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An Iterative Adaptive hp-FEM Method

for Non-Symmetric Elliptic Eigenvalue Problems

Pavel Solin · Stefano Giani

Abstract We present a novel adaptive higher-order finite element (hp-FEM)
algorithm to solve non-symmetric elliptic eigenvalue problems. This is an
extension of our prior work on symmetric elliptic eigenvalue problems. The
method only needs to make one call to a generalized eigensolver on the coarse
mesh, and then it employs Newton’s or Picard’s methods to resolve adap-
tively a selected eigenvalue-eigenvector pair. The fact that the method does
not need to make repeated calls to a generalized eigensolver not only makes
it very efficient, but it also eliminates problems that pose great complications
to adaptive algorithms, such as eigenvalue reordering or returning arbitrary
linear combinations of eigenvectors associated with the same eigenvalue. New
theoretical and numerical results for the non-symmetric case are presented.
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iterative method · adaptive higher-order finite element method · hp-FEM

Mathematics Subject Classification (2000) 65N25 · 65N30 · 65N50

1 Introduction

This study presents a novel adaptive higher-order finite element (hp-FEM) al-
gorithm for eigenvalue problems for non-symmetric elliptic partial differential
equations (PDE). Eigenproblems are of considerable theoretical and practical
interest in various areas of engineering and sciences. Classical applications in-
clude modal analysis in linear and nonlinear elasticity and the Schroedinger
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equation of quantum chemistry. But there are many other applications in-
cluding, for example, automated multilevel sub-structuring methods for noise
prediction in acoustics [14], analysis of photonic crystals [10,13] and plasmonic
guides [5], stability analysis of fluid systems [6], and others.

The most common approach to solving eigenproblems is using eigensolvers.
For larger problems it is practical to employ iterative eigensolvers such as
ARPACK [15]. A characteristic common to all eigensolvers is that even if the
user is interested in one particular eigenpair only, several additional eigenvalues
and possibly eigenvectors need to be computed. These auxiliary eigenpairs are
the byproduct of techniques such as deflation or orthogonalization that are
used to filter out unwanted solutions.

Most eigensolvers are not designed to work with adaptive finite element
methods (FEM), and their application on sequences of locally refined meshes
can lead to substantial problems. In [19] we illustrated some of these problems
and proposed a novel iterative method that alleviates them. The main idea was
to adapt Picard’s and Newton’s methods to solve eigenvalue problems in order
to minimize the number of unwanted eigenpairs exploiting the orthogonality
between eigenvectors. In contrast to conventional adaptive methods that call
an eigensolver after each mesh refinement, the iterative method is capable
of following reliably a selected eigenpair on a sequence of adapted meshes.
This is particularly useful with multiple eigenvalues when only a particular
eigenfunction in the eigenspace is wanted.

In this paper we are going to extend the results from [19] to non-symmetric
problems. The lack of symmetry brings substantial new complications that we
need to overcome. For technical reasons, we have to assume that the model
problem is a diagonalizable non-symmetric differential operator.

1.1 Model problem

We consider the eigenproblem

−∆u+ b · ∇u+ cu = λu, u = 0 on ∂Ω (1)

where Ω is a bounded 2D domain with a Lipschitz-continuous boundary, b ∈
[

L∞(Ω)
]2

and c ∈ L∞(Ω) is non-negative.

1.2 Outline

The outline of the paper is as follows: In Section 2 we present motivation for
the present study. In Section 3 we introduce notations and preliminaries. In
Section 4 we present an algorithm based on Picard’s method and demonstrate
a need for orthogonalization. Sections 5 and 6 present Picard’s and Newton’s
method with orthogonalization, respectively. Automatic hp-adaptivity is dis-
cussed in Section 7. Sections 8 and 9 present a reconstruction technology and
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employ it to calculate reference solutions efficiently. Section 10 presents itera-
tive methods with improved orthogonalization. Section 11 introduces a-priori
convergence results. Numerical results are presented in Section 12.

2 Motivation

This work is motivated by the fact that non-symmetric eigenvalue problems
in general have very different left and right eigenfunctions for the same eigen-
value. In Fig. 1 we show the left and right eigenfunctions corresponding to
the smallest eigenvalue of problem (1) on the unit square with b = (5, 5) and
c = 0. As can be seen the two functions are different and in particular most
of the energy of the modes is concentrated in different regions. It is obvious
that these two eigenfunctions can not be approximated efficiently using the
same mesh. Therefore, we use two independent sequences of refined meshes to
approximate the left and right eigenfunctions.

Fig. 1 Left and right eigenfunctions corresponding to the smallest eigenvalue of problem
(1).

In Fig. 2 we show the hp-adapted meshes for the eigenfunctions from Fig. 1.



4 Pavel Solin, Stefano Giani

Fig. 2 Different hp-adapted meshes with polynomial degrees for the left and right eigen-
functions from Fig. 1.

3 Preliminaries

Throughout the paper, L2(Ω) denotes the space of square-integrable real val-
ued functions equipped with the standard norm

‖f‖0 =

(
∫

Ω

|f |2
)

1

2

. (2)

The symbol H1(Ω) denotes the space of functions in L2(Ω) with square-
integrable weak first partial derivatives. The H1-norm is denoted by ‖f‖1.

Since problem (1) is non-symmetric, in general for the same eigenvalue
the left and the right eigenfunctions are different. Therefore it is reason-
able to compute for each eigenvalue both corresponding eigenfunctions, i.e.,
(λj , uj, u

∗
j ) ∈ R × E(λj) × E∗(λj), where E(λj) and E∗(λj) are the left and

right eigenspaces, respectively.

3.1 Weak formulation

The variational formulation of problem (1) reads: Find the eigenvalue λj ∈ R

and the eigenfunctions uj, u
∗
j ∈ H1

0 (Ω) such that

a(uj , v) = λj b(uj, v), for all v ∈ H1
0 (Ω)

a(v, u∗
j ) = λj b(v, uj), for all v ∈ H1

0 (Ω)
b(uj, u

∗
j ) = 1







(3)

where

a(u, v) =

∫

Ω

∇u(x) · ∇v(x) + b · ∇u(x)v(x) + cu(x)v(x), (4)

and

b(u, v) =

∫

Ω

u(x)v(x). (5)
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3.2 Finite element meshes

Since the left and the right eigenfunctions can be different, we use two se-
quences of meshes, one for each eigenfunction, and we apply adaptivity to
each eigenfunction independently. To discretize (3), let Tn, n = 1, 2, . . . denote
a family of meshes on Ω. The meshes can be irregular with multiple levels
of hanging nodes and they can combine possibly curvilinear triangular and
quadrilateral elements [20]. These meshes may be obtained using automatic
adaptivity. Similarly for the right eigenfunctions we use irregular mesh of the
same kind. By T ∗

n , n = 1, 2, . . . we denote a family of meshes on Ω for the right
eigenfunction.

In the rest of the paper we are going to denote with an asterisk ’*’ all
quantities related to the right eigenfunction. By hn,τ we denote the diameter
of element τ and we define

hn = max
τ∈Tn

{hn,τ}.

Similarly with pn,τ we denote the order of polynomials of element τ , we define

pn = min
τ∈Tn

{pn,τ}.

On any mesh Tn we denote by Vn ⊂ H1
0 (Ω) the finite dimensional space of

continuous functions v such that on any element τ we have that v|τ ∈ Ppn,τ
(τ).

Here either Ppn,τ
(τ) is the space of polynomials of total degree at most pn,τ

if τ is a triangular element, or Ppn,τ
(τ) is the space of polynomials of degree

at most pn,τ in each variable if τ is a quadrilateral element.

3.3 Discrete problem

The discrete version of (3) reads: Find the eigenvalue λj,n ∈ R and the eigen-
functions uj,n ∈ Vn and u∗

j,n ∈ V ∗
n such that

a(uj,n, vn) = λj,n b(uj,n, vn), for all vn ∈ Vn

a(vn, u
∗
j,n) = λj,n b(vn, u

∗
j,n), for all vn ∈ V ∗

n

b(uj,n, u
∗
j,n) = 1







(6)

3.4 Union mesh

We also make use of a third sequence of meshes T U
n where for each n, T U

n

is the union of the meshes Tn and T ∗
n . Similarly we define the spaces V U

n

constructed on the meshes T U
n which contain the spaces Vn and V ∗

n for each n.
The definition of the union mesh can be found, e.g., in [18]. In short, this is the
smallest common mesh that is obtained by applying a sequence of standard
refinement operations to the mesh Tn and that at the same time is obtained by
another sequence of refinements applied to T ∗

n . The union mesh T U
n is usually



6 Pavel Solin, Stefano Giani

finer than both Tn and T ∗
n . If Tn and T ∗

n are the same, then T U
n = Tn. If Tn

can be obtained from T ∗
n via a sequence of refinements, then T U

n = Tn and vice
versa. For each element τU of the union mesh, there exists a unique element
τ ∈ Tn such that τU ⊂ τ , and a unique element τ∗ ∈ T ∗

n such that τU ⊂ τ∗.
The polynomial degree of τU is the maximum of the polynomial degrees of τ
and τ∗.

For any function v ∈ Vn we can define a trivial prolongation operator P
such that Pv ∈ V U

n is the prolongation of v in V U
n and similarly we can define

the trivial prolongation operator P ∗ from V ∗
n into V U

n .

4 Picard’s Method

Problem (6) can be reformulated in matrix form: Find an eigenvalue λ ∈ R

and an eigenvectors u ∈ R
N , where N is the dimension of Vn and u∗ ∈ R

N∗

,
where N∗ is the dimension of V ∗

n , such that

Au = λBu ,
A∗u∗ = λB∗u∗ ,
(P ∗u∗)tBUPu = 1.







(7)

Here the entries of the matrices A and B are

Ak,p = a(φp, φk) , Bk,p = b(φp, φk) ,

where φi are the basis functions spanning Vn,

A∗
k,p = a(φ∗

k, φ
∗
p) , B∗

k,p = b(φ∗
k, φ

∗
p) ,

where φ∗
i are the basis functions spanning V ∗

n and

AU
k,p = a(φU

k , φ
U
p ) , BU

k,p = b(φU
k , φ

U
p ) ,

where φU
i are the basis functions spanning V U

n , the union finite element space.

The Picard method, presented in Algorithm 1, takes as arguments the
matrices A, A∗, AU , B, B∗, BU , initial guesses ũ and ũ∗ for the eigenfunc-
tions, a relative tolerance Tol and an absolute tolerance AbsTol. The algorithm
returns an approximate eigentriplet (λj,n, uj,n, u

∗
j,n). Because we use this it-

erative method on a sequence of adaptively refined meshes, we normally set
as initial guesses the projections of the eigenfunctions of interest uj,n−1 and
u∗
j,n−1 on the refined meshes.
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Algorithm 1 Picard’s method

(λj,n, uj,n, u
∗
j,n) = Picard(A,A∗,AU ,B,B∗,BU , ũ, ũ∗,Tol,AbsTol)

u1 = ũ

u1,∗ = ũ∗

λ1 =
(P ∗u1,∗)tAUPu1

(P ∗u1,∗)tBUPu1

m = 1
repeat

um+1 = A−1λmBum

um+1,∗ = (A∗)−1λmB∗um,∗

λm+1 =
(P ∗um+1,∗)tAUPum+1

(P ∗um+1,∗)tBUPum+1

m = m+ 1

until max{
‖um−u

m−1‖1
‖um−1‖1

,
‖um,∗−u

m−1,∗‖1
‖um−1,∗‖1

} < Tol or |λm − λm−1| < AbsTol

uj,n = um

u∗
j,n = um,∗

λj,n = λm

The following theorem shows that Picard’s method always converges to the
smallest eigenvalue.

Theorem 1 The Picard method in exact arithmetic converges into the eigenspace
which is not orthogonal to the initial guesses u1,u1,∗ and whose eigenvalue has
minimum modulus.

Proof Any left vector um can be expressed as

um =

N
∑

i=1

cmi ui ,

where cmi are real coefficients, N is the dimension of Vn and the vectors ui ≡
ui,n are the eigenvectors of the discrete problem, which form an orthonormal
basis. Similarly any right vector um,∗ can be expressed as

um,∗ =

N∗

∑

i=1

cm,∗
i u∗

i ,

where cm,∗
i are real coefficients. Without loss in generality we can assume that

λ1 is the eigenvalue of minimum modulus and that c11 and c1,∗1 are different
from 0.

In the case that λ1 is simple we have from the definition of the problem:

um+1 = A−1λmBum =
(

Πm
j=1λ

j
)(

A−1B
)m

u1 =
(

Πm
j=1λ

j
)

N
∑

i=1

c1i (λi)
−mui ,

um+1,∗ = (A∗)−1λmBum,∗ =
(

Πm
j=1λ

j
)(

(A∗)−1B
)m

u1,∗
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=
(

Πm
j=1λ

j
)

N∗

∑

i=1

c1,∗i (λi)
−mu∗

i ,

where λi are the eigenvalues corresponding to ui, u
∗
i . Then

um+1 =
(

Πm
j=1λ

j
)

(λ1)
−m
(

c11u1 +

N
∑

i=2

c1i
(λ1)

m

(λi)m
ui

)

, (8)

um+1,∗ =
(

Πm
j=1λ

j
)

(λ1)
−m
(

c1,∗1 u∗
1 +

N∗

∑

i=2

c1,∗i

(λ1)
m

(λi)m
u∗
i

)

, (9)

where it is clear that, since λ1/λi < 1, for i ≥ 2, the directions of um+1 and
um+1,∗ tend toward the directions of u1, u

∗
1.

Then, exploiting the linearity of the prolongation operators P and P ∗ we
have from (8) and (9):

Pum+1 =
(

Πm
j=1λ

j
)

(λ1)
−m
(

c11Pu1 +
N
∑

i=2

c1i
(λ1)

m

(λi)m
Pui

)

,

P ∗um+1,∗ =
(

Πm
j=1λ

j
)

(λ1)
−m
(

c1,∗1 P ∗u∗
1 +

N∗

∑

i=2

c1,∗i

(λ1)
m

(λi)m
P ∗u∗

i

)

.

Furthermore, the Rayleigh quotient

λm+1 =
(P ∗um+1,∗)tAUPum+1

(P ∗um+1,∗)tBUPum+1

= λ1

(c11c
1,∗
1 )(P ∗u∗

1)
tBUPu1 +

N
∑

i=2

(c1i c
1,∗
i )(P ∗u∗

i )
tBUPui

(

λ1

λi

)2m−1

(c11c
1,∗
1 )(P ∗u∗

1)
tBUPu1 +

N
∑

i=2

(c1i c
1,∗
i )(P ∗u∗

i )
tBUPui

(

λ1

λi

)2m ,

converges to λ1.

In the case that λ1 has multiplicity R and that c1r, c
1,∗
r , for some 1 ≤ r ≤ R,

are not zero, we similarly have that for all i > R:

Pum+1 =
(

Πm
j=1λ

j
)

(λ1)
−m
(

R
∑

r=1

c1rPur +

N
∑

i=R+1

c1i
(λ1)

m

(λi)m
Pui

)

,

P ∗um+1,∗ =
(

Πm
j=1λ

j
)

(λ1)
−m
(

R
∑

r=1

c1,∗r P ∗u∗
r +

N∗

∑

i=R+1

c1,∗i

(λ1)
m

(λi)m
P ∗u∗

i

)

,
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and then

λm+1 =
(P ∗um+1,∗)tAUPum+1

(P ∗um+1,∗)tBUPum+1

= λ1

R
∑

r=1

(c1rc
1,∗
r )(P ∗u∗

r)
tBUPur +

N
∑

i=R+1

(c1i c
1,∗
i )(P ∗u∗

i )
tBUPui

(

λ1

λi

)2m−1

R
∑

r=1

(c1rc
1,∗
r )(P ∗u∗

r)
tBUPur +

N
∑

i=R+1

(c1i c
1,∗
i )(P ∗u∗

i )
tBUPui

(

λ1

λi

)2m

which converges again to λ1.

Theorem 1 shows that even if the initial guesses u1 and u1,∗ are very close
to certain discrete eigenfunctions ui,n and u∗

i,n, for some i, the method can
always converge to different eigenfunctions or linear combinations of eigen-
functions with corresponding eigenvalues smaller in modulus than λi,n. In real
arithmetic, even if the initial guesses u1 and u1,∗ are orthogonal to all eigen-
functions with index less than i, for some m > 1 the orthogonality could be
perturbed, due to round-off errors, and the method can eventually converge
anyway to different eigenfunctions or linear combinations of eigenfunctions
with corresponding eigenvalues smaller in modulus than λi,n.

5 Picard’s Method with Orthogonalization

In order to make Picard’s method suitable to approximate efficiently any dis-
crete eigentriplet, and not only the first one, we present Algorithm 2, which has
an orthogonalization procedure in it. The orthogonalization procedure is spe-
cific for non-symmetric eigenvalue problems and it comes from the canonical
form result for compact operators [22, Theorem 9.17].

The Picard method with orthogonalization takes as arguments the matrices
A, A∗, AU , B, B∗, BU , initial guesses ũj,n−1 for ũ

∗
j,n−1 for the eigenfunctions,

which is the projection of the approximated eigenfunctions computed on the
previous meshes, the tolerances AbsTol andTol and it also takes the 2(j − 1)
eigenfunctions u1,n, . . . , uj−1,n and u∗

1,n, . . . , u
∗
j−1,n. Then it returns the triplet

(λj,n, uj,n, u
∗
j,n) on the refined mesh.
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Algorithm 2 Picard’s method with orthogonalization

(λj,n, uj,n, u
∗
j,n) = PicardOrtho(A,A∗,AU ,B,B∗,BU , ũj,n−1, ũ

∗
j,n−1

,Tol,AbsTol,

u1,n, . . . , uj−1,n, u
∗
1,n, . . . , u

∗
j−1,n)

u1 = ũj,n−1

u1,∗ = ũ∗
j,n−1

λ1 =
(P ∗u1,∗)tAUPu1

(P ∗u1,∗)tBUPu1

m = 1
repeat

um+1 = A−1λmBum

um+1,∗ = (A∗)−1λmB∗um,∗

for i = 1 to j − 1 do

um+1 = um+1 − ((P ∗u∗
i,n)

tBUPum+1)ui,n {Orthogonalization}

um+1,∗ = um+1,∗ − (P ∗ut
i,nB

UPum+1,∗)u∗
i,n {Orthogonalization}

end for

um+1 =
um+1

|(P ∗um+1,∗)tBUPum+1|1/2
{Normalization}

um+1,∗ =
um+1,∗

|(P ∗um+1,∗)tBUPum+1|1/2
{Normalization}

λm+1 =
(P ∗um+1,∗)tAUPum+1

(P ∗um+1,∗)tBUPum+1

m = m+ 1

until max{ ‖um−u
m−1‖1

‖um−1‖1
,
‖um,∗−u

m−1,∗‖1
‖um−1,∗‖1

} < Tol or |λm − λm−1| < AbsTol

uj,n = um

u∗
j,n = um,∗

λj,n = λm

As can be seen in Algorithm 2, the orthogonalization is done in each itera-
tion. This is necessary in real arithmetic to guarantee that um and um,∗ are
orthogonal to all eigenfunctions u1,n, . . . , uj−1,n and u∗

1,n, . . . , u
∗
j−1,n, for all

m. However in exact arithmetic it would be enough to orthogonalize only u1

and u1,∗. The normalization step is necessary in all iterations because, due
to the orthogonalization procedure, this version of Picard’s method does not
conserve the norm of the vectors and possible underflows or overflows could
happen with no normalization.

Theorem 2 Algorithm 2 never converges to an eigenvalue of index smaller
than j.

Proof The proof comes straightforwardly from the arguments used to prove
Theorem 1. The fact that um is orthogonal to all eigenfunctions u1, . . . ,uj−1,
implies that the coefficients cmi , with m = 1, . . . , j − 1, are zeros. Similarly
um,∗ is orthogonal to all eigenfunctions u∗

1, . . . ,u
∗
j−1, which implies that the

coefficients cm,∗
i , with m = 1, . . . , j− 1, are zeros. Then, the Rayleigh quotient

converges to λj by the same arguments used before.
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6 Newton’s Method with Orthogonalization

The second iterative method that we are going to propose is based on Newton’s
method applied to eigenvalue problems, see Algorithm 3. Denoting x̃ = (x, λ),
we have that problem (3) for the left eigenfunction can be rewritten in the
form

0 = f(x̃) =

(

Ax − λ Bx
xTBx − 1

)

.

Then denoting by h̃ = (h, δ)t the increment, we have that the truncated Taylor
series of the problem is

f(x̃+ h̃) ≈ f(x̃) + Jf (x̃) · h̃, (10)

where the Jacobian matrix is defined as

Jf (x̃) =

(

A−Bλ −Bx
2BxT 0

)

.

If x̃+ h̃ is a solution of (3) for the left eigenfunction, we have from (10) that

Jf (x̃) · h̃ = −f(x̃),

which defines the linear problem of Newton’s method. Similarly, denoting by
x̃∗ = (x∗, λ), we have that problem (3) for the right eigenfunction can be
rewritten in the form

0 = f∗(x̃∗) =

(

A∗x∗ − λ B∗x∗

(x∗)TB∗x∗ − 1

)

.

Finally, denoting by h̃∗ = (h∗, δ)t the increment, we have that the truncated
Taylor series of the problem is

f∗(x̃∗ + h̃∗) ≈ f∗(x̃∗) + J∗
f (x̃

∗) · h̃∗, (11)

where the Jacobian matrix is defined as

J∗
f (x̃

∗) =

(

A∗ −B∗λ −B∗x∗

2B∗(x∗)T 0

)

.

If x̃∗ + h̃∗ is a solution of (3) for the right eigenfunction, we have from (11)
that

J∗
f (x̃

∗) · h̃∗ = −f∗(x̃∗),

which defines the linear problem of Newton’s method.
In order to make the method suitable for all eigenpairs, we are going to

write a version of Newton’s method that uses an orthogonalization procedure,
similarly to what we have already done for Picard’s method.

Theorem 3 Algorithm 4 always converges to an eigenvalue greater or equal
to λj.
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Algorithm 3 Newton’s method

(λj,n, uj,n, u
∗
j,n) = Newton(A,A∗,AU ,B,B∗,BU , ũ, ũ∗,Tol,AbsTol)

u1 = ũ

u1,∗ = ũ∗

λ1 =
(P ∗u1,∗)tAUPu1

(P ∗u1,∗)tBUPu1

m = 1
repeat

Solve Jf (u
m, λm) · h̃ = −f(um, λm)

um+1 = um + h

λm+1 = λm + δ

Solve J∗
f (u

m,∗, λm+1) · h̃∗ = −f∗(um,∗, λm+1)

λm+1 = λm+1 + δ

um+1,∗ = um,∗ + h∗

m = m+ 1

until max{
‖um−u

m−1‖1
‖um−1‖1

,
‖um,∗−u

m−1,∗‖1
‖um−1,∗‖1

} < Tol or |λm − λm−1| < AbsTol

uj,n = um

u∗
j,n = um,∗

λj,n = λm

Algorithm 4 Newton’s method with orthogonalization

(λj,n, uj,n, u
∗
j,n) = NewtonOrtho(A,A∗,AU ,B,B∗,BU , ũj,n−1, ũ

∗
j,n−1

,Tol,AbsTol,

u1,n, . . . , uj−1,n, u
∗
1,n, . . . , u

∗
j−1,n)

u1 = ũj,n−1

u1,∗ = ũ∗
j,n−1

λ1 =
(P ∗u1,∗)tAUPu1

(P ∗u1,∗)tBUPu1

m = 1
repeat

Solve Jf (u
m, λm) · h̃ = −f(um, λm)

um+1 = um + h

λm+1 = λm + δ

Solve J∗
f (u

m,∗, λm+1) · h̃∗ = −f∗(um,∗, λm+1)

λm+1 = λm+1 + δ

um+1,∗ = um,∗ + h∗

for i = 1 to j − 1 do

um+1 = um+1 − ((u∗
i,n)

tBum+1)ui,n {Orthogonalization}

um+1,∗ = um+1,∗ − (ut
i,nBum+1,∗)u∗

i,n {Orthogonalization}
end for

um+1 =
um+1

|(P ∗um+1,∗)tBUPum+1|1/2
{Normalization}

um+1,∗ =
um+1,∗

|(P ∗um+1,∗)tBUPum+1|1/2
{Normalization}

λm+1 =
(P ∗um+1,∗)tAUPum+1

(P ∗um+1,∗)tBUPum+1

m = m+ 1

until max{
‖um−u

m−1‖1
‖um−1‖1

,
‖um,∗−u

m−1,∗‖1
‖um−1,∗‖1

} < Tol or |λm − λm−1| < AbsTol

uj,n = um

u∗
j,n = um,∗

λj,n = λm
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Proof This result is a direct consequence of the orthogonalization step in Al-
gorithm 4. We are using again the fact that any right vector um+1 can be
expressed as

um+1 =
N
∑

i=1

cm+1
i ui,

where cm+1
i are real coefficients and the vectors ui ≡ ui,n are the eigenvectors

of the discrete problem, which are sorted accordingly the magnitude of the
corresponding eigenvalues λi. Similarly any left vector um+1,∗ can be expressed
as

um+1,∗ =
N∗

∑

i=1

cm+1,∗
i u∗

i ,

where cm+1
i are real coefficients and the vectors u∗

i ≡ u∗
i,n are the eigenvectors

of the discrete problem, which are sorted accordingly the magnitude of the
corresponding eigenvalues λi In particular, when um+1 = um + h, um+1,∗ =
um,∗ + h∗, we have that, after the application of the orthogonalization step,
the resulting vectors are

ûm+1 =
N
∑

i=j

cm+1
i ui ,

and

ûm+1,∗ =

N∗

∑

i=j

cm+1,∗
i u∗

i .

Then, it is straightforward to see that the Rayleigh quotient

λm+1 =
(P ∗ûm+1,∗)tAUP ûm+1

(P ∗ûm+1,∗)tBUP ûm+1
≥ λj .

7 Automatic hp-Adaptivity

With the Picard and Newton methods in hand, we can now proceed to auto-
matic hp-adaptivity. This part of the paper is not new but we need to present
it to make the paper self-contained. We use an algorithm from [20] that is
an analogy to embedded higher-order ODE methods: In each adaptivity step
we construct an approximation pair with different orders of accuracy and use
their difference as an a-posteriori error estimator.
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Algorithm 5 Automatic hp-adaptivity

Let T c
0

and T c,∗
0

be the initial coarse meshes. We construct the initial fine meshes T f
0

and

T f,∗
0

by refining all elements in space and moreover increasing their polynomial degrees
by one. A generalized eigensolver is called one time only, to obtain a solution triplet
(λc

0, u
c
0, u

c,∗
0

) on the initial coarse meshes T c
0 and T c,∗

0
.

Set k = 0
repeat

Project the approximation uc
k to the mesh T f

k and the approximation u
c,∗
k to the mesh

T f,∗
k . The projection is denoted by P

f
k uc

k and by P
f,∗
k u

c,∗
k . Since the finite element

spaces on meshes T c
k and T f

k are embedded as well as T c,∗
k and T f,∗

k , there is no
projection error.

Calculate an initial guess λ̃
f
k for the eigenvalue using the relation

λ̃
f
k =

(P ∗P
f,∗
k u

c,∗
k )TA

U,f
k PP

f
k uc

k

(P ∗P
f,∗
k u

c,∗
k )TB

U,f
k PP

f
k uc

k

,

whereAU,f
k andB

U,f
k are the stiffness and mass matrices on the union mesh constructed

from T f
k and T f,∗

k .

The triplet (λ̃f
k , P

f
k uc

k, P
f,∗
k u

c,∗
k ) is not a solution to the generalized eigenproblems

on the mesh T f
k and T f,∗

k , but it is used as an initial guess.
Apply Picard’s or Newton’s method as described in Sections 5 and 6, to obtain a

solution triplet (λf
k , u

f
k , u

f,∗
k ) on the meshes T f

k and T f,∗
k .

Project the approximations u
f
k and u

f,∗
k back to the coarse meshes T c

k and T c,∗
k to

obtain P c
ku

f
k and P

c,∗
k u

f,∗
k .

Calculate the a-posteriori error estimates eck and e
c,∗
k ,

eck = u
f
k − P c

ku
f
k , e

c,∗
k = u

f,∗
k − P

c,∗
k u

f,∗
k .

Note: eck and e
c,∗
k are functions, not numbers.

Use eck and e
c,∗
k to guide one step of automatic hp-adaptivity [20] that yields the new

coarse meshes T f
k+1

and T f,∗
k+1

.
Update k = k + 1

until The H1-norms of eck−1
and e

c,∗
k−1

are sufficiently small.

8 Reconstruction Technology

It is well known that the discretization process perturbs the spectrum, in par-
ticular a left eigenspace E(λj) of multiple eigenvalue λj can be split in more
than one discrete eigenspaces E(λj,n), E(λj+1,n), . . . , E(λj+m,n) with corre-
spondent discrete eigenvalues λj,n, λj+1,n, . . . , λj+m,n forming a small cluster
for sufficiently rich finite element spaces, also under the same assumption we
have that

dim E(λj) =

m
∑

i=0

dim E(λj+i,n).

The same could happen to any right eigenspace E∗(λj). This phenomenon is
already well documented in literature, see [21,3,12].

Different finite element spaces can split the same multiple eigenspace in
different ways, this also happens with adaptively refined meshes. It is not



Iterative hp-FEM for Non-Symmetric Eigenvalue Problems 15

rare that the same multiple eigenspace is split differently on the coarse and
on the refined mesh. Since a different split corresponds to different discrete
eigenfunctions, then it is not always possible to find for the same eigenvalue
on the refined mesh an eigenfunction similar to the one on the coarse mesh. It
is crucial for the adaptive algorithm to prevent this behavior.

Therefore we propose a way to always construct on the refined mesh an
approximation of the same eigenfunction as on the coarse mesh. The idea is
based on the fact that for sufficiently rich finite element spaces, the spaces

Mn(λj) = span{E(λj,n), E(λj+1,n), . . . , E(λj+m,n)}

and

M∗
n(λj) = span{E∗(λj,n), E

∗(λj+1,n), . . . , E
∗(λj+m,n)}

are approximations of the spaces E(λj) and E∗(λj), see [3]. So for any couple
(Un−1, U

∗
n−1) ∈ Mn−1(λj) × M∗

n−1(λj), we propose the couple (Un, U
∗
n) ∈

Mn(λj)×M∗
n(λj) such as

Un =

R
∑

i=1

ci ui,n, (12)

where u1,n, u2,n, . . . , uR,n, with R = dim E(λj) = dim E∗(λj), are eigenfunc-
tions of the discrete problem forming an orthonormal basis for Mn. Similarly,

U∗
n =

R
∑

i=1

c∗i u∗
i,n, (13)

where u∗
1,n, u

∗
2,n, . . . , u

∗
R,n, are eigenfunctions of the discrete problem forming

an orthonormal basis for M∗
n. The coefficients ci and c∗i satisfy

R
∑

i=1

cic
∗
i = 1, (14)

and by construction we have that b(ui,n, u
∗
i,n) = 1 for any i = 1, . . . , R.

From the definition of problem (3) we have that the reconstructed eigen-
value is defined as

Λn =
a(Un, U

∗
n)

b(Un, U∗
n)

.

The triplet (Λn, Un, U
∗
n) is not a discrete eigentriplet of problem (6) in general.

In Section 11 we prove that (Λn, Un, U
∗
n) converges a priori at the same rate

as any other discrete eigentriplet of (3) to the continuous eigentriplet.
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9 Computing Reference Solution via Reconstruction

In this section we present two algorithms to compute approximations of eigen-
pairs. Each algorithm is based on a different method to compute the discrete
spectrum, but both of them use the reconstruction technology to keep track
of the eigenfunction of interest.

In all algorithms we are going to use on the initial mesh an iterative eigen-
solver with calling interface {(λj,n, uj,n, u

∗
j,n)

i
j=1} = Eigensolver(A,A∗,B,B∗,

i,Tol,MaxIter), that computes the set of discrete triplets {(λj,n, uj,n, u
∗
j,n)}

i
j=1

and where A and A∗ are the stiffness matrices of the problems, B and B∗ are
the mass matrices of the problems, i is the number of eigenpairs to compute,
Tol is the requested tolerance for the eigenpairs and MaxIter is the maximum
number of iterations.

All algorithm we describe below are based on the reconstruction technology
which is guided by two parameters: DTE and FIE. The parameter DTE should
be equal to the multiplicity of the continuous eigenvalue λ that the user wants
to approximate. All algorithms work also when DTE is an upper bound of
the multiplicity of λ, so in practice the multiplicity of the target eigenvalue
is not necessary to be known exactly. The parameter FIE should be equal
to the index i of the first discrete eigenvalue on the initial mesh λi,0 that
approximates λ. The reconstruction technology is described in Algorithm (6).

Algorithm 6 Reconstruction algorithm

(Λn, Un, U
∗
n) = Reconstruction({(λj,n, uj,n, u

∗
j,n)}

FIE+DTE

j=FIE
, (Λn−1, Un−1, U

∗
n−1))

Compute Un =

FIE+DTE∑

i=FIE

b(Un−1, u
∗
i,n)ui,n

Compute U∗
n =

FIE+DTE∑

i=FIE

b(ui,n, U
∗
n−1)u

∗
i,n

Un =
Un

|b(Un, U∗
n)|

1/2
{Normalization}

U∗
n =

U∗
n

|b(Un, U∗
n)|

1/2
{Normalization}

Λn =
a(Un, U

∗
n)

b(Un, U∗
n)

The first method is based on Picard’s method. The only three parameters
not yet defined are M which is the maximum number of mesh adaptation
requested, 0 < FIE ≤ TE ≤ FIE + DTE which is the index of the eigenvalue
that the user want to target and err which is tolerance for the a-posteriori
error estimator.

Similarly we define the adaptive method based on Newton’s method.
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Algorithm 7 Adaptive method based on Picard’s method
(ΛM , UM , U∗

M ) = PicardAdapt(T0,T ∗
0 , V0, V

∗
0 ,M, err,Tol,AbsTol,MaxIter,DTE,FIE,TE)

Construct T U
0

and V U
0

Construct A0, A∗
0
, AU

0
and B0, B∗

0
, BU

0

{(λj,0, uj,0, u
∗
j,0)}

DTE+FIE

j=1
= Eigensolver(A0,A

∗
0,B0,DTE + FIE,

Tol,MaxIter)
(Λ0, U0, U

∗
0 ) = (λTE,0, uTE,0, u

∗
TE,0)

m = 1
repeat

Construct the mesh Tm and the finite element space Vm adapting Tm−1 and Vm−1

Construct the mesh T ∗
m and the finite element space V ∗

m adapting T ∗
m−1

and V ∗
m−1

Construct Am, A∗
m, AU

m and Bm, B∗
m, BU

m
(λ1,m, u1,m, u∗

1,m) = Picard(Am,A∗
m,AU

m,Bm,B∗
m,BU

m, u1,m−1, u
∗
1,m−1

,Tol,AbsTol)
j = 1
for j = 2 to DTE+ FIE do

(λj,m, uj,m, u∗
j,m) = PicardOrtho(Am,A∗

m,AU
m,Bm,B∗

m,BU
m, uj,m−1, u

∗
j,m−1

,Tol,

AbsTol, u1,m, . . . , uj−1,m, u∗
1,m, . . . , u∗

j−1,m)
end for

(Λm, Um, U∗
m) = Reconstruction({(λj,m, uj,m, u∗

j,m)}FIE+DTE

j=FIE
, (Λm−1, Um−1))

Compute the a-posteriori error estimator ecm as in Algorithm 5
Compute the a-posteriori error estimator e

c,∗
m as in Algorithm 5

m = m+ 1
until m > M or max{ecm−1, e

c,∗
m−1

} ≤ err
ΛM = Λm−1

UM = Um−1

U∗
M = U∗

m−1

10 Iterative methods with improved orthogonalization

The algorithms presented in Sections 5 and 6 are quite costly. When they are
used in Algorithm 7 and 8, they ensure that the eigenpair with the correct
index TE is computed, but all eigenpairs of indexes from 1 to DTE+FIE need
to be computed. Therefore, in this Section we present less computationally
expensive methods. The key idea is to employ the orthogonalization only when
it is really necessary. This is possible because we can use information from the
previous mesh to identify unwanted eigenpairs.

The reason why we introduced the algorithms in Sections 5 and 6 was to
cure the downside of the iterative methods to possibly converge to an eigen-
pair different from the target one. The answer to this problem presented in
Sections 5 and 6 was to compute all possible eigenpairs to which the method
could erroneously converge to, and then use all of them to force the method,
by orthogonalization, to produce an approximation of the wanted eigenpair.

There is a better way which consists in starting without orthogonalization
and then every time that the iterative method produces an unwanted eigenpair,
save it to be used next time in the orthogonalization process to prevent the
method to converge again to the same unwanted solution. This is possible only
if a way to distinguish between wanted and unwanted solution is available. In
the adaptive setting this is always possible because the orthogonality of any
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Algorithm 8 Adaptive method based on Newton’s method
(ΛM , UM , U∗

M ) = NewtonAdapt(T0,T ∗
0 , V0, V

∗
0 ,M, err,Tol,AbsTol,MaxIter,DTE,FIE,TE)

Construct T U
0

and V U
0

Construct A0, A∗
0
, AU

0
and B0, B∗

0
, BU

0

{(λj,0, uj,0, u
∗
j,0)}

DTE+FIE

j=1
= Eigensolver(A0,A

∗
0,B0,DTE + FIE,

Tol,MaxIter)
(Λ0, U0, U

∗
0 ) = (λTE,0, uTE,0, u

∗
TE,0)

m = 1
repeat

Construct the mesh Tm and the finite element space Vm adapting Tm−1 and Vm−1

Construct the mesh T ∗
m and the finite element space V ∗

m adapting T ∗
m−1

and V ∗
m−1

Construct Am, A∗
m, AU

m and Bm, B∗
m, BU

m
(λ1,m, u1,m, u∗

1,m) = Newton(Am,A∗
m,AU

m,Bm,B∗
m,BU

m, u1,m−1, u
∗
1,m−1

,Tol,AbsTol)
j = 1
for j = 2 to DTE+ FIE do

(λj,m, uj,m, u∗
j,m) = NewtonOrtho(Am,A∗

m,AU
m,Bm,B∗

m,BU
m, uj,m−1, u

∗
j,m−1

,Tol,

AbsTol, u1,m, . . . , uj−1,m, u∗
1,m, . . . , u∗

j−1,m)
end for

(Λm, Um, U∗
m) = Reconstruction({(λj,m, uj,m, u∗

j,m)}FIE+DTE

j=FIE
, (Λm−1, Um−1))

Compute the a-posteriori error estimator ecm as in Algorithm 5
Compute the a-posteriori error estimator e

c,∗
m as in Algorithm 5

m = m+ 1
until m > M or max{ecm−1, e

c,∗
m−1

} ≤ err
ΛM = Λm−1

UM = Um−1

U∗
M = U∗

m−1

newly computed eigenpair against the results on the previous mesh can be
computed.

The Algorithms 9 and 10 are the incarnations of the improved orthogo-
nality technology applied to the either Picard’s or Newton’s method respec-
tively. Since these two algorithms are identical except for the call to either
PicardOrtho or to NewtonOrtho, in the rest we are gong to describe only
Algorithm 9.

Algorithm 9 computes a set of eigentriplets {(λj,n, uj,n, u
∗
j,n)}

DTE+FIE
j=FIE , ap-

proximating the target continuous eigenspaces, on the meshes Tn and T ∗
n . The

arguments that it needs are: the matrices A, A∗, AU , B, B∗, BU , the ap-
proximation of the target triplets {(λ̃j,n−1, ũj,n−1, ũ

∗
j,n−1)}

DTE+FIE
j=FIE computed

on the previous meshes Tn−1 and T ∗
n−1, and then projected on the refined

meshes Tn and T ∗
n , and a real value 0 < ThO < 1 which is used to decide

whether a computed eigenfunction is part of the approximation of the target
eigenspace or not. The sets D, D∗ are empty at the beginning, but then they
are fed with all computed eigenfunctions. Then D and D∗ are passed to ev-
ery call to PicardOrtho and so it guarantees that the same eigenfunction is
never computed twice. The key part of the algorithm is just after the call to
PicardOrtho, where the newly computed eigenfunction is analyzed. The anal-
ysis consists in checking how orthogonal the newly computed eigenfunctions
uj,n, u

∗
j,n are respect to the span of {(λ̃j,n−1, ũj,n−1, ũ

∗
j,n−1)}

DTE+FIE
j=FIE . If the

resulting value is smaller than ThO, then uj,n, u
∗
j,n are not considered part
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of the target eigenspace and new approximations of uj,n, u
∗
j,n are done. Oth-

erwise, uj,n, u
∗
j,n are kept and the algorithm pass to approximate the next

eigenfunctions in the target eigenspace. The algorithm ends when all eigen-
triplets in {(λj,n, uj,n, u

∗
j,n)}

DTE+FIE
j=FIE are computed.

Algorithm 9 Picard’s method with improved orthogonalization

{(λj,n, uj,n, u
∗
j,n)}

DTE+FIE

j=FIE
= PicardImpOrtho(A,A∗,AU ,B,B∗,BU ,

{(λ̃j,n−1, ũj,n−1, ũ
∗
j,n−1

)}DTE+FIE

j=FIE
,ThO)

D = Ø
D∗ = Ø
j = DTE + FIE
repeat

if j ≥ FIE then

(λj,n, uj,n, u
∗
j,n) = PicardOrtho(A,A∗,AU ,B,B∗,BU , ũj,n−1, ũ

∗
j,n−1

,Tol,

AbsTol,D,D∗)
Add uj,n to D
Add u∗

j,n to D∗

inner = 0
inner∗ = 0
for i = FIE → DTE+ FIE do

inner = inner + (P ∗u∗
j,n)

tBUP ũi,n−1

inner∗ = inner + (P ∗ũ∗
i,n−1

)tBUPuj,n

inner = max{inner, inner∗}
end for

if inner > ThO then

j = j − 1
end if

end if

until j < FIE

The number of computed eigenfunction may vary: In the best case scenario
when the method is used to approximate an eigenspace of dimension DTE,
only DTE eigenfunctions are computed. In the worst case scenario, DTE+FIE
eigenfunctions are computed, which is the number of computed eigenfunctions
by Algorithms 2, 4 on the same space. Because almost never the worst case sce-
nario is achieved, Algorithms 9 and 10 are more efficient than Algorithms 2, 4.
We conclude this section stating the adaptive algorithms with improved or-
thogonality.
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Algorithm 10 Newton’s method with improved orthogonalization

{(λj,n, uj,n, u
∗
j,n)}

DTE+FIE

j=FIE
= NewtonImpOrtho(A,A∗,AU ,B,B∗,BU ,

{(λ̃j,n−1, ũj,n−1, ũ
∗
j,n−1

)}DTE+FIE

j=FIE
,ThO)

D = Ø
D∗ = Ø
j = DTE + FIE
repeat

if j ≥ FIE then

(λj,n, uj,n, u
∗
j,n) = NewtonOrtho(A,A∗,AU ,B,B∗,BU , ũj,n−1, ũ

∗
j,n−1

,Tol,

AbsTol,D,D∗)
Add uj,n to D
Add u∗

j,n to D∗

inner = 0
inner∗ = 0
for i = FIE → DTE+ FIE do

inner = inner + (P ∗u∗
j,n)

tBUP ũi,n−1

inner∗ = inner + (P ∗ũ∗
i,n−1

)tBUPuj,n

inner = max{inner, inner∗}
end for

if inner > ThO then

j = j − 1
end if

end if

until j < FIE

Algorithm 11 Adaptive method based on Picard’s method with improved
orthogonality

(ΛM , UM , U∗
M ) = PicardImpAdapt(T0, T ∗

0
, V0, V

∗
0
,M, err,Tol,MaxIter,DTE,FIE,TE,ThO)

Construct A0, A∗
0
and B0

{(λj,0, uj,0, u
∗
j,0)}

DTE+FIE

j=1
= Eigensolver(A0,A

∗
0
,B0,B

∗
0
,DTE + FIE,

Tol,MaxIter)
(Λ0, U0, U

∗
0 ) = (λTE,0, uTE,0, u

∗
TE,0)

m = 1
repeat

Construct the mesh Tm and the finite element space Vm adapting Tm−1 and Vm−1

Construct the mesh T ∗
m and the finite element space V ∗

m adapting T ∗
m−1

and V ∗
m−1

Construct Am, A∗
m, AU

m, Bm, B∗
m, BU

m

{(λj,m, uj,m, u∗
j,m)}DTE+FIE

j=FIE
= PicardImpOrtho(Am,A∗

m,AU
m,Bm,B∗

m,BU
m,

{(λ̃j,n−1, {(λj,m−1, uj,m−1, u
∗
j,m−1

)}DTE+FIE

j=FIE
,ThO)

(Λm, Um, U∗
m) = Reconstruction({(λj,m, uj,m, u∗

j,m)}FIE+DTE

j=FIE
, (Λm−1, Um−1, U

∗
m−1

))

Compute the a-posteriori error estimator ecm as in Algorithm 5
Compute the a-posteriori error estimator e

c,∗
m as in Algorithm 5

m = m+ 1
until m > M or max{ecm−1

, e
c,∗
m−1

} ≤ err
ΛM = Λm−1

UM = Um−1

U∗
M = U∗

m−1

Similarly we define the adaptive method based on Newton’s method.
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Algorithm 12 Adaptive method based on Newton’s method with improved
orthogonality

(ΛM , UM , U∗
M ) = NewtonImpAdapt(T0, T ∗

0
, V0, V

∗
0
,M, err,Tol,MaxIter,DTE,FIE,TE,ThO)

Construct A0, A∗
0
and B0

{(λj,0, uj,0, u
∗
j,0)}

DTE+FIE

j=1
= Eigensolver(A0,A

∗
0
,B0,B

∗
0
,DTE + FIE,

Tol,MaxIter)
(Λ0, U0, U

∗
0 ) = (λTE,0, uTE,0, u

∗
TE,0)

m = 1
repeat

Construct the mesh Tm and the finite element space Vm adapting Tm−1 and Vm−1

Construct the mesh T ∗
m and the finite element space V ∗

m adapting T ∗
m−1

and V ∗
m−1

Construct Am, A∗
m, AU

m, Bm, B∗
m, BU

m

{(λj,m, uj,m, u∗
j,m)}DTE+FIE

j=FIE
= NewtonImpOrtho(Am,A∗

m,AU
m,Bm,B∗

m,BU
m,

{(λ̃j,n−1, {(λj,m−1, uj,m−1, u
∗
j,m−1

)}DTE+FIE

j=FIE
,ThO)

(Λm, Um, U∗
m) = Reconstruction({(λj,m, uj,m, u∗

j,m)}FIE+DTE

j=FIE
, (Λm−1, Um−1, U

∗
m−1

))

Compute the a-posteriori error estimator ecm as in Algorithm 5
Compute the a-posteriori error estimator e

c,∗
m as in Algorithm 5

m = m+ 1
until m > M or max{ecm−1

, e
c,∗
m−1

} ≤ err
ΛM = Λm−1

UM = Um−1

U∗
M = U∗

m−1

11 A Priori Convergence Results

In this section we present some a priori estimates for non-symmetric eigenvalue
problems on independent meshes. To our best knowledge, this is the first time
such results are presented.

The results prove exponential convergence of the method under uniform
refinement and cast some hopes that the same kind of convergence is achieved
with adaptive refinement as well. This will be confirmed by the numerical
results in Section 12.3. Moreover, in Theorem 4 and Theorem 5 we prove a
priori convergence results for the reconstructed triplet (Λn, Un, U

∗
n) for both

coercive and non-coercive bilinear forms a(·, ·).
The distance of an approximate eigenfunction from the true eigenspace is a

crucial quantity in the convergence analysis for eigenvalue problems especially
in the case of non-simple eigenvalues.

Definition 1 Given a function v ∈ L2(Ω) and a finite dimensional subspace
P ⊂ L2(Ω), we define:

dist(v,P)1 = min
w∈P

‖v − w‖1.

From now on we shall let C denote a generic constant which may depend on
the true eigenvalues and vectors of (3) and other constants introduced above,
but is always independent of n, as well as hn, h

∗
n, pn and p∗n. The next lemma

comes from the results in [3] and from standard hp-FEM results.
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Lemma 1 Suppose that the bilinear form a(·, ·) is coercive and suppose 1 ≤
j ≤ min{dimVn, dimV ∗

n }. Let λj be an eigenvalue with corresponding eigenspaces
E(λj), E

∗(λj) ⊂ H1+µ(Ω), for µ > 1, of any (finite) dimension and let
(λj,n, uj,nu

∗
j,n) be an eigentriplet of (6). Then, for finite element spaces Vn

and V ∗
n sufficiently rich,

(i)

|λj − λj,n| ≤ C
hµ
n

pµn

(h∗
n)

µ

(p∗n)
µ
; (15)

(ii)

dist(uj,n, E1(λj))1 ≤ C
hµ
n

pµn
, (16)

(iii)

dist(u∗
j,n, E

∗
1 (λj))1 ≤ C

(h∗
n)

µ

(p∗n)
µ
, (17)

with 1 ≤ µ ≤ min{pn, p
∗
n}.

Proof In this proof we use th results in [3], those results are stated for discrete
and continuous eigenfunctions normalized in the H1 norm, However in this
work we normalize the eigenfunctions in a different way. It is however easy to
see that the change in the normalization does not affect the final results. In
fact let ũ, ũ∗ be the left and right eigenfunctions corresponding to the same
eigenvalue where both functions are normalized in the H1 norm and let un,
u∗
n be the computed approximations using one of the methods presented in

this work, then denoting by u = ũ/|b(ũ, ũ∗)|1/2 and by un = ũn/|b(ũn, ũ
∗
n)|

1/2,
where ũn, ũ

∗
n are un, u

∗
n normalized in H1 and supposing that both ũ − ũn

and ũ∗ − ũ∗
n are converging, we have that

u− un =
ũ

|b(ũ, ũ∗)|1/2
−

ũn

|b(ũn, ũ∗
n)|

1/2

= |b(ũ, ũ∗)|−1/2(ũ− ũn) + un(|b(ũ, ũ
∗)|−1/2 − |b(ũn, ũ

∗
n)|

−1/2) ,

and

u∗ − u∗
n =

ũ∗

|b(ũ, ũ∗)|1/2
−

ũ∗
n

|b(ũn, ũ∗
n)|

1/2

= |b(ũ, ũ∗)|−1/2(ũ∗ − ũ∗
n) + u∗

n(|b(ũ, ũ
∗)|−1/2 − |b(ũn, ũ

∗
n)|

−1/2) ,

where the second sequences on the rhs converges by the assumption that the
sequences normalized in H1 converges.

First consider part (i), the estimate in (15) comes from Theorem 8.3 in [3]
which gives

|λj − λj,n| ≤ C sup
u∈E1(λj)

inf
vn∈Vn

‖u− vn‖1 sup
u∗∈E∗

1
(λj)

inf
v∗

n∈V ∗

n

‖u∗ − v∗n‖1.
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Combining this with standard finite element error estimates for hp-method,
we get

|λj,n − λj | ≤ C
h
min(µ,p)
n

pµn
sup

u∈E1(λj)

‖u‖1+µ
(h∗

n)
min(µ,p∗)

(p∗n)
µ

sup
u∗∈E∗

1
(λj)

‖u∗‖1+µ,(18)

To obtain (ii), we use Theorem 8.4 in [3]:

dist(uj,n, E1(λj))1 ≤ C sup
u∈E1(λj)

inf
vn∈Vn

‖u−vn‖1 ≤ C
h
min(µ,p)
n

pµn
sup

u∈E1(λj)

‖u‖1+µ .

The proof of (iii) is analogous to (ii).

The next theorem shows that also the reconstructed triplet (Λn, Un, U
∗
n)

converges in a similar way to standard computed eigenpairs. It is interesting
to remind that in general (Λn, Un, U

∗
n) is not an eigentriplet of the discrete

problem (6).

Theorem 4 Suppose that the bilinear form a(·, ·) is coercive and suppose
1 ≤ j ≤ min{dimVn, dimV ∗

n }. Let λj be an eigenvalue with corresponding
eigenspaces E(λj), E

∗(λj) ⊂ H1+µ(Ω), for µ > 1, of any (finite) dimension
and let (Λn, Un, U

∗
n) be an reconstructed triple of (6). Then, for finite element

spaces Vn and V ∗
n sufficiently rich,

(i)

|λj − Λn| ≤ C
hµ
n

pµn

(h∗
n)

µ

(p∗n)
µ
; (19)

(ii)

dist(Un, E1(λj))1 ≤ C
hµ
n

pµn
, (20)

(iii)

dist(U∗
n, E

∗
1 (λj))1 ≤ C

(h∗
n)

µ

(p∗n)
µ
, (21)

with 1 ≤ µ ≤ min{pn, p
∗
n}.

Proof Denoting by

U =

R
∑

i=1

ci ui, U∗ =

R
∑

i=1

c∗i u∗
i ,

we have that

dist(Un, E1(λj))1 ≤ ‖U − Un‖1 ≤

R
∑

i=1

dist(ui,n, E1(λj))1.

and

dist(U∗
n , E

∗
1 (λj))1 ≤ ‖U∗ − U∗

n‖1 ≤
R
∑

i=1

dist(u∗
i,n, E

∗
1 (λj))1.
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Then results (ii) and (iii) comes straightforwardly form Lemma 1(ii-iii).
From the canonical form result for compact operators, see [22, Theorem 9.17]

we have for any ui, u
∗
j eigenfunctions with i 6= j that a(ui, u

∗
j ) = b(ui, u

∗
j ) = 0.

Similarly by construction also the computed eigenfunctions satisfy a(ui,n, u
∗
j,n) =

b(ui,n, u
∗
j,n) = 0 for any i 6= j. So from the reconstruction process we have that

Λn =
a(Un, U

∗
n)

b(Un, U∗
n)

=

∑R
i=1 cic

∗
i a(ui,n, u

∗
i,n)

∑R
i=1 cic

∗
i

=

∑R
i=1 cic

∗
iλi,n

∑R
i=1 cic

∗
i

.

In a similar way we have from the definition of the continuous problems:

a(U,U∗)

b(U,U∗)
=

∑R
i=1 cic

∗
i a(ui, u

∗
i )

∑R
i=1 cic

∗
i

= λ .

Then

|λ− Λn| =

R
∑

i=1

|cic
∗
i |

|
∑R

i=1 cic
∗
i |
|λ− λi,n| ,

Then the result comes from Lemma 1(i).

The bilinear form a(·, ·) is not necessary coercive, but from G̊arding’s in-
equality, see [23, Theorem (5.6.8)], we have that either a(·, ·) or a(·, ·) with a
shift is coercive, i.e., a(·, ·) +Kb(·, ·), with K > 0. In the latter case, we can
define a new bilinear form ã(·, ·) = a(·, ·) +Kb(·, ·) and all the results in this
section still hold. Moreover it is easy to see that λ is an eigenvalue for a(·, ·) if
and only if σ = λ+K is an eigenvalue of ã(·, ·). Also (λ, u) and (λ, u∗) are left
and right eigenpairs of a(·, ·) if and only if (σ, u) and (σ, u∗) are left and right
eigenpairs of ã(·, ·). This is also true for the discrete spectra, so the action of
the shift Kb(·, ·) shifts the spectrum by K, but keeps the eigenfunctions. In
particular it is not necessary to use the shifted form ã(·, ·) in practice, because
all methods presented in this paper work also if a(·, ·) is not coercive and the
equivalence of the discrete spectra does the rest. Now we recast the previous
two results for a not coercive a(·, ·). The proofs are straightforward because
the results in [3] hold also for ã(·, ·).

Lemma 2 Suppose that the bilinear form a(·, ·) is not coercive, but ã(·, ·) is
coercive. Suppose 1 ≤ j ≤ min{dimVn, dimV ∗

n }. Let λj be an eigenvalue
with corresponding eigenspaces E(λj), E

∗(λj) ⊂ H1+µ(Ω), for µ > 1, of
any (finite) dimension and let (λj,n, uj,nu

∗
j,n) be an eigentriplet of (6) and

(σj,n, uj,n, u
∗
j,n) is the corresponding discrete eigentriplet for ã(·, ·). Then, for

finite element spaces Vn and V ∗
n sufficiently rich,

(i)

|λj − λj,n| = |λj +K − λj,n −K| = |σj − σj,n| ≤ C
hµ
n

pµn

(h∗
n)

µ

(p∗n)
µ
, (22)
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(ii)

dist(uj,n, E1(λj))1 ≤ C
hµ
n

pµn
, (23)

(iii)

dist(u∗
j,n, E

∗
1 (λj))1 ≤ C

(h∗
n)

µ

(p∗n)
µ
, (24)

with 1 ≤ µ ≤ min{pn, p
∗
n}.

The proofs of (ii) and (iii) are trivial because the eigenfunctions are not
modified by the shift in ã(·, ·).

Theorem 5 Suppose that the bilinear form a(·, ·) is coercive and suppose
1 ≤ j ≤ min{dimVn, dimV ∗

n }. Let λj be an eigenvalue with corresponding
eigenspaces E(λj), E

∗(λj) ⊂ H1+µ(Ω), for µ > 1, of any (finite) dimension
and let (Λn, Un, U

∗
n) be the reconstructed triplet of (6) and (Σn, Un, U

∗
n) is the

corresponding discrete triplet for ã(·, ·). Then, for finite element spaces Vn and
V ∗
n sufficiently rich,

(i)

|σj −Σn| = |λj − Λn| ≤ C
hµ
n

pµn

(h∗
n)

µ

(p∗n)
µ
; (25)

(ii)

dist(Un, E1(λj))1 ≤ C
hµ
n

pµn
, (26)

(iii)

dist(U∗
n, E

∗
1 (λj))1 ≤ C

(h∗
n)

µ

(p∗n)
µ
, (27)

with 1 ≤ µ ≤ min{pn, p
∗
n}.

12 Numerical Results

12.1 Orthogonality technologies

In this first set of examples, we would like to show the advantages of the
orthogonality technologies presented in Sections 5, 6 and 10. We want to ap-
proximate the fifth eigenvalue and the corresponding eigenfunction of problem
(1) on the square domain [0, π]2 and with b = (0.5, 0.5) and c = 0 just call-
ing Picard’s method as in Algorithm 1 with no orthogonalization and starting
with four quadratic elements forming the initial structured mesh. So, as al-
ways, we compute the approximation of the first fifth eigenpair on the initial
coarse mesh with a generalized eigensolver, then we adapt the mesh for the
fifth eigenpair and from that point on we use Picard’s method. As can be seen
from the piece of output below, already on the first adapted mesh Picard’s
method goes away from the correct value 98.8210440108936 for the eigenvalue
and converges closer to the first eigenvalue 19.8642088021787:
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- Picard iter 1, ndof 121, eigenvalue: 100.63886872115, err_rel 82.1409%

- Picard iter 2, ndof 121, eigenvalue: 72.061449013246, err_rel 26.0106%

- Picard iter 3, ndof 121, eigenvalue: 24.048653326668, err_rel 189.064%

- Picard iter 4, ndof 121, eigenvalue: 19.896859692653, err_rel 119.932%

- Picard iter 5, ndof 121, eigenvalue: 19.842805664953, err_rel 26.1302%

- Picard iter 6, ndof 121, eigenvalue: 19.859718273742, err_rel 5.49526%

- Picard iter 7, ndof 121, eigenvalue: 19.863473026642, err_rel 1.30883%

- Picard iter 8, ndof 121, eigenvalue: 19.864119690489, err_rel 0.395458%

- Picard iter 9, ndof 121, eigenvalue: 19.864225593476, err_rel 0.144903%

- Picard iter 10, ndof 121, eigenvalue: 19.864242730568, err_rel 0.0571376%

- Picard iter 11, ndof 121, eigenvalue: 19.864245495476, err_rel 0.0229224%

- Picard iter 12, ndof 121, eigenvalue: 19.864245941239, err_rel 0.0092188%

- Picard iter 13, ndof 121, eigenvalue: 19.864246013093, err_rel 0.00370628%

- Picard iter 14, ndof 121, eigenvalue: 19.864246024674, err_rel 0.00148921%

- Picard iter 15, ndof 121, eigenvalue: 19.864246026541, err_rel 0.000598148%

- Picard iter 16, ndof 121, eigenvalue: 19.864246026842, err_rel 0.000240197%

- Picard iter 17, ndof 121, eigenvalue: 19.864246026890, err_rel 9.64444e-05%

This is a clear example of what was predicted in Theorem 1. On the other
hand, using the standard orthogonality (Section 5) we cure this problem and
the method converges to the correct eigenpair.

12.2 Approximating eigenfunctions on individual meshes

Next we would like to illustrate that in general each eigenfunction should be ap-
proximated on its own mesh. We choose the L-shape domain with b = (0.5, 0.5)
and c = 0 where the eigenfunctions of the first eigenvalue exhibit singularities
in the gradient at the re-entrant corner while the eigenfunctions of the sec-
ond eigenvalue are completely smooth. The differences in the regularity are
reflected in the adapted meshes: For the first eigenfunction a great amount of
h-refinement takes place at the re-entrant corner. For the second eigenfunction
we have an adapted mesh mostly characterized by p-refinement. Moreover the
fact that the operator in non-symmetric affects in different ways the left and
right eigenfunctions. In fact as can be seen the strength of the singularity at
the re-entrant corner is different in the left and right eigenfunctions for the
first eigenvalue and this is reflected in differences in the corresponding adapted
meshes. Similarly also the left and right eigenfunctions of the second eigen-
value are not the same, even if both are smooth in this case, and this is again
reflected in differences in the corresponding adapted meshes. These results are
shown in Figs. 3, 4, 5 and 6.

12.3 Domains with few reentering corners

We conclude the numerics section considering the model problem (1) on the
square domain Ω with a square hole and with b = (1, 0) and c = 0. Assuming
that we are interested in the eigenfunctions corresponding to the first eigen-
value, see Fig. 7 and that we use the initial mesh in Fig. 8, we want to study
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Fig. 3 First eigenfunctions for the first eigenvalue of the L-shaped domain.

Fig. 4 Adapted meshes with polynomial degrees after 8 adaptive steps for the eigenfunc-
tions in Fig. 3.

Fig. 5 First eigenfunctions for the first eigenvalue of the L-shaped domain.

the convergence of our hp-adapted method on independent meshes based on
Picard’s method, i.e., Algorithm 11.

In Fig. 9 we present the adapted meshes for the left and right eigenfunc-
tions after 12 applications of the adaptive procedure. As can be seen the two
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Fig. 6 Adapted meshes with polynomial degrees after 8 adaptive steps for the eigenfunc-
tions in Fig. 5.

meshes are different in order to fit with the different characteristics of each
eigenfunction.

In Fig. 10 the number of degrees of freedoms are plotted against the er-
rors from both the left and right eigenfunctions. As can be seen, even if the
eigenfunctions are different, both meshes are adapted in such a way that the
convergence rate is very similar. Moreover the fact that the curves in Fig. 10
seem to approximate straight lines, which suggests exponential convergence
rate. In Fig. 11 the errors are plotted against the number of adapted steps.
Also in this case the convergence look exponential for both eigenfunctions.
Finally in Fig. 12 we report the number of iterations at each adaptive step
necessary to Picard’s method in Algorithm 11 to converge with relative error
1e − 3 and absolute error 1e − 9. On average the number of iterations seems
to reduce after each adaptation of the meshes and after the 14th adaptation
the number of iterations settle to 2. This is particularly interesting from a
numerical point of view because the number of iterations are minimum where
the linear system is bigger making the method quite cheap to use.

Fig. 7 Left and right eigenfunctions corresponding to the first eigenvalue.
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Fig. 8 Initial mesh with polynomial degrees.

Fig. 9 hp-adapted meshes with polynomial degrees for the left and right eigenfunctions
after 12 adaptations.

13 Conclusion and Outlook

In this paper we have generalized the results of [19] to non-symmetric eigen-
value problems. Through many numerical experiments, of which just a few
were presented here, we gained confidence that the methods work well in prac-
tice.

The major contribution of these results is that one does not have to call
the generalized eigensolver in every adaptivity step and always compute all
eigenpairs or eigentriplets. Instead, one can select one or a few of them and



30 Pavel Solin, Stefano Giani

2 4 6 8 10 12 14 16
10

−1

10
0

10
1

10
2

E
rr

or
 %

DOFs1/3

 

 

Left Eigenfunction
Right Eigenfunction

Fig. 10 Convergence plots in number of degrees of freedom.
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Fig. 11 Convergence plots in number of mesh adaptations.

resolve them adaptively on meshes that moreover evolve differently during the
adaptivity process.
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Fig. 12 Number of iterations for Picard’s method after each mesh adaptation.

In the next steps, we will employ the multi-mesh hp-FEM to actually do
this. Our target applications will be neutronics and the Density Functional
Theory (DFT) in quantum chemistry.
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