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Abstract Given a set of facility objects and a set of client objects, where
each client is served by her nearest facility and each facility is constrained by
a service capacity, we study how to find all the locations on which if a new
facility with a given capacity is established, the number of served clients is
maximized (in other words, the utility of the facilities is maximized). This
problem is intrinsically difficult. An existing algorithm with an exponential
complexity is not scalable and cannot handle this problem on large data sets.
Therefore, we propose to solve the problem through parallel computing, in
particular using MapReduce. We propose an arc-based method to divide the
search space into disjoint partitions. For load balancing, we propose a dynamic
strategy to assign partitions to reducers so that the estimated load difference
is within a threshold. We conduct extensive experiments using both real and
synthetic data sets of large sizes. The results demonstrate the efficiency and
scalability of the algorithm.
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1 Introduction

Location selection is a classic problem in operational research and has wide ap-
plications in decision support systems. For example, a urban planner may need
to decide where to build a public car park or a hospital, a company executive
may need to decide where to open a new branch office. In recent years, with
the widespread use of Global Positioning Systems (GPS) and smartphones, lo-
cation based social networks have become popular and location selection has
found a new area of application.

In this paper, we study a new location selection problem that has tradi-
tional as well as modern applications. Fig. 1(a) illustrates the problem. Let
c1,C2,...,c13 be a set of office buildings and fi, fo, f3 be a set of car parks.
People work in the office buildings want to park their cars in their respective
nearest vacant car parks. Since the number of parking lots in a car park is
limited, some people may have to park faraway. We study where to build a
new car park, so that after the new car park is built, the largest number of
people can park in their respective nearest car parks.

Similarly, let us assume a location based social network scenario. Fig. 1(a)
denotes a board game group where cq,co,...,c13 are group members while
f1, f2, f3 are the activity centers provided by the group organizers. The group
members want to play games in their nearest activity centers, but an activity
center has a capacity and cannot hold all group members. We study where to
set up a new activity center, so that the largest number of group members can
play board games in their nearest activity centers. On social networks there are
many other kinds of interest groups such as reading groups. Meanwhile, group
members can come and leave, while activity centers may be deprecated. Thus,
this problem may be asked frequently and the need for an efficient solution to
the problem is compelling.
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Fig. 1 Problem examples

The above motivating examples are modeled as the problem of location
selection for utility maximization (LSUM): given a set of points C' as the

clients and a set of points F' as the facilities, where each client c¢ is served
by her nearest facility and each facility f is constrained by a service capacity
v(f), find all the locations in the space on which if a new facility with a given
capacity is established, the number of served clients by all the facilities is
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maximized (in other words, the utility of the facilities is maximized). Here,
every client ¢ is associated with a weight, denoted by w(c), which can be
thought of as the number of clients that reside at the same site.

In the example shown in Fig. 1(b), let the weight of each client be 1, and the
capabilities of f1, fa, f3 be 4,3, 3, respectively. Then the current total service
capacity, 10, is less than the number of clients (a weighted sum), 13, and not
all clients can be served by their respective nearest facilities. If a new facility
with a capacity of 3 is set up on f,,, then it will be the nearest facility of cs3,
cg and c1g. Now the total capacity becomes 15 and every client gets served
by her nearest facility. As a result, f, is one of the locations in the problem
answer and we want to find all such locations.

In a recent study [25], the LSUM problem is formalized as the LSUM query
and a branch-and-bound based algorithm is proposed to process the query. In
the average case, the algorithm has a time complexity of O(2°|C|), where 6

C]

increases with F In real applications, |C| is usually very large and |F| is

relatively small. In this case, 6 can get very large, which leads to prohibitively
long query processing time. To overcome the inefficiency, we propose to lever-
age the power of parallel processing, in particular, the MapReduce framework,
to achieve higher query processing efficiency.

There are two main challenges in applying the MapReduce framework for
our problem: (i) How to disjointly divide the search space so that no area needs
to be searched for more than once? (ii) How to assign balanced loads among
different reducers? In this paper, we address these challenges and propose an
efficient MapReduce based algorithm for the LUSM query. In summary, we
make the following contributions:

1. We study the properties of the LSUM problem and propose a MapReduce
based algorithm to solve the problem.

2. We propose a search space dividing strategy that divides the search space
based on arcs of the nearest facility circles. This strategy will assign every
region to be searched to only one partition. As a result, we achieve disjoint
partitions on the search space.

3. We propose a load balancing strategy that further divides the large parti-
tions into sub-partitions dynamically and then forms partitions of similar
sizes to be searched. Hence, we achieve partition searching tasks whose
estimated workload difference is within a threshold.

4. We conduct extensive experiments on the proposed algorithms using both
real and synthetic data sets of large sizes. The results demonstrate the
efficiency and scalability of our proposed algorithm.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 describes preliminaries for the LUSM query. Section 4 gives
an overview of our MapReduce based algorithm. Section 5 discusses how to
partition the search space and Section 6 discusses load balancing. Experimental
results are reported in Section 7 and the paper concludes in Section 8.
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2 Related Work
2.1 Location Optimization

Location selection belongs to the category of location optimization problem,
which is a classic problem in operational research. Various models [9,10,15,
16] have been proposed to solve location optimization problems of different
settings. Some [15,16] have taken the capacity constraints into consideration.
However, in general, these models focus more on the demand and/or cost of
setting up the facilities rather than maximizing the facility utility. Thus, we
will not discuss these models further. Interested readers are refered to some
recent reviews [5,17,23].

In the database community, some studies solve the location optimization
problem by modeling the locations as facility clusters [22] or functional re-
gions [33], while other studies, including ours, model the locations as points.
The latter group of studies are mostly based on the bichromatic reverse
nearest neighbor (BRNN) query introduced by Korn and Muthukrishnan [12].
Like many others [18,19,32,36], the BRNN query is a variant of the nearest
neighbor (NN) query. Given two object sets C' and F' and a query object from
F, the BRNN query returns objects in C' who perceive the query object as
their nearest neighbor in F. The BRNN set of an object is also called the
influence set of the object. Based on the influence set, Xia et al. [30], Wong et
al. [28,31], Zhou et al. [38] and Huang et al. [6,7] have studied how to find the
maximum or top-t most influential spatial sites. In addition, Zhan et al. [34]
and Zheng et al. [37] considered the uncertainty in the problem. Zhang et
al. [35] and Qi et al. [20] investigated the min-dist problem, which minimizes
the average distance between the clients and the facilities. These studies did
not consider capacity constraints and their algorithms do not apply.

Wong et al. [29] studied the spatial matching problem with capacity con-
straints. The study tries to assign each client to her nearest facility whose
capacity has not exhausted. Due to the capacity constraints of the facilities,
a client may be assigned to a facility very far away. U et al. [27] studied the
problem further and proposed algorithms that assigned each client to a facility
with a capacity constraint while the sum of the distance between each client
and its assigned facility is minimized. Sun et al. [24] studied finding the top-
k locations from a candidate set that maximize the total number of clients
served by the facilities set up on these locations. In another work [25], they
proposed the problem studied in this paper and a centralized algorithm for
the problem. As we will use the centralized algorithm as our baseline in the
experiments, we will detail it in Section 3.2.

2.2 MapReduce for Computation Intensive Problems

Since proposed, MapReduce has gained much popularity in studies to achieve
efficiency and scalability. For example, Lu et al. [14] investigated processing
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k nearest neighbor joins using MapReduce. Huang et al. [8] proposed efficient
MapReduce based algorithms for the earth mover’s distance similarity join.
Tao et al. [26] studied the minimal MapReduce algorithms that minimize the
storage cost, CPU and I/O cost as well as communication cost simultaneously
and proposed minimal algorithms for database problems like ranking and spa-
tial skyline queries.

Like in earlier parallel processing techniques such P2P computing [21] and
Grid computing [1], many efforts have been made in MapReduce for load
balancing on skewness input and complex, non-linear algorithms. For example,
Kolb et al. [11] designed methods to handle skewed data for entity resolution.
Gufler et al. [3] addressed the load balancing problem in processing MapReduce
jobs with complex reducer tasks. They proposed two load balancing approaches
that can evenly distribute the workloads on the reducers based on a cost model.
They [4] achieved further performance gains by improving the cost estimation
through gathering statistics from the mappers. Kwon et al. [13] presented
a system that automatically mitigates skewness for user defined MapReduce
programs by redistributing the unprocessed input data of the task with the
largest expected remaining processing time.

3 Preliminaries

In this section, we first provide a formal definition of the studied problem, and
then briefly describe an existing centralized solution to the problem and the
MapReduce framework. Table 1 provides a summary of the frequently used
symbols and their meanings.

Table 1 Frequently Used Symbols

Symbol | Meaning

S the data space

C the set of clients

F the set of facilities

c a client in C

f a facility in F'

w(c) the weight of client ¢

v(f) the capacity of facility f

le, £l the Euclidean distance between client ¢ and facility f

b(f) the bichromatic reverse nearest neighbor set (influence set) of facility f
da(f) the summed weight of the clients in b(f) (demand on facility f)

u(f) the utility of facility f which equals the smaller value between v(f) and d(f)
u(F) the summed utility of all facilities in F

M the set of optimal locations (optimal regions)

n(c) the nearest facility circle of client ¢

n(c) the area outside n(c)

R a consistent region in the data space

p a point in the data space

b(p) the bichromatic reverse nearest neighbor set (influence set) of point p
b(R) the influence set of a consistent region R
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3.1 Problem Definition

The LSUM problem involves a set of clients C' and a set of facilitates F', where
a client ¢ is associated with an integer as its weight, denoted by w(c), and a
facility f is associated with an integer as its capacity, denoted by v(f). The
objects in the two sets are points in 2-dimensional Euclidean space. Given two
objects ¢ and f, |c, f| denotes their Euclidean distance.

The LSUM problem relies on the bichromatic reverse nearest neighbor
(BRNN) query, which helps determine the clients that can be served by a
facility.

Definition 1 (bichromatic reverse nearest neighbor (BRNN) query)
Given two object sets C' and F and a query object f € F, the BRNN query
returns a subset of C, denoted by b(f). The objects in b(f) all view f as their
nearest object in F', i.e., Ve € b(f) and f; € F, |c, f| < ¢, fil-
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1 w(ez) =2
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Fig. 2 Basic concepts

We call the BRNN set b(f) the influence set of f. All clients in b(f) will
be served by f as long as the total of their weights is within the capacity
of f. For example, in Fig. 2(a), ¢1, o, c3 and ¢4 represent the clients; f; and
f2 represent the facilities. The BRNN sets (influence sets) of f; and fy are
{c1,c2} and {cs, c4}, receptively.

We sum up the weight of the clients in b(f) and call it the demand on
f, denoted by d(f), d(f) = > .cps)w(c). In Fig. 2(a), the demand on fy
and fy are w(cy) + w(c2) = 6 and w(cs) + w(cq) = 5, respectively. A facility’s
capacity may be smaller or larger than the demand on the facility. For example,
v(f1) =4 < 6 while v(f2) = 6 > 5. We take the smaller value between v(f) and
d(f) and define it as the utility of f, denoted by u(f), u(f) = min{v(f),d(f)}.
In Fig. 2(a), u(f1) = min{4,6} = 4 and u(f3) = min{6,5} = 5.

We call the sum of the utility values of a set of facilities F' the utility of F,
denoted by u(F), u(F) =3 ;cpu(f). In Fig. 2(a), u(F) = 9.

When adding a new facility at f,, with a capacity v(f,) to the set of facili-
ties, the utility value of all facilities changes to u(F'U{fn}) = >_ re pugy,y w(f)-
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The goal of this study is to identify all locations in the whole data space S
that, after establishing the facility on any of these locations, w(F U {f,}) is
maximized.

Definition 2 (location selection for utility maximization (LSUM))
Given the capacity of a new facility, the location selection for utility maximization

problem finds a set of locations M from the data space S. If the new facility
is set up on any location f,, € M, the utilization of F U {f,}, u(F U{f,}), is
maximized. Here, u(F'U{fn}) = > cpuqy,y ulf)-

Here, the capacity of the new facility is a parameter given by the query
user, which reflects the scale of the new facility that the user plans to set up.
In this study, to simplify our discussion, we assume that this parameter is not
affected by the chosen facility locations, i.e., we assume that we can set up a
new facility with the given capacity at any location. Since we are finding a set
of locations for the new facility, in real world scenarios, we can further process
the found locations and identify those that allow setting up a new facility with
the given capacity.

In Fig. 2(a), if a new facility of a capacity of 2 is added at f, to be the
new nearest neighbor of ¢y (but not any other clients), then the utility of all
facilities becomes 4 4+ 2 + 5 = 11, which is maximized since the total demand
is 11. As a result, f,, is a point in the solution set of the LSUM problem.

To solve the problem we need the following concepts. We use the nearest
facility circle (NFC) [12] to identify the influence sets.

Definition 3 (nearest facility circle (NFC)) Given a client ¢, the nearest
facility circle of ¢, denoted by n(c), is a circle that centers at ¢ and has a radius
of |¢, fe|, where f. is the nearest facility of c.

The influence set of f is formed by the clients whose NFCs enclose f. As shown
in Fig. 2(b), the circles represent the NFCs of four clients. The NFCs of ¢;
and ¢ enclose f; and hence, b(f1) = {c1,ca}. Similarly, the NFCs of ¢3 and
¢y enclose fo and hence, b(f2) = {cs,ca}.

In addition to n(c), we use 7i(c) to denote the area outside n(c), i.e., ii(c) =
S\ n(c), where S denotes the whole data space. Further, we use n(c) and 7i(c)
to define the consistent region to identify facilities with the same influence
sets.

Definition 4 (consistent region) A consistent region R is formed by a set
of points that are either all in n(c) or all in n(c) for any client ¢ € C, i.e.,

Ve e C, pi,p;j € R, pi # pj, either p;,p; € n(c) or p;,p; € f(c).

Straightforwardly it is proved [25] that all points in a consistent region
R have the same influence set, i.e., Vp;,p; € R, b(p;) = b(p;). We call this
same influence set the influence set of R, denoted by b(R). We further define
the maximal region, which is formed by all points in S that have the same
influence set.
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Definition 5 (maximal region) A consistent region R is a maximal region
if VR N R #( and b(R') = b(R), R’ C R.

As shown in Fig. 2(b), each of the shaded region denotes a maximal re-
gion. For example, the horizontal-lined region contains all points enclosed by
n(cz) whose influence set is {ca}. Similarly, the gray region contains all points
enclosed by n(cs) and n(cs) whose influence set is {ca, c3}.

Adding a new facility to a different maximal region may result in different
utility values of all the facilities. In Fig. 2(b), suppose the new facility has
a capacity of 2. Then adding it to the horizontal-lined region will result in
the maximum utility value 11 as analyzed above, while adding it to the gray
region will result in a smaller utility, 9 (u({ f1, f2, fn}) = u(f1)+u(fo)+u(fn) =
4+ 3+4+2=29). To find the optimal locations, we need to search each of the
maximal regions.

3.2 Existing Centralized Algorithm

An existing centralized algorithm [25] solve the problem by iterating all max-
imal regions to find the optimal one, during the process some pruning tech-
niques are applied to avoid searching the unpromising maximal regions. We
focus on the maximal region generation process as the pruning techniques are
irrelevant in our MapReduce based algorithm design.

We illustrate the generation process using the example shown in Fig. 2.
To solve the problem, the algorithm needs to generate the maximal regions
as shown by the shaded regions. It scans all NFCs according to the ascending
order of the client IDs and uses the intersection among NFCs to generate the
maximal regions. First it generates all maximal regions within n(c;). Since
n(cy) only intersects n(c2), it obtains maximal regions R; and Rs. Next, the
algorithm processes n(cz), which intersects n(c;) and n(c3). To avoid repetitive
search, it only consider intersections from NFCs whose corresponding client ID
is larger than that of the current NFC. Thus, the generated maximal regions
are R3 and Ry. This process continues until all NFCs have been scanned and
all maximal regions are produced during the process.

3.3 MapReduce Framework

MapReduce [2] is a popular parallel computing framework. The execution of
a MapReduce algorithm is called a job (or round) while the data is organized
in the form of key-value pairs. A MapReduce job is processed in three stages.

1. Map Each map task takes the input and generates a list of key-value
pairs (k,v).

2. Shuffle In the shuffle phase, the key-value pairs are distributed to
reducers (i.e., machines that performs reduce tasks) based on the keys.

3. Reduce In the reduce phase, key-value pairs that are of the same key
are processed together and the results are output for different keys.
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4 Overview of the MapReduce Algorithm for the LSUM Problem

To take advantage of parallelism, we divide the data space into partitions and
search the maximal regions in each partition synchronously. We then merge
the local results and identify the final result. The whole process is achieved by
three MapReduce jobs:

1. Search space partitioning, where the search space is divided into
partitions;

2. Local optimal region searching, where the maximal regions in each
partition is searched in parallel to identify local optimal regions, and

3. Result merging, where the local optimal regions are merged to generate
the final result.

4.1 Search Space Partitioning

The first job reads in all the two datasets C' and F' and computes the NFCs and
the influence sets to set up the search space. Then it divides the search space
into partitions based on the NFCs (detailed in Section 5). For load balancing,
it estimates the workload of each partition and subdivide the partitions to
obtain sub-partitions that are with similar workloads (detailed in Section 6).
These sub-partitions will then be searched in parallel in the next job.

The output of this job is partitions in the form of key-value pair (t;,m;),
where the key t; denotes the partition ID and the value m; denotes the data
that represent the partition. Here m; typically involves the facilities and clients
in the partition, the relevant influence sets and NFCs.

We take advantage of spatial index to compute the NFCs and influence
sets efficiently. In particular we use two R-trees to index the clients and the
facilities separately, and then use a popular R-tree based algorithm described
by Korn and Muthukrishnan [12] to obtain the NFCs and influence sets. Since
the R-tree based algorithm does not scale well in the MapReduce framework,
while is very efficient on a single machine, we perform the first job on a single
machine.

4.2 Local Optimal Region Searching

The input of the second job is partitions to be searched, and the expected
output is the optimal regions in each partition which are called local optimal
regions. The map phase of this job simply distributes the partitions based on
their IDs to the reducers. In reduce phase, the reducers search the partitions
in parallel. A reducer r searches the partitions assigned to it one after another
using a local version of the algorithm described in Section 3.2. After the search,
each reduce task outputs the local optimal regions in the form of a key-value
pair (u, R). Here, the key w is a utility value, and the value R is the region
that achieves the utility. The utility value u in each output key-value pair is
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Fig. 3 Algorithm overview

represented as an integer, which will be used by the third job to pick out the
global optimal regions.

Note that our partitioning strategy (detailed in Section 5) does not change
the number of NFCs a region is enclosed by, and hence dose not change the
“optimality” of a region. Thus, it does not change the region “optimality”
comparison result whether the comparison is done in parallel or in a centralized
fashion. Therefore, in the third job, we just need to identify the global optimal
regions from the local optimal regions computed in parallel in the second job.

4.3 Result Merging

The third job collects the results output by the second job, identifies regions
with the overall maximum utility and outputs the final result. Here, the map
phase collects the output of every reducer of the second job, and shuffles them
all to a reducer, where the local optimal regions are scanned to identify the
global optimal regions. If the number of local optimal regions is too large to
be handled by one reducer, we use multiple reducers where each identifies the
optimal regions from the subset of local optimal regions assigned to it. We then
repeat the third job until the number of local optimal regions is small enough
to be handled by one reducer and the global optimal regions are identified.
Fig. 3 summarizes the three jobs and the data flow.

5 Search Space Partitioning

A straightforward way to divide the search space is to use a grid, where the
maximal regions intersecting each cell form a partition. The drawback of this
strategy is that a maximal region can intersect multiple cells and hence will
be assigned to multiple partitions. For example, in Fig. 4, the search space is
divided into four cells. The gray region intersects all four cells. Thus, it will
be assigned to four partitions. This drawback will result in multiple searches
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Fig. 4 Grid partitioning

on one maximal region, which is a waste of the limited computation resources.
As the grid granularity gets finer, the problem gets worse.

Arc-based Partitioning. To avoid the overlaps between partitions, we pro-
pose to use the arcs from the NFCs to divide the space and form partitions.
Since maximal regions are formed by NFCs, arc-based partitioning forms dis-
joint partitions naturally. For example, in Fig. 5, the space is divided into four
partitions that do not share any maximal regions.

I1I

S

Fig. 5 Arc-based partitioning

Arc-based partitions are obtained from the grid-based partitions. Specifi-
cally, the partitions and their boundaries are computed as follows. For every
cell g in the grid, if g contains the center of an NFC n(c;), then we assign a
maximal region inside NFC n(c¢;) to g provided this maximal region is outside
of any other NFC n(c;) with an ID smaller than that of n(c;) (i.e. 1 < j < ).
In this way, every maximal region will only be assigned to one partition and
hence be searched once in the search job. The maximal regions assigned to g
form a partition. Their bounding arcs, together with the edges of g, form the
boundary of the arc-based partition. As an example, cell I in Fig. 5 contains
the center of NFC n(c;) and n(cq). All the maximal regions in n(cq ), plus those
in n(cq4) but not in n(ce) or n(cs), are assigned to this cell. Their bounding
arcs (i.e., arcs of n(cy), n(cz) and n(cy)) and the boundary of the cell form the
boundary of the partition.

As shown in Fig. 5, the arc-based partitioning may lead to partitions of
quite different sizes and hence different workloads for the reducers in the search
job. In what follows, we discuss how to sub-divide the partitions to obtain
approximately balanced workloads.
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6 Load Balancing

For simplicity we assume the nodes in the MapReduce cluster have the same
computation capability.

We first model the workload of processing a partition. The search cost of a
partition is determined by the number of NFCs in the partition. We assume the
finest level partitioning, i.e., each NFC forms a partition. Then the workload of
a partition is determined by the number of maximal regions its NFC contains.
Let the cost of searching a maximal region be the unit workload. In the worst
case, an NFC that intersects n NFCs can form 2" maximal regions to be
searched (as described in Section 3.2). Thus, a partition that intersects n
NFCs will have 2™ unit workloads in the worst case. We use this worst case
workload as an estimation to balance the workload among the reduce tasks.

6.1 Partition Assignment

Let s be the number of reducers the search job. We now discuss how to assign
the |C| single NFC partitions to the reducers to obtain balanced workloads.

6.1.1 Round-robin Assignment

Straightforwardly we can assign the partitions in a round-robin fashion. We
arrange the s reducers in a row and the ith partition is assigned to the (i mod
5)*" reducer. For example, in Fig. 6(a), we have five partitions whose costs
are 32, 64, 16, 32 and 8, respectively, and two reducers A and B. Applying
the round-robin strategy, the first, third and fifth partitions are assigned to
reducer A and the others are assigned to B, which results in workloads on
A and B being 56 and 96, respectively. We use this strategy as one of the
baseline strategies. However, since it does not guarantee balanced workloads,
we still need better strategies.

32 32

16
=N 8
S8 =
A B A
Reduce Reduce Reduce Reduce

(a) Round-robin strategy (b) Least-load strategy

32 32

-
i

Fig. 6 Basic assignment strategies
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6.1.2 Least-load Assignment

We adopt a greedy assignment approach proposed by Gufler et al. [3] and call
it the least-load assignment strategy. This strategy always assign the next most
expensive partition to the reducer that have been assigned the least workload.
The assignment process continuous until all partitions are assigned.
Applying this strategy, as shown in Fig. 6(b), partitions with cost 64 and
16 are assigned to reducer A, while the rest of the partitions are assigned
to reducer B. After the assignment, A and B have workloads of 80 and 72,
respectively. Algorithm 1 summarizes the least-load assignment process.

Algorithm 1: Leastload Assignment

Input: Qp /*partition queuesx/
PQ, /*reduce task priority queuex/
Output: PQ, /#reduce task queue with assigned partitionsx/
1 while @ is not empty do
2 p — head(Qp) /#remove the head of Qp to p*/
3 r < head(PQ)
4 r.addPartition(p) /*assign partition p to reduce task rx/
5 r.load «— r.load + p.cost
6 PQr.insert(r) /#*reinsert r*/
7 return PQ,

The least-load assignment strategy produces more balanced workloads than
the round-robin strategy does on average. However, when there are a few par-
titions with workloads that are much larger than most of the other partitions,
this strategy fails. Two examples are shown in Fig. 7. As shown by Fig. 7-1,
assuming that we have two reducers to process these partitions and the least-
load assignment strategy is used, the workloads of these two reducers will be
1024 and 120, respectively. Similarly, if we have three reducers to process the
partitions as shown by Fig. 7-II, then their workloads will be 1024, 512, and
56, respectively. In either case, the workloads are very skew and the advantage
of parallelism will not be fully exploited.

1024 ! | oz i

512

64 |
ﬂ32 | 32
. [ 116 8 | [ 116 8

Fig. 7 Examples when the least-load assignment strategy fails
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6.1.8 Dynamic Assignment

We further propose a dynamic assignment strategy that achieves balanced
workloads by iteratively refining the workload on each reducer through sub-
dividing the partitions. In each iteration, we get the average workload per
partition for all partitions to be assigned, and subdivide the partitions whose
workloads are larger than the average by a predefined threshold ¢ into sub-
partitions. After that, we assign the sub-partitions as well as the partitions
that have not been subdivided with the least-load assignment strategy. After
the assignment, we get the average workload per reducer. If the workload of a
reducer is larger than the average by €, then on this reducer, the partition with
the highest workload is removed from the reducer and subdivided. The above
procedure repeats until the workload of each reducer is within the threshold.
Algorithm 2 summarizes the dynamic assignment strategy.

Algorithm 2: DynamicAssignment

Input: L, /xlist of partitionsx/
PQ, /*reduce task priority queuex/
€ /+threshold & > 0%/
Output: PQ, /#reduce task queue with assigned partitionsx/

1 even «— false

2 t « first integer that makes 2t > PQ..size

3 while true do

4 ave — average(Lp) /*get the average cost/

5 for each p € L, do

6 if p.cost > (1 +¢) X ave then

7 /*subdivide partition p into 2 subparts and return the existing ones*/

8 subparts[2t] « subdivide(p, 2t)

9 Ly .insertAll(subparts) /+insert all sub-parts into partition list+/
10 LeastloadAssignment(Ly, PQr) /+use same strategy as least-load assignments/
11 ave «— average(Lp) /*get the new average cost*/
12 even « true
13 for each r € PQ, do
14 if r.load > (1 +¢) X ave then
15 even «— false /+load of reduce task r is too largex/
16 ep «— expPartition(r) /*return the most expensive partition/
17 subparts[2t] « subdivide(ep, 2*)

18 Ly .insertAll(subparts)

19 Ly .insertAll(r.partitions) /#reinsert all partitions in r to repeat*/
20 if even then

21 break

22 return PQ,

Subdividing a partition. The subdividing of a partition is performed in a
binary fashion using the NFCs intersecting the partition. As shown in Fig. 8(I),
a partition is formed by an NFC where the shaded regions are excluded from
the partition. Besides the shaded regions, this NFC intersects 3 NFCs as shown
by the dashed arcs a;, az and as. These 3 arcs form 23 = 8 maximal regions in
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the NFC, as denoted by 000,001,010,011,100,101,110, and 111, respectively.
Thus, the workload of processing this partition is 8 workload units. We first
use a1 to divide the partition. Then 4 maximal regions 010, 110, 100, and 000
fall in one partition P; while the rest of the maximal regions fall in the other
partition P,. We repeat this process by using as and ag to further divide P; and
P, until the partitions cannot be divided any more (i.e., each partition contains
only one maximal region) or the number of resultant partitions is larger than
the number of reducers s, since at this point the resultant partitions can be
assigned to the reducers approximately evenly already.

Note that a byproduct of the partition subdividing process is the refinement
of partition workload estimation. Given a partition that intersects n NFCs, we
estimate the workload of processing the partition as 2" workload units. This
is assuming that the n NFCs all intersect with each other and hence form 2"
maximal regions, which may not always be the case. As shown in Fig. 8(II), the
3 arcs now only form 5 maximal regions, as denoted by 000,001,010, 100, and
110. The original workload estimation has an error of 8—5 = 3. After we divide
the partition by a;, we will have two sub-partitions P, and P», containing sets
of maximal regions {110,100} and {010,000, 001}, respectively. The estimated
workloads of P; and P, will be 2 and 4, respectively, and the total estimation
error now is reduced to 1.

Fig. 8 Subdividing a partition

7 Experiments

We evaluate the performance of our MapReduce algorithm on an in-house
cluster. The cluster consists of 4 computing nodes. Among them, two are
equipped with Intel i7-3770 3.4GHz quadcore processors, and the other two
are with Intel i7-2600 3.4GHz quadcore processors. One node has 32GB main
memory, the other three each has 16GB of main memory. Each node has a
3TB SATA hard disk and is connented to a gigabit Ethernet. The software
used CentOS 6.0 operating system, Java 1.7.0 with a 64-bit server VM and
Hadoop 2.0.0-cdh4.2.1. In Hadoop, the replication factor is set to 2 and the
size of virtual memory for each map and reduce task is set to 4GB.
We evaluate the following approaches in the experiments.
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1. Centralized is the centralized algorithm [25] describe in Section 3.2.

2. Round-robin is our MapReduce algorithm with the round-robin partition
assignment strategy described in Section 6.1.1.

3. Least-load is our MapReduce algorithm with the least-load partition as-
signment strategy described in Section 6.1.2.

4. Dynamic is our MapReduce algorithm with the dynamic partition assign-
ment strategy described in Section 6.1.3.

Both real data sets and synthetic data sets are used. Three real data sets
NA, NE and US are retrieved from the R-tree Portal!. Table 2 lists the
details of the real data sets. When using a real dataset, we uniformly sample
from it to generate C' and F. We generate synthetic data sets denoted by
SN. To simulate real-world scenarios, we generate C' and F' with the Zipfian
distribution and the skew coefficient is set at 0.2 in a space domain of 10% x 10%.
We set the weight of each client at 1 and generate the capacity of the facilities
following the Gaussian distribution while the mean and the standard deviation

C C .
are set at 2 x u and 0.4 x u, respectively.
|F| |F|
Table 2 Real Datasets
Dataset | Cardinality Description
NA 24,360 locations in north America apart
NE 119,898 addresses in northeast of the U.S.
US 14,478 locations in the U.S. apart from Hawaii and Alaska

We measure the response time (denoted by “Response time”) and the run-
ning time variance (denoted by “Time variance”) of different reducers in the
cluster.

7.1 Fine Tuning the Dynamic Assignment Strategy

We first measure the effect of the partition subdividing threshold (denoted by
€) to optimize the dynamic assignment strategy. We vary the threshold from
1073 to 10~ 7 and Fig. 9 shows the performance of our MapReduce algorithm
on different data sets.

As can be seen from the figure, the algorithm performance varies in differ-
ent patterns on different data sets. However, in general, when ¢ = 107¢, our
algorithm performs the best in response time (cf. Fig. 9(a)). As a result, we
will use this value in the following experiments.

Meanwhile, we observe in Fig. 9(b) that the running time variance of differ-
ent nodes decreases with the decrease of €. This is expected since the threshold
€ controls the workload difference between the reducers. However, a smaller
workload difference itself does not guarantee overall minimum response time.

1 http://www.chorochronos.org/
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Fig. 9 Effect of € on the dynamic assignment strategy

This is because to achieve a smaller workload difference requires a larger num-
ber of iterations in the dynamic assignment strategy. As shown in Fig. 9(c),
e = 1077 leads to high assignment time, which results in higher total response
time even when the workload difference is smaller.

7.2 Comparative Study

Next we compare the performance of different algorithms varying different
parameters.

7.2.1 Effect of %

First we evaluate the effect of the ratio % In this set of experiments, the
value of % is varied from 10 to 50 and the results on different data sets are
presented in Fig. 10.

As % increases, the response time of all methods increase. This is because

when }TI increases, either |C| increases or |F| decreases. In the former case,

the number of NFCs increases as well as the number of maximal regions to
be searched. In the latter case, the sizes of the NFCs increase and hence the
number of maximal regions also increases. As a result, it takes more time for
all methods to solve the problem.
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Fig. 10 Effect of the ratio }%

As the figure shows, the centralized algorithm is the slowest while dynamic
is the fastest in most cases. The performance of round-robin and least-load lie
in between. On average, dynamic requires only 30% of the response time of
the centralized algorithm. Considering that our cluster only has 4 nodes, this
speed-up demonstrates the superiority of our proposed MapReduce algorithm.
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In terms of the running time variance on the different nodes, dynamic

achieves the smallest time variance in all cases. This justify the proposal of

the dynamic assignment strategy.
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7.2.2 Effect of Data Set Cardinality

The second set of the experiments studies the effects of data set cardinality.

The ratio of % is fixed at 25. For NA and US data sets, we vary the cardinality

of |C] from 3,000 to 20,000 and 1,000 to 13,000, respectively. For NE and SN;,
|C| is varied from 20,000 to 100,000.

As shown in Fig. 11, dynamic again outperforms the other methods con-
stantly. Its response time is relatively steady when |C| increases, which demon-
strates the scalability of our proposed method. Meanwhile, due to imbalanced
workloads, round-robin and least-load cannot outperform the centralized algo-
rithm in all cases, which again validates the necessity of our proposed dynamic
assignment strategy.

8 Conclusions

In this paper, we proposed a MapReduce based algorithm to solve the problem
of location selection for utility maximization. To fully exploit the capability
of parallelism, we proposed an arc-based search space partitioning strategy
as well as a dynamic load balancing strategy. By arc-based partitioning, we
divide the search space into a number of disjoint partitions. Thus, every region
in the space will only be assigned to at most one partition and searched for
once. By dynamic assignment strategy, we subdivide the disjoint partitions
obtained from arc-based partitioning and assign them to the reducers, where
the estimated workload difference among different reducers is controlled by a
predefined threshold. We empirically study the effect of the workload differ-
ence threshold to optimize our MapReduce based algorithm and compare it
with a centralized algorithm on both real and synthetic data sets. The results
show that our proposed MapReduce based algorithm outperforms the cen-
tralized algorithm significantly and validate the effectiveness of the arc-based
partitioning and dynamic assignment strategies.
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