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Abstract One of the major challenges related to self-adaptive software systems
is the provision of assurances that the system is resilient against changes that may
occur either in the system or its environment. These assurances should be based on
complementary sources of evidence that collectively justify that the system is able to
attain the specified levels of resilience. The contribution of this paper is the definition
and development of an architecture-based approach that evaluates by comparison the
adaptation mechanisms of a self-adaptive software system. The proposed approach
relies on the identification of representative environmental and system changeloads
(i.e., sequences of changes) used in the run-time stimulation of the system. The system
response obtained from this stimulation is collected and aggregated into a probabilistic
model that is employed in the evaluation of system resilience. Our approach is intended
to be used before deployment, since the process often involves putting the system
through adverse conditions which are not adequate when the system is in production.
The feasibility and effectiveness of the proposed approach is demonstrated in the
context of Rainbow, an architecture-based platform for self- adaptation, and Znn.com,
a case study that reproduces the typical infrastructure for a news website.
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1 Introduction

Modern software systems are increasingly complex, pervasive, and tend to operate in
unpredictable environments. Approaches known as autonomic, self-adaptive or self-
healing computing have been promoted as a means for developing dependable systems
in a cost-effective manner. These approaches not only support fault recovery, but are
also able to deal with more subtle conditions related to the operational state of the
system or its environment (e.g., gradual degradation in performance, etc.). One way
of handling the complexity of these systems is to use architectural models that provide
a high-level view of the system [14,23].

Unfortunately, in addition to the uncertainty associated with run-time changes, the
ability of handling changes during run-time, and the provision of flexibility, comes at
the price of reducing the predictability of adaptation mechanisms with respect to the
dependability requirements of the system. How can one assess if a system will maintain
its dependability at run-time in spite of changes that may occur in the system or its envi-
ronment? Is there a way to determine if a particular alternative for adaptation is better
than another one, or that a particular repair will not make the situation worse? Although
major advances have been made, existing approaches in self-adaptation do not system-
atically address the need to determine if a self-adaptive system can deliver a service that
can justifiably be trusted when facing changes [11] (i.e., that it will be resilient [21]).
This lack of assurances is an important issue that hampers widespread adoption of self-
adaptive systems, which are often regarded as not being dependable by the industry.

To tackle this problem, we propose an architecture-based approach to evaluate
resilience in self-adaptive systems. Specifically, we advocate the complementary use
of architectural models and run-time stimulation (including testing) to assess the
resilience of self-adaptive systems. The number of potential changes that the sys-
tem and its environment can go through at run-time is virtually unbounded. Hence,
the need to focus on identifying only the relevant stimuli (being those that trigger
adaptation mechanisms of particular interest) that have the best potential to unveil
system or environmental changes for evaluating how the system responds to them.

To achieve this goal, our technique consists of two stages:
– Identification of changeload, where architectural models are exploited to identify

and select the most relevant (sequences of) changes (i.e., the changeload) that have
the best potential to unveil system faults during run-time stimulation. Since it is
unfeasible to consider all possible changes that can affect the system, we follow a
risk-based approach that uses models to identify the most relevant stimulus (such
as, variations in the conditions of the operational environment and system faults)
in terms of type of change, probability of occurrence, and potential impact on the
system.

– Run-time stimulation, where the system and its environment are stimulated dur-
ing execution according to the changeload, and information about the system’s
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response is collected and aggregated into a probabilistic model of the system’s
behavior, used to evaluate by comparison alternative adaptation mechanisms.

Architectural models play a prominent role in our approach to unveil relevant
changeloads and drive stimulations, enabling us to: (i) identify environmental stimu-
lus to steer the system towards invariant violations that trigger adaptation; (ii) obtain
a profile of the system that is used to identify the most representative stimulus for
the system, once it is undergoing adaptation; (iii) obtain probabilistic models of the
system’s behavior during adaptation. Although probabilistic behavioral models are
obtained during run-time stimulation, they are built over the set of properties con-
tained in the architectural model, and describe the evolution of the values of such
properties obtained from monitored variables in the system at run-time. The use of
probabilistic behavioral models enables the quantification of the probability of sat-
isfaction of system properties (expressed in Probabilistic Computation-Tree Logic
(PCTL) [4]) when the system is subject to a particular stimulus.

The novelty of the proposed approach is the definition and development of an inte-
grated framework for evaluating, by comparison, the resilience of adaptation mecha-
nisms for self-adaptive systems. The architectural-based approach relies on the identi-
fication of representative changeloads for the system and its environment to be used for
stimulating the system during run-time. Our approach permits a cost-effective com-
parison of alternative adaptations, and is well-suited to be used as guidance for system
evolution, by helping the developer to assess improvements (or the lack thereof) of
new versions of adaptation mechanisms against resilience metrics. We illustrate and
validate our proposal with the aid of Znn.com [10], a case study implemented using
Rainbow [14], a platform for architecture-based self-adaptation.

The rest of the paper is organized as follows. Sect. 2 describes the Znn.com case
study that will be used throughout the paper. Section 3 presents some background
information related to the proposed approach. Section 4, details an architecture-based
framework for evaluating resilience of self-adaptive systems, which is based on prob-
abilistic model checking. Section 5 describes the experiments carried out for demon-
strating the effectiveness of the approach. Section 6 describes some related work.
Finally, Sect. 7 concludes the paper, indicating future research directions.

2 Case study

To illustrate our approach for evaluating adaptation mechanisms by comparison, we
use the Znn.com case study [10], which is able to reproduce the typical infrastructure
for a news website. It has a three-tier architecture consisting of a set of servers that
provide contents from backend databases to clients via frontend presentation logic.
Architecturally, it is a web-based client-server system that satisfies an N-tier style, as
illustrated in Fig. 1. The system uses a load balancer to balance requests across a pool
of replicated servers, the size of which can be adjusted according to service demand.
A set of client processes makes stateless requests, and the servers deliver the requested
contents (i.e., text, images and videos).

The main objective for Znn.com is to provide content to customers within a reason-
able response time, while keeping the cost of the server pool within a certain operating
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Fig. 1 Znn.com system
architecture
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budget. It is considered that from time to time, due to highly popular events, Znn.com
experiences spikes in request s that it cannot serve adequately, even at maximum pool
size. To prevent losing customers, the system can provide minimal textual contents
during such peak times, instead of not providing service to some of its customers. Con-
cretely, we identify two main quality objectives for the self-adaptation of the system:
(i) maximizing performance, which depends on request response time, server load,
and network bandwidth; and (ii) minimizing cost, associated to the number of active
servers.

Znn.com is implemented using Rainbow [9,14] (introduced in Sect. 3), a plat-
form that supports architecture-based self-adaptation. Rainbow is capable of analyzing
trade-offs among the different objectives, and execute different adaptations according
to the particular run-time conditions of the system. For instance, in Znn.com, when
response time becomes too high, the system should increment server pool size if it is
within budget to improve its performance; otherwise, servers should be switched to
textual mode (start serving minimal text content) if cost is near budget limit.

3 Background

Over the past few years, the run-time management of increasingly complex software-
intensive systems has become one central concern in Software Engineering [8]. Con-
cretely, one of the major issues in this area is related to achieving conformance to
functional and non-functional requirements in a dependable and cost-effective man-
ner while changes may affect the system, its environment, or the system goals.

One of the proposals addressing this concern was IBM’s Autonomic Computing
initiative [19] by introducing a self-adaptive layer to manage the target system, imple-
menting what is known as the MAPE-K control loop to Monitor relevant variables in
the system, Analyze whether adaptation is required, Plan the best course of action,
and Execute adaptation, with the addition of a shared Knowledge base, acting as a
cornerstone of the process.

There are other approaches that also rely on a closed-loop control approach to self-
adaptation but exploit architectural models for reasoning about the target system under
management [14,23]. In this paper, we focus on Rainbow [14], an architecture-based
platform for self-adaptation, which has the following distinct features: an explicit
architecture model of the target system, a collection of adaptation strategies, and
utility preferences to guide adaptation. Rainbow leverages the notion of architectural
style [1] to exploit commonalities between systems, providing reusable infrastructures

123



Architecture-based resilience evaluation for self-adaptive systems

Fig. 2 The Rainbow framework

with explicit customization points that can be applied to a wide range of systems. The
goal is to provide a base of reusable infrastructure through customization, which aims
to reduce the cost of development.

The framework defined by Rainbow includes mechanisms for (Fig. 2): monitoring a
target system and its environment (using the observations for updating the architectural
model of the target system), detecting opportunities for improving the system’s quality
of services (QoS), deciding the best course of adaptation based on the state of the
system.

Building upon the elements of the architectural style, Rainbow provides a language
called Stitch [9] to represent human adaptation knowledge using three high-level con-
cepts:

– Operator is the most primitive unit of execution. Represents a basic configuration
command provided by the system (corresponding to a system-level effector), and
are determined by the architectural style of the system.

– Tactic is an abstraction that groups operators to form a single step of adaptation.
Tactics are used as primitive actions, and have an associated cost/benefit impact
on the different quality dimensions. Using the operators in the architectural style
of Znn.com, we can specify pairs of tactics with opposing effects for enlisting/dis-
charging servers, and raising/lowering server content fidelity.

– Strategy encapsulates an adaptation process, where each step is the conditional exe-
cution of a tactic. Strategies are characterized in Stitch as a tree of condition-action-
delay decision nodes, where delays correspond to a time-window for observing
tactic effects. System feedback (through the dynamically-updated architectural
model of the system) is used to determine the next action (i.e., tactic) at every step
during strategy execution.
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Let us consider a sample strategy to reduce response time:

1 import model "ZnnSys.acme" {ZnnSys as M, ZnnFam as T};
2 import model "ZnnEnv.acme" {ZnnEnv as E};
3 importlib "znn. tactics " ;
4
5 define boolean styleApplies=Model.hasType(M, "ClientT") && Model.hasType(M, "ServerT") ;
6 define boolean cViolation=exists c :T. ClientT in
7 M.components | c .expRspTime > M.MAX_RSPTIME;
8
9 strategy ReduceResponseTime [styleApplies && cViolation]{

10 define boolean hiLatency =
11 exists k :T.HttpConnT in M. connectors | k. latency > M.MAX_LATENCY;
12 define boolean hiLoad =
13 exists s :T.ServerT in M.components | s . load > M.MAX_UTIL;
14
15 t1 : (#[Pr{t1}] hiLatency)−>switchToTextualMode()@[1000/∗ms∗/]{
16 t1a : (success)−>done;
17 }
18 t2 : (#[Pr{t2}] hiLoad)−>enlistServer (1)@[2000/∗ms∗/]{
19 t2a : ( !hiLoad)−>done;
20 t2b : ( ! success)−>do[1] t1 ;
21 }
22 t3 : ( default )−>fai l ;
23 }

Strategy ReduceResponseTime first specifies its applicability condition, which is
used in strategy selection to determine whether the strategy should be considered. In
this example, this condition is defined using predicates styleApplies (line 5), which
checks whether the model defines the architectural types used in the strategy, and
the predicate cViolation (lines 6–7), which checks for the condition that some client
is experiencing above-normal response time. Moreover, the example strategy defines
two Boolean auxiliary functions, hiLatency (lines 10–11) and hiLoad (lines 14–15). In
the body of the strategy, node t1 (lines 12–13), executes tactic switchToTextualMode if
hiLatency evaluates to true. To account for the delay in observing the outcome of tactic
execution in the system, t1 specifies a delay window of 1,000 ms (end of line 15).
During the tactic execution, the child node t1a is evaluated either when the intended
effect of the tactic switchToTextualMode is observed (this intended tactic effect is defined
in a separate tactic script, and in the case of switchToTextualMode consists in reducing
response time below threshold M.MAX_RSPTIME ), or if the intended tactic effect is not
observed, as soon as the delay window expires. Keyword success is used to evaluate
whether the intended effect for the tactic (in this case, the one in t1 ) has been achieved,
finishing the execution of the strategy ( done ) if the tactic has been successful. Finally,
node t2 (line 18) contains a tactic enlistServer which activates a new server. If load
is reduced (node t2a , line 19) execution finishes, otherwise (node t2b ) the strategy
executor repeats the execution of node t1 one time - t1[1] , line 20).

4 Architecture-based framework for evaluating resilience

In this section, we start by providing an overview of our approach and framework for
resilience evaluation, and then formally describe the models on which the proposed
framework relies upon.
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Fig. 3 Use scenarios for the architecture-based resilience evaluation framework

Figure 3 illustrates the possible use scenarios of our framework for architecture-
based resilience evaluation: (i) Evaluation of Adaptation by Comparison, which makes
use of relative resilience metrics in order to compare how different adaptive solu-
tions respond to a particular set of (system or environmental) conditions; and (ii)
Comprehensive Evaluation of Adaptation, which exploits a comprehensive set of
resilience metrics for the independent evaluation of an adaptive system. However, the
current paper focuses in evaluation by comparison, dealing only with the evaluation
of resilience in alternative adaptive solutions, relative to a representative changeload
particular to the specific kind of situations that adaptation tackles.

Our approach for evaluating resilience is intended to be used by the developer of the
system just before its deployment, since the process often involves putting the system
through adverse conditions which are not adequate when the system is already in
production. Moreover, it is worth observing that although the approach can be applied
to systems that include third-party components as long as the developer has control
over their deployment, when the system includes third-party components deployed at
remote locations (e.g., Web services), the approach is limited in the kind of changes
that can be injected (e.g., simulating a remote service being down).

Our architecture-based framework for evaluating the resilience of self-adaptive
systems consists of two main stages, as shown in Fig. 4 1:

1. Changeload identification consists in identifying the sequence of changes (i.e.,
the changeload) relevant for the run-time stimulation of the system and its envi-
ronment. This stage is further partitioned into:
(a) Environment stimulation, whose objective is to identify the environmental

changeload required to drive the environment towards conditions that trigger
system adaptations2.

1 Steps decorated with a gear in the figure are fully automatic, whereas steps decorated with the designer
are entirely manual. The remaining steps are partially automated, requiring input from the user.
2 In the remainder of this paper, we make a distinction between the general term adaptation or adaptation
alternative, and adaptation strategy in the concrete context of Rainbow.
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Fig. 4 Overview of the framework

(b) Architecture-driven system stimulation, that deals with identifying the system
changeload to be used in assessing the resilience of adaptation mechanisms.
Each of the aforementioned stages is further divided into (i) Static Analysis,
which identifies variables and operations (based in operators of the archi-
tectural style in the case of architecture-driven system stimulation) that are
referred in adaptations, architecture, and environment models; (ii) Dynamic
Analysis, in which the elements identified during static analysis are refined
into a set of changes that are later applied to the running system to assess their
impact; and (iii) Filtering/Cutoff, of changes ranked by impact and filtered by
relevance.

Each of the aforementioned stages is further divided into (i) Static Analysis, which
identifies variables and operations (based in operators of the architectural style in
the case of architecture-driven system stimulation) that are referred in adaptations,
architecture, and environment models; (ii) Dynamic Analysis, in which the ele-
ments identified during static analysis are refined into a set of changes that are later
applied to the running system to assess their impact; and (iii) Filtering/Cutoff, of
changes ranked by impact and filtered by relevance.

2. Run-time stimulation of the running system and its environment, according to the
changeload identified at the previous stage to determine the best of several alter-
natives when tackling a particular situation that requires adaptation. This stage is
divided into: (i) Criteria Definition, where resilience metrics are defined according
to the system goals, (ii) Experimentation in which the system and its environment
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are stimulated according to the changeload and information regarding the system’s
execution for each adaptation alternatives is collected, according to the metrics, as
sets of execution traces, and (iii) Scoring/Ranking, where each set of traces of a
particular adaptation alternative is transformed into a probabilistic response model
of the system, which is used as input to a probabilistic model-checker in addition
to the resilience properties obtained from system goals.

4.1 Framework models

This section introduces the different kinds of model that we use in our approach,
namely: (i) architecture and environment models that describe the system’s structure
and environment operational conditions; (ii) behavioral models that enable the evalua-
tion of the system’s probabilistic response to changes; and (iii) changeload model that
systematically describe the changes that the system will be subjected to for evaluation
purposes.

4.1.1 Architecture and environment models

We start this section by formally defining our system architectural model and envi-
ronment model.

Definition 1 (Architecture model) An architecture model is a tuple A=(T ,G,Γsys),
where:

– T = Tcomp ∪ Tconn is a set of architectural types, where Tcomp and Tconn are the
sets of component and connector types, respectively,

– G = (N , E) is a graph describing a system configuration, where:
– N is a set of nodes, where a typing Λ assigns an architectural type Λ(n) ∈ T

to every n ∈ N .
– E is a set of edges, where each one of them consists of an unordered pair of

nodes (n, n′), such that Λ(n) ∈ Tcomp and Λ(n′) ∈ Tconn ,
– Γsys is a function that assigns a set of properties Γsys(ty) to each architectural type

ty ∈ T .

The component-and-connector style of architecture descriptions used in this work is
inspired by the ACME ADL [15]. Moreover, we assume that our architectural models
meet a set of constraints imposed by the architectural style used 3, that we leave implicit
in our definition for the sake of clarity.

Definition 2 (Environment model) An environment model associated with an archi-
tecture model A = (T ,G,Γsys), is a function Γenv that assigns a set of environment
properties Γenv(ty) to each architectural type ty ∈ T .

Example 1 Figure 5 displays an architecture model of an instance of Znn.com, where
the set of architectural types is T = {ClientT, HttpConnT, ProxyT, ServerT}.

3 Architectural styles are patterns of system organization that enable the exploitation of commonalities
across systems [24].
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c0:ClientT

c0.expRspTime

c1:ClientT

c1.expRspTime
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h1.latency
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h2.latency
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s0:ServerT
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s0.isActive

s0.load
s0.cost

s1:ServerT
s1.fidelity
s1.isActive   

s1.load
s1.cost

p0:ProxyT

p0.load

Fig. 5 Architecture model for an instance of Znn.com

Properties for each of each of the architectural types include Γsys(HttpConnT) =
{bandwidth}, and Γsys(ServerT) = {fidelity, isActive}. Environment proper-
ties (displayed inside the gray boxes) include Γenv(ClientT) = {expRspTime},
Γenv(ProxyT) = {load},Γenv(HttpConnT) = {latency} and Γenv(ServerT) =
{load, cost}.

4.1.2 Probabilistic models

In this section, we introduce the kind of probabilistic models that we use to reason
about the behavioral response of the system, either in the presence of changes in
its environment, or as it undergoes adaptation. In particular, we employ Discrete-
Time Markov Chains (DTMCs) [20] as the basis to represent probabilistic behavior.
Moreover, we introduce the kind of properties that we check, as well summarize as
Probabilistic Computation Tree Logic (PCTL) [4], the language used for expressing
them.

System behavior is directly observed through the monitoring of a set of properties on
the architecture model during system execution. Concretely, in architecture-based self-
adaptive platforms, relevant system-level variables that describe the system’s behav-
ior are mapped to component and connector properties in the architecture model. In
particular, the behavior of the system at run-time can be characterized through a col-
lection of n real-valued random variables X = {x1, . . . , xn}, that can be mapped to⋃

ty∈T
Γsys(ty), given an architecture model A = (T ,G,Γsys).

The process of sampling in time and space these variables results in their natural
quantization and time-discretization, in such a way that ∀xi∈{1,...,n}:

– [αi ,βi ] is the range of xi , with αi ,βi ∈ R.
– ηi ∈ R+ is a quantization parameter associated to xi , which takes its values in the

set:

[R]xi = {r ∈ R | r = kηi , k ∈ Z, αi ≤ r ≤ βi } .

Hence, given an observed value of xi at time point t (denoted as xi (t)), the corre-
sponding quantized value is obtained as:

quant (xi (t)) = arg min
r∈[R]xi

(|xi (t) − r |).
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Considering all variables in X , we can define a metric space ([Rn]X , δ) where:

– [Rn]X = [R]x1 × . . . × [R]xn characterizes the state-space of the system.
– δ : [Rn]X × [Rn]X → N is a metric such that, for any two states s and s′:

δ(s, s′) = n
max
i=1

|s[i] − s′[i]|
ηi

,

where s[i] indicates the (quantized) value of variable xi in an arbitrary state s.

The metric space defined above is used as the basis to describe the probabilistic
behavior of the system in DTMCs. Moreover, we assume a time discretization para-
meter τ ∈ R+ associated to the sampling period established for the observation of the
variables that determines the transition time in our DTMC-based models.

Discrete-time Markov chains In order to model the behavior of our system, we
employ Discrete-Time Markov Chains, defined as state-transition systems augmented
with probabilities. States represent possible configurations of the system. Transitions
among states occur at discrete time and have an associated probability. DTMCs are
discrete stochastic processes where the probability distribution of future states depend
only upon the current state. Let AP be a fixed, finite set of atomic propositions used
to label states with properties of interest.

Definition 3 (DTMC) A (labelled) Discrete-Time Markov Chain (DTMC), defined
over a metric space ([Rn]X , δ) is a tuple (S, S0, P, L) where:

– S ⊆ [Rn]X is a finite set of states;
– S0 ⊆ S is a set of initial states;
– P : S×S → [0, 1] is a transition probability matrix s.t. ∀s ∈ S,

∑
s′∈S P(s, s′) =

1;
– L : S → 2AP is a labelling function which assigns to each state s ∈ S the set L(s)

of atomic propositions that are true in the state.

Each state in S is an ordered n-tuple containing the quantized values of each of
the system variables considered in the model. Moreover, each element P(s, s′) in the
transition probability matrix represents the probability that the next state of the process
will be s′, given that the current state is s. For the sake of clarity, in the remainder of
this paper we indicate the existence of a transition between two arbitrary states s and
s′ in a DTMC (denoted as s −→ s′) iff P(s, s′) += 0.

Moreover, in order to assess the impact caused by changes in the system, we extend
DTMCs with reward (or cost) functions that enable the quantification of variations in
system variables throughout different execution paths.

Definition 4 (DMRM) A Discrete-time Markov Reward Model (DMRM) is a couple
(D, 〈ρ1, . . . , ρn〉), with DTMC D = (S, S0, P, L) and ρi∈{1,...,n} : S → R+

0
assignment functions that associate a reward to any state in S, where ρi (s) is a reward
obtained on leaving state s. Each of the reward assignment functions ρi corresponds
to variable xi in the state-space [Rn]X , over which DTMC D is built.
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Resilience properties To express resilience properties about the system, we use
PCTL 4 [4], which is a logic language inspired by CTL [4]. With the aid of PCTL, a
designer can express properties about the system that are typically domain-dependent.
Furthermore, to ease the formulation of probabilistic properties, we make use of prop-
erty specification patterns [12] that describe generalized recurring properties in prob-
abilistic temporal logics. In our case, we are interested in how the system responds to
changes, so we restrict ourselves to properties that can be instanced by using proba-
bilistic response patterns [17], adapted to PCTL syntax (see Table 1). These patterns
include a premiseΦ1 that represents in our case a change in the system or its environ-
ment, and a subformula enclosed by the probabilisic operator P./p(.) that represents
the response to that change that we are expecting from the system (with a probability
bound p and a time bound t).

Example 2 To illustrate the use of PCTL for the specification of properties, let us
consider the architecture model of Znn.com introduced in Example 1, where we are
interested in assessing how the system reacts to request response time going above
a particular threshold. Let expRspTime be the variable associated with experienced
request response time (defined as the maximum of all client experienced response
times), and totalCost be the variable associated with operating cost (defined as the
sum of all server operation costs). We can then define the following predicates:

cViolation = expRspTime > MAX_RSPTIME, with

expRspTime = max
n∈N :Λ(n)=ClientT

n.expRspTime, and

hiCost = totalCost ≥ THRESHOLD_COST,

with totalCost =
∑

n∈N :Λ(n)=ServerT

n.cost,

where MAX_RSPTIME is a threshold that establishes the maximum acceptable response
time, and THRESHOLD_COST determines the maximum operating budget expected for the
system. Based on these predicates, we may instantiate the following PCTL property,
making use of the probabilistic constrained response pattern included in Table 1:

P≥1[G(cViolation ⇒ P≥0.85(¬hiCost U≤120¬cViolation))]

This property reads as: “When response time goes above threshold MAX_RSPTIME ,

the probability of lowering response time below MAX_RSPTIME without exceeding the
expected budget THRESHOLD_COST in 120 s is >0.85”.

Moreover, to quantify the impact of changes on the different quality dimensions
of the system, we also make use of Probabilistic Reward CTL (PRCTL) [3], which
extends PCTL with reward-specific operators aimed at the specification of performa-
bility measures over DTMC models. Given an expected reward r ∈ R+

0 , and a time
bound t ∈ N, the formula Y t

./r (Φ) asserts that the instantaneous reward Ir(Φ, t) in
Φ-states (i.e., the states that satisfy the PCTL state formulaΦ) after t transitions from

4 A summary of PCTL is provided in Appendix A.
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Table 1 Probabilistic response specification patterns

PCTL formulation Description

P≥1[G(Φ1 ⇒ P./p(F≤tΦ2))] Probabilistic Response. After state
formula Φ1 holds, state formula Φ2
must become true within time
bound t , with a probability bound
./ p.

P≥1[G(Φ1 ⇒ P./p(¬Φ2U≤tΦ3))] Probabilistic Constrained Response.
After state formula Φ1 holds, state
formula Φ3 must become true,
without Φ2 ever holding, within time
bound t , with a probability bound ./ p.

the origin state, meets bound r . The intuition behind I r(Φ, t) is that of a weighed aver-
age of the individual rewards in Φ-states that can be found exactly after t transitions
from the origin state s, where each individual reward is reduced by the probabilities
found along the path. Additional operators of PRCTL and details on how I r(Φ, t) is
computed can be found in [3]. For multiple rewards, we write Y t,i

./r (Φ) (respectively
I r i (Φ, t)) to indicate that a formula refers to the i-th reward in the corresponding
DMRM (i.e., reward assignment function ρi ). Computation of instantaneous rewards
is illustrated by Example 9, further in this section.

Operational profiles Within a self-adaptive system, we may distinguish between a
conventional operational profile in which the system is operating without experiencing
any anomalies, and non-conventional operational profiles associated with changes in
the system or its environment that induce anomalies in the system (typically triggering
adaptations).

Definition 5 (Conventional operational profile) The conventional operational profile
C of a system is the region of the state space S = [Rn]X where no anomalies hold:

C = {s ∈ S | ∀α ∈ A, s ! α}

where A is the set of possible anomalies that the system can experience expressed as
PCTL state formulae.

Definition 6 (Non-conventional operational profile) A Non-conventional operational
profile N associated with an anomaly α, is the region of the state space S = [Rn]X
where the anomaly holds:

N = {s ∈ S | s |2 α}

where α ∈ A is a PCTL state formula built over the set of atomic propositions AP .

Example 3 Let us consider the predicates introduced in Example 2 as the set of possible
anomalies in the system A = {cViolation,hiCost}. We may then define the
conventional operational profile of the system as:

C = {s ∈ S | s |2 ¬(cViolation ∨ hiCost)}
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That is, the set of states in which the system is operating on budget and according
to an acceptable request response time. Furthermore, associated with each anomaly,
we identify a non-conventional operational profile:

NcV iolation = {s ∈ S | s |2 cViolation}
NhiCost = {s ∈ S | s |2 hiCost}

Appendix B describes in detail how information observed from the system is used
to obtain models of non-conventional operational profiles and impact of anomalies in
the system.

4.1.3 Changeload model

This section describes the proposed model for the changeload, presenting the defini-
tions adopted for the fundamental concepts that form the basis of its structure.

Definition 7 (Change type) A change type, given a set of architectural types T , is
defined as a tuple (src, A, B) that characterizes a change, where:

– src ∈ T identifies the source of the change5,
– A = 〈a1, . . . , ak〉 is a vector of attributes that hold information about the specific

properties (variables) associated with the change type,
– B = 〈b1, . . . , bk〉 describes the dynamics of the attributes in A (how they evolve

over time, e.g., through a polynomial, exponential, or step function).

Example 4 Referring to Fig. 5, consider the change “Increase the bandwidth of con-
nector HttpConnT by 30 %”. A possible definition of a change type would be:

increase_bandwith_type = (HttpConnT, 〈bandwidth〉, 〈step_function〉)

Definition 8 (System change model) a system change model CMsys is a set of change
types applicable to the system properties (Γsys) of a family of systems that share some
degree of commonality (e.g., common subset of architectural types).

Definition 9 (Environment change model) an environment change model CMenv is a
set of change types applicable to the environment properties (Γenv) of a system family
with some degree of commonality (e.g, common subset of architectural types).

Definition 10 (Change) Given a set of change types CT defined for a set of archi-
tecture types T , and an architecture model A = (T ,G,Γsys), a change is a tuple
(ct, srcinst, VA, VB , ti, d) that corresponds to an instantiation of a change type,
where:

– ct = (src, A, B) ∈ CT determines the change type to be instanced as a change,

5 Actually, changes can also occur in system goals. However, in the scope of this work, we assume fixed
goals, therefore change sources are always associated with (system or environment) properties of an archi-
tectural type.
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– srcinst ∈ N , such that G = (N , E), where Λ(srcinst) = src, is the instance of
the source of change (i.e., where it actually occurs),

– VA = 〈vA1, . . . , vAk〉 is a vector of attribute values instantiating the attributes
in A,

– VB = 〈vB1, . . . , vBk〉 is a vector of behavior instances of the elements in B (i.e.,
a behavior instance vBi , i ∈ {1, . . . , k} is a function of type bi ∈ B, describing
the evolution over time of the attribute vAi ∈ VA),

– t i ∈ R+
0 determines the time instant in which the change instance is triggered,

– d ∈ R+
0 is the duration associated with the change.

It is worth observing that changes can be classified under three different categories
according to their duration: (i) Permanent (duration ∞); (ii) Instantaneous (duration
0); and otherwise (iii) Transient (e.g., a temporary peak in workload).

Example 5 If we consider the change type described in Example 4, a possible instan-
tiation of that change type could be the following instantaneous change:

(increase_bandwidth_type, h0, 〈30〉, 〈θ(t)〉, 10, 0), with:

θ(t) =
{

current_bandwidth if t < t i
current_bandwidth × 1.3 if t ≥ t i.

The systematic identification and classification of change types is fundamental to
support the definition of change scenarios, discussed in the next paragraphs.

One of the main base concepts is that of a scenario. A scenario is a postulated
sequence of events that captures the state of the system and its environment, system
goals, and changes affecting all the aforementioned elements. It is defined in terms of
state (system and environment), changes applied to that state, and system goals.

Definition 11 (State condition) a state condition is a tuple (A, B, VA, VB) that cor-
responds to the description of the evolution of a set of (either system or environment)
properties over time:

– A = 〈a1, . . . , ak〉 is a vector of attributes that enumerates the specific properties
of interest (variables) for the (environment or system) state,

– B = 〈b1, . . . , bk〉 describes the dynamics of the attributes in A (how they evolve
over time, e.g., through a polynomial, exponential, or step function).

– VA = 〈vA1, . . . , vAk〉 is a vector of attribute values instantiating the attributes
in A,

– VB = 〈vB1, . . . , vBk〉 is a vector of behavior instances of the elements in B (i.e.,
a behavior instance vBi , i ∈ {1, . . . , k} is a function of type bi ∈ B, describing
the evolution over time of the attribute vAi ∈ VA),

Definition 12 (Scenario) A scenario is a tuple (wl, oc, G, C), where:

– wl is a state condition that represents the workload (amount and type of work
assigned to the system),

– oc is a state condition that represents the operational conditions of the system
(including software and hardware resources needed for the system to perform its
service),
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– G is a set of system goals, expressed as PCTL formulas,
– C is a set of changes applied to the state determined by the workload and operational

conditions.

In the definition above, goals represent the quality attributes that the system should
fulfill at run-time (e.g., maximum response time, minimum throughput, minimum
availability, etc.), including a prioritization among potentially conflicting goals.

Scenarios can be classified into two groups: base scenarios and change scenarios.
A base scenario is defined in terms of typical conditions during the execution of the
system, which includes: a typical (stable) state of the system and its environment, and
a set of fixed goals (for the sake of this paper, we assume goals are fixed).

Definition 13 (Base scenario) A base scenario is a tuple (wlt , oct , G f ,∅), where:

– wlt is a state condition that represents a typical workload of the system,
– oct is a state condition that represents the typical operational conditions of the

system,
– G f is a set of fixed system goals, expressed as PCTL formulas.

The workload of a base scenario should be representative of the typical amount
and type of work assigned to (or expected from) the system in a specified time period.
Typical operation conditions comprise the typical setup of systems in the domain, as
well as representative characterization of the system’s environment, and the hardware
and software resources typically used. Hence, a base scenario reflects the operational
characteristics of systems in the domain while running a typical workload and operat-
ing in the absence of changes, setting the baseline for comparison with situations when
the system is faced with changes that may drive it into an adaptation process. It should
be noted that “typical” does only imply a stable state of the system with no abnormal
conditions, not that the workload or operation conditions cannot be dynamic.

Change scenarios are derived from a base scenario, but include a representative
sequence of changes that may affect the system and its ability to achieve and maintain
the fixed goals specified in the base scenario.

Definition 14 (Change scenario) A change scenario is a tuple (wlt , oct , G f , C)

– wlt is a state condition that represents a typical workload of the system,
– oct is a state condition that represents the typical operational conditions of the

system,
– G f is a set of fixed system goals, expressed as PCTL formulas.
– C += ∅ is a set of changes (as defined in Definition 10) applied to the state deter-

mined by the workload and operational conditions.

A change scenario is then defined by a typical condition of the system followed by
a non-empty set of changes.

Definition 15 (Changeload) A changeload is a set of change scenarios.

In the remainder of this paper, we refer to a changeload as environmental changeload
if its set of scenarios only includes changes in the environment.
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4.2 Identification of the changeload

This section details how our approach identifies the changeload to: (i) steer the system
towards adaptation (environment), and (ii) evaluate adaptation alternatives (system).

4.2.1 Environment stimulation

The first step to generating a representative changeload that can be used to compare
alternative adaptations is determining how environmental changes can trigger adapta-
tions. This task is further partitioned into three steps:

Static analysis To determine how adaptations are triggered, we need to focus on the
anomalies associated to non-conventional operational profiles, which act as applica-
bility condition of adaptations. In this paper, we rely on these applicability conditions
for identifying the environmental changeload. Hence, let us consider an anomaly α
associated with a non-conventional operational profile Nα , as well as an environment
model Γenv for our system. The procedure to extract a set of relevant environment
variables concerning adaptation triggering consists of: (i) Obtaining the set of vari-
ables V that are contained in the predicates included in α, and (ii) For each variable
v ∈ V , determining the environment properties in Γenv that can modify v in a way
that favors the transition of the system from its conventional operational profile to Nα .

Example 6 In the non-conventional operational profile NcV iolation introduced in
Example 3, the associated anomaly cViolation is defined as expRspTime >

MAX_RSPTIME . Hence, we need to determine the set of properties in the environ-
ment model that have the potential to increase expRspTime above the threshold
MAX_RSPTIME . In particular, looking at the environment model in Example 1, we can
observe that both an increase in server load or the latency in the connections are
prone to increase expected response time, so in this case we identify the set of vari-
ables {HttpConnT.latency, ServerT.load} as relevant to trigger adaptations whose
applicability condition is cViolation .

Dynamic analysis Once the set of variables relevant to the environmental change-
load has been identified, we need to refine them into an appropriate set of representative
changes in the environment, intended to achieve the conditions to trigger adaptation.
To this end, we follow the following steps:
1. Identify the applicable change types in the environmental change model using the

environment properties identified during static analysis.
2. Instantiate applicable change types identified in the previous step.

Example 7 Considering the case of Znn.com as a family of systems that can be instan-
tiated in different configurations (e.g., different number of servers, proxies, etc.), we
define a common environmental change model to all of them, containing a number of
change types (Definition 7), such as:

modify_network_latency_type=(HttpConnT, 〈latency_prop〉, 〈linear_function〉)

Focusing on the configuration of the Znn.com instance in Example 1, we can observe
how the properties identified during static analysis can be used to instantiate a set of
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changes based on the change type modify_network_latency_type :

c1 = (modify_network_latency_type, h0, 〈h0.latency〉, 〈+(t) = 2.5 ∗ t〉, 15, 20)

c2 = (modify_network_latency_type, h3, 〈h3.latency〉, 〈+(t) = 1.2 ∗ t〉, 15, 10)

The first of the changes above, for instance, increases the latency of HTTPConnT
connector h0 (connecting client c0 and proxy p0 ), beginning 30 seconds after the
start of the execution of the scenario, at a rate of 2.5ms/s2 for 20 seconds.

3. Run each of the identified candidate changes individually on the system under
typical workload and operational conditions, gathering data (i.e., in the form of a
trace) about the variables included in the set V identified in static analysis, during
a particular time frame [0, t]. Each change is executed a number of times under
similar conditions to obtain a set of traces statistically representative of the behavior
of the system variables while undergoing the change. For this step, we assume the
availability of effectors that can modify the values of environment variables during
execution (i.e., analogously to frameworks such as Rainbow, that use effectors
through operators to steer the system according to a set of objectives [14]).

4. Build an impact model (as described in Sect. 4.1.2) for each environmental change,
using as input the set of traces for each change identified.

Filtering/cutoff Based on the impact models obtained during dynamic analysis, the
purpose of filtering is to identify those changes that are going to be part of the envi-
ronment changeload, by discarding those that are not relevant. For this purpose, the
definition of a metric to measure the relevance of a change is required. Concretely,
since the objective of the environment changes is to trigger adaptation (i.e., making
the system transit from its conventional operational into a non-conventional one), our
criterion consists in minimizing the estimated distance from the state of the system
after the application of a particular change and the non-conventional operational pro-
file associated to the set of adaptations that we want to evaluate. Hence, the distance
from a system state s to a non-conventional operational profile Nα is defined as:

dst (s, Nα) =
{

min
sN ∈Nα

δ(s, sN ) if ∃ π = s −→ . . . −→ sN

+∞ otherwise.

where δ : [Rn]X × [Rn]X → N is the metric defined in Sect. 4.1.2 to estimate the
distance between any two states of the system 6.

The expected state of the system tx time units after starting the execution of a change
c in state s can be obtained as exp_s′(s, Ic

t , tx ) = (s[1] + I r1(true, tx ), . . . , s[n] +
I rn(true, tx )), where the impact model of the change Ic

t is used to compute instan-
taneous rewards. We choose to keep the minimum of the distances for the time frame
[0, t] and normalize it for comparison with other changes:

6 Although the distance to a non-conventional operational profile Nα from state s requires the existence of
a trajectory π from s to a state in Nα , we pessimistically assume that non-conventional operational profiles
are always reachable from any state in the conventional operational profile of the system. Therefore in
practice, this distance is always estimated as dst (s, Nα) = min

sN ∈Nα
δ(s, sN ).
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minDst N (s, Ic
t , Nα) = min

tx ∈{0,...,t}
dst (exp_s′(s, Ic

t , tx ), Nα)
dst (s, Nα)

.

Finally, we set a cutoff threshold threnv ∈ [0, 1] for the relevance of the changes
to be kept, discarding changes that score a minDst N above the defined threshold.
As a rule of thumb, changes with scores closer to 1 should be discarded in favor of
those approaching 0, which indicate a higher relevance (since they tend to minimize
the distance to the non-conventional operational profile Nα).

Example 8 Consider the changes c1 and c2 introduced in Example 7 with their respec-
tive impact models (Ic1

30 and Ic2
30) built for the time frame [0, 30], and a state s in

which changes are applied. The distance to the non-conventional operational profile
NcV iolation from state s is dst (s, NcV iolation) = 50, and scores for c1 and c2 are
minDst (s, Ic1

30, NcV iolation) = 0.4 and minDst (s, Ic1
30, NcV iolation) = 0.7, respec-

tively. If we set a cutoff threshold threnv = 0.5, in this case we only keep change c1
for the environmental changeload.

4.2.2 Architecture-driven system stimulation

The identification of the system changeload follows a risk-based approach [25] that
considers the probability and impact of system changes, and consists of three steps:

Static analysis Based on the architecture model of the target system, we first identify
a set of system variables (from system properties in the model Γsys) and operations
(from operators in the architectural style) that are used in the adaptation. Using this
information, we select the potential sources of change (associated with system prop-
erties of an architectural type) and, consequently, the relevant change types.

Taking the change types, we then identify specific system changes that may impact
the system goals. This is essentially a manual process that makes use of field data
(when available) and expert knowledge, and basically consists of finding, for each
change type, tangible changes that may affect the system during adaptation. Further-
more, instantiating a change requires the specification of concrete attribute values (that
depend on each change) and of the trigger instant, as well as the duration (if applicable)
of each change. For the trigger instant, we propose the use of time-based activation
with a specific distribution over time.

A key aspect in this phase is the definition of the probability of occurrence of
each change. When representative and statistically relevant field data is available,
attributes may be characterized using a numeric scale (e.g., percentage). However,
field data on the probability of system changes is seldom available. This way, our
proposal is to apply expert knowledge and characterize the probability of changes
qualitatively.

Dynamic analysis The goal of this step is to understand the impact of each system
change in the target system. This makes use of the environmental changeload identified
during Environment Stimulation to steer the system towards conditions that trigger
adaptation, and the set of system changes identified before, which are injected in the
system while undergoing adaptation. Thus, each of the identified system changes is
run individually on the system under typical workload and operational conditions,
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Table 2 Exposure matrix for changes

Probability

Very high High Low Very low

Impact Catastrophic Mandatory Very high High Medium
Critical Very high High Medium Low
Marginal High Medium Low Very low
Negligible Medium Low Very low Negligible

gathering data about the variables included in the set V identified in Sect. 4.2.1 for
environment stimulation, during a particular time frame [0, t]. As in for the Environ-
ment Stimulation, each change is executed a number of times under similar conditions
to obtain a set of traces statistically representative of the behavior of the system vari-
ables while undergoing the change. This information is then used to build an impact
model for each system change.

Filtering/cutoff The goal of this step is deciding which system changes should be
included in the changeload. This is needed as the number of potential system changes
is really large (especially for complex systems) and, thus may become impracticable.
Moreover, it is expected that many of the changes identified present a low probability
of occurrence and/or may have a low impact in the system. This way, following a
risk-based approach [25], we propose the use of an exposure matrix that allows under-
standing how relevant each change is. The goal is prioritizing the changes, selecting
a Top-N (i.e., the most representative ones), based on a cut-off level.

The idea behind the exposure matrix is to build a correlation of the probability
and impact of changes. Table 2 shows an example (in this case the impact is also
based on a qualitative scale, but this can be adapted to consider a quantitative scale).
For each combination of attribute values a level of representativeness is assigned,
namely: Mandatory (changes that must be included in the changeload), Very High,
High, Medium, Low, or Very Low representativeness, and Negligible (changes that
can be overlooked).

Although the exposure matrix is predefined (i.e., it is part of the framework), adap-
tations may be done by the user of the framework. In practice, the proposed matrix
is based on current practices on risk management in software projects, namely on the
Software Risk Evaluation (SRE) method [25], initially proposed by the Software Engi-
neering Institute (SEI) in 1992, which promotes risk management in small projects
in an agile way. To build the matrix we considered four values for the Impact and
Probability as discussed before. Obviously, the user of the framework may adapt
these categories (e.g., when more information is available to support a more detailed
classification).

In practice, the combination of the different attributes allows understanding how
relevant a given change is. For example, a change with Very High probability and
Catastrophic impact is of extreme relevance and must inevitably be included in the
changeload. Also, changes having a High probability and a Catastrophic impact or a
Very High probability and a Critical impact are of very high importance. The key issue
is obviously how to define a cut-off level that separates the changes that should be
included in the changeload from the ones less representative. In this example, we may
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choose to keep in the changeload only scenarios with High, Very High, and Mandatory
representativeness. Clearly, the cut-off level influences the representativeness of the
changeload and also its size. Our proposal is to, at least, include all the scenarios with
Very High probability and Catastrophic impact.

As mentioned before, field data can be used to support the process of classifying the
impact and probability of changes. However, in most cases that data is not available,
demanding for expert judgment. Lets analyze two change types to better understand
this process:

– When activating a server, crash the server being activated it is well known that
a server crash is a rare event (i.e., probability is Very Low). However, a crash
during server activation has a higher probability than a common server crash, as
the server activation involves a complex procedure that includes starting multiple
processes, ranging from the operating system to the web server. Nevertheless, the
probability of such event is still Low. In terms of impact, a server crash is typically
catastrophic in most scenarios. In this work, although we are dealing with systems
that are able to adapt to unexpected events, the impact of a crash during server
activation is still Critical, as the crashed server is the direct target of the adaptation
strategy (i.e., the crash directly impacts the strategy execution). Applying the risk
matrix (Table 2), we obtain a Medium risk exposure, thus the change is considered
in our changeload (see Table 3).

– When activating a server, crash a different server (i.e., not the one being activated)
a crash in a running server has clearly a lower probability than a crash of a server
being activated, thus we consider the probability of occurrence of this change as
Very Low. As the crashed server is not the direct target of the adaptation strategy
being executed, we consider the impact to be Marginal (we assume that the system
will run another adaptation strategy as soon as the execution of the current one
ends). Applying the risk matrix (Table 2), we obtain a Very Low risk exposure,
thus the change is not considered in our changeload.

4.3 Run-time system stimulation

Run-time stimulation consists of exercising the running system (and its environment)
using the identified changeload to compare the resilience of the different adaptation
alternatives. It consists of the following steps:

Criteria definition The criteria for comparison (i.e., the metrics) should be defined
according to system goals, as the objective is to understand how effective each adap-
tation alternative is in terms of assuring that the system satisfies the predefined goals
after adaptation. A resilient system is defined by Laprie as one whose service can
justifiably be trusted when facing changes [21], that is, a system that fulfills its goals
in a dependable and persisting manner in spite of changes in its environment or the
system itself. Therefore, the definition of resilience incorporates the fulfillment of
system goals. In other words, the metrics are strongly related to the goals targeted by
the system and have to characterize it in a useful and meaningful way. In the concrete
case of Znn.com, the system is built to minimize response time while keeping a low
operation cost, so system goals are basically related with performance and cost, which
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Fig. 6 Experimentation profile

are reflected on the resilience properties (formally expressed in the PCTL properties
found in Table 3). Furthermore, metrics should focus on an end-to-end perspective
(e.g., the point-of-view of the end-user). Finally, to allow comparison, a small set of
metrics should be used, as comparison based on many criteria is difficult (or even
impossible) to perform.

For example, in the context of Znn.com, we use as metrics the probability of:
(i) lowering response time below MAX_RSPTIME after a particular time lapse; and
(ii) lowering response time below MAX_RSPTIME without ever exceeding the expected
budget THRESHOLD_COST during a particular time lapse. These metrics are intuitive
and simple to use, and are directly related with the system goals of maintaining an
acceptable response time while keeping the cost of operating the system within budget.

Experimentation The experimental profile, depicted in Fig. 6, includes a set of
runs. Run 0 consists of performing environmental stimulation to trigger adaptation.
No system stimulation is performed in this run, as the goal is to collect baseline
information about the behavior of the adaptation alternative in the absence of system
changes. This baseline will be used later as reference to understand the impact of
system changes in the execution of the adaptation strategies. During Runs 1…N the
system is run in such a way that environmental stimulation first triggers adaptation, and
then changes are injected on top of the environmental stimulation during adaptation
to measure their impact in the different adaptation alternatives. In order to assure that
each run portraits a realistic scenario as much as possible, and at the same time assures
that important properties such result repeatability and representativeness of results are
met, the definition of the profile of the run has to follow several rules. The following
points summarize those rules (see Fig. 6):

1. The system state must be explicitly restored in the beginning of each run and the
effects of the system changes do not accumulate across different runs.
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2. The tests are conducted with the system in a steady state condition, which is
achieved after a given time executing transactions (steady state time).

3. Environmental stimulation is conducted after the system achieves the steady state
to reach an adaptation trigger condition in the first place, and then keeps on going
throughout the execution of adaptation, keeping the conditions of the environment
to make adaptation valid (e.g., high request rate in Znn.com also after adaptation
is triggered). We consider the existence of a time to react as there may be a lag
between the trigger condition and the activation of the adaptation strategy.

4. Adaptation is exercised by injecting system changes during its execution.
5. When the adaptation completes, the system must continue to run during a keep

time in order to characterize the system speedup after adaptation.
Since we are interested in characterizing only the behavior of the system during

adaptation, the measurement interval starts in each run only when adaptation starts,
and ends when the stop condition is met.

Scoring/ranking As a final step, the measurements are used to compare and rank the
adaptation alternatives, taking into account the criteria previously defined. In practice,
each set of traces regarding a particular adaptation alternative is transformed into a
probabilistic response model of the system, which is used as input to a probabilistic
model-checker in addition to the resilience properties obtained from the system goals.
As an outcome, adaptation alternatives can be evaluated by comparing them against
their quantification of the resilience properties.

5 Experiments

The aim of our experiments is assessing the validity of our approach to compare
alternative adaptation strategies. In particular, we evaluate the resilience of Znn.com
when using alternative strategies to reduce experienced response time.

For our experimental setup, we deployed Rainbow and the corresponding imple-
mentation of Znn.com across seven different machines (Fig. 7): znns0 − 3 are the four
content servers running Apachev2.2.16, znndb is a common backend database run-
ning mySqlv14.14d5.1.61, from which the different servers extract the contents, and
znndist is the proxy machine that runs the load balancing software (distributorv0.7)
in a round-robin configuration. Rainbow master is deployed in a separate machine
(znnmaster). All machines run DebianLinuxv6.0.4, and have 512MB of memory.
Moreover, an additional machine (znnclient) running JMeterv2.5.1 generates the
traffic during the execution of the system. Connectors labeled in the figure as h0 − h4
are those included in the architectural model of the system. Similarly, components
represented in the model include their architecture model instance name between
parenthesis.

On the deployed system, we estimate the resilience of the system when using three
alternative strategies7 aimed at reducing experienced response time, namely:
1. SimpleReduceResponseTime (s1) attempts to reduce response time in a simple

way by enlisting a new server, and then reducing content fidelity across all servers.

7 The code of these strategies can be downloaded from the SEAMS portal (http://seams.self-adapt.org).
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Fig. 7 Znn experimental setup

2. SmarterReduceResponseTime (s2), which defines a threshold regarding the
number of clients experiencing a high response time, enlisting a new server if the
number of clients is above the defined threshold. After adding the server, if the
same condition persists, the strategy adds a second server. Finally, if the number
of clients experiencing response time has not been reduced below threshold, the
strategy reduces content fidelity across servers.

3. SophisticatedReduceResponseTime (s3) Starts by enlisting two servers, and
then defines three different threshold of clients experiencing high response time
(e.g., 25, 50, 75 %). If any of the thresholds is crossed, the strategy reduces quality,
but proportionally to the number of clients with high response time.

In line with the system objectives of keeping an acceptable response time while
keeping down the cost of running the system, we compare the alternative strategies
according to the probability of: (P1) Lowering response time below MAX_RSPTIME

after 10 s; and (P2) Lowering response time below MAX_RSPTIME without exceeding
cost THRESHOLD_COST after 10s ( MAX_RSPTIME = 1,000 ms. and THRESHOLD_COST =2
usd/hour).

The time sampling parameter chosen for the construction of our probabilistic models
(as described in Sect. 4.1.2) is τ = 1s, whereas the quantization parameters chosen
for experienced response time and cost are ηexpRspTime = 50 and ηtotalCost = 1,
respectively. Moreover, the probabilistic models are built for the following set of
change scenarios during the time frame [0, 30]:

1. Only the environmental changeload is applied. The base scenario used to build
our environmental changeload consists in a typical workload wlt of constant low
activity (6 requests/minute) that corresponds to the expected load for the system
under common circumstances, and typical operating conditions of constant latency
in the network links (80 ms. for the client-proxy link h0 - which corresponds
approximately to the average network latency that can be expected for trans-atlantic
requests, and a much lower 3 ms. for proxy-server links h1, h2, h3, h4 internal to
the znn system):
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wlt = (〈p0.load〉, 〈constant_function〉, 〈6req/min〉, 〈θp0(t) = 6req/min〉)
oct =( 〈h0.latency, h1.latency, h2.latency, h3.latency, h4.latency〉,

〈constant_function, constant_function, constant_function,
constant_function, constant_function〉,
〈80ms, 3ms, 3ms, 3ms, 3ms〉,
〈θh0(t) = 80ms, θh1(t) = 3ms, θh2(t) = 3ms, θh3(t) = 3ms, θh4(t) = 3ms〉)

For the environmental changeload, the set of changes that we introduce is related to
modifying the load on znnproxy. During static analysis in environmental stimula-
tion (described in Sect. 4.2.1), both network latency and proxy load were initially
identified as possible sources of changes that might influence the triggering of
adaptation. However, out of these two possible sources, network latency was dis-
carded since it never affects the triggering of our adaptation strategies. This is due
to the way in which znn.com is implemented. Concretely, response time is always
probed at the proxy, and does not take into account the time that the request spends
out of the system traveling from and to the client (see Fig. 7):

modify_proxy_load_constant_type = (ProxyT, 〈load〉, 〈constant_function〉)
modify_proxy_load_linear_type = (ProxyT, 〈load〉, 〈linear_function〉)
C = { (c1 = modify_proxy_load_linear_type, p0, 〈load〉, 〈θp0−1(t) = 10t + load〉, 60, 300),

(c2 = modify_proxy_load_constant_type, p0, 〈load〉, 〈θp0−2(t) = load〉, 360, 300)}

Scenarios in the environmental changeload have a duration of 660 seconds, are
built based on the changes in C , and conform to the pattern: (i) initial period of low
activity (60s); (ii) period of sharp rise in requests (c1, 300s); and (iii) sustained
period of peak in requests (c2, 300s).

2. The full changeload, including changes in the system is applied. Concretely, rel-
evant scenarios identified include system changes during adaptation when: (i) a
server is being activated; and (ii) server fidelity is being reduced. In order to identify
the included scenarios, we followed the procedure described in Sect. 4.2.2. Con-
cretely, scenarios based on non-applicable change types were initially discarded
(i.e., those which are never used in adaptation strategies to reduce response time
that we are comparing, such as increasing server fidelity to improve the quality of
the contents being served, or disconnecting servers to reduce the operation cost of
the system). Secondly, the exposure matrix illustrated in Table 2 was applied to
the set of remaining candidate changes as illustrated at the end of Sect. 4.2.2.

Table 3 displays the results obtained from our experiments. The quantities appearing
in the cells of the main body of the table correspond to the probability of satisfying the
property (either P1 or P2) of the corresponding column in the scenario described for
that row. This probability is followed by the difference with the probability of satisfying
the same property with respect to the one obtained for the normal execution of the
system (i.e., just using the environmental changeload - row A -). The probabilities
displayed in the table have been quantified using probabilistic models synthesized
from sets of 30 different executions for each scenario included. Focusing on P1, we
can observe that while strategies s1 and s2 are resilient to increases in load (B.2 and
B.3) or crashes in the server being activated (B.1) (behaving in some cases even better
than in executions without system changes - A), s3 performs worse, presenting a drop
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in the probability of satisfaction of P1 of up to 48 % when the server being activated
is heavily loaded. An interesting phenomenon is that, although initially it may seem
somewhat strange that some strategies yield better probability of satisfaction of the
property in the presence of changes such as server crashes, it is worth observing that
the decision-making process in Rainbow regarding which tactics are applied takes
place at run-time during strategy execution, so adverse system conditions can result
in the selection of a different sequence of tactics with respect to the case in which
adaptation is not influenced by unfavorable changes (this may result in a performance
boost, since the strategy will try to compensate the adverse situation by carrying out
additional actions to improve execution). An example of this kind of situation can be
observed for instance in the code of strategy ReduceResponseTime in Sect. 3: while
in a situation with normal load conditions, only tactic switchToTextualMode (line 17)
will be selected for execution, in a situation in which load is above established levels,
tactic enlistServer (line 20) may also be executed in addition to the previous one,
since the condition for execution hiLoad holds in this case, yielding a better overall
result.

In scenarios C, where the fidelity of servers is being reduced, it is worth highlighting
case C.1, in which there is a bug in the tactic to change fidelity (i.e., the fidelity in
servers remains unchanged). Concretely, it can be observed that the impact on the
probability is disastrous compared with other scenarios, such as in the case of s2 and
s1 (with probabilities P1 of 0 and 0.16, respectively). This adverse effect is explained
because the tactic to change fidelity is transversal to all servers, in contrast with the
tactic to enlist servers, which deals with a typically reduced number of servers.

Summarizing, in scenarios in which adverse conditions are given when a server is
activated, strategies s1 and s2 tend to perform better, except in cases in which the
tactic to change fidelity does not work, in which s3 presents slightly better results.

Property P2, also takes into consideration the cost of operating the system, in
addition to response time. In general, we can observe that including in the property
does not alter significantly the values obtained with respect to P1. In particular, we
can observe that s3 is slightly more costly in cases A.1 and C.2 (something that is
consistent with the fact that s3 is more resilient to bugs in change fidelity, since this
strategy makes a more profuse use of server activation instead of fidelity reduction,
and this kind of tactic has an associated increment in cost).

6 Related work

In this section, we present related work regarding the usage of probabilistic model-
checking in self-adaptive systems, and how benchmarking provides a practical way
for characterizing and comparing systems according to specific characteristics.

Many methodologies support the analysis of non-functional properties, based either
on modeling, or direct measurement of an existing system. While modeling is a use-
ful approach to help in the development of a system for which there is no available
implementation yet, it heavily relies on parameter estimations obtained either from
domain experts, or from other similar existing systems. As an example, Calinescu
and Kwiatkowska [6] introduce an autonomic architecture that uses Markov-chain
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quantitative analysis to dynamically adjust the parameters of an IT system accord-
ing to its environment and goals. However, their work assumes that Markov-chains
describing the components/services of a system are readily available.

In the case of direct measurement, Epifani et al. [13] present a methodology and
framework to keep models alive by feeding them with run-time data that updates
their internal parameters. The framework focuses on reliability and performance,
and uses Discrete-Time Markov Chains (DTMCs) and Queuing Networks as mod-
els to reason about non-functional properties. A complementary approach is taken
by Calinescu et al. [5], who extends and combines [6] and [13] for defining a tool-
supported framework for the development of adaptive service-based systems. QoS
requirements are translated into probabilistic temporal logic formulae used for identi-
fying and enforcing optimal system configurations. Our approach focuses on quanti-
tative analysis using measurements, and not assuming the existence of Markov-chains
describing components/services of the system. Moreover, while most proposals deal
with estimates of the future system behavior for optimizing its operation, our approach
focuses on providing levels of confidence with respect to the self-adaptive capabili-
ties of the system. A preliminary work related to quantitative analysis using proba-
bilistic model-checking presented an approach that considers only environment stim-
ulation as source of change [7], leaving out changes that are internal to the sys-
tem, which are dealt with in the present paper by exploiting architectural system
models.

A benchmark is a standard procedure that allows characterizing and comparing sys-
tems or components according to specific characteristics (e.g., performance, depend-
ability) [18]. Previous work on computer benchmarking can be divided in three main
areas: performance benchmarking [16], dependability benchmarking [18], and secu-
rity benchmarking [22]. Resilience benchmarking represents a step further, and is
bound to encompass techniques from these previous efforts due to its inherent relation
to performance, dependability and security. Comparing to established benchmarks, a
resilience benchmark may be specified following the same basic approach, but com-
prising a wide-ranging changeload (which will include, but will be not limited to,
faults), as well as resilience metrics [2]. In this paper, we revise and expand the defini-
tion of changeload, and apply our risk-based approach in the evaluation by comparison
of the adaptation mechanisms of a self-adaptive software system.

7 Conclusions

A major challenge regarding the development, deployment and operation of self-
adaptive software systems is the provision of assurances that system is able to deliver
a service that can justifiably be trusted when facing changes, in other words, whether
the system is resilient. The main reason for this challenge is the fact that it is dif-
ficult to foresee what changes can affect the system, its environment or goals, and
when and where these changes might occur. In this paper, we have defined and
developed a novel architecture-based approach for evaluating the resilience of self-
adaptive software systems, which is based on the identification of changeload scenarios
(i.e., representative sequence of environmental and system changes) that are used for
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performing system run-time stimulation. The feasibility and effectiveness of the
proposed approach was demonstrated in the context of Rainbow, a platform for
architecture-based self-adaptation, and employing the Znn.com as a case study. The
outcome of the experiments performed has shown the effectiveness of evaluating, by
comparison, the resilience of adaptation mechanisms when employing probabilistic
behavioral models for quantifying the probability of system properties being satisfied
when subjected to stimuli.

As for any complex system, one cannot rely on a single source of evidence for the
provision of assurances, instead one should use diverse sources. This is essentially
how the proposed approach should be perceived regarding the evaluation of resilience
of self-adaptive software systems, it should be considered in the context of other
approaches for the provision of complementary evidence. Moreover, we also recognize
that the usage of changeload scenarios may not cover the wider range of changes that
may occur. That is essentially the motivation for combining techniques from resilience
benchmarking with probabilistic model checking for guiding the identification and
selection of representative changeloads.

As future work, there are several avenues to explore. Although the Znn.com has
shown to be a very realistic case study for developing and evaluating the proposed
approach, nevertheless there is the need to apply our approach to other systems, spe-
cially, industrial scale systems. This would allow to evaluate effectively the proposed
approach in a context where the norm is to manage several sophisticated changeloads
scenarios. The ultimate challenge regarding the proposed approach is to enhance it for
enabling its deployment at run-time with minimal support from a developer. In such
a setting, one needs to devise the appropriate environment for run-time stimulation
while the system provides services, including the deployment of protections, so that
stimulation does not affect the services delivered by the system.

Appendix A: Probabilistic computation-tree logic

To express resilience properties about the system, we use PCTL [4], which is a logic
language inspired by CTL [4]. Instead of the universal and existential quantification
of CTL, PCTL provides the probabilistic operator P./p(.), where p ∈ [0, 1] is a
probability bound and ./ ∈ {≤,<,≥,>}. Given a time bound t ∈ N, PCTL is defined
by the following syntax:

Φ : :=true | a | Φ ∧Φ | ¬Φ | P./p(ψ)

ψ : :=XΦ | ΦUΦ | ΦU≤tΦ

FormulaeΦ are named state formulae and can be evaluated over a Boolean domain
(true, f alse) in each state. Formulae ψ are named path formulae and describe a
pattern over the set of all possible paths originating in the state where they are evaluated.
In state formulae, other Boolean operators, such as disjunction (∨), implication (⇒),
etc. can be specified based on the primary Boolean operators. Moreover, we employ
the abbreviations: (bounded) finally (F (≤t)Φ = true U (≤t)Φ) and globally (GΦ =
¬F¬Φ). The satisfaction relation for PCTL is defined for a state s as:
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s |2 true s |2 a iff a ∈ L(s)
s |2 ¬Φ iff s ! Φ s |2 Φ1 ∧Φ2 iff s |2 Φ1 and s |2 Φ2
s |2 P./p(ψ) iff Pr(s |2 ψ) ./ p

A formal definition of how to compute probability Pr(s |2 ψ) is presented
in [4].The intuition is that its value corresponds to the fraction of paths originating in
s and satisfyingψ over the entire set of paths originating in s. The satisfaction relation
of a path formula with respect to a path π that originates in state s(π [0] = s) is:

π |2 XΦ iff π [1] |2 Φ

π |2 ΦUΨ iff ∃ j ≥ 0.(π [ j] |2 Ψ ∧ (∀0 ≤ k < j.π [k] |2 Φ))

π |2 ΦU≤tΨ iff ∃0 ≤ j ≤ t.(π [ j] |2 Ψ ∧ (∀0 ≤ k < j.π [k] |2 Φ))

Appendix B: Modelling probabilistic system response

This appendix introduces the relevant concepts and procedure followed to build the
two kinds of probabilistic models used in our approach, namely: (i) Operational profile
model, used to quantify the probability of satisfaction of a property specified as a PCTL
formula in a given operational profile, and (ii) Impact model, employed to quantify the
impact of a particular change in the system or its environment on the different quality
dimensions considered in the system.

For the sake of clarity, we first define a set of concepts that will help to follow the
discussion throughout the rest of this section.

Definition 16 (Boundary) The boundary of an operational profile P is defined as:

boundar y(P) = {sP ∈ P | ∃s −→ sP : s ∈ S\P}

Definition 17 (Trajectory) A trajectory is a finite sequence of transitions:

π = s1 −→ . . . −→ sm .

We assume that for all transitions s −→ s′, the time needed by the system to move
from state s to state s′ is given by τ ∈ R+. Then, for any trajectory of the system π ,
we define its duration as duration(π) = mτ .

A state s′ ∈ S is reachable from a state s in time t (denoted as s −→ t t s′) if there
exists a trajectory π = s −→ . . . −→ s′, such that duration(π) ≤ t .

B.1 Operational profile model

In operational profile models, initial states correspond to those where the system
enters the associated operational profile, and the state space of the model includes all
the states reachable from initial states within the specified time frame determined by
a time bound t .
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Definition 18 (Operational profile model) A model for an operational profile P and
a collection of variables X = {x1, . . . , xn} during the time frame [0, t] is a DTMC
MP

t built over [Rn]X , such that:

– Set of initial states SM
0 = boundar y(P);

– Set of states SM = {s ∈ S | ∃s0 ∈ SM
0 : s0 −→ t t s};

Algorithm 1 DTMC_synthesis
Input: Set of traces T associated with the time frame [0, t], set of propositions AP .
Output: DTMC (S, S0, P, L) associated with T .
Auxiliary variables: Transition observation matrix O .
1: S := ∅; S0 := ∅; P := 0; L := ∅;
2: O := 0;
3: for tr ∈ T do
4: current := ∅;
5: is_ f irst := true;
6: while tr += 〈〉 do
7: prev := current ;
8: current := extract (tr);
9: if is_ f irst ∧ current /∈ S0 then
10: S0 := S0 ∪ {current};
11: is_ f irst := f alse;
12: end if
13: if current /∈ S then
14: S := S ∪ {current};
15: L := L ∪ {(current, {α ∈ AP | current |2 α})};
16: end if
17: if prev += ∅ then
18: O(prev, current) := O(prev, current) + 1;
19: SC := {s′ ∈ S | O(prev, s′) += 0};
20: for s′ ∈ SC do
21: P(prev, s′) := O(prev, s′)/

∑
sc∈SC O(prev, sc);

22: end for
23: end if
24: end while
25: end for
26: return (S, S0, P, L);

Algorithm 1 synthesizes a DTMC from a set of traces T of the form 〈s1, . . . , sm〉,
where each state s j∈{1,...,m} ∈ [Rn]X , and the trace length is given by m ≥ t/τ . Input
also includes the set of atomic propositions of interest AP to label the DTMC. The
algorithm starts by incrementally building the sets of states (initial and global, lines 10,
14), and their corresponding labelling (line 15). Moreover, for the second part of the
algorithm where the transition probability matrix is built, we employ an auxiliary
matrix O that is used to keep information about the number of times that a transition
between any two states prev and current is observed (line 18). Hence, values in the
transition probability matrix are updated according to this information by assigning
to each of the successors of state prev (i.e., all states s′ ∈ S s.t. O(prev, s′) += 0) a
value proportional to the number of times that the transition prev −→ current has
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been observed w.r.t. the total number of transitions observed from source state prev
(line 21). Function extract (line 8) returns and removes the first element of a vector

V = 〈e1, e2, . . . , en〉 : extract (V ) = e1, wi th V = 〈e2, . . . , en〉.

A model of a specific operational profile P can be synthesized from a set of
traces obtained from the observation of the running system, where initial states are in
boundar y(P), and trace length corresponds to the chosen time frame for the model [7].
The probability of satisfaction of properties expressed as PCTL formulas instanced
using probabilistic response patterns as described in Table 1 can be directly quanti-
fied against operational profile models, provided that the time bound associated to the
property is smaller or equal to that of the time frame associated with the model.

B.2 Impact model

Impact models describe the evolution of the different system variables considered for
adaptation over a particular time frame, starting from an initial condition Ψ (e.g.,
associated with an event). Concretely, every state s is labeled with a reward for each
variable that consists of the difference between the value of the variable in s, and the
value for the same variable in the closest initial state of the model. Hence, impact
models describe the response of the system, i.e., evolution over time of the deviation
of system variables (impact), caused by the occurrence of an event (e.g., a change) in
the system or its environment. System variables comprised in impact models are those
relevant to the satisfaction of the system’s goals and can be traced back to properties
in the architectural model.

Definition 19 (Impact model) An impact model from an initial conditionΨ (expressed
as a PCTL formula) and a collection of variables X = {x1, . . . , xn}, during the time
frame [0, t] is a DMRM IΨt = (D, 〈ρ1, . . . , ρn〉) such that:

– D = (SI
0 , SI , PI , LI) is a DTMC built over the metric space ([Rn]X , δ):

– Set of initial states SI
0 = {s ∈ S | s |2 Ψ };

– Set of states SI = {s ∈ S | ∃s0 ∈ SI
0 : s0 −→ t t s};

– Reward assignment function for each variable xi∈{1,...,n} is ρi (s) = s[i] − s0[i],
with s ∈ SI and s0 ∈ SI

0 , s.t. ∀s′
0 ∈ SI

0 , π = s0 −→ . . . −→ s, π ′ = s′
0 −→

. . . −→ s : duration(π) ≤ duration(π ′).

Let us remark that the reward associated with any initial state s0 ∈ SI
0 is by definition

0 (i.e., ρi (s0) = 0, i ∈ {1, . . . , n}).
An impact model can be synthesized from a set of traces T R associated to an

initial condition (e.g., a change). In this set, each trace is of the form 〈s1, . . . , sm〉,
has a length that corresponds to the time frame of the resulting impact model, the
initial state satisfies the initial condition (s1 |2 Ψ ), and each state s j∈{1,...,m} ∈ [Rn]X
contains reward assignments that correspond to the difference between the values of
the variables in the first state of the trace and the (quantized) values of the variables
measured at instant j (i.e., the impact of initial condition on variables at time instant j).
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ρ 1(S3)=-180   
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S6

ρ 1(S6)=-160   
ρ 2(S6)=100   

S4

ρ 1(S4)=-210   
ρ 2(S4)=200   

S5

ρ 1(S5)=-110   
ρ 2(S5)=0   

t=0 t=1 t=2

Fig. 8 Example impact model for Znn.com

In particular, let T Rs j = {tr ∈ T R | s j ∈ tr} be the set of all traces in which the
same arbitrary state s j is observed. We define the impact in a trace k for variable i as:

impactk
i (s j ) = quant (xk

i (τ j)) − sk
1 [i]; with i ∈ {1, . . . , n}, j ∈ {1, . . . , m}

where xk
i (τ j) indicates the value of variable xi at time instant j in trace k (always the

same for all traces in T Rs j ), and sk
1 [i] is the quantized value of variable xi in the first

state of the trace. The reward assignment for the variable xi in a state s j is computed
as the average of all impacts for all observed occurrences of state s j in different traces:

ρi (s j ) =
∑|T Rs j |

k=1
impactk

i (s j )

|T Rs j |

Expected impact over a set of system or environment variables, in a time instant
that lies within the time frame associated with the model, can be directly checked
through PRCTL formulas making use of the instantaneous reward operator Y t

./r (Φ)

introduced previously in this section. Concretely, the instantaneous i-th reward for a
time instant tx can be quantified as I r i (true, tx ) directly on an impact model.

Example 9 Figure 8 depicts a simple DMRM impact model for Znn.com that describes
the evolution of variables expRspTime and totalCost for the time frame [0, 2] (we
assume that τ = 1 for the sake of clarity). Every state displays the reward value
assigned in that state by ρ1 and ρ2, that correspond to expRspTime and totalCost ,
respectively. Transitions are labeled with their associated probability. Focusing on
response time, we can compute the expected impact in time instants 1 and 2 as:

I r1(true, 1) = 0.3 ∗ ρ1(s1) + 0.7 ∗ ρ1(s2) = −85,
I r1(true, 2) = 0.3 ∗ (0.2 ∗ ρ1(s3) + 0.8 ∗ ρ1(s4)) + 0.7 ∗ (0.1 ∗ ρ1(s5) + 0.9 ∗ ρ1(s6)) = −166.1.

Based on these values, we can check properties expressed in PRCTL such as:
Y2,1

≤−100(true). This property reads as: “the expected reduction in response time after
2 seconds will be at least 100 milliseconds”.
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