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Abstract The capability to optimize and execute complex queries over multiple
remote services (e.g., web services) is of high significance for efficient data man-
agement in large scale distributed computing infrastructures, such as those enabled
by grid and cloud computing technology. In this work, we investigate the optimiza-
tion of queries that involve multiple data resources, each of which is processed by
non-overlapping sets of remote filtering services. The main novelty of this work is the
proposal of optimization algorithms that produce an ordering of calls to services so
that the query response time is minimized. The distinctive features of our work lie in
the consideration of direct, heterogenous links among services and of multiple data
resources. To the best of our knowledge, there is no known algorithm for this prob-
lem and the evaluation results show that the proposed algorithms can yield significant
performance improvements compared to naive approaches.

Keywords Distributed query processing · Distributed query optimization · Pipelined
filter ordering

Mathematics Subject Classification 68M14 (Distributed systems)

1 Introduction

Service-oriented computing (SOC) has been proposed as an efficient approach to
developing distributed applications [1]. Among the benefits that emerge from SOC
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are the easy and rapid development of evolvable, platform-independent and arbitrarily
complex distributed applications. Seeking to benefit from the opportunities that arise
from SOC, the web and grid data management infrastructures are moving towards a
service-oriented architecture by putting their data and analysis tools behind services.
As a consequence, there is a growing interest in systems that are capable of processing
complex queries (i.e., tasks) utilizing remotely deployed services. Examples of such
systems are scientific and business workflow management systems (e.g., Taverna [2],
Triana [3], Pegasus [4]), service-based execution engines (e.g., OGSA-DAI/DQP [5,
6], YQL1, BPELSE2, Apache ServiceMix3) and data mashup platforms (e.g., Yahoo!
Pipes4, IBM Mashup Center5, WSO2 Mashup Server6). These families of systems
focus on different aspects. For example, the workflow management systems focus
mostly on issues such as efficient dispatching of independent tasks to nodes provided
that the logical order of calls to services has been fixed during workflow specification
(e.g., Pegasus), while the data mashup platforms focus on the development of tools
that facilitate the combination of different services and data resources (e.g., Yahoo!
Pipes).

In the vast majority of the systems, the users manually specify the invocation order
of services. However, modifying the service execution order, without affecting the
correctness of the query result, may lead to significant performance improvements. For
example, it may be more beneficial to place a highly selective service at the beginning
of the service workflow, since, the rest of the services may process less data and thus
the workflow execution time may be reduced. An example of a bio-informatics query,
where changes in the order of service invocations lead to performance improvements, is
presented in [7]. Typically, finding a feasible service invocation plan is not a trivial task,
especially in a wide-area environment [8]. This is due to the heterogeneity of the service
characteristics (e.g., data processing costs and selectivity) and the heterogeneity of
the underlying communication network. The above discussion brings up an important
optimization problem: to find the order of invocation of the remote services in a query
that minimizes the query execution time.

An instance of the above problem is in the context of a wide-area environment that
employs pipelined parallelism. Pipelined parallelism allows data already processed by
a service to be processed by the subsequent service in the query plan at the same time
as the former service processes new data items. In such a setting, the query execution
time equals the time spent by the slowest (bottleneck) service to process the incoming
data and to send the results to a subsequent service [9]. The related work section
provides an overview of the works recently proposed in the literature that deal with
several variants of the pipelined service ordering problem.

1 http://developer.yahoo.com/yql/.
2 http://wiki.openesb.java.net/wiki.jsp?page=bpelse.
3 http://servicemix.apache.org/home.html.
4 http://pipes.yahoo.com/pipes/.
5 http://www-01.ibm.com/software/info/mashupcenter/.
6 http://wso2.com/products/mashup-server/.
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1.1 Context of this work

In this work, we deal with the problem of finding the ordering that minimizes the
response time of pipelined multiway join queries over remote filtering services that
process data from multiple input resources in a decentralized fashion. In the sequel,
we briefly describe the motivation behind and the novelty related to this problem.
The motivation to deal with multiway join queries stems from the fact that a plethora
of applications from different areas combine data from multiple resources [10,11].
For example, an application that performs meteorological studies may have to com-
bine data from different sensor deployments, where each sensor deployment performs
different types of measurements. Other examples are met in bioinformatics and dis-
tributed video surveillance applications. A biologist may have to perform comparisons
between proteins from different biological resources, while a distributed video sur-
veillance application may have to find spatial regions that are captured by multiple
video cameras concurrently.

Furthermore, many of the operations that are applied on the input data perform
some kind of filtering [11,12]. Continuing with the aforementioned examples, a mete-
orological application may be interested in studying only a portion of the sensed
measurements, say, those that exceed a certain threshold. A biological application, in
turn, may consider only those proteins from a protein database that contain a specific
DNA sequence, while a video surveillance application may need to analyze only the
video segments from a video database where an abnormal event has occurred. Filter-
ing may be also performed by look-up services. A look-up service takes one or more
data values as input and performs key-foreign key joins with a base data source, i.e.,
it checks if the input data values are present in a base data source or not. In the former
case, the service returns the matched data along with one or more attribute values
associated with the input data; otherwise it prunes the input data. A short example is
given below. A bioinformatics service may receive as input a protein id and return the
corresponding protein sequence if the id is present. This service is filtering because
not all protein ids may be present in the database, which database is wrapped as a
service. Examples of look-up services are given in Sect. 2.

The different kinds of applications where the problem of multiway join query opti-
mization over remote filtering services is met has driven us to take different assump-
tions regarding the execution environment. More specifically, we address two variants
of the aforementioned problem. In the first variant, the services are both logically and
physically clustered, while in the second variant, services are only logically clustered.
By logical clustering we mean that different, non-overlapping sets of services process
the data of each input resource. By physical clustering we mean that each set of ser-
vices that process the data from a specific data source is allocated to hosts that extend
over distinct geographical areas. Examples where services are physically clustered are
met in modern sensor data processing applications [13,14].

A distinctive feature of this work is our assumption that the input data is processed
in a decentralized fashion meaning that services communicate directly with each other.
Furthermore the communication links among the services are heterogeneous meaning
that different service pairs communicate (i.e., exchange data) with different network
costs. This aspect constitutes a significant difference with similar proposals, such

123



942 E. Tsamoura et al.

Fig. 1 Example plans of a 3-input join query over services

as [9,15,16], which either overlook communication links or consider them as being
homogeneous.

Figure 1 presents an example of the problem that we consider. It refers to a query
over three distinct inputs. Each of these inputs, apart from being joined with the
other two, is processed by a distinct set of filtering services (triangular, circular and
square shapes in the figure). Filtering services may drop some of the tuples they
process. The data inputs can be represented as services, too, and are depicted as filled
shapes in Fig. 1. One of these service sets contains a multi-way join service, shown
as

⊗
. It is out of our scope to investigate the specific implementation of pipelined

multi-way joins, since efficient proposals already exist (e.g., [17]). Let us assume
that there are no precedence constraints among the services, apart from the obvious
constraint that the input services must be placed at the beginning. All services are
deployed in predefined hosts, and the objective is to minimize the query response
time. There are multiple orderings of services that produce the result set. Plans A
and B in the figure are two examples that differ in the order they call the services.
The aim of this work is to find the optimal one. Section 2 describes two motiva-
tion examples in more detail, whereas Sect. 3 formally presents the problem we deal
with.

1.2 Contributions

In this work, we propose algorithms for multiway join query optimization over filter-
ing services that are either logically or both logically and physically clustered. Both
algorithms adopt a two-phase optimization approach. In the first phase, a preliminary
service ordering is found, while the second phase heuristically tries to improve the
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previously found service plan. The approach that is adopted in the first phase is to
create, for each input data source, a linear ordering utilizing only the services that are
selected to process the data of that data source. The output data of each linear service
ordering is then fed to the multiway join service. This approach allows us to investi-
gate each input separately, thus reducing the problem of optimizing multi-join queries
to that of optimizing single-input queries. For the latter, we employ the recently pro-
posed efficient algorithm in [18], i.e., our previous work in [18] serves as a building
block in order to develop algorithms for multiple inputs. During the second phase, one
or more services are removed from the linear service orderings and placed after the
multiway join service. We theoretically prove the performance of the proposed two-
phase optimization algorithms. In particular, we investigate under which conditions
the two-phase optimization approach generates provably optimal multiway join plans.
We also theoretically prove when the second phase can lead to further improvements
or not.

To the best of our knowledge, this is the first attempt to solve this problem. Note that
our solution is independent of any specific standardization regarding service commu-
nication, data access, orchestration and choreography. The most relevant work with
ours is the one presented in [9], which however, does not consider queries over mul-
tiple data sources and does not assume that services communicate with each other
directly.

In summary the contributions of this work are:

– one algorithm, called 2P-SO, for the problem of multiway join query optimization
over services that are both logically and physically clustered

– an extension of 2P-SO, called A2P-SO, for the more general problem where ser-
vices are only logically clustered

– a theoretical analysis on the performance of the proposed algorithms
– an experimental analysis of the benefits of the proposed algorithms compared to

other approaches.

The remainder of the paper is structured as follows. Section 2 presents two moti-
vating examples. Section 3 formalizes the problem. Section 4 discusses our solution
when the communication cost is the dominant cost and the services are physically
clustered. In Sect. 5, we relax these assumptions, whereas the evaluation is in Sect. 6.
Section 7 deals with the related work and Sect. 8 concludes the paper.

2 Motivating examples

In this section we will present two examples of real-life applications which have
motivated our work.

Example 1 Sensor networks have gained significant attention the last decades due
to the importance and impact of applications such as environmental and healthcare
monitoring.

Suppose that there exist two sensor deployments that cover a specific area each
one of them owned by a different scientific laboratory. The first deployment aims
at sensing the relative humidity, while the second deployment aims at sensing the
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soil moisture. Both laboratories employ an infrastructure in order to archive and
analyze the sensed data, while they also provide several (web) services in order to
publicly share sensor measurements, which are deployed on hosts owned by each
laboratory’s cluster. The services of the first laboratory are tagged with �, while
the services of the second laboratory are tagged with �. The sensor measurement
database of the first laboratory is wrapped as a service, denoted by S�

1 . Parameter-

izing S�
1 with a timeperiod [τl , τu], we get all humidity measurements taken dur-

ing that timeperiod. Each humidity measurement hd is associated with (i) the iden-
tifier (sid) of the sensor that performed that measurement, (ii) the timestamp (τ )
when this measurement is taken and (iii) a unique measurement identifier (key).
Service S�

2 , in turn, returns for an input sensor identifier the location of that
sensor.

Sensors also periodically report at a base station their operational characteristics
regarding their energy reserves. It is important to know the runtime levels of a sen-
sors’ energy source as they heavily affect the quality of the performed measurements.
Given a sensor identifier sid and a timepoint τ (e.g., the timestamp associated with
a perform humidity measurement), service S�

3 returns the energy reserves energy
at time τ of the sensor with identifier sid. As the sensors do not report their run-
time energy reserves with the same frequency they take humidity measurements, ser-
vice S�

3 returns for an input timepoint the energy reserves that are reported as close

as possible to that timepoint. Service S�
3 can be also parameterized with an energy

threshold θenergy , so as to return a sensor’s energy reserves only if they exceed the
user defined threshold. The services of the second sensor deployment have similar
functionality.

Services S�
2 and S�

3 are look-up services, whereas S�
3 is also a filtering service. The

selectivity of S�
2 is always 1, since each sensor is deployed on a unique location, while

the selectivity of S�
3 is in general below 1: service S�

3 , given a sensor identifier sid and
a timepoint τ , it first looks for the energy reserves of sensor sid at timepoint τ and then
checks if the reported reserves are above a user defined threshold. In case of success,
the service appends to the input data the associated energy reserves. Otherwise, service
S�

3 prunes the input tuple.
In both sources, the location is represented by the geographical coordinates of a

bounding rectangle. However, the rectangles are not the same in the two deployments,
i.e., the deployments refer to different sets of rectangles. In order to facilitate the inte-
gration, someone has to use a third service that answers queries about the overlapping

of such rectangles. Service S
⊗

join is developed by an end user who wants to process
the measurements and returns a number between 0 and 1 describing the degree of
overlapping between the rectangles given two input locations.

Suppose that someone wants to answer the following query: “find the relative
humidity and soil moisture at locations with degree of similarity 0.5 within a timepe-
riod [τl , τu]. The energy reserves of the sensors the timepoints when the measurements
were performed must be above θenergy”. There are several possible service invocations
in order to answer this query. However, there exist a series of precedence constraints
regarding the allowable positions of services S�

1 , S�
1 and S�

2 , S�
2 in the resulting
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(a) (b)
Fig. 2 Two alternative plans for answering the query “find the relative humidity and soil moisture at
locations with degree of similarity 0.5 within a timeperiod [τl , τu ]. The energy reserves of the sensors the
timepoints when the measurements were performed must be above θenergy” using the services described
in Example 1. Filtering out the measurements taken by sensors with low energy reserves is done a after and

b prior to finding the locations that overlap significantly enough through S
⊗

join

plan. Services S�
1 and S�

1 must be invoked before any other service as they provide

access to the stored measurements, while services S�
2 and S�

2 must be invoked before

S
⊗

join as the latter operates on the bounding rectangles of the geographical coordi-
nates of the sensors. The evaluation strategy followed by the plan shown in Fig. 2a
first retrieves the measurements collected by the two deployments within this time
period. The returned measurements are then used to obtain the locations where these

measurements have been collected from. The locations are sent to service S
⊗

join which
calculates the similarity degree for the locations of each pair of measurements and
selects those measurement pairs that satisfy the similarity predicate. Finally, for each
of the returned measurements, services S�

3 and S�
3 check if the sensor’s energy reserves

associated with those measurements are above the user defined threshold θenergy . An
alternative approach is adopted by the plan shown in Fig. 2b, where the filtering of
measurements taken by sensors with low relative reserves is done prior to finding the
locations that overlap significantly enough.

From Example 1, we can see that the services have the following characteristics:
(i) they are selective as they filter out portion of the stored data based on some criteria
and (ii) they are both physically and logically clustered (a specific set of services has
to process the data of each sensor deployment, while these services are deployed on
each laboratory’s cluster).

Example 2 The second example is a generalization of Example 1. Suppose that we
must perform advanced analysis operations on the sensor measurements supplied by
the two aforementioned scientific laboratories. The scientific laboratories, however,
provide only services that can access the archived data, while the rest of the operations
that must be applied to the sensor measurements are provided through web services
by, say, three other parties that belong to different organizational domains. In contrast
to Example 1, where the services that had to be applied to the input data items were
physically clustered, the services that had to be applied to the measurements are only
logically clustered, e.g., the sensor measurements of one laboratory may be processed
by services belonging to different organizational domains that are physically located
at arbitrary places.
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Table 1 The notation used throughout the paper

Symbols Description

L Number of input data resources

X j Data from the j-th data resource, j = 1, . . . , L

W j The set of services processing X j

S j
i The i-th service of W j , where W j does not contain the multi-way join service

Sk
join The multi-way join service, which belongs to Wk

c j
i The average cost of service S j

i per input tuple

σ
j

i The selectivity of service S j
i

ck
join = [c1, . . . , cL ] A vector containing the average processing costs of Sk

join per input tuple for each X j

σ k
join = [σ1, . . . , σL ] A vector containing the selectivity Sk

join per X j

t j,l
i,r The average cost to transfer a tuple from S j

i to Sl
r

T j,l
i,r The aggregate cost of the S j

i with respect to Sl
r , where T j,l

i,r = c j
i + σ

j
i t j,l

i,r

L j Linear ordering of services from W j placed before S j
join

ρ j The bottleneck cost of the W j subplan

C Linear ordering of services after S j
join

P The complete multi-way join plan

R j
i (P) The product of selectivities of all services preceding S j

i in plan P

3 Problem formulation and background

Consider L data resources. Each data resource produces a data stream X j , j = 1 . . . , L
of finite length. The queries we examine define that (i) the data from each resource
should be joined together, e.g., using a condition on common attributes and perhaps a
time window if the data streams are time-stamped, and (ii) the data from each resource
should be processed by several filtering and look-up services and the processing cost
of each tuple in X j corresponds to a service call. Let W j be the set of services
that process data from X j . S j

i denotes the i-th service of W j set. One of the sets,
lets say Wk , contains a specific join service, denoted by Sk

join , which implements
the multi-way join operation. For readability reasons, the notation is summarized in
Table 1.

The average cost of S j
i ∈ W j to process an input tuple is c j

i . For the data resource
services, this cost may correspond to the cost of producing tuples, which is the inverse
of the tuple production rate. For the join service, the average processing cost may
differ for tuples originated from different resources; as such, there is a different cost
for each of the L inputs. Let t j,l

i,r be the average cost to transfer a tuple from the i-th

service in W j to the r -th service in W l . Note that, in practice, tuples are transmitted
in blocks [9]; in that case, t j,l

i,r is the cost to transmit a block divided by the number

of tuples it contains. Finally, the selectivity of S j
i , which defines the average number
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of output tuples per input tuple, is denoted by σ
j

i . For the join service, there is a
different selectivity value for each input. We assume that all services are selective,
i.e., σ

j
i ≤ 17, apart from the join selectivities that are higher than 1, as is the case in

most real queries. Look-up services that fall into this category include services that
in practice perform key-foreign key joins and potentially apply predicates, e.g., for a
given location id, retrieve its bounding rectangle if it is in the north hemisphere.

Although our techniques can be applied to both push and pull models of inter-
service communication, we will present only the push case, where the sender initiates
the data communication process. The aggregate per-tuple cost of the sender service
S j

i with respect to the receiver service Sl
r is then T j,l

i,r = c j
i + σ

j
i t j,l

i,r , which takes
into account the processing cost of the input and the transmission cost of the output.
The previous formula shows that a consequence of considering heterogeneous links
is that the cost of a service also depends on the next service in the plan. This is a
major difference from previous work where the cost incurred by a service S j

i was only

affected by the services that preceded S j
i in the plan (e.g., [9,15]).

Costs and selectivities are assumed to be independent of each other. For example,
the selectivity of a filtering or the join service does not depend on the selectivities of
the preceding services.

Our goal is to build a plan P (i.e., to define the appropriate ordering of the services)
that has the minimum response time. As shown from Fig. 1, in the generic case, a
plan is composed of L linear orderings L j before the join service, and an additional
ordering C after the join service8. Each L j comprises services only from W j , whereas
C may contain services from any set. In a linear ordering, each service, except the join
one, receives input from a single service and sends output tuples to up to one service.

In general, precedence constraints exist between filtering services. The more prece-
dence constraints exist, the less service permutations the optimizer has to investigate.
Precedence constraints can exist only between services from the same set, with the
exception of the join service. S j

r ≺ S j
i means that S j

r must appear before S j
i . Prece-

dence constraints apply to all data resource services to state that they must precede all
other service calls.

Because of the pipelined model of execution, according to which the services
process tuples concurrently, the query response time can be safely approximated by
the time the slowest service requires to complete its work. For this reason, the problem
objective can be expressed as the minimization of the bottleneck cost. Suppose that
S j

i is placed immediately before Sl
r in plan P . Then, for each call, S j

i spends T j,l
i,r

time units. Also, the proportion of X j tuples that reaches S j
i is the product of the

selectivities of all services preceding S j
i up to the data resource service of X j , R j

i (P).

Thus the response time for S j
i in P is the product of the number of tuples that arrive

at S j
i (i.e., ||X j || · R j

i (P)) and of the cost spent by S j
i to process this data and send

7 Note that throughout the rest of the work, the terms filters and services are used interchangeably.
8 Note that we restrict our search space to single linear orderings per data resource; in [9] multiple parallel
such orderings are examined, which is something we plan to explore in the future.
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Fig. 3 The response time of S j
i is calculated by the product of (i) the fraction of tuples in X j that are not

filtered out by any of the services that precede S j
i in plan P (i.e., R j

i · ||X j ||) and (ii) the cost spent to

process and send the output tuples to S j
r (i.e., T j,r

i,r )

the results to the subsequent service Sl
r (i.e., T j,l

i,r ), i.e.,

cost (S j
i ) = R j

i (P) · T j,l
i,r · ‖ X j ‖

where ‖ X j ‖ is the size of X j . A graphical interpretation of the equation is shown in
Fig. 3. For the join service, if we assume that every input is processed by a separate
parallel thread, the average processing cost is computed for each input separately, and
the total processing cost of the join, is the maximum of the processing cost for each
input. Although the processing cost incurred by the join service may be much higher
than the ones incurred by the filtering services, we assume that it does not comprise
the bottleneck of the whole plan, since in a wide-area distributed environment the data
transferring cost typically dominates the processing one. In order to compute the size
of the join output, it is adequate to examine the selectivity with regards to a single,
arbitrary input only. More details about how multi-way joins may be implemented can
be found at [17], where it is explained that multiway joins implemented as a single
operator outperform trees of binary joins.

Based on the above, our problem can be formulated as a min–max problem, where
we try to build a plan P so that the maximum response time of an individual service
is minimized.

Note that, if all ‖ X j ‖ values are equal, they can be factored out, and we can
consider only per tuple service costs. The per tuple cost of each S j

i followed by Sl
k

can be estimated by the simpler formula cost (S j
i ) = R j

i (P) · T j,l
i,r . By tweaking the

selectivities of services corresponding to data resources, it is straightforward to render
all ‖ X j ‖ values equal for simplicity reasons. Also, minimizing the query response
time makes sense only when the data resources do not produce tuples infinitely; how-
ever, we can still apply the main concept of our methodology to continuous streams
by considering the rate of result generation, which is the inverse of the per tuple query
response time. Finally, if the results must be delivered to a specific node, it is conve-
nient to introduce a result gathering service in the query, which must be placed after all
other services in the query plan. If the communication costs between the result gath-
ering site and all other sites are equal, then we can safely ignore the result gathering
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phase during query optimization. In this work, we do not deal with result gathering,
explicitly.

The proposed algorithms are based on detailed statistics about the per-tuple process-
ing costs of services, the per-tuple data transferring costs and the services’ selectivity.
In this work we assume that these statistics are known and do not change frequently
and that the metadata regarding the location and the binding patterns of the services
do not vary rapidly. There exist several techniques to acquire the necessary informa-
tion. For example, we can employ a profiling technique such as the one described in
[16] to obtain an estimate of the service processing costs and selectivity. Furthermore,
knowing the physical locations of the hosts where the services are deployed, we can
employ a Network Coordinates (NC) technique (e.g., [19]) in order to approximate
the network delay to transfer data between services by the network delay incurred
to transfer data between the hosts where the corresponding services are deployed to.
Other work regarding web service profiling can be found in [20].

4 Optimization for physically clustered services

In this section, we present an algorithm, called 2 Phase-Service Ordering (2P-SO), for
building multi-way join plans, when the services are not only logically, but physically
clustered as well, i.e., the set of services W j is allocated to hosts that extend over
distinct geographical areas. Furthermore, it is assumed that the processing cost is
negligible relatively to the communication cost of data. The above assumptions imply
that

T j, j
i,r ≤ T j,l

i,r (1)

The meaning of the condition is that the aggregate cost of a service with regards to
another service in the same cluster never exceeds the aggregate cost when the latter
service belongs to a different cluster.

The algorithm consists of two phases. During the first phase, a multi-way join
plan is built, while the second phase aims to refine the bottleneck cost of the initial
plan by removing services (one service at a time) from the subplans that precede the
multi-way join service. The second phase is optional, since, under certain conditions,
it can be safely omitted. In particular, it is proved through several theorems that the
employment of the second phase cannot produce a new plan with lower bottleneck
cost under certain cases.

An experimental evaluation of 2P-SO shows that the algorithm reaches to optimal
multiway join plans quite often under the above assumptions. The same rationale,
i.e., the creation of a preliminary multiway join plan and its iterative refinement,
can be also applied when the services are logically clustered but Eq. (1) does not
hold. However, in Sect. 5 we discuss about a generalization of the above rationale.
The section starts with a description of the rationale behind 2P-SO, continues with a
description of the two phases of 2P-SO and ends with the analysis of the cases, where
the second phase is omitted.
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Fig. 4 Let W�, W� and W© be three sets of services, where W© contains the multiway join service

S©
join . Examples of plans that, despite the fact that they are semantically equivalent [plan a (c) is equivalent

to plan b (d)], they have different response times

4.1 Rationale of the proposed algorithm

Two observations constitute the rationale behind 2P-SO. Consider a single-input linear
ordering, as shown in Fig. 4a. This single-input ordering may be a part of a multi-input
join plan. L� comprises the data resource service and the services numbered 1 and 2,
whereas services 3,4 and 5 belong to C. For the join service, since we investigate only
a specific data resource, we omit the rest of the inputs.

We transform such a plan in a plan where L� includes all services from W�. This
is performed by removing the services after the join service S©

join and appending them
just before the join in reverse order (see Fig. 4b). The second plan is preferable in
terms of lower bottleneck cost. The reason is that T �,©

2, join ≥ {T �,�
2,5 , T �,�

5,4 , T �,�
4,3 },

since the join service belongs to a different cluster. Also, if computation costs are
negligible and because (i) the join selectivity is higher than the other selectivities and
(ii) t©,�

join,3 ≈ t�,©
3, join , we can argue that T ©,�

join,3 ≥ T �,©
3, join . Taking into account that

the services are selective, so that R�
3 (Plan(b)) ≤ RO

join(Plan(a)) holds as well, the
bottleneck cost of plan (a) in Fig. 4 is never lower than that of plan (b), regardless of
its exact positioning in the plan.

The second observation refers to the bottleneck cost of C. Let us assume that,
initially, C contains a service that does not belong to the same group with the join
service, as it is the case with the triangular service (�) tagged with number “3” (see
Fig. 4c). If this service is moved to the end of the corresponding subplan before the join
service (see Fig. 4d), then the bottleneck cost of C cannot increase. This is because
(i) no service in C in the new plan processes more data given that services, except
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join, are selective and (ii) C does not involve transmission costs between services from
different clusters any more.

4.2 Algorithm description

Based on the two aforementioned observations, 2P-SO tries to build plans, where
C is either empty or contains services solely from the set of the join service. This
means that there are no parts of a multi-join plan where the services are mixed,
and as such, each join input can be treated separately. In other words, the problem
of devising the optimal plan for a multi-input query can be reduced to the same
problem for a single input. This is performed in the first phase of 2P-SO. We also
add a second phase, to cover cases, where the first phase can be further improved.
The two phases of the proposed algorithm are elaborated below. From now on and
throughout the end of this section, Wk denotes the set that contains the multi-way join
service.

Phase 1 For each input, we build an optimal linear ordering L j , each of which com-
prises all services in W j . During the linear plan construction procedure, both the
services in W j and the join service Sk

join are taken into account, even if j 
= k. If
j 
= k, the join service is always placed at the end of the plan as discussed above.
This can be also enforced by adding the precedence constraint S j

i ≺ Sk
join . Although

its positioning is fixed, it is considered during optimization because it may affect
the orderings of the rest services; this is due to the fact that the communication costs
between services in W j and the join service Sk

join may vary9. If j = k, the join service

may be placed anywhere. The part of the ordering of Wk before Sk
join corresponds

to Lk , and the part after the join service forms C in the complete plan. The complete
multi-way join plan is formed by connecting the output of the last service of every L j

with one of the inputs of the multi-way join service. Phase 1 outputs plans similar to
the ones shown in Fig. 4d.

Phase 2 If the bottleneck service of the complete plan appears in any of the L j sub-
plans, then we check whether moving that filtering service at the end of the subplan C
can improve the overall query response time. In that case, we rebuild the correspond-
ing L j without including the bottleneck service. The intuition is that, if the bottleneck
filtering service is at the end of the overall plan, it will process fewer data tuples. This
phase is repeated until it cannot yield performance improvements.

The core building block of 2P-SO is a solution for the optimal single-input service
ordering. Such a solution has been proposed in [18] and is provably optimal. Inter-
estingly, any other algorithm for linear service ordering can be used instead. A brief
description of the algorithm is given in Sect. 5.

The steps of 2P-SO are shown in Fig. 5.

9 The processing cost and the selectivity of Sk
join when building L j are given by ck

join( j) and σ k
join( j),

respectively.
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Fig. 5 The steps of 2P-SO

123



Optimization of decentralized multi-way join queries 953

4.3 On the effectiveness of the second phase of 2P-SO

After presenting the basic steps of 2P-SO, we continue with a description of the cases,
where the second phase of the algorithm can be safely omitted because it is not capable
of improving on the output of the first phase.

Three cases exist, under which, the second phase is not necessary to be triggered.
In the first case, it is proven that the algorithm builds the optimal multi-way join plan
during the first phase, while in the other two cases, it is proven that the second phase
cannot lead to further performance improvements.

The first case is presented in Theorem 1. Theorem 1 proves that when the bottleneck
subplan L j , i.e., the subplan where the maximum cost is incurred, has the minimum
cost among the subplans built from any subset of the services in W j , then the initially
found multi-way join plan is optimal. The bottleneck cost of a linear plan cannot be
lower than the cost of the least expensive pair of services placed at the beginning of
the linear plan [18]. Thus, in order to check if a linear subplan L j incurs the minimum
cost among the feasible plans that can be built from any subset of services in W j ,
O(|W j |2) service pairs need to be checked. If there exists a source service, as in our
case, the number of service pairs that are checked is reduced to O(|W j |). Theorem 1
holds either for the case where Eq. (1) is satisfied or not, however, all services, apart
from the join service, must be selective.

Theorem 1 When the bottleneck subplan L j has the minimum cost among the sub-
plans built from any subset of the services in W j , then the multi-way join plan that is
found during the first phase of 2P-SO is optimal.

Proof In order to prove the above theorem, it suffices to prove that if any subset of
services in L j is moved after the join service, then the new multi-way plan P ′ incurs
cost not lower than before.

Let ρ j be the bottleneck cost of L j . Since L j incurs the maximum cost among the
rest of the subplans that precede the join service and C, then the bottleneck cost of the
produced multi-way join plan is ρ = ρ j . Let P ′ be another multi-way join plan with
bottleneck cost ρ′, where the services in W j form another linear subplan L j ′ that is
built from a (sub)set of W j . Then, ρ′ ≥ ρ j ′ ≥ ρ j = ρ, where ρ j ′ is the bottleneck
cost of L j ′ . Consequently, the multiway join plan P ′ incurs cost not lower than ρ. The
proof is similar when services are removed from any other subplan. �


The second case, where the second phase of 2P-SO is not triggered, is when the
plan built from the services in Wk does not have any service after the multi-way join
service Sk

join , i.e., C = ∅. The reason for not employing the second phase is that we
do not expect any performance improvement, based on the observations described at
the beginning of the section (first observation in Sect. 4.1). Theorem 2 formally states
the above observation.

Theorem 2 When after the first phase of the algorithm C = ∅, then the second phase
of 2P-SO does not lead to further performance improvements.

Proof Suppose that the second phase of the proposed algorithm is triggered. Then one
service, say Si

r , is appended to C, i.e., C = {Si
r }. Let ρ′ be the maximum cost incurred

by the multi-way join plan after the employment of the second phase of the algorithm.
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If Si
r is moved back to the end of the corresponding subplan, i.e., Li , then the

maximum cost incurred by the multi-way join plan after that change is not higher than
ρ′ due to the following reasons. First, T k,i

join,r ≥ T i,k
r, join , since the computation costs

are negligible and the join selectivity is higher than 1. Second, the cost incurred by
the join service Sk

join is not increased, since the latter service does not send data to
another service and processes fewer data (more data is filtered out before, because
more filtering services are placed before Sk

join). The above proves that the second
phase cannot improve the performance of the initially found plan. �


The last case, in which no further improvement to the initial multi-way join plan
can be achieved, is when (i) the bottleneck service S j

l is in a linear subplan L j , j 
= k,
(ii) its immediate successor is the multi-way join service and (iii) the cost that it incurs
obeys the following condition

∏

i |S j
i ∈W j ∧S j

i 
=S j
l

σi T
j,k

l, join ≤
∏

i |S j
i ∈W j ∧S j

i 
=S j
r

σi T
j,k

r, join, (2)

where S j
r 
= S j

l . The left part of Eq. (2) corresponds to the cost that service S j
l incurs

when it is placed just before the multiway join service Sk
join in the linear subplan L j .

The right part of Eq. (2) corresponds to the cost incurred by another service S j
r in an

alternative subplan L j ′ of the same set of services W j , where S j
r is now the service that

is placed just before the multiway join service. Equation (2) states that in any linear
subplan L j ′ from the services in W j the cost a service S j

r incurs in order to process
input data and send the results to the multiway join service is not lower than the cost
incurred by service S j

l in subplan L j when S j
l is placed just before the multiway join

service.

Theorem 3 Let L j , j 
= k be the subplan that incurs the maximum cost in a multi-way
join plan that is built during the first phase of the proposed algorithm. Suppose that
the bottleneck service S j

l of L j is also the last service in L j and that it satisfies Eq. (2)
(see Fig. 6a). Then, the second phase of 2P-SO cannot improve the performance of
the initially found multi-way join plan.

Proof Without loss of generality, let L j ′ be another plan that is formed by a different
ordering of the services in W j , see Fig. 6b. Let S j

r be the last service in L j ′ . Then
the cost that is incurred by S j

r is not lower than the cost incurred by S j
l in L j due to

Eq. (2), and thus, the bottleneck cost of L j ′ is not lower than the bottleneck cost of L j .
If we remove any service from L j ′ that is placed before S j

r , say S j
s , then the cost that

is incurred by S j
r in the new plan is higher now, since the services in W j are selective

(see Fig. 6c). This means that any other subplan that is produced after the employment
of the second phase cannot incur a cost that is lower than the maximum cost incurred
by the initially found subplan L j . Consequently, the bottleneck cost of the plan L j

cannot be improved after removing any service from it, and thus, the second phase
does not lead to further performance improvements. �
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(a)

(b)

(c)
Fig. 6 a The subplan L j that is initially built. The service S j

l is the bottleneck one. b A subplan L j

formed by a different ordering of the services in W j , where S j
r is placed at the end. c The subplan L j ′

after removing a service S j
s

5 Optimization for non-physically clustered services

The experimental results (see Sect. 6) show that 2P-SO can produce in the majority
of cases an optimal multiway join plan when the services are logically clustered and
Eq. (1) holds. However, in the general setting where the aforementioned assumptions
are violated, Theorem 1, which proves when an optimal plan is found during the first
phase of 2P-SO, is satisfied a significantly lower number of times. This limitation
has driven us to generalizing 2P-SO. The generalization concerns two points: (i) the
choice of services that will be removed from a linear subplans L j and placed after the
multiway join service and (ii) the number of plans that are visited before reaching to
a solution.

In this section, we present a new theorem that (i) derives when it is possible to
reduce the cost of the bottleneck subplan L j after a multiway join plan P is created
and (ii) provides a candidate set of services that should be removed and appended to C.
This theorem is independent of the assumptions that Eq. (1) holds and forms the basis
of a more general query optimization algorithm, called Advanced 2 Phase-Service
Ordering (A2P-SO), that is presented in Appendix B. A disadvantage of the proposed
theorem is that the computations that must be performed to check its validity are more
expensive than those of Theorems 2 and 3. Another disadvantage is that it is intrusive
with regards to the linear ordering algorithm that was previously used as a black box
and it is unclear whether any other linear ordering algorithm can be used instead.

As will be shown in Sect. 6, an advantage of A2P-SO is that it can build plans
with lower response time than 2P-SO without incurring significantly larger runtime
overhead.

The section starts with the rationale behind the new theorem, continues with a short
presentation of the algorithm in [18] that is the basis of the new theorem and ends with
the theorem’s description. Table 2 summarizes the notation used throughout Sect. 6.4.
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Table 2 Notation used in Sect. 5

Symbol Description

O An optimal linear plan of services built by the algorithm in [18]

V A partial linear plan of services visited by the algorithm in [18] before convergence to O
ε The bottleneck cost of a partial plan V
ε The maximum cost that may be incurred by the services that are not currently included in V
� j A subset of services, such that a subplan L j ′ that is built from the services

in W j − � j has bottleneck cost lower than the bottleneck cost of L j

V j A partial linear plan of services visited by the algorithm in [18] before convergence to L j

Let L j be the bottleneck subplan of P , which incurs cost ρ j . For the moment,
assume that W j does not contain the multi-way join service Sk

join . A necessary step
towards creating a new multiway join plan with lower bottleneck cost is to find a subset
of services from W j , denoted by � j , such that the subplan L j ′ that comprises the
services in W j − � j has bottleneck cost lower than ρ j . Note that the cost incurred
by the subplan L j ′ incorporates the cost spent by the last service in L j ′ to process
incoming tuples and to send the results to the join service. In cases where Lk is the
bottleneck subplan, �k must contain the multi-way join service.

5.1 Brief description of the linear ordering algorithm

The algorithm for building optimal linear pipelined plans follows the branch-and-
bound optimization paradigm [18]. This algorithm is capable of efficiently exploring
the solution space employing several criteria. With the help of that criteria, the algo-
rithm can find the optimal solution without necessarily building the entire linear plan.
Particularly, the algorithm is capable of detecting when a partial plan has the poten-
tial to be part of the optimal solution, and thus, the algorithm should continue its
exploration by appending new services at the end of it. On the other hand, when the
algorithm detects that the currently explored partial plan cannot lead to the optimal
solution, it prunes it with a view to exploring additional plans.

Starting with an empty plan V and an empty optimal linear plan O with infinite bot-
tleneck cost, in every iteration of the algorithm, the parameters ε and ε are computed.
ε corresponds to the bottleneck cost of V , while ε is the maximum possible cost that
may be incurred by services not currently included in V . If all selectivities are less
than 1, ε is given by:

ε = max
l,r

⎧
⎨

⎩

(∏
j |S j ∈V σ j

)
Tl,r , Sl 
∈ V, Sr 
∈ V

(∏
j |S j ∈V∧ j 
=l σ j

)
Tl,r , Sl : last service in V, Sr 
∈ V

⎫
⎬

⎭
(3)

If there exists a service Si with σi > 1 (which is Sk
join in our case), then ε in Eq.

(3) is multiplied by the product of all σi > 1 such that Si 
∈ V .
If the bottleneck cost ε of V is lower than ε, this means that the bottleneck cost of

the plan beginning with V depends on the ordering of the services not yet included; so
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a new service is appended to V . We select the service having the minimum aggregate
cost with respect to the last service. Whenever the conditions ε ≤ ε and ε < ρ are met,
a new solution is found. The above condition implies that the ordering of the services
that are not yet included in V does not affect its bottleneck cost. So, a candidate optimal
solution O is found, with bottleneck cost ρ = ε, that consists of the current partial
plan V followed by the rest of the services in any order. Finally, if the bottleneck cost
ε of the current plan V is higher than or equal to the bottleneck cost ρ of the best plan
found so far O, then V is pruned. In that case, V cannot yield an optimal solution,
since its bottleneck cost is not lower than the bottleneck cost of O. The algorithm can
safely terminate when the less expensive pair of services that are not placed at the
beginning of any plan already visited incurs cost at least as high as the bottleneck cost
ρ of the currently best solution O [18].

5.2 On reasoning about the effectiveness of A2P-SO

The partial plans V j that are produced by the algorithm in [18] when building the
bottleneck subplan L j , can be exploited to check if there exists a subplan L j ′ that
incurs less cost than the cost of L j . It is assumed that W j does not contain Sk

join ,

however, the following analysis is similar when W j = Wk .
Let V j be a partial linear plan that is produced utilizing the services in (W j ∪Sk

join),

before the algorithm in [18] converges to L j (see Sect. 4). Consider that Sk
join 
∈ V j . We

are interested only in partial linear plans V j that satisfy the following two conditions10:
ε < ε and ε < ρ j . Based on such a partial plan, we want to create a subplan L j ′ ,
which consists of the current partial plan V j placed at its beginning followed by an
appropriate subset of the rest services, such that ρ j ′ < ρ j (recall that V j satisfies the
conditions ε < ε and ε < ρ j ). In other words, we search for those services that if they
are removed from W j , a new subplan L j ′ is formed with bottleneck cost ρ j ′ < ρ j .

If, for a partial linear plan V j that satisfies the aforementioned conditions, the cost
spent by the last service in V j to process incoming data and to send the result tuples
to the multi-way join service Sk

join is lower than the bottleneck cost of L j (ρ j ), i.e.,

cost (S j
l ) = R j

l (V j )T j,k
l, join < ρ j , Sl : last service in V j (4)

then there exists a subset of services � j , and consequently a subplan L j ′ with bot-
tleneck cost less than the bottleneck cost of L j . For the proof, see Lemma 1 in the
Appendix.

Note that if ε < ε and ε < ρ j are satisfied for a partial plan V j and Sk
join ∈ V j ,

then a linear subplan L j ′ with bottleneck cost less than the bottleneck cost of L j can
be also created (see Lemma 4 in Appendix 9).

Theorem 4 summarizes under which cases, given a multiway join plan P , we can
produce a new multiway join plan P ′ for which the cost incurred by its subplans L j ′

is lower than the cost of the subplans L j of plan P . Its proof is in the Appendix.

10 Details are provided in the Appendix.
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Theorem 4 Let V j be one of the partial plans that are visited by the algorithm in [18]
when building the bottleneck subplan, which is denoted by L j . Also assume that V j

satisfies ε < ε and ε < ρ j . If either of the following conditions hold

1. Sk
join 
∈ V j and Eq. (4) is satisfied, or

2. Sk
join ∈ V j ,

then there exists a subset of services W j − � j from which a linear subplan L j ′ can
be formed with bottleneck cost lower than the bottleneck cost of the initially found
subplan L j . Otherwise, any subplan L j ′ that will be formed by any subset of services
in W j , will incur cost at least as high as the bottleneck cost of L j .

In order to use Theorem 4, we must perform a few modifications to the algorithm in
[18], such that when a partial linear plan V j is visited that satisfies ε < ε and ε < ρ j ,
the Eq. (4) must be checked.

It must be emphasized that Theorem 4 chooses the services that should be removed
from L j and does not guarantee that after appending the services in � j to C, the new
maximum cost incurred in C does not increases.

6 Evaluation

The evaluation of the proposed algorithms are based on extensive simulations of
multiple-input join queries. Overall, five aspects are investigated. First, we assess
the benefits incurred by the application of the second phase of 2P-SO as compared to
the case when only the first phase is performed. In particular, we study how often the
second phase of 2P-SO is triggered and the percentage of the performance improve-
ments after the application of the second phase. To this end, two different sets of
simulation instances are generated that differ with respect to the selectivity of the fil-
tering services. The second aspect that is investigated is the impact on the performance
of the multi-way join plan of the single-input linear ordering algorithm proposed in
[18] against other simpler approaches to single-input linear ordering, namely the bot-
tleneck traveling salesman (BTSP) algorithm [21]. Third, the efficiency of 2P-SO in
terms of the maximum number of iterations performed by [18], in order to build each
of the L j subplans is studied. Fourth, we compare 2P-SO and A2P-SO in terms of the
response time of the resulting plans and, finally, we observe the running times of the
proposed algorithms.

6.1 Experimental setting

The simulation environment is produced as follows. We consider queries over 2, 5 and
10 data resources, where each resource is associated with a different set of services,
as described in the previous sections. We are mostly interested in medium and large
scale pipelined queries; as such, the number N of services W j is varied between 5 and
100 services {5, 10, 20, . . . , 100}. It is assumed that all data resources produce equal
number of tuples. The selectivity of the join service in both instance sets lies between
1 and 10, while the selectivity of the filtering services lie in the interval [0.1 1].
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The per tuple transferring costs between the services satisfy the triangle inequality,
while the per tuple processing cost is much lower than the communication cost. In
particular, the processing cost c j

i for each S j
i follows a normal distribution with mean

value c = 1 and standard deviation 0.1. The per tuple data transmission costs t j, j
i,r

between services of the same set follow a normal distribution, too, with mean value
t intra 10 or 100 or 1,000 times c and standard deviation equal to 0.2t intra . In this
way, even within a service cluster, the communication cost dominates. The per tuple
transferring cost between services belonging to different sets is much higher than the
cost between services of the same set. The data transmission costs t j,l

i,r follow a normal
distribution with mean value t inter either 10 or 100 times t intra , while the standard
deviation is set to 0.1t inter . We ensure that Eq. (1) is always satisfied. Later, we are
going to relax this assumption.

The above inter- and intra-cluster standard deviation values are appropriately
selected in order to reflect the statistics that are collected from PlanetLab in [18].
According to the observed inter-service communication times, the simulation instances
that are produced using t inter = 10t intra better reflect computational clusters that
are located in neighboring countries and communicate via high-speed links, e.g.,
one cluster is located in Spain the other is in Portugal, while the instances having
t inter = 100t intra better simulate computational clusters that are located in different
continents. The t intra = 10c values, in turn, are used in order to better simulate appli-
cations that perform some kind of processing on the incoming data, e.g., applications
that extract features from input images, while the t intra = 100c and t intra = 1, 000c
values reflect cases where no intensive processing is done on the incoming data, e.g.,
a filtering service that simply checks whether the value of a numerical attribute of an
incoming tuple is above a threshold or not.

For each such setting, 10 different random instances are produced. Overall, for each
technique or algorithm flavor, we produce 3 × 11 × 3 × 2 × 10 = 1,980 different
plans corresponding to random queries, ten for each combination of number of data
resources, services per set, intra-set average communication cost and inter-set average
communication cost.

6.2 Performance benefits of the second phase of 2P-SO

In the first experiment, it is studied how often the second phase of 2P-SO is triggered,
as well as the obtained performance benefits. There, we have observed that the second
phase is triggered only for the 1.25 % of the random instances. In particular, for the
82.7 % of the instances, the bottleneck subplan L j incurs the minimum cost among
the subplans that can be built from any subset of W j , which means that the produced
multi-way join plan is guaranteed to be optimal (see Theorem 1). This phenomenon
is attributed to the facts that (i) the values T j, j

i,r do not have significant deviations
(i.e., deviations that exceed an order of magnitude) and (ii) the selectivity of the
filtering services is uniformly distributed between 0.1 and 1. For the rest 12.85 %
of the instances, no service is added to C during the first step of 2P-SO, and thus
Theorem 2 is satisfied. This phenomenon is attributed to the fact that T k, j

join,i ≥ T j, j
i,r
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and T k,k
join,i ≥ T k,k

i, join . As a result, the algorithm in [18] selects to place at the end
of a subplan the multi-way join service, in order to reduce as much as possible the
aggregate cost that it incurs.

In 3.2 % of the cases, the bottleneck service S j
bottl is the immediate predecessor of

the multi-way join service Sk
join and j 
= k. For those instances, we have observed that

(i) the inter-cluster communication cost is, approximately, two orders of magnitude
higher than the intra-cluster communication cost (the instances have tinter = 100tintra)
and (ii) the number of services per set is 5 or 10. Since the number of filtering services
is relatively small and the intra-cluster T j, j

i,r values are two orders of magnitude lower

than the inter-cluster T j,l
i,r values, the cost that is incurred by the service that precedes

the join is high, relatively to the cost incurred by the rest services in L j . Thus, the
algorithm that is utilized for building the subplans L j chooses to place just before
the multi-way join service Sk

join the service that incurs the minimum aggregate cost

with Sk
join . The second phase of 2P-SO is not triggered for the above instances, since,

according to Theorem 3 (Sect. 4), it cannot improve the initial bottleneck cost.
For the rest 1.25 % of the instances, where the second phase of 2P-SO is trig-

gered, the bottleneck cost of the initially found plan is improved for the 43 % of these
instances, i.e., the 0.5375 % of the 1,980 random instances. In the latter instances,
where performance improvements are observed, the bottleneck subplan was formed
by the service set that contained the join service. The mean performance improvement
is 25 %. Note that for the rest 0.7125 % of the 1,980 random instances, where the
second phase did not improve the initially found bottleneck cost, none of the partial
linear plan V j with ε < ε and ε < ρ j satisfied either of the conditions (1) and (2) of
Theorem 4 (see Sect. 5). Figure 7 summarizes the results of the first experiment.

We have repeated the same experiment with a new set of 1,980 instances that are
produced as described in Sect. 6.1. However, in the new instance set, the selectivity of
the filtering services lies in [0.5 1]. The experimental results do not show significant
differences. In 87 % of the cases, 2P-SO found the optimal multi-way join plan, while
the second phase is triggered for the 2.7 % of the random instances. The performance
improves for 26 % of the latter instances and the mean performance improvement is
28 %. Similar to the instances of the first set (where the services are more selective),
for the cases, where the second phase successfully improved the initial bottleneck cost,
the bottleneck subplan was formed by the services in Wk .

6.3 Impact of the choice of the linear ordering algorithm

In the experiments presented so far, the single-input linear ordering of all L j subplans
is done according to the algorithm in [18]. Intuitively, it is expected that the algorithm
employed for single-input data resource queries, which is the main building block
of the complete algorithm, has a significant impact on the query response time. The
third part of the experiments investigates the behavior of 2P-SO when the single-
input ordering is performed according to the BTSP [21] algorithm. Note that this
solution was initially proposed for slightly different problems. The reason we chose
that for comparison is that we are not aware of any other solution for exactly the same
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Fig. 7 The results of the first experiment

problem apart from [9]. In [18], the performance of the algorithm in [18] is compared
with the Greedy algorithm of [9] in a real-word, wide-area setting the PlanetLab [22].
There, the experimental results showed that the algorithm in [18] obtained significant
performance improvements with respect to [9].

The solution in [21] deals with the BTSP problem. In BTSP, we search for a path
visiting all vertices in a complete undirected graph, such that the largest weight of an
edge in the path is as small as possible and the path visits each node exactly once.
This problem definition is very similar to the problem of minimizing the response
time of queries over a single data resource for the case where all selectivities are
set to 1. Although many algorithms have been proposed for BTSP, in the conducted
experiments, we utilize the algorithm in [21], which reduces BTSP to ordinary TSP
problem. That algorithm is computationally efficient and provides a 2-approximation
to the optimal solution when the edge weights of the graph satisfy the triangle inequal-
ity. In order to build a linear ordering L j from the set W j utilizing [21], a graph having
as vertices the services in W j with zero processing cost and selectivity equal to one
is constructed. The edge weights are defined by the communication cost of the corre-
sponding services. Since the BTSP algorithm needs a service (vertex) to start from, in
order to find a linear plan using BTSP, we have built multiple linear plans using each
time a different, randomly selected starting service. Then, among the produced plans
we selected the one with the minimum response time.

In order to build a multi-way join plan utilizing the BTSP algorithm, the single-
resource subplans L j are built and then their output is connected with the multi-
way join service of Lk (assuming that W k is the set including the join service). The
second phase of the algorithm proposed in Sect. 4, i.e., placing the bottleneck service
of a subplan after the join service, is also applied, in order to further improve the
performance of the resulting plans. The efficiency of this algorithm is measured in
terms of the ratio of the response time of the multi-way plans it produces and the
response time of the multi-way plans built by 2P-SO.

Figure 8a, b shows the ratio between the response time of the multi-way join plans
that are built using the BTSP algorithm and the response time of the multi-way join
plans built by 2P-SO, when the join service has two inputs and the size of W j ranges
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Fig. 8 The ratio between 2P-SO and the BTSP algorithm for different sizes of service clusters for queries
over a, b 2; c, d 5; and e, f 10 data resources

in {5, 10, 20, . . . , 100}. Each plot in Fig. 8a, b corresponds to different mean intra-set
and inter-set communication values. Recall that 10 different random instances were
created with the same settings (see Sect. 6.1). Both the BTSP and 2P-SO are executed
for all these random instances and Fig. 8a, b shows the median of the response time
ratios calculated over the multi-way join plans produced from the 10 random instances
that are created using the same settings. The fluctuations in the figures are attributed
to the fact that the actual inter- and intra-cluster communication cost values in every
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Table 3 Performance
degradation while building plans
with the BTSP algorithm
without applying the second
phase

Number of input
resources

Mean performance
degradation (%)

L = 2 50
L = 5 59
L = 10 51

simulation instance are randomly produced each time through a normal distribution
generator. The following observations can be drawn:

– Employing the algorithm in [18] always outperforms the other solution (i.e., the
ratio is always above 1).

– There are cases where the performance improves by an order of magnitude (e.g.,
20 times) when the algorithm in [18] is employed.

– On average, the performance deviations tend to increase with (i) the increase of
the per tuple mean transferring cost and (ii) the number of services per set.

The same observations can be drawn for 5-input (Fig. 8c, d) and 10-input (Fig. 8e,
f) queries. Again, the observed fluctuations are a byproduct of the random generation
of the actual inter- and intra-cluster communication cost values in every simulation
instance. From Fig. 8a–f, we can observe that although the number of inputs, services
or the per tuple transferring costs do not have a significant impact on the magnitude
by which 2P-SO outperforms the BTSP one, 2P-SO has always better performance,
i.e., the ratio between the response time of the plans built by the BTSP algorithm and
2P-SO are constantly higher than one.

Recall that Fig. 8a–f shows the performance of the join plans that are built using
the BTSP algorithm, after employing a two-phase approach as presented in Sect. 4.
Table 3 summarizes the mean performance degradation for different number of input
data resources L , after building multi-way join plans using the BTSP algorithm, but
without employing the refinement phase of Sect. 4. We can see that, in contrast to
2P-SO, the second phase is obligatory, in order to obtain feasible join plans using the
BTSP algorithm.

The comparison of the two methods for building multiway join plans as presented
in Fig. 8a–f is in relative time units. We have selected such a representation in order
to show the importance of 2P-SO as the per tuple processing and transferring costs
increase. For example, if the per tuple processing and transferring costs of the filters
are in the order of seconds, then a plan that will be created utilizing the BTSP algorithm
will have on average tens of dozens higher response time than a plan built by 2P-SO.
The low running time of 2P-SO in order to build multiway join plans (see Sect. 6.5)
further supports its significance.

Figure 9a, b shows the maximum number of iterations that are performed to build
the L j subplans of the Fig. 8a–f.

Counter-intuitively, there are some cases where the number of iterations is higher
although the number of services is lower. This must attributed to the way the algo-
rithm in [18] operates. In the following, we will provide a brief explanation of this
phenomenon. When there exist a few filtering services before the join service, the
output selectivity of the join service, i.e., the product of the selectivities of the services
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Fig. 9 The maximum number of iterations required by our algorithm to build L j subplans

of a linear subplan L j and the selectivity of the join service with respect to the input
X j , is relatively high. Thus, a parameter that controls the stopping condition of the
algorithm in [18] decreases slowly, forcing the branch and bound algorithm to per-
form many iterations until convergence (see Sect. 5). In general, we observe that the
number of the performed iterations does not change significantly with the number of
the services. Also, the differences in the inter-service communication times do not
have a significant impact, either.

6.4 Evaluation of 2P-SO and A2P-SO when services are only logically clustered

Finally, we have studied the performance of 2P-SO and A2P-SO with one more set of
random instances, for which the processing cost of data is higher than the intra-cluster
communication cost. The instances were produced following an approach similar to
the one employed in Sect. 6.1. However, for the new set of random instances, we have
set c = 5, t intra = 1, while t inter is 5 or 20 times t intra . The standard deviations of the
distributions were the same with Sect. 6.1. Note that using the above settings, Eq. (1)
is not always satisfied, i.e., this case is similar to scenarios where services are only
logically clustered. The parameters of A2P-SO as shown in Fig. 11 in Appendix B are
N = 10, M = 2 and i ter = 1,000.

When employing 2P-SO, for the 12.3 % of the random instances, Theorem 3 is
satisfied. Note that Theorem 3 is valid independently of the assumption that the com-
munication cost dominates the processing one and only depends on the assumption
that all services, apart from the multi-way join service, are selective. 2P-SO man-
aged to improve the bottleneck cost for the 69.2 % of the random instances during
its second phase, where the mean performance improvement is 45.7 %. For the same
set of random instances, A2P-SO built plans with 37.5 % lower response time com-
pared to the plans of 2P-SO on the average. For the rest 18.5 % of the instances, the
second phase of the proposed algorithms did not lead to performance improvements
either because the algorithm reached to the optimal solution during the first phase or
due to reasons explained through Theorem 4; for those instances, none of the partial
plans V j with ε < ε and ε < ρ j satisfied either of the conditions (1) and (2) of
Theorem 4.
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6.5 Running time of 2P-SO and A2P-SO

We have also investigated the running time of 2P-SO and A2P-SO. All experiments
were performed on a i5 Intel Linux machine. The mean running time of 2P-SO and
A2P-SO per simulation instance is well below one second (approximately 30 ms for
2P-SO and 70 msec for A2P-SO).

6.6 Discussion

To summarize, the results of the experiments show that when the services are both
logically and physically clustered, 2P-SO can find the optimal multiway join plan
during the first phase in most of the cases (82.7 % of the generated random instances).
For the 16.75 % of the generated random instances the second phase did not lead to
further performance improvements due to Theorems 2–4, while, for the rest 0.53 %
of the generated random instances the second phase improved the performance of the
multiway join plans by 25 % approximately. Another observation is that 2P-SO builds
multiway join plans having better response time (up to an order of magnitude) than
the multi-way join plans built using the BTSP algorithms.

When the services are only logically clustered, A2P-SO is proven to be a better
choice than 2P-SO as it builds plans with lower response time (by 37.5 % approxi-
mately compared to the plans built by 2P-SO). In contrast to cases where the services
are both logically and physically clustered, the second phase of 2P-SO can lead to
performance improvements of 45.7 % on the average in the 69.2 % of the random
instances.

From the above discussion we can conclude the following: (i) the second phase
of 2P-SO can lead to more efficient multiway join plans and (ii) 2P-SO is a good
candidate even in cases where Eq. (1) is violated as it builds efficient multiway joins
with approximately 2.5 lower running time than A2P-SO. However, when the response
time of a plan is of primary importance, A2P-SO is more suitable for optimization
under a more general setting, as it outputs plans with 37.5 % on the average lower
response time than 2P-SO.

7 Related work

The problem of query optimization with a view to minimizing the response time
while employing pipelined parallelism in wide area environments has been largely
overlooked; most of the work proposed in the literature considers that a plan’s
response time equals to the total cost incurred by all operators in that plan [23].
In contrast, when pipelined parallelism is employed the response time depends on
the bottleneck operator, i.e., the operator that incurs the maximum cost among the
rest of the operators in the plan to process input data. Pipelined operator order-
ing bears several similarities with optimizing pipelined calls to services, and has
been examined for both centralized and distributed environments. In a centralized
single-node environment, the problem of minimizing the response time can be opti-
mally solved in polynomial time only if the operators are independent [24]. In a
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wide-area environment, Srivastava et al. [9] proposed an algorithm for optimizing
single-input queries over services. Moreover, this work is based on the assumption
that the transferring cost of data is negligible. Babu et al. [16] developed a solution
for the ordering of filtering operators that are tailored to online, dynamic scenarios.
However, the proposed approximate algorithm applies to the problem of minimizing
the total work and, apart from that, the transferring cost of tuples is considered to be
negligible.

A common characteristic of the proposals mentioned so far is that they build a sin-
gle plan. For completeness, we mention techniques that build multiple plans in order
to maximize the data flow, which is equivalent to minimizing the bottleneck cost. In
[25], such an algorithm is proposed in order to maximize the flow of tuples processed
by a number of filtering and unconstrained operators. The output of the algorithm is a
set of linear plans, each one of them having assigned to a weight. When a new tuple
enters the system, it is probabilistically routed to one of these linear plans accord-
ing to the assigned weights. It must be noted that the flow maximization algorithm
considers only the processing cost of the operators and the potentially heterogeneous
communication costs are again disregarded. This work is extended in [15] to support
proliferative operators and precedence constraints. However, Ref. [15] is character-
ized by the limitation of not considering communication costs, too. Existing solutions
for multi-query optimization (e.g., [26]) neglect the communication cost between the
operators, as well.

Our work relates to the broader areas of distributed query optimization, as well.
Distributed query optimization algorithms typically refer to problems of high com-
putational complexity [8]. They differ from their centralized counterparts in that
the communication cost must be also considered. The adoption of parallelism dur-
ing query execution makes the problem of query optimization even harder [27].
This has leaded to the adoption of more sophisticated dynamic programming tech-
niques (e.g., [28]) or heuristics. A recent work in the area of distributed query opti-
mization appears in [29]. That work deals with the problem of optimizing multi-
ple, overlapping (by means of the input data), non-parallel queries. The input data
are distributed to different host machines, while the cost needed to transfer data
between any pair of hosts is not negligible, as in our problem. Nevertheless, the
optimization goal is different; the algorithm in [29] aims to minimize the sum of
the total cost to transfer data across overlapping queries, whereas we focus on mini-
mizing the response time of a single pipelined parallel query over multiple input data
resources.

8 Conclusions

In this work, we deal with the optimization of pipelined multi-join queries over clus-
tered filtering services in communication-bounded wide-area environments. Optimiza-
tion of such queries is of high significance for large-scale data management involving
remote access to services (e.g., web services that filter data and perform look-up oper-
ations). It is particularly relevant to scenarios where the order in which service calls
are performed is flexible, and different orderings yield different execution times. Our
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optimization objective is the minimization of response time, which, due to pipelining,
is determined by the slowest service in the plan.

The main novelty of our work is that we propose two efficient and effective opti-
mization algorithms for queries that require multiple data inputs to be processed by
distinct clusters of filtering services and also to be joined together. The execution envi-
ronment that we assume allows services to communicate directly with each other, i.e.,
inter-service communication does not occur via a central component. We also provide
a theoretical analysis of their performance. To the best of our knowledge, our work is
the first proposal for this problem.

There are several directions for future work. First, in our algorithms, the service and
network characteristics remain stable. However, especially for long running queries,
those characteristics may be subject to changes during execution. Another avenue for
future work is to couple service ordering and allocation decisions; in this case, the
services are not allocated to predefined hosts but their location is chosen at runtime.
Finally, in this work, the focus has been mostly on pipelined parallelism. Several
workflow systems have developed efficient mechanisms for complementary forms
of parallelism, such as partitioned parallelism. The development of efficient query
optimizers for service-based queries taking into account all parallelism types is an
interesting and challenging open issue.

9 Appendix A: Proof of Theorem 4

In Appendix A, we present the lemmas that are used to prove Theorem 4. For the
following lemmas let V j be a partial linear plan, which is visited by the algorithm in
[18] when building the bottleneck subplan L j . Also assume that Sk

join 
∈ V j , unless

it is stated otherwise (as in Lemma 4). It is also assumed that W j does not contain
Sk

join . The proofs are similar when W j = Wk .

Lemma 1 If a partial linear plan V j satisfies Eq. (4) and conditions ε < ε and
ε < ρ j , then there exists a subset of services � j , and consequently, a subplan L j ′

with bottleneck cost less than the bottleneck cost of L j . L j ′ is created by appending
to V j the rest of the services in W j − � j in any order11.

Proof The proof starts with an iterative procedure for finding a set of services � j . One
possible set of services � j can be found as follows: for every pair of services (S j

i , S j
r )

or (S j
i , Sk

join), where S j
i is either the last service in V j or S j

i 
∈ V j and S j
r 
∈ V j , we

estimate the maximum cost that would be incurred by that pair if it was appended to
V j (see [18]). More formally, that cost for a service pair (S j

i , S j
r ) is

– T j, j
i,r multiplied by the selectivity of services in V j that precede S j

i up to S j
i , if S j

i

is the last service in V j , or
– T j, j

i,r multiplied by the selectivity of all services in V j and the selectivity of the

join service with respect to X j , if S j
i is not the last service in V j , or

11 In cases where Sk
join ∈ W j , then Sk

join is also added to � j .
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– T j,k
i, join multiplied by the selectivity of all services in V j , if S j

i is not the last service

in V j and S j
i sends data to Sk

join .

If that cost is higher than or equal to ρ j we have the following cases:

– If none of the services S j
i , S j

r belongs to V j , then both services are added to � j .

– If the first service in the pair (S j
i , S j

r ) belongs to V j , then only the second service

of the pair, i.e., S j
r , is added to � j .

– If the first service of the pair (S j
i , Sk

join) does not belong to V j , then S j
i is added

to � j . Note that in this case S j
i cannot be the last service in V j , due to Eq. (4).

After finishing the above procedure for every pair of services (S j
i , S j

r ) or (S j
i , Sk

join)

(where S j
i is either the last service in V j or S j

i 
∈ V j and S j
r 
∈ V j ), the services that

are not included in � j will incur cost less than ρ j , independently of the order they are
appended to V j . Thus, L j ′ that is formed by appending to V j the rest of the services
in W j − � j will incur cost less than ρ j .

In the extreme case, where the maximum cost incurred by all service pairs apart
from (S j

l , Sk
join), where S j

l is the last service in V j , is higher than or equal to ρ j , then

all services in W j that are not included in V j will be added to � j and the bottleneck
cost of L j ′ = V j is ε. �


The following lemma explains why only the partial linear plans V j that satisfy
ε < ε and ε < ρ j , must be considered, in order to check the existence of a subplan
L j ′ that incurs cost lower than L j .

Lemma 2 Only the partial linear plans V j that satisfy ε < ε and ε < ρ j must be
considered, in order to check the existence of a subplan L j ′ that incurs cost lower than
the cost incurred by L j .

Proof The reason for checking only the partial plans that satisfy ε < ε and ε < ρ j is
given below. If ε < ρ j is violated, i.e., ε ≥ ρ j , then any subplan L j ′ that starts with
V j has bottleneck cost not lower than ρ j due to the non-decreasing property of the
bottleneck cost function. On the other hand, if ε < ε is violated, i.e., ε ≥ ε, then the
algorithm in [18] has already reached a candidate solution, which starts with V j (and
may be followed by other services). However, since [18] finds the optimal solution,
that candidate solution plan has bottleneck cost not lower than ρ j .

The reason for checking only the partial plans that are visited by the algorithm until
convergence and not any other partial plan not visited by the algorithm is the following.
The algorithm in [18] terminates as soon as the less expensive pair of services that
are not placed at the beginning of any partial plan already visited incurs cost ≥ ρ (see
Sect. 5). Consequently, any subplan L j ′ starting with S j

x , where (S j
x , S j

y ) is any pair
of services, which are not placed at the beginning of any partial plan visited by [18]
before convergence to L j , incurs cost ≥ ρ j . �


Finally, we have to prove that if Eq. (4) is never satisfied for any of the partial plans
V j (that are created by [18] when building L j ) satisfying ε < ε and ε < ρ, then there
is not any subset of services � j , and consequently, a subplan L j ′ with bottleneck cost
less than the bottleneck cost of L j .
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(a)

(b)

Fig. 10 a A partial linear plan V j that satisfies ε < ε and ε < ρ j , but not Eq. (4). The arrow between
the last service in V j and the multi-way join service Sk

join denotes the cost that is incurred by the former

service to process data and to send the results to Sk
join . b A partial plan V j ′ that is formed by appending

to V j a (sub)set of services in W j (that are not included in V j ). The new partial plan V j ′ satisfies both
conditions ε < ε and ε < ρ j and Eq. (4)

Lemma 3 If, for none of the partial plans V j that satisfy ε < ε and ε < ρ j , Eq. (4)
is satisfied, then, there is not any subset of services � j , and consequently, a subplan
L j ′ with bottleneck cost less than the bottleneck cost of L j .

Proof Let V j be a partial linear plan that satisfies ε < ε and ε < ρ j , but Eq. (4)
is violated (Fig. 10a). Suppose that there exists a (sub)set of services in W j that are
not included in V j , and if they are appended to V j , a new partial plan V j ′ is created
(i) having cost < ρ j and also (ii) satisfying Eq. (4). The lemma is not correct if the
above partial plan V j ′ (that incurs cost < ρ j ) is not visited by the algorithm in [18]
(Fig. 10b). However, this can never happen as explained in [18] because it violates the
optimality of the algorithm. �


Until now, it was assumed that Sk
join 
∈ V j . When ε < ε and ε < ρ j are satisfied

and Sk
join ∈ V j , then there exists a set of services � j such that if they are subtracted

from W j , a linear subplan L j ′ with bottleneck cost less than the bottleneck cost of L j

can be formed.

Lemma 4 If a partial plan V j that satisfies ε < ε and ε < ρ j includes the join service
Sk

join, then there exists a set of services � j such that if they are subtracted from W j ,

a linear subplan L j ′ can be created with bottleneck cost less than the bottleneck cost
of L j .

Proof Since V j incurs cost ε < ρ j and Sk
join ∈ V j , then a subplan L j ′ can be formed

by the ordering of the services in V j that precede the join service Sk
join . �


Using the above lemmas, we can prove Theorem 4. Particulary, Lemmas 1 and
4 prove the first part of Theorem 4, i.e., if a partial linear plan V j with ε < ε and
ε < ρ j , also satisfies either of the conditions (1) and (2) of Theorem 4, then there
exists a subplan L j ′ with bottleneck cost lower than the bottleneck cost of the initially
found subplan L j . The other two lemmas prove the second part of Theorem 4, i.e., if
Eq. (4) is never satisfied for any of the partial plans V j with ε < ε and ε < ρ j , then
there does not exist a subplan L j ′ with bottleneck cost less than the bottleneck cost of
L j . Recall that Lemma 2 proves that it suffices to search for subplans with bottleneck
cost lower than the bottleneck cost of L j only to the partial plans V j with ε < ε and
ε < ρ j .
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10 Appendix B: A two-phase algorithm accounting for not physically clustered
services

Appendix B aims to present a variant of 2P-SO, called A2P-SO, that accounts for multi-
way join plan creation in environments where Eq. (1) is violated. A2P-SO consists
of two phases, as well, however the second phase is performed differently; there, the

Fig. 11 The steps of A2P-SO
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(V j ,� j ) pairs that are returned by the algorithm in [18] when building a subplan L j

are utilized, in order to create new multi-way join plans. Those multi-way join plans
are stored in a plan repository R.

A2P-SO starts by building a multi-way join plan P , as done in the first phase of
the algorithm of Sect. 4. Let L j be the bottleneck subplan of P created after the first
phase of the algorithm. During the second phase, for every pair (V j ,� j ) returned by
the algorithm in [18] when building L j , a new multi-way join plan P ′

is created as
follows: instead of removing a service from L j and appending it at the end of C12, the
new algorithm creates a new multi-way join plan using (i) the subplans Li , i 
= j of
the multi-way join plan P , (ii) the subplan L j ′ starting with V j and followed (in any
order) by the rest of the services in W j − � j and (iii) the optimal subplan C ′

built
by the algorithm in [18] using the join service Sk

join and the services in C and � j ,

imposing the constraint that any service in C ′
must be called after Sk

join .

If the bottleneck cost of the new multi-way join plan P ′
is less than the cost of P ,

then the new plan is added to the repository R. If none of the newly created multi-way
join plans P ′

is added to the repository, then plan P is marked as “visited”. Otherwise,
plan P is removed from R. The second phase is repeated using the newly created
multi-way join plans i.e., the plans of the repository that are not marked as “visited”.
The algorithm stops either when all plans in the repository are marked as “visited”, or
when a predefined number of iterations is reached. The complete algorithm is shown
in Fig. 11.

In order to speed up the building process, we can use only N of the (V j ,� j )

pairs returned by the algorithm in [18]. The N pairs can be selected either randomly
or using a greedy approach, i.e., we can select the pairs for which the resulting L j ′

subplans have the lowest bottleneck costs; however, the pair (V j ,� j ) that creates the
lowest cost subplan L j ′ does not necessarily create the lowest cost multi-way join plan
P ′

. Apart from that, after each iteration performed during the second phase, we can
optionally reduce the search space (line 20 of Fig. 11).
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