must be executed in a sequence. Lines 15-17 define the compensation
handler for the Doodle scope, which is activated by the fault handler (lines
2-6) attached to the outer scope, which, in turn, catches all the faults that
might occur as the orchestration is executed. The result is a rather convoluted
piece of code that would become really unmanageable if we had included the
different service alternatives available.

The DSOL approach instead separates the various aspects. The fact that
actions can be executed in parallel or have to be executed in sequence is

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 21

1<scope>
2 <f a u l t H a n d l e r s>
3 <c a t c hA l l>
4 <compensateScope t a r g e t=”Doodle ” />
5 </ c a t c hA l l>
6 </ f a u l t H a n d l e r s>
7 <f l ow>
8 <scope name=”Map”>
9 <sequence>

10 <!−− conv e r t p l a c e s i n t o markers −−>
11 <!−− i n voke map s e r v i c e −−>
12 </ sequence>
13 </ scope>
14 <scope name=”Doodle ”>
15 <compensat ionHand le r>
16 <!−− d e l e t e c r e a t e d p o l l −−>
17 </ compensat ionHand le r>
18 <sequence>
19 <!−− conv e r t p l a c e s i n t o p o l l c h o i c e s −−>
20 <!−− i n voke p o l l s e r v i c e −−>
21 </ sequence>
22 </ scope>
23 </ f l ow>
24</ scope>

Listing 14 Flow control mixed with compensation activities

deduced by the Interpreter based on the pre- and postconditions of the various
actions part of the plan. While executing the plan, the Interpreter invokes
actions as soon as all of their preconditions are true, i.e., all the actions of a
plan whose precondition is true are invoked in parallel. Instead if an action A1

requires a fact f to be true before starting and f is asserted as a postcondition
of an action A2 then A2 and A1 will be executed in this order. The service
architect does not need to worry about ordering and parallelism, which are
deduced by the Interpreter looking at the model itself.

Similarly, alternative ways to execute the same action can be coded by
listing different concrete actions for the same abstract action, or different ab-
stract actions with the same pre- and postconditions. Finally, compensation
actions are written separately, as a special type of a concrete action. Ad-hoc
annotations (see below) are used to identify them as compensation actions and
to specify which action they compensate. It is the Interpreter’s responsibility
to decide, at run-time, if and when compensation actions have to be invoked.

If we look at our DoodleMap example, Listing 15 illustrates the abstract
actions that need to be included to cover the new part of the orchestration. We
notice that pre- and postconditions of createMarkers and createMapWithMarkers

are put in relation by the predicate listOfMarkers(...), denoting the need
of running the two actions in sequence, if they appear in the same plan, while
the precondition of createMarkers and createOptions are the same, making
these two actions eligible for parallel execution, if they are part of the same
plan.

Similarly, Listing 16 illustrates some of the concrete actions that implement
the aforementioned abstract actions. Lines 3-8 represent a generic action that

22 Gianpaolo Cugola et al.

ac t i on c r e a t eMa rk e r s (P l a c e s)
pre : l i s t o f p l a c e s (P l a c e s)
post : l i s t o f m a r k e r s (markers)

ac t i on createMapWithMarkers (Markers)
pre : l i s t o f m a r k e r s (Markers)
post : map(mapWithMarkedPlaces)

ac t i on c r e a t eOp t i o n s (P l a c e s)
pre : l i s t o f p l a c e s (P l a c e s)
post : l i s t o f o p t i o n s (o p t i o n s)

ac t i on c r e a t e P o l l (I n i t i a t o rName , P o l l T i t l e , Opt ions)
pre : i n i t i a t o rName (I n i t i a t o rName) , t i t l e (P o l l T i t l e) ,

l i s t o f o p t i o n s (Opt ions)
post : p o l l (p o l l)

Listing 15 New abstract actions for the DoodleMap orchestration

1 @Action
2 @ReturnValue (' op t i o n s ')
3 pub l i c L i s t<Option> c r e a t eOp t i o n s (L i s t<Place> p l a c e s) {
4 L i s t<Option> op t i o n s = new L i s t<Option >() ;
5 f o r (P lace p l a c e : p l a c e s) {
6 Option op t i on = new Option (p l a c e . getName ()) ;
7 op t i o n s . add (op t i on) ;
8 }
9 r e t u r n op t i o n s ;

10 }
11
12 @Action (s e r v i c e = ' p o l l ')
13 @ReturnValue (' p o l l I d ')
14 pub l i c a b s t r a c t S t r i n g c r e a t e P o l l (S t r i n g i n i t i a t o rName ,
15 S t r i n g p o l l T i t l e ,
16 L i s t<Option> op t i o n s) ;

Listing 16 Some concrete actions for DoodleMap scenario

@Action (name = ' c r e a t e P o l l ' ,
s e r v i c e = ' d e l e t e P o l l ' , compensat ion = t rue)

pub l i c a b s t r a c t vo id d e l e t e P o l l (@ObjectName (' p o l l I d ')
S t r i n g p o l l) ;

Listing 17 Compensation action for the createPoll action

implements the abstract action createOptions and transforms the available
places into options to the poll. Lines 14-16 represent a service action that
implements the abstract action createPoll and is executed by invoking the
service labeled with the key poll as defined in the @Action annotation. The
returned object could be referenced in the future through the key pollId.

Listing 17 also illustrates the compensation action for createPoll. It can
be identified as a compensation action because the compensation attribute
in the @Action annotation is set to true. It receives the poll’s id returned
when the poll was created as a parameter and is executed by invoking the
deletePoll service.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 23

. . .
< i f name= 'MapProvider '>
<c o n d i t i o n>
$doodleMapRequest . mapProv ider = ' goog l e '

</ c o n d i t i o n>
<!−− use Google Maps −−>
<e l s e>
< i f>
<c o n d i t i o n>
$doodleMapRequest . mapProv ider = ' b ing '

</ c o n d i t i o n>
<!−− use Bing Maps −−>

</ i f>
</ e l s e>

</ i f>
. . .

Listing 18 Alternatives based on a service parameter using BPEL

ac t i on createMapUs ingGoog le (P l a c e s)
pre : l i s t o f p l a c e s (P l a c e s) , mapProv ider (goog l e)
post : map(mapWithMarkedPlaces)

ac t i on createMapUs ingBing (P l a c e s)
pre : l i s t o f p l a c e s (P l a c e s) , mapProv ider (b ing)
post : map(mapWithMarkedPlaces)

Listing 19 New abstract actions for the DoodleMap orchestration

The last case we consider is that of an alternative that depends on a user’s
choice. In DoodleMap we can imagine that the map could be created using
Google Maps or Bing Maps [22] based on the preferences of the user. The
traditional approach to solve this case, and the one used in BPEL, is based
on nested if statements or switches. This can be another source of com-
plexity and another factor that limits reusability of the orchestration code, as
its control flow is hardwired in the code. DSOL addresses the same case by
using the actual value of the parameters passed to the orchestration as facts
that become part of the Initial State (see Section 4.3) and can be used into
the precondition of the various actions to decide which one has to be used.
Listings 18 and 19 show the BPEL and DSOL code for this case, respectively.

As a final remark, Table 1 shows a comparison between DSOL and BPEL
in terms of lines of code (LOC). The interpretation of LOC as a quality index
is rather controversial and a meaningful statistical sample should be examined
in order to support any conclusion. However, on the one side, we can say that
the value of LOC for different languages to implement the same functionality
is an indication of the level of abstraction of the language. Table 1 indicates
that DSOL provides a higher abstraction level. On the other side, LOC can
be seen as an indicator of the effort needed to develop a piece of software (see
[23]).The example suggests that DSOL might indeed help simplify development
and reduce the required effort.

24 Gianpaolo Cugola et al.

estimate effort (in terms of lines of code – LOC) required to implement
the entire DoodleMap example using BPEL and DSOL. From this perspective
we can conclude that DSOL not only provides an easier to use and more
flexible approach to model service orchestrations, but it also simplifies the
development, minimizing the effort for service architects.

LANGUAGE CODE #LOC
Concrete Actions 42
Orchestration Interface 12

DSOL Initial State,
Goals and Abstract Actions 22
TOTAL 76
Process 214

BPEL Orchestration Interface (WSDL) 47
TOTAL 261

Table 1 A comparison (in term of LOC) of DSOL and BPEL when used to model the
DoodleMap orchestration

5.1.2 Other Examples

We repeated our exercise of comparing DSOL with BPEL by implementing
four more scenarios: the Event Planning service, the Loan Approval service,
the ATM service, and the Trip Reservation Service. The first is the example
we presented in Section 2, which we implemented both in DSOL and BPEL.
The last three were taken from the JBoss jBPM-BPEL v1.1.1 documenta-
tion [24]. In these examples, we took the BPEL implementations from the
JBoss distribution and re-implemented them in DSOL.

We will not examine all of them in details as we did for the DoodleMap
example, since the general considerations would be very similar. Rather, here
we focus on the size of the resulting model. Tables 2 to 5 report the results
we obtained. In all scenarios, the size of the BPEL code is between 2.2 and
4 times bigger than the code required by DSOL. The saving in size is bigger
when the examples become more complex, with various alternatives in the
execution flow.

5.2 Alternative Approaches

In the last years, several alternatives to BPEL were proposed by researchers
to address some of the issues we emphasized in this paper. In this section
we describe two of them: namely AO4BPEL and JOpera, which we chose as
mature representatives of the state of the art in the area. Other systems will
be reviewed in Section 6.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 25

LANGUAGE CODE #LOC
Concrete Actions 54
Orchestration Interface 16

DSOL Initial State,
Goals and Abstract Actions 38
TOTAL 108
Process 381

BPEL Orchestration Interface (WSDL) 53
TOTAL 433

Table 2 A comparison (in term of LOC) of DSOL and BPEL when used to model the
Event Planning orchestration

LANGUAGE CODE #LOC
DSOL Concrete Actions 36

Orchestration Interface 19
Initial State,
Goals and Abstract Actions 12
TOTAL 75

BPEL Process 140
Orchestration Interface (WSDL) 44
TOTAL 184

Table 3 A comparison (in term of LOC) of DSOL and BPEL when used to model the Loan
Approval orchestration

LANGUAGE CODE #LOC
DSOL Concrete Actions 81

Orchestration Interface 46
Initial State,
Goals and Abstract Actions 40
TOTAL 167

BPEL Process 369
Orchestration Interface (WSDL) 116
TOTAL 485

Table 4 A comparison (in term of LOC) of DSOL and BPEL when used to model the
ATM orchestration

5.2.1 Aspect-Oriented Extensions to BPEL

To increase modularity of orcheatration models and to better support their
run-time adaptation, some researchers proposed to use Aspect-Oriented Pro-
gramming (AOP) techniques. AO4BPEL [13] and BPEL’n’Aspects [25] are
two notable representatives of this class of systems, which are built around an
aspect-oriented extension to BPEL. In this section we focus on the former as
it addresses both modularity and run-time adaptability as we do with DSOL.

In particular, in [13] the authors introduce various examples to illustrate
how BPEL lacks tools to properly modularize crosscutting concerns among
several processes. Here we take them and we show how DSOL behaves in
those cases.

26 Gianpaolo Cugola et al.

LANGUAGE CODE #LOC
DSOL Concrete Actions 56

Orchestration Interface 22
Initial State,
Goals and Abstract Actions 42
TOTAL 120

BPEL Process 201
Orchestration Interface (WSDL) 66
TOTAL 267

Table 5 A comparison (in term of LOC) of DSOL and BPEL when used to model the Trip
Reservation orchestration

// Ac t i on s
ac t i on i nvokeS1 (. .)
pre : . .
post : S1 Invoked

ac t i on c oun tS1 I n vo c a t i o n s
pre : S1 Invoked
post : c oun te rFo rS1 Inc r emented

//Goal
goa l (. . and S1Invoked and counte rFo rS1 Inc r emented)

Listing 20 New abstract action and goal for the “data collection for billing” example

The first example presented in [13] (data collection for billing) assumes
that a service provider starts charging a fee for using its Web Service S1. The
client, who will receive a bill from the provider, wants to check whether the
bill is accurate. This requires counting how many times S1 has been called
from any deployed orchestration. In BPEL one would need to examine all the
deployed orchestrations, finding out where the service is invoked, and manually
including there the code to invoke a counting Web Service. AO4BPEL solves
this problem more elegantly by declaring a single aspect to be executed after
S1, which invokes the counting Web Service.

Looking at this example from the DSOL perspective, however, we notice
that what was hard to modularize in BPEL (the crosscutting concern) can
be easily integrated into a single module in DSOL. Indeed, in DSOL the
various orchestrations invoking the original Web Service S1 would share a
single abstract action, similar to action invokeS1 in Listing 20. To count
how many times such action has been invoked one could introduce a new ac-
tion countS1Invocations (whose pre-condition is the post-condition of the
invokeS1), changing the goals of the involved orchestrations to include the
post-condition of the new action as shown in Listing 204. This way the count-
ing code is inserted only once and it is the Planner which guarantees that it
is included into all plans that included the original action.

4 The concrete action associated with action countS1Invocations, which actually invokes
the counting service, is straightforward and has been omitted.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 27

@ReturnValue (” t r a n s p o r t a t i o nD e t a i l s ”)
@Action (name=” bookF l i g h t ”)
pub l i c T r a n s p o r t a t i o nD e t a i l s P e r s i s t e n tB o o kF l i g h t (

S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e){
T r a n s p o r t a t i o nD e t a i l s f l i g h t D e t a i l s = bookF l i g h t (from , to , a r r i v a l , d e p a r t u r e) ;
DAO. saveData (f l i g h t D e t a i l s) ;

}

@ReturnValue (” t r a n s p o r t a t i o nD e t a i l s ”)
@Action (name=”bookTra in ”)
pub l i c T r a n s p o r t a t i o nD e t a i l s P e r s i s t e n tBookT r a i n (

S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e){
T r a n s p o r t a t i o nD e t a i l s t r a i n D e t a i l s = bookTra in (from , to , a r r i v a l , d e p a r t u r e) ;
DAO. saveData (t r a i n D e t a i l s) ;

}

@Action (s e r v i c e=” f l i g h t ”)
pub l i c a b s t r a c t T r a n s p o r t a t i o nD e t a i l s b ookF l i g h t (

S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e) ;

@Action (s e r v i c e=” t r a i n ”)
pub l i c a b s t r a c t T r a n s p o r t a t i o nD e t a i l s bookTra in (

S t r i n g from , S t r i n g to , Date a r r i v a l , Date d epa r t u r e) ;

Listing 21 The modified bookFlight and bookTrain concrete actions including data per-
sistence

The second example presented in [13] (data persistence) moves from the
consideration that in BPEL all data elaborated during an orchestration is
lost as soon as the orchestration ends. In several scenarios, discarding the
orchestration data is not an acceptable behavior. For instance, in the Event
Planning scenario, the payment confirmation code, the booking confirmation
for the hotel, and the flight details should be stored. In BPEL, the solution for
such problem would be similar to the solution presented for the data collec-
tion for billing example. The code to keep the desired data persistent would
not be modularized in one place but replicated in different parts of different
orchestrations. Again, AO4BPEL addresses such a situation by modularizing
the persistency code into a single aspect that intercepts the calls for a given
activity and stores the desired data for later use.

As in the first example, the peculiar approach to modeling orchestrations
taken by DSOL makes the data persistence aspect a well modularized one.
Indeed, DSOL distinguishes between the abstract, high-level model of an or-
chestration (abstract actions and goals) and its implementation (the concrete
actions), leaving the actual flow of execution to be decided at run-time. The
data persistency policy can be considered an implementation aspect to being
modeled by introducing ad-hoc concrete actions as in Listing 21, which shows
the original bookFlight and bookTrain concrete actions of the Event Plan-
ning examples, and their persistent counterparts that use an external data
access object (DAO) [26] to persist data after invoking the original actions.

The third use case for AOP presented in [13] is about business rules. The
authors do not make specific example, but claim that in general business rules
are hard to modularize in BPEL and are amenable to be modeled as an aspect

28 Gianpaolo Cugola et al.

@Around (” c a l l (@org . d s o l . a nno t a t i o n . Act i on * * (. .)) ”)
pub l i c Object execut ionT imeMon i to r (P r o c e ed i n gJo i nPo i n t t h i s J o i n P o i n t) {

l ong s t a r t = System . c u r r e n tT im eM i l l i s () ;
Ob ject r e t u r nOb j e c t= t h i s J o i n P o i n t . p roceed () ;
l ong end = System . c u r r e n tT im eM i l l i s () ;
l ong execut ionT ime = end − s t a r t ;
. . .
r e t u r n r e t u r nOb j e c t ;

}

Listing 22 Example on how AspectJ could be integrated with DSOL

that intercepts some activities and encodes the business rule in a single place.
As in the previous examples, DSOL does not suffer from this problem. Its rule-
based nature allows to encode most business rules easily as part of the various
abstract/concrete actions, while the fact that the orchestration flow is derived
at run-time by the Planner starting from the available actions and the goal,
guarantees that the appropriate actions (i.e., the appropriate business rules)
are included into every plan when they are required. As a further justification
of this claim we notice that the same authors of AO4BPEL, in their paper [27]
focus explicitly on the issue of appropriately modeling business rules and sketch
two solutions considered equivalent: one based on AOP, the other based on a
rule-engine that operates in a way similar to our Planner.

The final example presented in [13] concerns the measurement of activity
execution time and logging. We acknowledge that this is the example that least
fits DSOL and is also the one that mostly benefits from AOP, in our opinion.
While we do not have a general solution for this case, we observe that DSOL
and DEng are ultimately based on Java, so it is not hard to integrate them
with one among the many available aspect-oriented extensions of Java, such
as AspectJ [28]. For example, Listing 22 illustrates an AspectJ pointcut that
intercepts all calls for a method annotated with @Action and calculates its
execution time.

Besides modularity, AO4BPEL also claims that aspects can be used to
solve the problem of dynamic changes and process evolution at runtime. To
do so, aspects could be used to add, at runtime, new activities in specific
points of the process. If business rules changes, the only thing to do is to
activate or deactivate the appropriate aspect. We claim, however, that such
an approach is not adequate for changing an orchestration. First, the changes
are limited to the declared aspects, ignoring the fact that it is often necessary
to change or remove also the activities that were initially declared into the
orchestration. Furthermore, using aspects to evolve the orhectration means
that changes, instead of being incorporated as a natural evolution of the model
are realized more as a sort of patches, which could even complicate the overall
understandability and maintainability of the orchestration.

In DSOL, changes are handled in a complete different way [29], since the
modularity and dynamism inherent in the DSOL approach provide support
for ad-hoc mechanisms to change the orchestration at runtime. Indeed, as the

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 29

plan of execution, i.e., the actual sequence of activities to be performed, is built
at runtime, changing the orchestration is much simpler in DSOL compared to
the complex mechanisms that other, more traditional systems, must put in
place to obtain the same result. In general we support full changes to the
orchestration model. The service architect may add new abstract or concrete
actions, remove or modify them, change the goal of the orchestration, and even
change its interface. Moreover, we allow changes that impact the orchestration
at various levels. When a new model for an existing orchestration is submitted,
one can specify if it has to affect future executions, the current ones, or both.
This way, we cover different levels of updates: from small changes applied to
single running instances, to changes to be applied to future calls only, to major
changes that have to affect current and future executions.

5.2.2 JOPERA

JOpera [14] is a mature research product that offers a visual language and a
fully functional execution plataform for building distributed application com-
posed of reusable services, which includes, but is not limited to Web Services.
The graphical and visual approach offered by JOpera simplifies modeling com-
plex orchestrations when compared with BPEL. Moreover, the fact that the
control flow and the data flow of the composition are described separately,
allows one to build orchestrations that are easier to understand and maintain.
On the other hand, the overall style of the language is still largerly procedural
and consequently it suffers from most of the flexibility problems we highlighted
in this paper.

Figures 2 and 3 illustrate, respectively, the control flow and the data flow
diagrams for the DoodleMap scenario described in Section 5.1.1. These de-
scriptions are inherently rather complex. As in BPEL, service orchestrations
in JOpera must be modeled in all details, forcing the architect to decide and
forecast at design time the best alternatives and the order in which such al-
ternatives must be tried. Fault tolerance must be explicitly programmed by
heavily using exception handling mechanisms. For example, the arrow with a
red dot end that connects activity YahooLocal with activity GoogleGeocode

means that GoogleGeocode must be executed after YahooLocal if the lat-
ter fails. Similarly, the question mark that annotates some activities denotes
that they are guarded by some condition. For example, CreateGoogleMap and
CreateBingMap depend on the user’s choice. In DSOL all these features are
handled automatically by the Planner, facilitating the job of the architect
and allowing the orchestration to evolve more easily. Moreover, although the
JOpera user does not need to specify some details, like, for example, which
activities have to be performed in order and which ones can be done in parallel
(a detail that is deduced by the execution engine from the data flow diagram),
the process structure remains quite complex to define and rigid to evolve.

Although the graphical formalism provided by JOpera and the textual one
provided by DSOL are not easy to compare, we contend that the fine-grain,
imperative modeling imposed by JOpera leads to readability and maintain-

30 Gianpaolo Cugola et al.

ability issues that do not apply to the DSOL solution, which benefits from a
declarative approach that focuses on the relevant details of the orchestration,
while other aspects, including the actual flow of execution, are decided at run-
time. As a comparison, DSOL requires 76 lines of code and 7 abstract actions
in total to encode the same example reported in Figures 2 and 3.

Fig. 2 DoodleMap control flow modeled in JOpera

5.3 Empirical Assessment

In the previous sections we focused on the expressiveness and usability of our
modeling language DSOL. Here instead we are interested in testing if and how
using a planner to decide the actual flow of the orchestration at run-time may
negatively impact performance. To do so, we developed an application that au-
tomatically generates different sets of related abstract actions and goals and we
used the Planner to extract a plan from these data. To test the performance of
the Planner under different situations, we varied the number of abstract actions
that are part of the model and their structure, i.e., the number of parameters
they have and the complexity of their pre and postconditions. For precondi-
tions, we also distinguished between the predicates that include some of the ac-
tion’s parameters (e.g., predicate listofplaces(Places) in the precondition
of abstract action createMapUsingGoogle from Listing 19), from those that
are pure (fully bound) facts that must be true for the action to be called (e.g.,
predicate mapProvider(google) in the same abstract action). The same dis-
tinction was made for postconditions, distinguishing between facts that involve
some of the action’s parameters (e.g., fact listofplaces(availablePlaces)
in the postcondition of abstract action findAvailablePlacesByLocation),
from those that are fully bound (e.g., fact byLocation in the same abstract
action).

We considered a base scenario characterized by the following parameters:
50 abstract actions, 4 predicates in each precondition and postcondition (2

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 31

Fig. 3 DoodleMap data flow modeled in JOpera

of one type and 2 of the other). As for the goal, it was chosen in a way that
plans with different sizes would be generated5: 5, 10, and 15. We repeated each
experiment 30 times and plotted the average result we measured and the 95%
confidence interval.

Our evaluation was carried out for a server deployed in the Amazon cloud,
configured as a small instance [30] and running Ubuntu Linux 10.10. This
environment was set up to emulate a typical configuration used to deploy
service orchestrations in real scenarios.

Figure 4 shows the results we measured in the base scenario. They show the
feasibility of our approach as the time to create the plan is very reasonable.
For instance, if we consider the case of plans of size 10 (i.e., involving 16
abstract actions, on average) it only takes 250 ms to the Planner to build such
plans. If only one third of the 16 actions are calls of external services, the
overhead caused by external interactions will dominate the overhead imposed
by the Planner. Even in the case of building a rather complex plan including
26 abstract actions on average, with size of 15, requires only 550 ms of the
Planner.

5 The size of the plan differs from the actual number of abstract actions that compose it,
as some of the actions can be executed in parallel. For plans of size 5, 10, and 15 the mean
number of abstract actions in the plan is 8, 16, and 26, respectively.

32 Gianpaolo Cugola et al.

Fig. 4 Time required to build plans of different sizes for the base case

Fig. 5 Time required to build plans of different sizes varying the number of predicates in
preconditions

Figures 5 and 6 show how the complexity of preconditions impacts on the
time required to build the plan. In Figure 5, we consider the base scenario but
we change the number of predicates in preconditions from 2 to 6. In Figure 6,
we keep the number of predicates in preconditions fixed(4) and change the
ratio of the two types of predicates involved. At one extreme all the predicates
reference one of the action’s parameters (they are unbound predicates), while
at the other extreme they are all bound. While a growing number of predicates
in preconditions and particularly a growing number of the unbound ones has a
negative impact on the plan building time, this remains acceptable, with a max
value of 3.5 sec and an average value just above 1 sec. Again, we expect these

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 33

Fig. 6 Time required to build plans of different sizes varying the proportion between the
types of predicates in preconditions

values to be dominated by the time required to invoke the external services
that build such complex orchestrations.

Fig. 7 Time required to build plans of different sizes varying the number of facts in post-
conditions

Figures 7 and 8 make a similar analysis on postconditions. Notice that in
Figure 8, the case in which none of the facts in postconditions refers to the
actions’ parameters is not possible because it would lead to an empty plan.
The results are similar to the previous case, with a worst case of 4 sec and an
average of 1.5.

34 Gianpaolo Cugola et al.

Fig. 8 Time required to build plans of different sizes varying the proportion between the
two types of facts in postconditions

Fig. 9 Time required to build plans of different sizes varying the number of available
abstract actions

Figure 9 shows the time required to build a plan in our base scenario but
changing the number of available abstract actions from 30 to 100 (they were
50 in the base scenario). Our Planner scales very smoothly here, with a time
that is almost constant and always below 1 sec. Starting from this positive
result, we decided to investigate what happens in the worst case in which
there is no plan to reach the goal. Figure 10 shows our base scenario, with a
growing number of available abstract actions and with specially chosen goals
that cannot be satisfied. Here we see that the number of available actions
impacts on the number of combinations to test before concluding that no plan
can be built. In the worst case (100 abstract actions) the Planner takes more

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 35

Fig. 10 Time required to discover that a goal is not satisfiable in scenarios characterized
by a growing number of abstract actions

than 15 sec to decide that no plan may reach the goal. This is a negative result
but it has been obtained in a fairly tough scenario: 100 actions and no plan. In
a more reasonably sized scenario like our default one (50 actions), the worst
case of no plan requires only 2 sec to be solved.

In general, from the above assessment we may conclude that our approach
is feasible and the use of a Planner introduces an acceptable (often negligible)
overhead in the execution time of the overall orchestration. To further confirm
this statement, we compared the overall performance of our DEng run-time,
from planning to actual execution of the orchestration, with one of the most
widely adopted BPEL engines: ActiveBPEL [31]. In particular, we compared
the time required to complete the whole DoodleMap orchestration (see Sec-
tion 5.1.1) including the time to invoke the various web services involved,
observing the system from a client’s perspective. We invoked the orchestra-
tion with different inputs to test different paths of execution (including those
that require DEng to initially build a plan that will fail, with the need to
re-plan at run-time), and repeated our tests multiple times to account for the
variations that may come from invoking the external services.

Engine Time (ms)
DSOL 1571
ActiveBPEL 1543

Table 6 Performance comparison between DEng and ActiveBPEL

Table 6 shows the results we obtained when the orchestration is invoked to
build a DoodleMap for pizza restaurants in New York. Yahoo! Local Search

36 Gianpaolo Cugola et al.

completes successfully in this scenario and the orchestration is executed with-
out faults. Both engines require approximately the same time to complete the
orchestration, with DEng being slightly slower (by less than 30 ms).

Engine Time (ms)
DSOL 2579
ActiveBPEL 2130

Table 7 Performance comparison between DEng and ActiveBPEL in presence of faults
that require re-planning

Table 7 shows the results obtained when the orchestration is invoked with
pizza restaurants in Milan as the key parameter. The Yahoo! Local Search fails
as it can only handle requests for locations in the USA. In BPEL this failure
triggers the fault handler that enables the orchestration to use the Google
Places service to find the set of available locations. In DSOL, this will force
the Interpreter to invoke the Planner once again to build the new plan that
includes the Google Places related action. Again, the response time is similar,
with DEng being slower by a greater but still acceptable margin of 450 ms.

Engine Time (ms)
DSOL 2075
ActiveBPEL 1873

Table 8 Performance comparison between DEng and ActiveBPEL

Finally, Table 8 shows the average time considering both alternatives to-
gether. In this scenario, the impact of our planning-based approach, plus the
overhead introduced by the other parts of our engine, which make many run-
time decisions using late-binding at each step, from the choice of the actual
services to invoke, to the choice of the concrete actions to use, to the choice
of the flow of execution itself, affect performance for 200 ms, i.e., 10% of the
total time. We argue that this is an acceptable price to pay for the flexibility
that it brings.

6 Related Work

During the last years, various proposals have been made to reduce the com-
plexity inherent in defining service compositions, with the goal of further in-
creasing the diffusion of this technology. Hereafter, we review those that are
mainly related with our work.

As an alternative to BPEL and BPMN in the specification of service com-
positions, other languages, like JOpera [14] (see our specific comparison in
Section 5.2.2), Jolie [32], and Orc [33], were proposed. While easier to use
and often more expressive than BPEL and BPMN, they do not depart from

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 37

the imperative paradigm, and consequently they share with them the same
problems that motivate our work.

To overcome these limitations, other researchers followed the idea of adopt-
ing a declarative approach. Among those proposals, DecSerFlow [34,35] is the
closest to our work. In DecSerFlow service choreographies are defined as a set
of actions and the constraints that relate them. Both actions and constraints
are modeled graphically, while constraints have a formal semantics given in
Linear Temporal Logic (LTL). There are several differences between DecSer-
Flow and DSOL. First of all, DecSerFlow focuses on service choreographies
and on modeling them to support verification and monitoring. Conversely, we
focus on service orchestrations and specifically on enacting them. This differ-
ence motivates the adoption of LTL as the basic modeling tool, as it enables
powerful verification mechanisms but introduces an overhead that can be pro-
hibitive for an enactment tool [34]. The DSOL approach to modeling offers
less opportunities for verification but it can lead to an efficient enactment
tool. Secondly, DSOL emphasizes re-planning at run-time as a mechanism to
support self-adaptive service orchestrations that maximize reliability even in
presence of unexpected failures and changes in the external services. This is
an issue largely neglected by DecSerFlow, as it focuses on specification and
verification and it does not offer specific mechanisms to manage failures at
run-time.

GO-BPMN [36–38] is another declarative language, designed as a Goal-
Oriented extension for traditional BPMN. In GO-BPMN business processes
are defined as a hierarchy of goals and sub-goals. Multiple BPMN plans are
attached to the “leaf” goals. When executed, they achieve the associated goal.
These plans can be alternative or they can be explicitly associated to specific
conditions through guard expressions based on the context of execution. Al-
though this approach also tries to separate the declarative statements from the
way they can be accomplished, the alternative plans to achieve a goal must
be explicitly designed by the service architect and are explicitly attached to
their goals. The engine does not automatically decide how the plans are built
or replaced; it just chooses between the given options for each specific goal,
and it does so at service invocation time. The DSOL ability to build the plan
dynamically and to rebuild it if something goes wrong at run-time, improves
self-adaptability to unexpected situations.

The approach described in [39] defines a goal-oriented service orchestration
language inspired by agent programming languages, like AgentSpeak(L) [40].
One of the main motivations of this approach is the possibility of following
different plans of execution in the presence of failures. The main difference with
our approach is that the alternative plans need to be explicitly programmed
based on the data stored into the Knowledge Base and the programmer needs
to explicitly reason about all the possible alternatives and how they are related,
in a way similar to that adopted by traditional approaches. In the presence
of faults, the facts that compose the Knowledge Base are programmatically
updated to trigger the execution of specific steps that have to be specified in
advance to cope with that situation. No automatic re-planning is supported.

38 Gianpaolo Cugola et al.

As briefly introduced before, the complexity in defining Web service com-
positions is also being tackled through Automated Service Composition (ASC)
approaches. While our research was motivated by the desire of overcoming
the limitations of mainstream orchestration languages in terms of flexibility
and adaptability to unexpected situations, ASC is grounded on the idea that
the main problem behind service orchestration is given by the complexity in
selecting the right services in the open and large scale Internet environment.
The envisioned solution is to provide automatic mechanisms to select the right
services to compose, usually based on a precise description of the semantics of
the services available.

For example, in [41], user requirements and Web services are both de-
scribed in DAML-S [42], a semantic Web service language, and linear logic
programming is used to automatically select the correct services and generate
a BPEL or DAML-S process that represents the composite service. Similarly,
[43] presents an extension of Golog, a logic programming language for dy-
namic domains, to compose and execute services described in DAML-S, based
on high-level goals defined by users. Both approaches requires the exact se-
mantics of services to be defined formally (e.g., in DAML-S) and they do not
support dynamic redefinition of the orchestration at run-time to cope with
unexpected situations.

Similar considerations hold for those ASC proposals that adopt planning
techniques similar to those adopted in DSOL. In these approaches the plan-
ning domain is composed by the semantically described services and goals
are defined by end-users. For example, [44] uses the SHOP2 planner to build
compositions of services described in DAML-S. Similarly, [45] proposes an al-
gorithm, based on planning via model-checking, that takes an abstract BPEL
process, a composition requirement and a set of Web services also described in
BPEL and produces a concrete BPEL process with the actual services to be
invoked. In SWORD [46], the to-be composed services are described in terms
of their inputs and outputs, creating the ”service model”. To build a new ser-
vice the developer should specify its input and output, which SWORD use to
decide which services should be chosen and how to combine them. XSRL, a
language to express service requests, is presented in [47]. Users can use this
language to specify how services should be chosen for a given request. A plan-
ner is responsible for choosing the services based on the specified request,
augmenting an abstract BPEL process with the selected services.

Other ASC approaches start from an abstract “template process”, ex-
pressed either in BPEL, e.g., [48,49], or as a Statechart, e.g, [50] and, tak-
ing into consideration QoS constraints and end-user preferences, select the
best services among those available to be actually invoked. As mentioned in
the Introduction, these approaches focus on a relatively simpler problem than
DSOL, as they focus on “selecting the right services at run-time”, leaving to
the service architect the (complex) task of defining the abstract “workflow”
to follow. Moreover, as they use traditional, procedural languages as the tool
to model this abstract workflow, they suffer from the limitations and prob-
lems that we identified in Section 2. Moreover, most of the ASC approaches

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 39

proposed so far operate before the orchestration starts, while DSOL includes
advanced mechanisms to automatically adapt the orchestration to the situa-
tions encountered at execution time. This is particularly evident if we consider
the problem of compensating actions to undo some already performed steps
before following a different workflow that could bypass something unexpected.
A problem that, to the beast of our knowledge, is not considered by any of
these approaches.

As a final notice, we observe that the three-layered architectural model for
self-management described by [51] and [52] was also used as an inspiration
for DSOL and its engine. In particular, the layers defined by this architecture
are: the goal management layer, responsible for the generation of plans from
high-level goals (in our approach, the Planner); the change management layer,
which is concerned with using the generated plans to construct component con-
figurations and direct their operation to achieve the goal addressed by the plan
(in our approach, the DSOL Interpreter, which interacts with the Planner and
executes the generated plan); at last, the component layer, which includes the
domain specific components (in our approach, the abstract/concrete actions,
used to build and enact the plan).

7 Conclusions and Future Work

In this paper we presented an approach to overcome the limitations of cur-
rently available service orchestration environments, in particular when failures
occur and the orchestration needs to self-adapt to unexpected situations. This
approach is based on a new language called DSOL, which models orchestra-
tion declaratively, focusing on the set of available activities, without having
to explicitly declare the control-flow of the orchestration, which is generated
at run-time through an ad-hoc planner, part of the DEng DSOL engine. This
simplifies the task of modeling complex orchestrations, increases the level of
reusability, and in case of failures can achieve self-adaptation.

Several mechanisms are part of DSOL to build self-adapting orchestrations.
First, each activity is modeled through an abstract description coupled with
several concrete implementations, to be tried in case of failures. If this is not
enough, the Planner can be re-invoked during process execution to find an al-
ternative way to accomplish the orchestration goal, by-passing those activities
that cannot be successfully executed, and undoing already executed activities
of the old plan, if necessary. At last, as no explicit workflow is pre-defined,
new activities (i.e., abstract and concrete actions) can be added to the model
at run-time, without the need to redeploy the entire orchestration.

For the future, we envision different lines of work. First, we want to increase
the expressiveness of our modeling language by adding quality of service (QoS)
facilities into DSOL. In fact, in the current version of DSOL, if different ab-
stract actions can be used to build different plans to reach the same goal, those
actions are chosen non-deterministically. We want to change this by allowing
the user to express QoS requirements, used by the Planner to choose the best

40 Gianpaolo Cugola et al.

sequence of actions to reach the orchestration goal with the desired QoS. A
similar QoS-based approach can also be used to choose the best concrete action
to invoke for each abstract action.

Moreover, we plan to build a (graphical) tool, possibly integrated in an
IDE like Eclipse, to further simplify the definition of abstract actions, goals,
and orchestration interfaces.

As for the DEng run-time system, while the current prototype is fully
operational (and downloadable), we think there is still space to further improve
performance and also to improve reliability and robustness. Another aspect
that we want to improve is the support to monitoring running orchestrations.
We currently catch faults as they happen and we start our counter-measures
(invoking alternative concrete actions or re-building the plan), but we are not
able to “anticipate” faults. More advanced monitoring mechanisms may try to
anticipate faults, e.g., by checking for the actual availability of external services
in advance, before their unavailability impacts the running orchestration.

We also plan to extend DEng to improve the run-time support for adding
new abstract and concrete actions to a running orchestration, allowing the
service architect to easily intervene to overcome the most complex exceptions
that may happen during a long running orchestration.

Finally, to fully validate our approach we want to test its feasibility in
additional, real world case studies.

Acknowledgment

This work was partially supported by the European Commission under FP7
Programme IDEAS-ERC, Project 227977–SMScom and under the “Service
Architectures, Infrastructures and Engineering”, Project 215483–S-Cube.

References

1. T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

2. A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
D. Konig, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, A. Yiu, eds., Web Services
Business Process Execution Language Version 2.0, Tech. rep., OASIS (2006).
URL http://www.oasis-open.org/apps/org/workgroup/wsbpel/

3. S. A. White, Business Process Modeling Notation, V1.1, Tech. rep., OMG (2008).
URL http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf

4. R. Maigre, Survey of the tools for automating service composition, in: Web
Services (ICWS), 2010 IEEE International Conference on, 2010, pp. 628 –629.
doi:10.1109/ICWS.2010.72.

5. J. Rao, X. Su, A Survey of Automated Web Service Composition Methods, in: LNCS,
Vol. 3387/2005, Springer, 2005, pp. 43–54.
URL http://www.springerlink.com/content/4m6w37g0jffk9bv4

6. Java API for XML-Based Web Services (JAX-WS) 2.0, http://jcp.org/en/jsr/

detail?id=224.
7. Apache CXF: An Open-Source Services Framework, http://cxf.apache.org/.
8. Apache HttpComponents, http://hc.apache.org/.

DSOL: A Declarative Approach To Self-Adaptive Service Orchestrations 41

9. Code Generation Library, http://cglib.sourceforge.net/.
10. F. Meneguzzi, M. Luck, Leveraging new plans in AgentSpeak(PL), in: M. Baldoni, T. C.

Son, M. B. van Riemsdijk, M. Winikoff (Eds.), Proceedings of the Sixth Workshop on
Declarative Agent Languages, 2008, pp. 63–78.

11. JavaGP - Java GraphPlan, http://emplan.sourceforge.net.
12. Graphplan, http://www.cs.cmu.edu/~avrim/graphplan.html.
13. A. Charfi, M. Mezini, Ao4bpel: An aspect-oriented extension to bpel, World Wide Web

10 (2007) 309–344. doi:10.1007/s11280-006-0016-3.
URL http://dl.acm.org/citation.cfm?id=1285732.1285748

14. C. Pautasso, G. Alonso, Jopera: A toolkit for efficient visual composition of web services,
Int. J. Electron. Commerce 9 (2005) 107–141.
URL http://portal.acm.org/citation.cfm?id=1278095.1278101

15. C. Pautasso, Composing restful services with jopera, in: International Conference on
Software Composition, Vol. 5634, Springer, Zurich, Switzerland, 2009, pp. 142–159.

16. Yahoo! Local Search Web Services, http://developer.yahoo.com/search/local/V3/

localSearch.html.
17. Doodle APIs, http://doodle.com/about/APIs.html.
18. Google Static Maps API, http://code.google.com/apis/maps/documentation/

staticmaps/.
19. Place Searches, http://code.google.com/apis/maps/documentation/places/

#PlaceSearches.
20. Yahoo! Place Finder, http://developer.yahoo.com/geo/placefinder/.
21. The Google Geocoding API, http://code.google.com/apis/maps/documentation/

geocoding/.
22. Bing Maps APIs, http://msdn.microsoft.com/en-us/library/dd877180.aspx.
23. M. J. Carlo Ghezzi, D. Mandrioli, Fundamental of Software Engineering, 2nd Ed., Pren-

tice Hall PTR, Upper Saddle River, NJ, USA, 2003.
24. JBOSS jBPM, http://www.jboss.org/jbpm.
25. D. Karastoyanova, F. Leymann, Bpel’n’aspects: Adapting service orchestration logic,

in: Web Services, 2009. ICWS 2009. IEEE International Conference on, 2009, pp. 222
–229. doi:10.1109/ICWS.2009.75.

26. Data access object pattern, http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html.
27. A. Charfi, M. Mezini, Hybrid web service composition: business processes meet

business rules, in: Proc. of the 2nd International Conference on Service Ori-
ented Computing, ICSOC ’04, ACM, New York, NY, USA, 2004, pp. 30–38.
doi:http://doi.acm.org/10.1145/1035167.1035173.
URL http://doi.acm.org/10.1145/1035167.1035173

28. The AspectJ Project, http://www.eclipse.org/aspectj/.
29. L. Sales Pinto, G. Cugola, C. Ghezzi, Dealing with changes in service orchestrations,

in: To appear on the Proceedings of the 2012 ACM Symposium on Applied Computing,
SAC ’12, 2012.

30. Amazon EC2 Instance Types, http://aws.amazon.com/ec2/instance-types/.
31. ActiveBPEL, http://www.activebpel.com.
32. F. Montesi, C. Guidi, R. Lucchi, G. Zavattaro, Jolie: a java orchestration lan-

guage interpreter engine, Electron. Notes Theor. Comput. Sci. 181 (2007) 19–33.
doi:10.1016/j.entcs.2007.01.051.
URL http://portal.acm.org/citation.cfm?id=1268072.1268121

33. D. Kitchin, A. Quark, W. Cook, J. Misra, The orc programming language, in: Pro-
ceedings of the Joint 11th IFIP WG 6.1 International Conference FMOODS ’09 and
29th IFIP WG 6.1 International Conference FORTE ’09 on Formal Techniques for Dis-
tributed Systems, FMOODS ’09/FORTE ’09, Springer-Verlag, Berlin, Heidelberg, 2009,
pp. 1–25.

34. M. Montali, M. Pesic, W. M. P. v. d. Aalst, F. Chesani, P. Mello, S. Storari, Declarative
specification and verification of service choreographies, ACM Trans. Web 4 (2010) 3:1–
3:62.

35. W. van der Aalst, M. Pesic, Decserflow: Towards a truly declarative service flow lan-
guage, in: M. Bravetti, M. Nunez, G. Zavattaro (Eds.), Web Services and Formal Meth-
ods, Vol. 4184 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
2006, pp. 1–23.

42 Gianpaolo Cugola et al.

36. D. Greenwood, G. Rimassa, Autonomic goal-oriented business process management, in:
Autonomic and Autonomous Systems, 2007. ICAS07. Third International Conference
on, 2007, pp. 43–48. doi:10.1109/CONIELECOMP.2007.61.

37. B. Burmeister, M. Arnold, F. Copaciu, G. Rimassa, Bdi-agents for agile goal-oriented
business processes, in: AAMAS ’08: Proceedings of the 7th international joint con-
ference on Autonomous agents and multiagent systems, International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, 2008, pp. 37–44.

38. M. Calisti, D. Greenwood, Goal-oriented autonomic process modeling and execution for
next generation networks, in: MACE ’08: Proceedings of the 3rd IEEE international
workshop on Modelling Autonomic Communications Environments, Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 38–49.

39. M. B. Van Riemsdijk, M. Wirsing, Using goals for flexible service orchestration: a first
step, in: AAMAS’07/SOCASE’07: Proceedings of the 2007 AAMAS international work-
shop and SOCASE 2007 conference on Service-oriented computing, Springer-Verlag,
Berlin, Heidelberg, 2007, pp. 31–48.

40. A. S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language, in:
MAAMAW ’96: Proceedings of the 7th European workshop on Modelling autonomous
agents in a multi-agent world : agents breaking away, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1996, pp. 42–55.

41. J. Rao, P. Küngas, M. Matskin, Composition of semantic web services using linear logic
theorem proving, Inf. Syst. 31 (2006) 340–360. doi:10.1016/j.is.2005.02.005.
URL http://portal.acm.org/citation.cfm?id=1140593.1140600

42. M. H. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. V. McDermott, S. A. McIlraith,
S. Narayanan, M. Paolucci, T. R. Payne, K. P. Sycara, Daml-s: Web service description
for the semantic web, in: Proceedings of the First International Semantic Web Confer-
ence on The Semantic Web, Springer-Verlag, London, UK, 2002, pp. 348–363.
URL http://portal.acm.org/citation.cfm?id=646996.711291

43. S. A. McIlraith, T. C. Son, Adapting golog for composition of semantic web services,
in: Proceedings of the 8th International Conference on Principles and Knowledge Rep-
resentation and Reasoning (KR-02), 2002, pp. 482–496.

44. Automating DAML-S Web Services Composition Using SHOP2.
45. P. Bertoli, M. Pistore, P. Traverso, Automated composition of web services via planning

in asynchronous domains, Artificial Intelligence 174 (3-4) (2010) 316 – 361.
46. S. R. Ponnekanti, A. Fox, SWORD: A developer toolkit for web service composition,

in: Proceedings of the 11th International WWW Conference (WWW2002), Honolulu,
HI, USA, 2002.

47. A. Lazovik, M. Aiello, M. Papazoglou, Planning and monitoring the execution of web
service requests, Int. J. Digit. Libr. 6 (2006) 235–246. doi:10.1007/s00799-006-0002-5.

48. D. Ardagna, B. Pernici, Adaptive service composition in flexible processes, Software
Engineering, IEEE Transactions on 33 (6) (2007) 369 –384. doi:10.1109/TSE.2007.1011.

49. R. Aggarwal, K. Verma, J. Miller, W. Milnor, Constraint driven web service composition
in meteor-s, in: Proceedings of the 2004 IEEE International Conference on Services
Computing, IEEE Computer Society, Washington, DC, USA, 2004, pp. 23–30.
URL http://portal.acm.org/citation.cfm?id=1025130.1026125

50. L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, Qos-aware
middleware for web services composition, IEEE Trans. Softw. Eng. 30 (2004) 311–327.
doi:10.1109/TSE.2004.11.
URL http://portal.acm.org/citation.cfm?id=987527.987638

51. J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: FOSE ’07:
2007 Future of Software Engineering, IEEE Computer Society, Washington, DC, USA,
2007, pp. 259–268. doi:http://dx.doi.org/10.1109/FOSE.2007.19.

52. D. Sykes, W. Heaven, J. Magee, J. Kramer, From goals to components: a combined
approach to self-management, in: SEAMS ’08: Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems, ACM, New
York, NY, USA, 2008, pp. 1–8. doi:http://doi.acm.org/10.1145/1370018.1370020.

