
HAL Id: hal-00929814
https://hal.inria.fr/hal-00929814

Submitted on 14 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Efficiency of Several VM Provisioning Strategies
for Workflows with Multi-threaded Tasks on Clouds

Marc Frincu, Stéphane Genaud, Julien Gossa

To cite this version:
Marc Frincu, Stéphane Genaud, Julien Gossa. On the Efficiency of Several VM Provisioning Strategies
for Workflows with Multi-threaded Tasks on Clouds. [Research Report] RR-8449, INRIA. 2014, pp.30.
�hal-00929814�

https://hal.inria.fr/hal-00929814
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
4

4
9

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8449
January 2014

Project-Team AlGorille

On the Efficiency of

Several VM Provisioning

Strategies for Workflows

with Multi-threaded

Tasks on Clouds

Marc E. Frincu , Stéphane Genaud , Julien Gossa

RESEARCH CENTRE

NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

On the Efficiency of Several VM Provisioning

Strategies for Workflows with Multi-threaded

Tasks on Clouds

Marc E. Frincu ∗, Stéphane Genaud ∗, Julien Gossa ∗

Project-Team AlGorille

Research Report n° 8449 — January 2014 — 30 pages

Abstract: Cloud computing promises the delivery of on-demand pay-per-use access to unlimited
resources. Using these resources requires more than a simple access to them as most clients have
certain constraints in terms of cost and time that need to be fulfilled. Therefore certain scheduling
heuristics have been devised to optimize the placement of client tasks on allocated virtual machines.
The applications can be roughly divided in two categories: independent bag-of-tasks and workflows.
In this paper we focus ourselves on the latter and investigate a less studied problem, i.e., the
effect the virtual machine allocation policy has on the scheduling outcome. For this we look at
how workflow structure, execution time, virtual machine instance type affect the efficiency of the
provisioning method when cost and makespan are considered.
To aid our study we devised a mathematical model for cost and makespan in case single or multiple
instance types are used. While the model allows us to determine the boundaries for two of our
extreme methods, the complexity of workflow applications requires a more experimental approach
to determine the general relation. For this we considered simulations of real application workflows
and synthetic ones, covering most of the possible cases.
Results have shown the need for probabilistic selection methods in case small and heterogeneous
execution times are used, while for large homogeneous ones the best algorithm is clearly noticed.
Several other conclusions regarding the efficiency of powerful instance types as compared to weaker
ones, and of dynamic methods against static ones are also made.

Key-words: workflow scheduling, virtual machine provisioning, cloud computing, cost and
makespan modeling

∗ Icube, CNRS - Université de Strasbourg, France.

Efficacité comparée de plusieurs stratégies de

provisionnement de VM pour des workflows de tâches

multi-threadées sur Cloud

Résumé : Le cloud computing ouvre la perspective de ressources illimitées sur la base d’un
paiement à l’utilisation. L’utilisation de ces ressources exige cependant plus que les primitives
de base de gestion des machines virtuelles proposées à l’utilisateur, car elles ne prennent pas
en compte les contraintes de coût et de temps d’exécution. Par conséquent, des heuristiques
d’ordonnancement doivent être proposées pour optimiser le placement des tâches des clients
sur les machines virtuelles allouées. Les applications peuvent être divisées en deux catégories
principales : celles composées de tâches indépendantes et les workflows. Dans cet article nous
nous focalisons sur les workflows, et nous nous concentrons sur le problème assez peu étudié
de l’effet de la politique d’allocation des machines virtuelles sur l’ordonnancement. Pour cela,
nous examinons comment la structure, le temps d’exécution, et le type d’instance de machine
virtuelle influencent l’efficacité de la méthode d’allocation et d’ordonnancement.

L’étude s’appuye sur un modèle mathématique modélisant le coût et le temps de fin dans le
cas ou on utilise un seul type d’instance, ou différent types d’instance de machines virtuelles.
Bien que le modèle permette de déterminer des bornes pour deux des méthodes extrêmes, la
complexité des workflows nécessite une approche expérimentale basée sur des cas variés pour
déterminer une relation générale entre les paramètres.

Les résultats montrent la nécessité de méthodes probabilistes de sélection dans le cas où les
temps d’exécution des tâches sont courts et hétérogènes, tandis que pour des temps d’exécution
homogènes le meilleur algorithme est clairement identifié. Plusieurs autres conclusions sont
également tirées concernant l’efficacité de l’utilisation de types d’instance plus ou moins puis-
santes, ou de l’emploi de méthodes statiques ou au contraire dynamiques.

Mots-clés : ordonnancement de workflows, provisionnement de machines virtuelles, cloud
computing, modélisation de coût et durée

Efficiency of Several VM Provisioning Strategies 3

1 Introduction

Cloud computing has received an increasing attention in the past years due to its promise of
delivering on-demand pay-per-use access to virtually unlimited resources. This aspect has also
brought a lot of challenges in terms of standards and technical solutions for addressing security,
scaling, interoperability, brokering or management issues. Problems such as interoperability
and brokering are becoming the central focus of many research initiatives due to the increasing
number of new providers which leads to a wide array of heterogeneous offers from which clients
must select the ones best for their goals. This selection problem can be solved manually or
automatically and while the former could work for small short running applications, elastic
applications that are complex enough not to facilitate manual selection necessitate a smarter
software driven selection. This automatic selection needs to properly allocate cloud resources –in
this paper we only deal with Virtual Machines (VMs)– in order to meet some client objectives.

The scientific community deals with two kinds of applications, those without any dependen-
cies, i.e., bag-of-tasks (BoTs), and those in which the execution of some tasks depend on the
successful completion of previous ones, i.e., workflows. For the latter case we have execution
paths which can be deterministic –the path can be determined a priori, which is usually the
case of directed acyclic graphs (DAGs)– or non-deterministic –the execution path is usually
determined at runtime and consists of loop, split and join constructs [6]. Commercial cloud
applications can be divided similarly in single service oriented –e.g., weather, stock exchange
services– or workflow oriented –e.g., bank transfers, online reservations, social websites.

One of the problems linked to VM selection is to decide when to allocate them and which
tasks to assign to them. In a virtualized environment such as a cloud the issue is three folded
as it requires scheduling on three levels: (1) deciding when a new VM is required; (2) finding
the appropriate Physical Machine (PM) for it– a problem related to bin packing [3]; and (3)
scheduling the tasks on the VMs depending on various user given objectives. Based on the
provider policies it can influence one or more of these stages. In this paper we focus on the first
and third steps which are usually controllable by clients.

Many grid Scheduling Algorithms (SAs) for BoT have been extended and adapted to clouds
[15, 16, 23, 30]. These papers show the various impact VM provisioning policies have on the
same task scheduling method and outline their importance.

The problem of workflow scheduling has mostly tackled the aspect of extending previous
grid SAs to rent cloud resources whenever needed and ignored, to our best knowledge (cf. Sect.
2), to study the impact of the VM provisioning on the scheduling policy. The focus of this
paper is therefore to investigate this problem in the context of CPU intensive workflows where
data communication does not play a major role. We show that the SA outcome is linked to the
workflow structure and the provisioning method and the used VM instance type. This work
extends the one previously presented in [12] where we restricted the study to only a special case
of four existing workflows. In addition we focus our study on multi-threaded tasks since many
cloud providers offer many multi-core VM instance types.

Given the above we argue that the primary contribution of this paper is two folded:

• to provide several VM allocation methods which we model and analyze in terms of cost and
makespan. This allows for a better understanding of how they behave in ideal scenarios
such as those with only parallel or sequential tasks. Cost and makespan are investigated
and modeled in two cases, with and without VM boot/shutdown times and for multiple
VM instance types (e.g., Table 1 depicts the pricing list for on-demand VM types offered
by Amazon). To our knowledge this is the first attempt at creating such a model;

• to show that objectives such as cost and makespan are influenced not only by the workflow
structure and task scheduling but by the VM provisioning strategy and VM instance
types as well. This proves that there is more behind VM allocation than a simple “rent
whenever needed the least expensive instance type”. For this we present results for four
classic workflow structures and also extend our analysis to randomly generated DAGs.
This correlation between the previously mentioned properties could greatly improve the
efficiency of resource management systems by allowing them to dynamically switch the
allocation methods at runtime.

The rest of the paper is structured as follows: Section 2 depicts some of the main results
in the field of cloud SAs for BoTs and workflows. Section 3 depicts the main VM provisioning
policies and the three methods used to order tasks inside the workflow. It also presents some
theoretical aspects related to the relation between the methods when one or more VM instance
types are used as well as a study on their optimality (cf. Sect. 3.2). The experimental setup

RR n° 8449

4 Marc E. Frincu , Stéphane Genaud , Julien Gossa

Table 1: Amazon EC2 standard on-demand instance types and prices on Feb 26th 2013.
region small medium large xlarge transfer

out

US East Virginia 0.06 0.12 0.24 0.48 0.12
US West Oregon 0.06 0.12 0.24 0.48 0.12

US West California 0.065 0.13 0.26 0.52 0.12
EU Dublin 0.065 0.13 0.26 0.52 0.12

Asia Singapore 0.08 0.16 0.32 0.64 0.19
Asia Tokyo 0.088 0.175 0.350 0.700 0.201
Asia Sydney 0.08 0.16 0.32 0.64 0.19

SA Sao Paolo 0.08 0.16 0.32 0.64 0.25

is presented in Sect. 4. The case of real workflows is discussed in Sect. 4.1 while while the
synthetically generated ones are addressed in Sect. 4.2. The conclusions and future work are
addressed in Sect. 5.

2 Related Work on Cloud Scheduling

As a successor of Grid computing, Cloud computing inherited many of its problems, including
those related to scheduling. Furthermore it also brought new ones, like scaling (or provisioning)
which is strongly tied to the scheduling problem. Much work has been done to adapt existing
grid SAs for clouds. These include both BoT and workflow oriented. Concerning the problem
complexity we know the scheduling problem to be N P − complete and the bin packing problem
of fitting multiple VMs on a PM to be N P − hard [3].

Although many SAs for clouds have been proposed for BoTs with some recent work [16,
23, 30] even analyzing the impact of VM provisioning on the SA, none have addressed the
importance of the provisioning policy for the case of workflows. For BoTs tests have shown a
dependency between the two which impacts both the makespan gain and the paid cost.

One of the first works to show the cost of deploying scientific workflows on clouds is [8] where
three cloud migration scenarios are depicted: (1) use clouds sporadically to enhance the local
infrastructure, (2) deploy the entire application on the cloud but keep the data locally, and (3)
deploy both data and application on the clouds. Focus is however not on the VM provisioning
method itself but on the impact renting resources from clouds has on the cost.

Most commercial clouds leave the client to decide when to provision VMs. Their concern is
primarily related to VM to PM assignment and use simple allocation methods based on Round
Robin (Amazon EC21), least connections and weighted least connections (Rackspace2). Other
simple policies include Least-Load or Rotating-Scheduling [15].

As already mentioned the majority of the results concerning workflow SAs have ignored
the impact VM provisioning has on the SA and focused on extending existing algorithms –
e.g., HEFT [33], CPA [26] and Gain [27]. Results in this direction include SHEFT [18] –an
extension of HEFT which uses cloud resources whenever needed to decrease the makespan below
a deadline–, CPA versions for determining the needed number of VMs a workflow requires [6],
or Gain versions for clouds [21].

A few papers have proposed novel methods [1, 5, 19, 21, 24] but show little interest in how
VM provisioning impacts metrics such as makespan or cost. Other approaches include: auction
based scheduling [24]; HCOC [1] which relies on the Path Clustering Heuristic (PCH) [2] and
uses an approach similar to SHEFT for provisioning cloud resources; Particle Swarm Optimiza-
tion [25, 31]; Genetic Algorithms [31]; and Ant Colony Optimization [31] methods.

A distinct category seems to be that of map-reduce workflows. These are highly parallel
applications consisting of two phases, a map phase in which keys are generated based on map
tasks and a reduce phase in which keys are read and results are produced. In [17] two algo-
rithms for minimizing VM rent costs are proposed: List and First-Fit –sorts prices and the
corresponding VMs are allocated to map and reduce tasks –and Deadline-aware Tasks Packing
–uses the estimated deadline to schedule map tasks.

Most of the presented solutions offer VM allocation policies tailored to the specific SA and
while we do not question their efficiency we underline the fact that when grid SAs are extended
for clouds [1, 6, 18] a greater importance should be given to both the VM allocation policy and
the used instance types –e.g., those from Amazon EC2.

1http://aws.amazon.com/ec2/ (accessed Dec 7th 2012)
2http://www.rackspace.com/blog/announcing-cloud-load-balancing-private-beta/ (accessed Dec 7th 2012)

Inria

Efficiency of Several VM Provisioning Strategies 5

Figure 1: Basic VM provisioning policies.

A comparison between several workflow types and a hybrid private cloud + public cloud SA
called HCOC is given in [1]. However the provisioning strategy apparently follows only a one
VM for each task approach.

A special category of SA is that which relies on exact optimal solutions such as those
provided by linear programming techniques. Again the majority of papers deal with BoTs
[4, 20, 29, 32] while only a few address the case of workflows [13]. We argue that these solutions
are more suited for static environments or for comparing the efficiency of other policies designed
for online scenarios. Arguments include the time needed to compute the solution when large
numbers of tasks and resources are used as well as their requirement to have a complete view
of the world which in online scenarios is not possible.

3 VM Provisioning

VM provisioning refers to how VMs are allocated: reusing existing (idle) ones; renting a new
one for new tasks or when the task execution time exceeds the remaining Billing Time Unit
(BTU) [23]; considering or not boot time; etc. The BTU represents the logical unit used by
providers to count for how long a VM has been rented. In general it is equal to 3,600s but
recently Google introduced for its Compute Engine a billing per minute which takes effect after
the first ten minutes of usage which are billed as a whole [14]. For our purposes we assume a
uniform BTU for all our VMs.

The notion of provisioning is also used as a loosely synonym for scaling as it allows the
VM resource pool to elastically scale based on demand. In [23] it has already been shown that
for BoTs the VM provisioning affects objectives such as idle time, cost and makespan of the
schedule. In this work we investigate workflows and propose as comparison six basic (cf. Fig.
1) and two dynamic (cf. Fig. 2) methods for VM provisioning. We further assume that all six
basic methods use only homogeneous VM instances –e.g., small instances from Amazon EC2.

Figures 1 and 2 exemplifies them on a simple CSTEM sub-workflow [10] consisting of one
initial task and six subsequent tasks. The unused BTU time is indicated by the dark I -marked
rectangles while the default length of a BTU is represented by the rectangle marked BTU.

OneVMforAll assigns a single VM to execute all possible tasks. In order to achieve this,

RR n° 8449

6 Marc E. Frincu , Stéphane Genaud , Julien Gossa

Figure 2: Dynamic VM provisioning policies.

workflow tasks need to be ranked[33]. This method is a extremely efficient in reducing cost
irrespective of the workflow structure (cf. Sect. 3.2) but by serializing parallel tasks it produces
long makespans.

OneVMperTask does exactly the opposite by assigning a new VM to each task. Thus it
achieves an optimal makespan (cf. Sect. 3.2) but at the expense of maximizing the rent cost.

The rest of the proposed allocation methods are intermediaries trying to cover cases in
which workflows have mixed sequential and parallel structures. The two StartPar* methods
are designed for workflows in which the maximum number of parallel tasks is given by the
initial tasks while the AllPar* methods target general workflows exhibiting an arbitrary degree
of parallelism.

StartParExceed assigns a new VM to every initial workflow task. The rest of the tasks are
scheduled sequentially on the initially rented VMs –for a given task the VM with the largest
execution time is chosen. If a single initial task exists this heuristics becomes equivalent to
OneVMforAll.

StartParNotExceed is similar to the previous one but tasks whose execution times exceed
the remaining BTU free time are assigned to new VMs.

AllParNotExceed assigns each parallel task to its own VM –existing or new. New VMs are
added when the number of parallel tasks exceeds the number of VMs or if a task execution
time exceeds the assigned VM’s remaining BTU time. For each task the algorithm tries to find
the best fit. To achieve this it sorts both VM remaining BTU time and task execution times
ascending. Another optimization is that it starts each new VM so that all parallel tasks finish
at the same time –maximizing the remaining BTU time for each newly rented VM.

AllParExceed is similar to the previous but exceeding the remaining BTU does not lead to
new VMs being rent.

It can be noticed that each provisioning strategy provides a different result in terms of
allocated VMs, cost and makespan. The OneVMperTask and OneVMforAll policies represent
upper limits with regard to the cost respectively makespan.

StartParNotExceed usually allocates more VMs than StartParExceed and allows in certain
scenarios for the number of tasks executed in parallel to exceed the maximum value determined
by the number of initial tasks.

The AllParExceed strategy fully exploits task parallelism. It reduces makespan by running
independent tasks in parallel and also costs as sequential tasks are allocated on the same VM.
AllParNotExceed is similar but the resulted number of rented VMs is larger. The efficiency of
the two is however limited if little or no parallelism exists in the workflow.

Overall the strategies that tend to allocate more VMs are better suited for tasks with large
data dependencies where the VM should be as close as possible to the data. On the other hand
these give large idle times resulting in a waste of budget. The way in which these provisioning
policies impact various workflow types is discussed in Sect. 4.

Finally, the two dynamic VM provisioning methods start from an initial provisioning
achieved through either AllParExceed or AllParNotExceed and attempt to further reduce cost
and makespan by taking advantage of task parallelism and faster VM instance types. Figure 2
presents them for a workflow having four parallel tasks.

AllPar1LnS tries to decrease task parallelism by executing in sequence multiple short parallel
tasks whose total lengths are about the same as longest tasks. Each set of sequential short tasks
is mapped onto a single VM, while the long tasks are still scheduled in parallel to different VMs.
The reduction is performed only after tasks are ranked, inside each level, by execution time. A

Inria

Efficiency of Several VM Provisioning Strategies 7

more complex approach has been proposed in [21].
While AllPar1LnS reduces costs alone, a further optimized version called AllPar1LnSDyn

tries to decrease the makespan inside each level by attempting to increase the VM speed within
a given level budget:

First the parallelism is reduced as in AllPar1LnS. Then the worst budget for the level is com-
puted based on the value given by a provisioning method using OneVMperTask. The algorithm
will attempt to reduce the execution time of the longest task –which is always scheduled sepa-
rately –by assigning the next fastest VM. If succeeded it checks to see whether the makespan
is still determined by that task or it shifted to another VM (cf. Fig. 2). If the former case is
true it continues to increase the speed of the VM within the budget until the makespan shifts
to another VM or all VM types have been used. In case the makespan shifts to another VM,
the SA tries to reduce it below the execution time of the longest task by increasing –within the
budget– the speed of the VM. If this fails either due to exceeding the budget or because the
makespan is still larger, the increase in speed is rolled back to the last valid configuration, i.e.,
one in which the budget is not exceeded and the level makespan is dictated by the longest task.

As an example consider the prices in Table 1 for the case of the Amazon cloud. Given a
BTU of 500s and tasks 1–4 in Fig. 2 and assuming their execution times to be of: 100s, 120s,
130s, and 400s, for the parallelism reduction phase (AllPar1LnS) we get two VMs, the first
one running the first three tasks in sequence (total execution time of 350s) and the second one
the longest one. Given a single region, e.g., Virginia, the cost for using the cheapest two VMs
is $0.12. Considering AllPar1LnSDyn we compute the worst cost: $0.24. We now attempt to
reduce makespan by increasing the VM type executing the longest task. Assuming a speed-up
of 1.6 (cf. Sect. 3.2) and a price of $0.12 for the medium instance we have the new execution
time is only 250s and our total cost is $0.18. As we require our makespan to be given by the
longest task we also need to reduce the execution times for our three tasks on the first VM.
Since we are still below the worst price we attempt to increase the VM instance for them too.
By doing so we obtain a total time of 218.75s < 250s. As the total amount of cost reached
the worst case price ($0.24) we cannot further attempt to minimize the makespan. However,
we were able of reducing the makespan by 150s while paying as much as in the worst case of
OneVMperTask.

The proposed policies cover most of the approaches taken in literature so far. OneVMperTask
is the usual approach when using cloud resources when the private cluster becomes full (e.g.,
SHEFT). In addition, algorithms like Gain or CPA require that only the VM assigned to a
particular task to be augmented. Also, it is suited for parallel tasks where in order to minimize
makespan each one must be executed on a separate VM. Optimizations of this simple allocation
have been proposed in [21] and they include among others, parallelism reduction which in our
case is incorporated in AllPar1LnS. While this method only reduces cost we have proposed our
own enhancement in the form of AllPar1LnSDyn which given a cost upper bound –provided
by OneVMperTask – tries to also reduce makespan by augmenting the VMs initially assigned
using AllPar1LnS. In the context of these optimized algorithms the {Start|All}Par[Not]Exceed
methods represent solutions which attempt to make full use of parallelism while not renting
additional VMs in case sequential tasks need to be scheduled as well. Finally OneVMforAll is
a method best suited for sequential workflows where rent costs are minimized in case a single
VM is used throughout the execution.

3.1 Task ordering

Given a static scenario, DAG tasks need to be ranked so that their execution takes place in
the right order. Three main methods exist: rank based, level based and cluster based. In this
work we focus our attention on the first two methods. The first one lies at the foundation of
the HEFT algorithm. For each task a rank based on execution and transfer times is computed.
Tasks are then ordered descending by their ranks and scheduled accordingly.

Level based scheduling is a similar ranking strategy that orders tasks based on their level
in the workflow [21]. Each level is made up of parallel tasks. The difference from HEFT is that
it allows greater flexibility in deciding the order of scheduling inside a level –e.g., randomly, or
by execution time. Its knowledge on which tasks can be executed independently and in parallel
can lead to improvements where parallelism is reduced [21]. It can also be combined with the
CPA [6] algorithm.

Cluster based scheduling comprises methods that cluster tasks located on the same path in
order to reduce communication costs. Inside each cluster tasks are then ordered based on a
ranking algorithm. Examples include PCH and HCOC.

RR n° 8449

8 Marc E. Frincu , Stéphane Genaud , Julien Gossa

Considering the eight VM provisioning methods, we have used level based ranking together
with AllPar[Not]Exceed, AllPar1LnS and AllPar1LnSDyn while the HEFT priority ranking has
been applied to the rest (each method is prefixed with H- in the experiments depicted in Sect.
4).

3.2 Theoretical Considerations Regarding Cost and Makespan

OneVMperTask and OneVMforAll are extreme provisioning methods providing the limits on
the number of VMs allocated for a given number of parallel or sequential workflow tasks (cf.
Propositions 1 and 2). These two types of tasks represent extreme cases that can be found in
workflows. For instance MapReduce3 has at least one layer of tasks that execute simultaneously.
The number of used VMs is maximized in this way. On the other hand we have sequential
workflows in which each task has to wait for its predecessor to finish execution before continuing.
For this kind of workflows a single VM would be more cost effective than one for each task. As
shown next optimal VM allocation solutions can be derived for makespan or cost for these two
extreme workflows. As the majority of workflows are a combination of these two patterns we
argue and prove that they represent extreme cases that give the boundaries in terms of cost
and makespan.

We use OneVMperTask and OneVMforAll as landmarks in establishing the relation between
the proposed basic methods and leave outside of our study the dynamic methods as they
represent optimized versions of AllPar[Not]Exceed and their efficiency is highly dependent on
the lengths of the parallel tasks’ execution times.

We also provide some theoretical results when multiple VM instance types are considered.
Two cases with and without boot/shutdown times are analyzed. Our focus is mainly on the
cost and makespan ordering and boundaries and on how they relate when a faster and a slower
VM are compared. As it will be seen in Sect. 3.2.2 whether the price is higher, lower or similar
depends on a clear relation between speed-up, cost increase and BTU size.

To take advantage of the fact that most providers use multi-core VMs we assume all tasks
are parallelizable and multi-threaded, a fairly realistic assumption when considering scientific
applications, e.g., mathematical workflows relying on MPI. This allows each task to use all
available cores during execution and also to simplify our model by allowing at most one task
per VM to execute at all times. However it should be noted that in case of single-threaded
tasks the costs for using a larger VM instance type remain unchanged for parallel tasks while
they are n times higher for sequential ones (n represents the cost increase). The reason is that
for most cloud providers we pay the number of used cores –e.g., a VM with two cores is twice
as expensive as one with a single core.

Let ei be a sequence of positive numbers with i = 1, n representing the tasks execution times
and BTU a fixed positive integer denoting the time unit used to rent a resource. We assume
that a task’s execution begins from the moment it starts transferring input data and ends when
it has finished writing its output. This simplified model is suited for CPU intensive tasks that
spend most of the time performing the actual processing.

One final notation convention is that for simplicity, unless otherwise stated, we use
∑

as
equivalent to

∑n
i=1. Proofs for the various propositions and remarks in Sects. 3.2.1 and 3.2.2

are given in the appendix.
Table 2 contains the list of notations used from this point onward.

3.2.1 Single instance type

A simple scenario without considering any of the boot/shutdown times is assumed in this case.
It allows us to see the overall relations between the various methods in an ideal case free of any
noise induced by the specific characteristics of different hypervisors [22].

We first define the cost and makespan for the two cases of OneVMperTask and OneVMforAll
(cf. Definition 1) and proceed to prove their optimality for various special cases as noted by
the following propositions and remarks.

Definition 1. Given a single VM instance type the cost and makespan for the extreme cases
of sequential and parallel execution of tasks are:

• OneVMperTask: ∑
ei

BTU
≤=

∑ ⌈ ei

BTU

⌉

︸ ︷︷ ︸
=costp

<

∑
ei

BTU
+ n (1)

3http://hadoop.apache.org/ (accessed Jun 24th 2013)

Inria

Efficiency of Several VM Provisioning Strategies 9

Table 2: Main notations.
notation description

ei execution time of task i

αk speed-up for VM instance type k

gammak cost increase for VM instance type k

τi boot/shutdown times for VM instance i

costk
algorithm

the cost when using algorithm with VM instances of type
k

makespank
algorithm

the schedule makespan when using algorithm with VM in-
stances of type k

costk
p the cost when using OneVMperTask with VM instances of

type k

makespank
p the schedule makespan when using OneVMperTask with

VM instances of type k

costk
s the cost when using OneVMforAll with VM instances of

type k

makespank
s the schedule makespan when using OneVMforAll with VM

instances of type k

makespanp =

{

max ei , parallel tasks
∑

ei , sequential tasks
(2)

• OneVMforAll:
∑

ei

BTU
≤

⌈ ∑
ei

BTU

⌉

︸ ︷︷ ︸
costs

<

∑
ei

BTU
+ 1 (3)

makespans =
∑

ei (4)

Proposition 1. For any given VM instance type OneVMforAll is optimal in terms of cost for
both parallel and sequential tasks.

Proposition 2. OneVMperTask allocates the maximum number of possible VMs independently
on the used VM instance type.

Remark 1. A consequence of Prop. 2 is that it achieves an optimal makespan for both parallel
and sequential tasks.

Remark 2. OneVMforAll is optimal in terms of makespan for sequential tasks.

Considering a multi-objective comprising of cost ⊕ makespan and depending on the structure
of the DAG, intermediary methods could prove more efficient. Figure 3 shows how the pro-
posed basic and dynamic provisioning methods transform from one into another when certain
conditions occur.

For instance AllParNotExceed becomes equivalent to AllParExceed when all tasks ready to
execute (i.e., tasks whose predecessors have completed executing) can fit any of the available
VMs without exceeding the remaining BTU time. On the other hand if all ready tasks exceed
the remaining BTU time it will allocate VMs the same way OneVMperTask does. Finally if
there are no parallel tasks that share the same predecessor the method becomes identical to
StartParNotExceed.

The transformation graph of StartParNotExceed is similar to that of the AllParNotExceed
so we do not detail it here. Instead we focus on that of AllParExceed. This method becomes
equivalent to StartParExceed if there is no common predecessor for any ready tasks. In turn
the latter transforms into OneVMforAll if a single initial task exists.

The transformation of the two dynamic methods is simpler, with the AllPar1LnSDyn being
the most general one. In case no speed-up is possible within the allocated budget it degrades into
AllPar1LnS. This also degrades into either AllParNotExceed or AllParExceed (depending on the
implementation) if –given several parallel tasks– there is no large enough task to accommodate
the sequential execution of several shorter tasks.

Next, we are interested in relations between inflicted costs and produced makespans. Propo-
sitions 3, 4, 5 and 6 provide these orderings.

Proposition 3. Given a set of parallel tasks we have the following cost ordering:

RR n° 8449

10 Marc E. Frincu , Stéphane Genaud , Julien Gossa

Figure 3: Relation diagram between various provisioning strategies.

costp = costAllP arNotExceed

= costAllP arExceed

= costStartP arExceed

= costStartP arNotExceed

≥ costs

Proposition 4. Given a set of sequential tasks we have the following cost ordering:

costp ≥ costAllP arNotExceed

= costStartP arNotExceed

≥ costAllP arExceed

= costStartP arExceed

= costs

Proposition 5. Given a set of parallel tasks we have the following makespan ordering:

makespanp = makespanAllP arExceed

= makespanAllP arNotExceed

≤ makespanStartP arNotExceed

≤ makespanStartP arExceed

≤ makespans.

Proposition 6. Given a set of sequential tasks the makespan produced by each method is
identical to that of OneVMperTask.

From these propositions we can notice that the orderings of cost and makespan depends on
the structure of the tasks. Given that many workflows are neither purely parallel nor sequential
finding the right cost/makespan balance could depend on a combination between their structure
and the deployed provisioning method.

For the single instance type, we are able to provide some general relations between arbitrary
sequences (cf. Propositions 7 and 8).

Proposition 7. Given a set of arbitrary tasks we have the following cost ordering:

costp ≥ costAllP arNotExceed

≥ costAllP arExceed

≥ costStartP arExceed

≥ costs

and

costp ≥ costStartP arNotExceed

≥ costStartP arExceed

≥ costs

Remark 3. Regarding Proposition 7, the relation between costAllP arExceed and
costStartP arNotExceed, depends on ei and the workflow structure.

Inria

Efficiency of Several VM Provisioning Strategies 11

Considering one initial task followed by three parallel tasks i, j, k connected to it.
If ei > BTU − einitial we get costAllP arExceed = ⌈costinitial + ei⌉ + ⌈ej⌉ + ⌈ek⌉ and
costStartP arNotExceed = ⌈costinitial⌉ + ⌈ei⌉ + ⌈ej⌉ + ⌈ek⌉, from which costAllP arExceed <
costStartP arNotExceed. If ei ≤ BTU − einitial the two costs are identical. In addition when
considering the workflow depicted in Fig. 1 we can clearly see that costAllP arExceed >
costStartP arNotExceed. The reason is that StartParNotExceed schedules parallel tasks in se-
quence on the same VM as long as the BTU is not exceeded, which costs less than renting a
VM for each one (cf. Proposition 3).

Proposition 8. Given a set of arbitrary tasks we have the following makespan ordering:

makespanp = makespanAllP arNotExceed

= makespanAllP arExceed

≤ makespanStartP arNotExceed

≤ makespanStartP arExceed

≤ makespans.

In this section we have introduced some relations between costs and makespans when con-
sidering the proposed basic VM provisioning methods. These relations between our methods
are difficult if not impossible to determine in case of multiple VM instances, due to the work-
flows’ structure, the execution times, and the speed-up and cost of each type. Thus we focus
next only on the extreme cases (as proven here) of OneVMforAll and OneVMperTask.

3.2.2 Multiple instance types

Cloud providers usually offer to clients more than one VM instance type. These can be modeled
similarly as the single instance type case but require additional information such as their speed-
up and cost increase. Hence we introduce two increasing monotonic sequences to account for
the speed-up in execution time, αm, and cost increase, γm. Given that clients usually pay the
number of cores not the speed-up –which is not linear to the number of cores– we can generally
assume γk ≥ αk. The times needed to boot/shutdown a VM instance i of type k are modeled by
a sequence τk

i . There is no general relation between the boot times of various instance types as
they differ based on providers and VM characteristics [22]. Furthermore the boot time τk

i can
also depend on the number of parallel booted VMs but for our purposes we assume a general
case.

For the speed-up we notice two cases:

• tasks are inherently parallelizable and multi-threaded, i.e., they can take advantage of
multi-core systems and run faster on them. In this case αk represents the speed-up
achieved by using the multi-core architecture;

• tasks are inherently serial, i.e., there is a single thread running for each task. In this case
αk depends on the speed of the VM processor and not on the number of cores.

As already mentioned in this paper we consider only the first case.
We have two possible scenarios: with and without boot/shutdown times. Both scenarios

can be used in real life practical applications. The former is suited for offline or deadline based
scheduling where we can anticipate the moment a task needs to start executing and we can
pre-boot the VM to be ready at that moment. It also assumes that boot time is not part of the
billing. The latter is applicable in cases where tasks arrive online without any knowledge on
their start time. Hence VMs will be booted at the moment when a new task becomes ready for
execution. In this case boot times are billed as part of the BTU. This billing model is used by
many providers, e.g., Amazon EC2 or Rackspace, and means that clients pay resource not OS
usage, i.e., the time that the core and RAM the VM instance is using and not the actual time
the instance is usable. Other combinations are possible but we limit ourselves to those two.

The cost and makespan cf. Definition 1 are generalized as follows:

Definition 2. Given multiple instance types and the boot/shutdown times for an arbitrary
instance the cost and makespan for the extreme cases of are defined as follows:

• OneVMperTask:

∑
τk

i +
∑

ei

αkBTU
γk ≤

∑
⌈

τk
i + ei

αkBTU

⌉

γk

︸ ︷︷ ︸

costk
p

<

(∑
τk

i +
∑

ei

αkBTU
+ n

)

γk (5)

RR n° 8449

12 Marc E. Frincu , Stéphane Genaud , Julien Gossa

makespank
p =

max
(

τk
i + ei

αk

)

, parallel tasks
∑

τk
i +

∑
ei

αk
, sequential tasks

(6)

• OneVMforAll:

τk
1 +

∑
ei

αkBTU
γk ≤

⌈
τk

1 +
∑

ei

αkBTU

⌉

γk

︸ ︷︷ ︸

costk
s

<

(
τk

1 +
∑

ei

αkBTU
+ 1

)

γk (7)

makespank
s = τk

1 +

∑
ei

αk

(8)

Without boot/shutdown times. We set τk
i = 0, ∀i, k and prove that based on αk and

γk there are three cases regarding the relation between costs. In addition some undefined
boundaries can be determined if the BTU size falls within certain limits (cf. Proposition 9).

Proposition 9. The following conditions (as depicted in Fig. 4) can be placed on the order of
the lower/upper bounds of the cost intervals:

• if
∑

ei ≤ BTU and n ≥ 2: costk
s < costk+1

s < costk
p < costk+1

p

• else (αkγk+1

αk+1γk
= f):

– f < 1 : inf costk+1
s = inf costk+1

p < inf costk
s = inf costk

p < sup costk
s < sup costk

p.

In addition:

sup costk+1
p ≤ inf costk

s , BTU ≤
(1−f)

∑
ei

nfαk+1

sup costk+1
p ≥ sup costk

p , BTU ≤
(f−1)

∑
ei

n(αk−fαk+1)

sup costk+1
s ≥ sup costk

p , BTU ≤
(f−1)

∑
ei

nαk−fαk+1
and n < γk+1

γk

– f > 1 : inf costk
s = inf costk

p < inf costk+1
s = inf costk+1

p and sup costk
s <

sup costk+1
s < sup costk+1

p and sup costk
s < sup costk

p < sup costk+1
p .

In addition:

sup costk
p ≤ sup costk+1

s , BTU ≤
(f−1)

∑
ei

nαk−fαk+1

inf costk+1
p ≥ sup costk

p , BTU ≤
(f−1)

∑
ei

nαk

– f = 1 : inf costk
s = inf costk

p = inf costk+1
s = inf costk+1

p .

In addition: sup costk
p = sup costk+1

p and sup costk
s = sup costk+1

s if αk = αk+1.

We now exemplify how different providers fit in these conditions. For this we consider
two cases for the speed-up as indicated by the STATA benchmarks: α1 = (1, 1.6, 2.1, 2.7) and
α2 = (1, 1.8, 2.8, 4.1), where αi

k represents the speed-up corresponding to having 2k−1 cores on
the VM.

For the cost increase we have γ1 = (1, 2, 4, 8) for the majority of the providers –i.e., Amazon
EC2 (cf. Table 1), Google Cloud and HP Cloud. However clouds like Rackspace or IBM Cloud
exhibit price increases larger than the #cores increase (γ2 = (1, 2, 4, 10)), respectively smaller
(e.g., for 64 bit custom installed Linux γ3 = (1, 1.22, 1.97, 3.91)).

Figure 4 exemplifies the relations in Proposition 9. When f = 1 all lower bounds are equal
and as the speed increases the upper bound increases too. It also states that we can safely
determine these bounds. The equality means that we pay exactly the speed-up, e.g., we pay
twice as much for double the speed. The only time this happens (within a ±0.03 accuracy) is
(1) when combining α2

2 (1.8) and IBM’s γ3
2 (1.97), and (2) a special case of using 32 bit RedHat

on IBM cloud (γ3′

1 = 1 and γ3′

2 = 1.85) with α2
1 respectively α2

2.
When f < 1 the lower bound of the cost for an improved instance type will be less or

equal to the initial one. This indicates that there are cases in which using faster resources is

Inria

Efficiency of Several VM Provisioning Strategies 13

Figure 4: Representation of the three conditions listed in Proposition 9 for
∑

ei > BTU (not
on scale).

cheaper. The loose ends of the upper bound costs for the improved instance however also state
that under certain conditions there is a good chance to pay more. This condition provides the
broadest range for the cost of an augmented instance. Given our speed-up and cost vectors
only the IBM cloud obeys this condition and only for α1

1.
Finally the f > 1 condition reflects most pricing models used today. It effectively specifies

that when using faster instance a client usually pay at least the same price as when using the
slower instance.

Additional conditions put on the BTU length allow us to further determine the relations
between the upper boundaries of the costs. For instance in case f < 1 or f > 1 we have a
special condition on the BTU which makes the cost intervals for two consecutive instance types
be disjoint. This indicates that the costs paid in the two cases will not overlap. These exclusive

conditions are met when BTU ≤
(1−f)

∑
ei

nfαk+1
respectively BTU ≤

(f−1)
∑

ei

nαk
. They allows us to

safely assume that by increasing the instance type we will definitely pay less respectively more.
It is noticed from the above mentioned inequalities that the BTU depends on variables such as
the execution times and the number of tasks. When investigating the case with boot/shutdown
times we will provide relations independent on these variables that depend only on τk

i and αk

which can be known in advance for online cases.
Another interesting relation between cost boundaries takes place when f = 1 and αk = αk+1.

In this case the costs when using two different VM instance types are the same. It must be
noticed that this happens only for tasks without multi-thread support for which running on
multi-core architectures does not bring any advantages.

Regarding the relations between makespans we have the following ordering as given by
Propositions 10, 11 and 12.

Proposition 10. The makespan produced by each method for parallel tasks has the following
ordering:

makespank
s < makespank−1

s < makespank−2
s

makespank
p < makespank−1

p < makespank−2
p

makespank
p ≤ makespank

s < makespank−1
s

makespank
p < makespank−1

p ≤ makespank−1
s

(9)

RR n° 8449

14 Marc E. Frincu , Stéphane Genaud , Julien Gossa

Proposition 11. If in addition to Proposition 10 we have that αk

αk−1
>

∑
ei

max ei
then the following

ordering exists: makespank
p ≤ makespank

s ≤ makespank−1
p ≤ makespank−1

s

Proposition 12. The makespan produced by each method for sequential tasks has the following

ordering: makespank
s = makespank

p =
∑

ei

αk
> makespank+1

s = makespank+1
p .

Proposition 10 presents the makespan ordering when parallel tasks are considered. While
the relations are clear regarding the advantage of faster instance types they leave open the
issue of how OneVMperTask is related to OneVMforAll in case the latter uses a faster VM.
Proposition 11 sheds some light in this aspect by linking the execution time to the speed-up.
Hence, the faster OneVMforAll will be better then the slower OneVMperTask only if a long
dominant task exists. This basically indicates that in this special case a serial execution of
parallel tasks on faster VMs provides a better makespan than a parallel one on a slower VM.
This could provide effective in terms of costs. Given for instance three tasks with the execution
times being of 100s, 100s respectively 1,000s and a BTU=3600s we get that by executing them
using OneVMforAll on the EC2 medium instance costs $0.12 and produces a makespan of 750.
Alternatively with OneVMperTask and EC2 small instances the cost is $0.18 and the makespan
is 1,000s. Furthermore using OneVMperTask with EC2 medium instances gives a cost of $0.32
and a makespan of 625s. This translates in 16% makespan gain at a cost increase of 266% for
OneVMperTask compared to OneVMforAll with medium instance types.

From these propositions, we notice that although for makespan we have a clear ordering for
cost we can specify only boundaries based on the value for f and some relations between BTU
and execution time. The reason is that while makespan is easily optimized based solely on the
structure of the workflow, cost depends on many variables such as speed-up, price and workflow
structure.

With boot/shutdown times. We consider τk
i > 0, ∀i, k to have arbitrary values that depend

on the VM hypervisor.

Boot time can greatly influence the schedule and for methods similar in terms for makespan
it tends to penalize the ones that rent more VMs. Tests comparing OneVMperTask with All-
ParExceed –two methods that produce optimal makespans– have shown that when boot/shut-
down times are considered the former constantly gives longer makespans and that the difference
is greater as workflows become more sequential. Given constant boot and shutdown times that
are independent on the number of booted instances (as in the case of Amazon EC2) and Pareto
shaped execution times (shape had a value of two and the scale was set to 500) we obtained that
the makespan produced by OneVMperTask for MapReduce DAGs is greater by 2% than the
one produced by AllParExceed. For sequential DAGs the difference goes up to 5%. Regarding
costs there are no significant differences and where observed it usually implies the rent of at
most one extra VM in case boot/shutdown times are considered. More generally, considering
the small boot/shutdown times as compared to the BTU, we have that in the worst case, i.e.,
BTU − τk

i < ei < BTU the cost is doubled by parallelism.

We provide in Proposition 13 the relations between costs when boot/shutdown times into
consideration for the general case of multiple VM instance types. These remain the same as
depicted in Figure 4 for the single instance type case.

Proposition 13. The relations between costs given in Proposition 9 hold with the following
modifications:

– f < 1 : inf costk+1
s = inf costk+1

p < inf costk
s = inf costk

p < sup costk
s < sup costk

p if:

{∑
tk
i = τk

1

fτk+1
1 − τk

1 < (1 − f)
∑

ei

In addition:

sup costk+1
p ≤ inf costk

s , BTU ≤
(1−f)

∑
ei+

∑
τk

i −f
∑

τ
k+1

i

nfαk+1

or BTU ≤

∑
τk

i −

∑
τ

k+1

i

nαk+1

sup costk+1
p ≥ sup costk

p, BTU ≤
(f−1)

∑
ei+f

∑
τ

k+1−

∑
τk

i

i

n(αk−fαk+1)

sup costk+1
s ≥ sup costk

p, BTU ≤
(f−1)

∑
ei+fτ

k+1−

∑
τk

i

1

nαk−fαk+1

and n < γk+1

γk

Inria

Efficiency of Several VM Provisioning Strategies 15

– f > 1 : inf costk
s = inf costk

p < inf costk+1
s = inf costk+1

p and sup costk
s < sup costk+1

s <

sup costk+1
p and sup costk

s < sup costk
p < sup costk+1

p if:

fτk+1
1 − τk

1 ≥ (1 − f)
∑

ei

fτk+1
1 − τk

1 ≥ (αk − fαk+1)BTU + (1 − f)
∑

ei

f
∑

τk+1
i −

∑
τk

i ≥ (αk − fαk+1)nBTU + (1 − f)
∑

ei

In addition:

sup costk
p < sup costk+1

s , BTU ≤
fτ

k+1

1
+(f−1)

∑
ei−

∑
τk

i

nαk−fαk+1

or BTU ≤
τ

k+1

1
−

∑
τk

i

nαk−αk+1

inf costk+1
p ≥ sup costk

p BTU ≤
f

∑
τ

k+1

i
+(f−1)

∑
ei−

∑
τk

i

nαk

or BTU ≤

∑
τ

k+1

i
−

∑
τk

i

nαk
,

– f = 1 : inf costk
s = inf costk

p = inf costk+1
s = inf costk+1

p if
∑

τk+1
i =

∑
τk

i and τk+1
1 = τk

1 .

In addition: sup costk
p = sup costk+1

p and sup costk
s = sup costk+1

s if BTU =
αk−αk+1

n(
∑

τ
k+1

i
−

∑
τk

i
)
.

Remark 4. It can be noticed that for τk
i = 0, ∀i, k the conditions are identical to those in

Proposition 9.

We already mentioned that the exclusive conditions when f > 1 and f < 1 can also be
expressed based solely on the relation between BTU, speed-up and boot/shutdown time.

In general for these conditions to be true we have for f > 1 and f < 1 that BTU ≤∑
τ

k+1

i
−

∑
τk

i

nαk
, respectively BTU ≤

∑
τk

i −

∑
τ

k+1

i

nαk+1
. While for the second one is questionable

whether or not there are VM types for which the boot time decreases as their capabilities
increase, the first one is easier to achieve.

It has been shown in [22] that although for providers like Amazon the boot time is constant
no matter the instance type or the number of parallel boots, others like Rackspace or Microsoft
Azure, show an increase in the boot time as the instance type grows. Without losing generality
we can consider τk

i = a and τk+1
i = ua, u ≥ 1, a = ct.. We obtain that na(u − 1) ≥ nαkBTU ,

which leads to:

BTU ≤
a(u − 1)

αk

(10)

It is thus not unrealistic to assume that if a provider would change the BTU to a per-second
basis or some other value to fit Relation 10 the exclusive case could become a reality. Taking
for instance Azure and considering τ1

i ≈ 350s and τ2
i ≈ 360s we obtain that BTU < 16s.

Regarding makespan when considering the boot/shutdown times the ordering depends on
the properties of the τk

i sequence. Taking for instance the case of Amazon EC2 where boot times
are constant and independent on the number of parallel booted VMs –e.g., τk

i = τk+1
i = τ– we

notice that Proposition 10 remains unchanged while Proposition 12 becomes:

Proposition 14. The makespan produced by each method for sequential tasks has the following
ordering:

makespank
s < makespank−1

s < makespank−2
s

makespank
p < makespank−1

p < makespank−2
p

makespank
s ≤ makespank−1

s < makespank−1
p

makespank
s < makespank

p ≤ makespank−1
p

(11)

Proposition 15. In addition if τ >

∑
ei

n−1
αk−αk−1

αk−1αk
we have that makespank

s < makespank−1
s ≤

makespank
p.

RR n° 8449

16 Marc E. Frincu , Stéphane Genaud , Julien Gossa

These last two propositions show us how different the ordering for sequential tasks is when
boot/shutdown times are considered as compared to ignoring them (cf. Proposition 12). The
straightforward ordering becomes conditioned by the boot/shutdown time τ and presents a case
in which a slower instance sequentializing tasks (OneVMforAll) on a single VM can be better
than a faster one executing each task on its VM (OneVMperTask). The condition lies in the
speed-up being greater than the boot/shutdown times (cf. Prop. 15).

3.3 Special Considerations for Single-Threaded Tasks

While in this paper we focus on multi-threaded tasks, we make a few remarks on the single-
threaded case. To easily adapt the proposed model to this scenario we need to treat each core
as an individual VM. In the case of OneVMperTask the sums (cf. Relations 5 and 6) will
iterate from 1, ⌈ n

#coresk
⌉, where #coresk represents the number of cores instance type k has.

Depending on the number of tasks we end up with at most n mod #coresk unused but rented
VMs. Considering OneVMforAll, as it requires a single VM for all tasks this means that at
most one core would be used and Relations 7 and 8 would remain unchanged except for the
sum which will iterate over the same values as in the OneVMperTask case.

While this constraint is a limiting one it allows to link the two models and also for more
general models to relate to the theoretical results obtained in this paper.

4 Experiments

While our model can be used to asses the behavior of our methods in extreme cases like pure
parallel or sequential workflows, the wide array of workflow structures used by scientific ap-
plications requires the model to be reinforced with observations obtained from experimental
results.

In order to verify how the provisioning method relates to the workflow structure and instance
type we considered two experiments, one involving four workflows used by various scientific
applications and another in which DAGs were synthetically generated. These two cases allow
us to study the impact VM provisioning strategies have on real life applications and to further
validate the results and extract general rules for arbitrary workflows.

The underlying cloud model was considered to be Amazon EC2 with its eight regions.
The prices are listed in Table 1 and were used by Amazon for on-demand instances, with one
BTU = 3, 600s. Communication costs are per GB and were considered only when moving data
outside a region. They are applied if the transfer size ∈ (1GB, 10TB] per month.

The small (*-s), medium (*-m), and large (*-l) instances were considered to have one, two,
and four cores, each producing a speed-up of 1, 1.6, and 2.1 times the default one core case.
The speed-ups are those reported by the statistical package Stata/MP 4. One CPU unit is
roughly the equivalent of a 1.0-1.2 GHz 2007 Opteron system5. For the communication speed
we considered small and medium instances to have 1Gb links while the others to have 10Gb
links.

For comparison we have also used two known algorithms for workflow scheduling, Gain and
CPA-Eager, which similar to AllPar1LnSdyn, augment VMs inside a given budget in order to
reduce makespan. The initial placement in both cases has been done by using H-OneVMperTask.
The maximum allowed cost was set to four times respectively twice the cost needed if H-
OneVMperTask-s would have been used instead.

Overall we considered only strategies that produced both makespan gain and cost savings
with respect to a reference value set to H-OneVMperTask-s. Both metrics are defined as percent-
ages of makespan or cost improvement compared to the reference value. Considering only the
small instance type, given that this method is optimal in terms of makespan –when boot/shut-
down times are considered– we looked for methods that are cheaper than it. We also looked at
the possibility of having a faster but cheaper result with a superior VM instance.

Simulations for both real and randomly generated graphs were done by using a custom sim-
ulator written in Python. This allowed us to observe the ideal scenario in which no boot/shut-
down times exist. In addition in order to check the impact boot/shutdown times in environments
such as Amazon EC2 we used a cloud simulator6 built on top of SimGrid [7]. It allows us to

4http://www.stata.com/statamp/statamp.pdf (accessed Jun 24th 2013)
5http://aws.amazon.com/ec2/ (accessed Feb 26th 2013)
6can be downloaded at https://gforge.inria.fr/projects/simiaas/ together with the four real workflows

experimental setup

Inria

https://gforge.inria.fr/projects/simiaas/

Efficiency of Several VM Provisioning Strategies 17

better model boot/shutdown times and the network traffic required to move the VM. The over-
head reported in Sect. 3.2.2 was based on results obtained by using it. Furthermore for the
case of real workflows depicted in Sect. 4.1 –because of the small makespan overhead observed
when boot/shutdown are considered and since cost remains virtually unchanged– the results
without boot/shutdown times stand valid.

4.1 Real Workflows

For this scenario we were particularly interested in the makespan gain/savings ratio when
different provisioning strategies are used.

Four different workflows have been used in our tests: Montage [9], CSTEM [10], MapReduce
and a simple sequential one. Figure 5 depicts their structure. Figure 6 depicts the results when
the Pareto distribution is used.

(a) Montage (b) CSTEM (c) MapReduce (d)
Se-
quen-
tial

Figure 5: Structure of the four real workflows.

Montage (cf. Fig. 5(a)) is a workflow used in astronomical image processing. Its size varies
depending on the dimension of the studied sky region. In our tests we used a version with 24
tasks. The workflow dependencies are quite intermingled and data dependencies are not only
from one level. This type of workflow makes it particularly interesting for locality aware data
intensive scheduling. At the same time the large number of parallel tasks makes it good for
studying the efficiency of parallel VM provisioning policies.

CSTEM (cf. Fig. 5(b)) is a workflow used in CPU intensive applications. Its relatively
sequential nature with a few parallel tasks and several final tasks makes it a good candidate for
studying the limits of the parallel VM provisioning policies against the OneVMperTask and a
particular case of StartParExceed in which all tasks of a workflow with a single initial task are
scheduled on the same VM.

MapReduce is a model first implemented in Hadoop which aims at processing large amount
of data by splitting it into smaller parallel tasks. In Figure 5(c) we depict a version in which
there are two sequential map phases. Its original use and the large (variable) amount of parallel
tasks it can hold makes it useful in the study of various parallel VM provisioning policies for
data intensive tasks and in showing their benefits. The number of tasks on each allocated
VM is defined by the used provisioning and allocation policies. For instance in case of H-
OneVMperTask we always have a single task per VM. As for the rest it depends on the tasks’
execution times (*-[Not]Exceed) and on whether they fit or not the BTU (*-NotExceed).

The sequential workflow (cf. Fig. 5(d)) is a typical example of a serial application with
dependencies, e.g., makefiles. It is the opposite of the parallel intensive MapReduce model. In
our paper it is used to show the limits of the parallel provisioning policies and the benefits of
using OneVMperTask and StartPar[Not]Exceed.

Three scenarios have been considered for the execution times.
First a Pareto distribution [11] with a shape of 2 and a scale set to 500. For data transfers

a shape of 1.3 has been used. Second one assumes a best case scenario on which all tasks are
equal in length and could fit into a single VM. In this case, given n tasks and e the individual

RR n° 8449

18 Marc E. Frincu , Stéphane Genaud , Julien Gossa

runtime such that ne ≤ BTU we have for a sequential provisioning a total number of VMs
equal to m = 1 (cost=1 BTU) while for a parallel one we have m = n (cost=n BTU).

Finally, a scenario where tasks have equal length and execution times greater than one
BTU. We make it exceed one BTU even for the most powerful VM instance type, i.e., BTU <
ei/2.7 < e.

Given the reference results provided by H-OneVMperTask-s we marked in Fig. 6) in the
upper-left corner its values while all the values of interest for us are in the bottom-right square
defining the area where both savings and gain occur. The diagonal can be used to asset the
faster/cheaper ratio. Anything above it is slower and more expensive than the reference value,
while the algorithms below are faster and cheaper. We also searched for any strategy which
might provide stable results in terms of cost and makespan throughout the tests.

Based on whether cost or makespan is the target the following can be noticed:
Savings: much more of the tested SAs fall in this category than in the case of makespan. This

seems to indicate that given our algorithms cost improvements are more feasible than makespan
improvements. The most interesting case is that of AllPar[Not]Exceed which produces a stable
gain throughout the three cases but the savings fluctuate drastically as noticed in Table 3
(in parenthesis there is the loss inflicted in the case of the Pareto distribution). Using small
instances is the only case in which savings are positive (negative loss) while the rest can induce
losses depending on the workflow type of up to 40% for the medium respectively 166% for the
large instance. While for the medium instance the stable gain of 37% can be a suitable trade-off,
the small gain of only 52% noticed for the large instance does not cover the loss which is about
three times larger. Thus this provisioning strategy is best suited for small instances while for
medium ones only when a trade-off in savings is preferred in order to achieve a better gain.

Furthermore, except the worst case with the sequential workflow, the costs inflicted by the
previous two SAs can be further reduced with the AllPar1LnS and AllPar1LnSDyn algorithms.

Gain: the dynamic SAs seem to be at disadvantage in this case. In addition it seems that
this situation is hard to be achieved and strongly depends on the execution times. No SA falls in
this situation for the worst case while the best case has the most of them. This can indicate that
if gain is the target small execution times are needed for best results. The medium and large
instances dominate with the AllParExceed-m being a winner for Montage (best case), CSTEM
(Pareto case) and MapReduce (best case). It also seems to indicate that for gain to overcome
intensively parallel workflows are needed with this SA. Regarding the sequential workflow any
SA that considers large instances can be used. In its case it seems that the smaller the execution
times the better the results are –i.e., for the best case the gain/savings are balanced.

Balanced: When considering a balanced gain/savings the
H-StartPar[Not]Exceed SAs seem to have an advantage especially in the case of Montage and
CSTEM. Depending on the nature of the execution times it can be used with small (worst
case) or medium (Pareto case) instances. Their failure to provide similar results for the best
case seems to indicate that these algorithms provide good results for large (and heterogeneous)
execution times.

Table 3: Savings fluctuation vs. stable gain for AllPar[Not]Exceed.

VM
% loss interval

% loss % gain
Montage CSTEM MapReduce Sequential

s [−62, 0]
(-28)

[−73, 0]
(-53)

[−58, 0]
(-17)

[−69, 0]
(-70)

[−90, 0] 0%

m [−25, 45]
(12)

[−46, 40]
(-6)

[−17, 37]
(29)

[−80, 33]
(-60)

[−80, 40] 37%

l [50, 163]
(6)

[6, 155]
(6)

[−64, 134]
(64)

[−60, 166]
(-20)

[−64, 166] 52%

Looking at the dynamic SAs it can be stated that for AllPar1LnSDyn it seems the algo-
rithm’s performance is proportional to the heterogeneity of the execution times. This SA is
without doubt the only one that manages to remain in the target square for all cases. Nonethe-
less it appears that it generally produces better savings than gain thus in a gain oriented scenario
other solutions should be looked for (cf. Table 4).

Considering our two dynamic algorithms from the literature, Gain and CPA-Eager, we
noticed that although they were the most stable, their profit loss ranges between [45, 100]%.
The stability comes from the limit on the price and from the fact that they only augment the
VMs for essential tasks, e.g., those on the critical path. The cost loss is explicable from the use

Inria

Efficiency of Several VM Provisioning Strategies 19

-100

 0

 100

 200

 300

 400

 500

-100 -50 0 50 100 150 200 250 300

%
 $

 l
o

s
s

% gain

H-StartParNotExceed-s
H-StartParExceed-s

AllParExceed-s
AllParNotExceed-s

H-OneVMperTask-s
H-StartParNotExceed-m

H-StartParExceed-m
AllParExceed-m

AllParNotExceed-m
H-OneVMperTask-m

H-StartParNotExceed-l
H-StartParExceed-l

AllParExceed-l
AllParNotExceed-l

H-OneVMperTask-l
CPA-Eager

GAIN
AllPar1LnS

AllPar1LnSDyn

(a) Montage

-100

 0

 100

 200

 300

 400

 500

-100 -50 0 50 100 150 200 250 300

%
 $

 l
o

s
s

% gain

(b) CSTEM

-100

 0

 100

 200

 300

 400

 500

-100 -50 0 50 100 150 200 250 300

%
 $

 l
o

s
s

% gain

(c) MapReduce

-100

 0

 100

 200

 300

 400

 500

-100 -50 0 50 100 150 200 250 300

%
 $

 l
o

s
s

% gain

(d) Sequential

Figure 6: Makespan gain vs. cost loss for CPU intensive workflows

Table 4: Test results conclusion summary for real workflows.
Savings Gain Balance

MapReduce AllPar1LnSDyn AllParExceed-m ⊕
small & heteroge-
neous tasks

AllParLnSDyn ⊕
heterogeneous
tasks

Montage AllPar1LnSDyn H-
StartPar[Not]Exceed-
l,
AllPar[Not]Exceed-
m ⊕ short tasks

H-
StartParNotExceed-
[m|s], ⊕ heteroge-
neous respectively
long tasks

CSTEM AllPar1LnSDyn AllParNotExceed-
m for heteroge-
neous tasks

[H-
Start|All]ParNotExceed-
[s|m] ⊕ long
respectively het-
erogeneous tasks

Sequential *-s and All-
Par1LnSDyn ⊕
small & heteroge-
neous tasks

*-l with heteroge-
neous tasks

*-l with short tasks

of the reference method as initial schedule. This will produce in all cases a price falling outside
our range of interest. A solution would be to use another algorithm, such as AllParExceed, as
initial schedule.

While not many SAs can match the gain offered by H-OneVMperTask-l its large loss of
200-300% makes it inefficient in face of other SAs that reduce loss or even make profit.

RR n° 8449

20 Marc E. Frincu , Stéphane Genaud , Julien Gossa

It can be noticed that most of the algorithms present in our target square are made up
of either dynamic or small/medium instances. The reason behind this is that the benefit of
renting large VMs against the speed gain is of only 0.675 compared to the medium case (=0.8)
and the default small one (=1). The provided speed-up is simply too small compared to the
price needed to rent such VMs.

Table 4 summarizes the main conclusions drawn from our three experiments. All in all the
dynamic AllPar1LnSDyn SA can be used in profit oriented scenarios, the medium instance in
combination with some SAs can lead to better gain while the large instances prove efficient for
sequential workflows when gain is targeted.

4.2 Synthetic Workflows

For the case of randomly generated workflows we used the following approach:
The number of levels was varied between nl = 1, 12 and each level was assigned a variable

average number of tasks tpl = {2.5, 7.5, 12.5}. Each DAG was generated using the samepred
method [28] with the average number of predecessors being set to 3. For the execution times two
scenarios have been considered: normally distributed (N(150, 50), N(3600, 200), N(4500, 200),
N(5400, 200), N(7200, 200), N(9000, 200)) and Pareto distributed (P (2, 500)). The reason for
these choices is that we wanted to investigate the impact the execution time distribution has on
the scheduling methods. Furthermore, in general, largely parallel applications such as Montage
or MapReduce usually exhibit similar execution times for task on the same level of paral-
lelism, which is better modeled through a normal distribution than a Pareto one. However
non-deterministic (in terms of execution times) workflows such as those solving complex math-
ematical problems –where the execution time of a problem depends on the method chosen at
runtime by the software– could present large tasks run in parallel with smaller ones.

Given the above setup 5, different DAGs are generated for each {nl, tpl} configuration. For
each DAG, 5 different experiments are run in order to vary the execution times of each task,
leading to a total number of 175 experiments;

Two cases have been assumed: DAGs with few (long workflows) respectively many tasks
per level (largely parallel). For the former we assumed an average number of 2.5 tasks while
for the latter all the remaining values in the tpl set were used;

For each experiment we counted the percentage of experiments when an algorithm is among
the best. To relax the condition we selected algorithms that were close to the best within 10%
of makespan and cost. To be taken into consideration algorithms had to be better (but not
best) in both cost and makespan than the reference OneVMperTask-s algorithm. This is to
ensure that algorithms that are the best for only one objective still reduce cost as compared to
the reference one.

Given the numerous scenarios we considered in this case and for reasons related to space, we
present in what follows only the main conclusions instead of detailing each result individually.

Our initial expectations were to discover a single dominant VM provisioning method for each
individual use case. Results however showed that when small execution times –either normal
or Pareto shaped– there is no clear dominant algorithm that achieves a success rate above 90%,
especially when worklows with many parallel levels and tasks are considered. The reason could
be in the combination between the fine-grained heterogeneous execution times and the various
workflow structures that were used. In contrast as execution times get larger –than one BTU–
the dominant algorithms have success rates placed regularly above 90%.

In addition it has been observed that as far as cost is concerned the number of dominant
algorithms tends to be smaller than for the case of the makespan. For nl = 1 all dominant
algorithms achieve high success rates (around 90% or more) by relying on mostly small instances.
When nl > 1 and execution times are above one BTU there is a single dominant algorithm.
Since in most cases the algorithm is AllParExceed-s the reason could lie in the combination
of parallelism and sequential execution on already rented VMs and in the fact that faster
instance types do not bring the same cost reduction as compared to makespan gain which
could place them outside the area of interest –as previously mentioned in Sect. 4. Except
AllPar[Not]Exceed-s and OneVMperTask-s all other algorithms tend to reduce the number of
VMs and thus possibly increase the makespan above the reference value. Concerning medium
and large instance based algorithms it seems that the inflicted cost is greater than the speed-up
gained, probably even exceeding the reference value. So it is not unlikely to end up with the
AllParExceed-s as the single best algorithm in terms of cost.

Regarding the two objectives of makespan and cost we can make the following comments
summarized in Tables 5 and 6. Figures 7, 8, 9 and 10 present the percentage of cases a particular
algorithm has provided the best solution in terms of makespan or cost.

Inria

Efficiency of Several VM Provisioning Strategies 21

When considering makespan alone, we observe that for nl = 1 and workflows with few tasks
(e.g., tpl = 2.5) the -s algorithms (except OneVMforAll-s) seem to provide the best value except
an isolated case of execution times situated between one and two BTUs where the -m algorithms
(except OneVMforAll-m) are also dominant. A similar behavior was noticed for largely parallel
workflows except in the case of the Pareto distribution (cf. Fig. 7) when AllPar1LnSDyn
was dominant although at a steadily decreasing efficiency (100% for tpl = 2.5 downto 59% for
tpl = 12). Its efficiency in these cases could be explained by the Pareto shaped distribution
which allows faster longer tasks to be executed in parallel with many smaller parallel tasks
running on the same VM.

For nl > 1 a rise in the efficiency of some algorithms using medium or large instances is
observed, especially when ei < 1BTU (cf. Fig. 7), probably due to their capacity of reducing
the makespan enough for the cost to drop below the reference value. For nl = 1 we noticed that
using small instances provides the best results, except an interval between 1 BTU and 1.6 BTUs
or exactly the speed-up of the medium instance (cf. Fig. 8). The motivation could be that this
particular interval allows for the speed-up inflicted by the medium instances to reduce costs
sufficiently as to surpass the reference value. Since the gain in makespan is far greater than
that of the small instances these methods therefore replace the *-s ones as dominant. While
we should expect a similar result for larger values –comparable with the speed-up induced by
the large instance– results proved otherwise. The reason could be in the cost loss/makespan
gain ratio which is around 3 (cf. Table 3) making costs simply to high to fit our desired interval
below the reference threshold.

Results showed that as execution times increase –above 1 BTU– the success rate of the
dominant algorithms stabilizes and achieves values close to 100%. This means that for these
cases we can safely pick one algorithm and use it without being restricted by the probability
factor as in the case of small execution times; i.e., the Pareto and Normal(150,50) distributions.

Table 5: Makespan results for randomly generated DAGs.

ei
nl = 1 nl > 1

less paral-
lelism

much paral-
lelism

less paral-
lelism

much paral-
lelism

Pareto *-s except
OneVMforAll-
s

AllPar1LnSDynAllParExceed-
l

AllPar1LnS-
m,
AllPar1LnS-
l

short *-s except
OneVMforAll-
s

*-s except
OneVMforAll-
s

AllParExceed-
l,
AllPar1LnS-
l

AllPar1LnS-
m

large -s except
OneVMforAll-
s;
-m except
OneVMforAll-
m (ei ∈
(3600, 7200))

AllPar1LnSdyn,
-s except
OneVMforAll-
s;
-m except
OneVMforAll-
m (ei ∈
(3600, 7200))

AllParExceed-
m;
-m except
OneVMforAll-
m (ei ∈
(3600, 7200))

AllPar1LnSdyn,
-s except
OneVMforAll-
s;
– -m except
OneVMforAll-
m (ei ∈
(3600, 7200))

Concerning cost we noticed that dominant algorithm is AllParExceed-s except for the Pareto
and N(150,50) distributions when AllPar1LnS-s and AllPar1LnSdyn tend to dominate (cf. Fig.
9). The reason could be due to the shape of the distribution which allows for parallelism
reduction and instance augmentation. AllPArExceed-s on the other hand allows for parallelism
exploitation and also cost minimization by permitting tasks to exceed their BTU and thus
avoid renting new ones and wasting both idle time and costs. Interestingly enough the same
scenario when the best results for makespan when the execution times is between 1 and 1.6
BTUs repeated here. The difference is that for costs it only applies when nl = 1 (cf. Fig.
10). The reason lies in the fact that since we have parallel tasks that are larger than one BTU
all medium instances, due to their speed-up will reduce the execution time to at most one
BTU which is the smallest payable unit. Thus we obtain a cost identical to smaller to that of
reference value and at the same time faster.

Concluding, using larger instance types such as medium sized can prove an advantage due
to either heterogeneity in execution times or cost/makespan gain when small execution times

RR n° 8449

22 Marc E. Frincu , Stéphane Genaud , Julien Gossa

 0 1 2 3 4 5 6 7 8 9 10 11

#levels

Makespan for Pareto(2,500) with 7.5 average tasks per level

OneVMperTask-s

938

StartParNotExceed-s

38

StartParNotExceed-m

5 513 95 59

StartParNotExceed-l

5

StartParExceed-s

38

StartParExceed-m

5

StartParExceed-l

55

AllParExceed-s

938

AllParExceed-m

59 3842 1775 2142 30 542

AllparNotExceed-s

938

Allpar1LnS-s

938

Allpar1LnS-m

80 6771 5580 4684 6750 5580

Allpar1LnS-l

13 3421 429 5013 255 4621

Allpar1LnSdyn

9 9 135 135 1763 13

Figure 7: Best algorithm % for makespan for Pareto(2,500) and tpl = 7.5.

are used (below one BTU) or the execution time is between one and 1.6 BTUs. In this case the
medium instances also provide a balanced cost/makespan minimization. Dynamic algorithms
such as AllPar1LnS-s or AllPar1LnSdyn have a limited efficiency especially for large tasks
being overcome both in terms of makespan and cost by others. In addition, although for small
execution times a probabilistic choice based on past data between algorithms is required, for
large execution times the dominant algorithms for either makespan or cost can be selected
with a probability of one due to their high success rates. The same is applicable also for cost
alone when nl = 1 and execution times are large. Finally for large execution times where -s
algorithms produce the best makespan, if a balanced cost/makespan minimization is desired,
the AllParExceed-s can be used.

5 Conclusions

Most work related to workflow scheduling algorithms for clouds has focused on extending ex-
isting grid oriented algorithms to clouds by renting whenever necessary extra cloud resources.
These consider clouds as extensions to the local resources. While others have focused on building
fully cloud oriented algorithms, none has investigated the impact choosing the correct provi-
sioning policy has on the schedule. This is especially important when adapting existing grid
algorithms to the cloud environment by adding a suitable provisioning policy.

As shown in a previous paper [12], workflow structure, tasks size, and used VM instance
type, all influence the results. It is thus necessary to derive a mechanism for dynamically
adapting the SAs based on this information. This paper extends those results and provide a
mathematical model and some general guidelines for randomly shaped workflows. To do this, we
first needed to formally model makespan and cost –the two objectives we consider in this paper–
for the cases where single and multiple VM instance types are used. As VM boot/shutdown
times also play an important role as they are paid for but cannot be actually used, we included
them in our model as well. The model allows a first selection based on mathematical formulas.
Whenever this approach is not sufficient, then the results of our tests can be used to determine,
based on workflow and task characteristics, which VM instance type and provisioning method

Inria

Efficiency of Several VM Provisioning Strategies 23

 0 1 2 3 4 5 6 7 8 9 10 11

#levels

Makespan for N(5400,200) with 7.5 average tasks per level

OneVMperTask-s

21

OneVMperTask-m

88 100100 10092 100100 10080 10092

StartParNotExceed-s

21

StartParNotExceed-m

88 100100 10092 100100 10080 10092

StartParExceed-s

21

StartParExceed-m

80

AllParExceed-s

21

AllParExceed-m

100 100100 100100 100100 10080 100100

AllparNotExceed-s

21

AllparNotExceed-m

88 100100 10092 100100 10080 10092

Allpar1LnS-s

21

Allpar1LnS-m

88 100100 10092 100100 10080 10092

Allpar1LnSdyn

21

Figure 8: Best algorithm % for makespan for Normal(5400,200) and tpl = 7.5.

Table 6: Cost results for randomly generated DAGs.

ei
nl = 1 nl > 1

less paral-
lelism

much paral-
lelism

less paral-
lelism

much paral-
lelism

Pareto AllPar1LnS-
s, All-
Par1LnSdyn

AllPar1LnS-
s

AllParExceed-
s

AllPar1LnS-
s

short AllPar1LnS-
s, All-
Par1LnSdyn

AllPar1LnS-
s

AllPar1LnS-
s, All-
Par1LnSdyn

AllPar1LnS-
s

large StartParExceed-
s,
AllParExceed-
s,
AllParNotExceed-
s,
AllPar1LnS-
s, All-
Par1LnSdyn
and
OneVMperTask-
m ⊕ their -m
equivalents
for ei ∈
(3600, 7200)

H-
StartParExceed-
s,
AllParExceed-
s,
AllParNotExceed-
s,
AllPar1LnS-
s, All-
Par1LnSdyn
and
OneVMperTask-
m ⊕ their -m
equivalents
for ei ∈
(3600, 7200)

AllParExceed-
s

AllParExceed-
s

to use in order to minimize makespan or costs.
In order to take full advantage of the multi-core property of most VM instance types offered

RR n° 8449

24 Marc E. Frincu , Stéphane Genaud , Julien Gossa

 0 1 2 3 4 5 6 7 8 9 10 11

#levels

Cost for N(150,50) with 7.5 average tasks per level

StartParExceed-s

34

AllParExceed-s

34 2534 3450 2167 4634 1730

AllParExceed-m

95 55 5

AllparNotExceed-s

5 99 5534 59

Allpar1LnS-s

96 8488 10088 8871 92100 9692

Allpar1LnS-m

59 55 5

Allpar1LnSdyn

92 6380 8880 8467 8888 8888

Figure 9: Best algorithm % for cost for Normal(150,50) and tpl = 7.5.

by public cloud providers we considered that each workflow task is multi-threaded capable.
Some remarks for how our model can be adapted for single-threaded tasks have also been
given.

Test results have shown that, given a speed-up which is smaller than the price increase when
choosing a faster instance type, faster instance types are suited only for certain execution times,
and usually for tasks with many levels of parallelism. As cost is higher than gain most medium
and large instances fall outside of our targeted area of improving both objectives as compared to
the reference one. An exception seems to occur when sequential workflows with heterogeneous
times are used. In this case large instances provide the best gain at a price lower than the
reference one with small instances. Dynamic algorithms that target parallelism reduction and
instance type augmentation –i.e., AllPar1LnS, AllPar1LnSDyn– are also inefficient for large ex-
ecution times that exhibit little heterogeneity (e.g., the map tasks in a MapReduce application).
For small (< 1BTU) and heterogeneous tasks we noticed that the dominant algorithms is not
clearly differentiated as in the case of large and more homogeneous tasks. This means that, in
this case, choosing between provisioning methods would require a probabilistic approach if any
of the two objectives is targeted. Contrary, for the latter case, the AllParExceed-s algorithm
proved to be most successful in minimizing both cost and makespan.

Overall reducing both cost and makespan at the same rate is difficult with most algorithms
being optimized for at most one objective. For some scenarios however AllParExceed-s and
several -m versions are capable of minimizing both equally.

Finally our tests using constant boot/shutdown times, that are independent on the number
of parallel booted VMs, indicated no significant difference with regard to the ideal case where
these times are set to zero. While this could be different for other cases, we emphasize the
relevance of these results as they correspond to the setup of one of the most popular cloud
provider, i.e., Amazon.

Further work aims at integrating results obtained from this research in a comprehensive
knowledge base that can be later used by an adaptive scheduler relying on (un)supervised
learning techniques. This will allow automatic optimization decisions independent on workflow
characteristics. An alternative approach would be to asses the outcomes of each algorithm
given the actual workflow to execute right before its submission in the system. The efficiency

Inria

Efficiency of Several VM Provisioning Strategies 25

 0 1 2 3 4 5 6 7 8 9 10 11

#levels

Cost for N(4500,200) with 7.5 average tasks per level

OneVMperTask-m

100

StartParExceed-s

100

StartParExceed-m

100

AllParExceed-s

100 100100 100100 100100 100100 100100

AllParExceed-m

100

AllparNotExceed-s

100

AllparNotExceed-m

100

Allpar1LnS-s

100

Allpar1LnS-m

100

Allpar1LnSdyn

100

Figure 10: Best algorithm % for cost for Normal(4500,200) and tpl = 7.5.

of such a method is also under consideration. Finally we plan on investigating to what extent
our model can be adapted to arbitrarily shaped workflows.

Acknowledgements This work has been partially supported by the French ANR project
SONGS 11-INFRA-13.

References

[1] Bittencourt, L., Madeira, E.: Hcoc: a cost optimization algorithm for workflow scheduling
in hybrid clouds. Journal of Internet Services and Applications 2, 207–227 (2011). URL
http://dx.doi.org/10.1007/s13174-011-0032-0. 10.1007/s13174-011-0032-0

[2] Bittencourt, L.F., Madeira, E.R.M.: A performance-oriented adaptive scheduler for de-
pendent tasks on grids. Concurr. Comput. : Pract. Exper. 20(9), 1029–1049 (2008).
DOI 10.1002/cpe.v20:9. URL http://dx.doi.org/10.1002/cpe.v20:9

[3] Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for manag-
ing sla violations. In: 10th IFIP/IEEE International Symposium on Integrated Network
Management, pp. 119–128. IEEE (2007). URL http://dblp.uni-trier.de/db/conf/im/

im2007.html#BobroffKB07

[4] den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in hybrid
IaaS clouds for deadline constrained workloads. In: IEEE CLOUD, pp. 228–235 (2010)

[5] Byun, E.K., Kee, Y.S., Kim, J.S., Maeng, S.: Cost optimized provisioning of elastic re-
sources for application workflows. Future Generation Computer Systems 27(8), 1011 –
1026 (2011). DOI 10.1016/j.future.2011.05.001. URL http://www.sciencedirect.com/

science/article/pii/S0167739X11000744

[6] Caron, E., Desprez, F., Muresan, A., Suter, F.: Budget constrained resource allo-
cation for non-deterministic workflows on an iaas cloud. In: Y. Xiang, I. Stojmen-
ovic, B. Apduhan, G. Wang, K. Nakano, A. Zomaya (eds.) Algorithms and Architec-

RR n° 8449

http://dx.doi.org/10.1007/s13174-011-0032-0
http://dx.doi.org/10.1002/cpe.v20:9
http://dblp.uni-trier.de/db/conf/im/im2007.html#BobroffKB07
http://dblp.uni-trier.de/db/conf/im/im2007.html#BobroffKB07
http://www.sciencedirect.com/science/article/pii/S0167739X11000744
http://www.sciencedirect.com/science/article/pii/S0167739X11000744

26 Marc E. Frincu , Stéphane Genaud , Julien Gossa

tures for Parallel Processing, Lecture Notes in Computer Science, vol. 7439, pp. 186–
201. Springer Berlin Heidelberg (2012). DOI 10.1007/978-3-642-33078-0_14. URL
http://dx.doi.org/10.1007/978-3-642-33078-0_14

[7] Casanova, H., Legrand, A., Quinson, M.: Simgrid: a generic framework for large-scale dis-
tributed experiments. In: Proceedings of the Tenth International Conference on Computer
Modeling and Simulation, UKSIM ’08, pp. 126–131. IEEE Computer Society, Washington,
DC, USA (2008). DOI 10.1109/UKSIM.2008.28. URL http://dx.doi.org/10.1109/

UKSIM.2008.28

[8] Deelman, E., Singh, G., Livny, M., Berriman, G.B., Good, J.: The cost of doing science
on the cloud: the montage example. In: SuperComputing’08, p. 50 (2008)

[9] Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi,
K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: A framework
for mapping complex scientific workflows onto distributed systems. Sci. Program. 13(3),
219–237 (2005). URL http://dl.acm.org/citation.cfm?id=1239649.1239653

[10] Doğan, A., Özgüner, F.: Biobjective scheduling algorithms for execution time-reliability
trade-off in heterogeneous computing systems*. Comput. J. 48(3), 300–314 (2005). DOI
10.1093/comjnl/bxh086. URL http://dx.doi.org/10.1093/comjnl/bxh086

[11] Feitelson, D.G.: Workload modeling for computer systems performance (2013). URL http:

//www.cs.huji.ac.il/~feit/wlmod/. Version 0.43

[12] Frincu, M., Genaud, S., Gossa, J.: Comparing provisioning and scheduling strategies for
workflows on clouds. In: Workshop Procs. of 28th IEEE Int. Parallel & Distributed Pro-
cessing Symposium, pp. 2101–2110. IEEE (2013)

[13] Frîncu, M.E.: Scheduling highly available applications on cloud environments. Future
Generation Computer Systems 32(0), 138–153 (2014). DOI 10.1016/j.future.2012.05.017

[14] Google: Google compute engine pricing. URL https://cloud.google.com/pricing/

compute-engine. Https://cloud.google.com/pricing/compute-engine (accessed June 20th
2013)

[15] Gu, J., Hu, J., Zhao, T., Sun, G.: A new resource scheduling strategy based on genetic
algorithm in cloud computing environment. JCP pp. 42–52 (2012)

[16] Gutierrez-Garcia, J.O., Sim, K.M.: A family of heuristics for agent-based elastic cloud bag-
of-tasks concurrent scheduling. Future Generation Computer Systems 29(7), 1682–1699
(2012). DOI 10.1016/j.future.2012.01.005

[17] Hwang, E., Kim, K.H.: Minimizing cost of virtual machines for deadline-constrained
mapreduce applications in the cloud. In: Grid Computing (GRID), 2012 ACM/IEEE
13th International Conference on, pp. 130 –138 (2012). DOI 10.1109/Grid.2012.19

[18] Lin, C., Lu, S.: Scheduling scientific workflows elastically for cloud computing. In: Cloud
Computing (CLOUD), 2011 IEEE International Conference on, pp. 746 –747 (2011). DOI
10.1109/CLOUD.2011.110

[19] Liu, K.: Scheduling algorithms for instance-intensive cloud workflows. Ph.D. thesis, Uni-
versity of Swinburne Australia (2009)

[20] Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Scheduling
strategies for optimal service deployment across multiple clouds. Future Generation Com-
puter Systems (2012). DOI 10.1016/j.future.2012.01.007. Accepted proof

[21] Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application deadlines in
cloud workflows. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pp. 49:1–49:12. ACM, New York,
NY, USA (2011). DOI 10.1145/2063384.2063449. URL http://doi.acm.org/10.1145/

2063384.2063449

[22] Mao, M., Humphrey, M.: A performance study on the vm startup time in the cloud. In:
IEEE CLOUD’12, pp. 423–430 (2012)

Inria

http://dx.doi.org/10.1007/978-3-642-33078-0_14
http://dx.doi.org/10.1109/UKSIM.2008.28
http://dx.doi.org/10.1109/UKSIM.2008.28
http://dl.acm.org/citation.cfm?id=1239649.1239653
http://dx.doi.org/10.1093/comjnl/bxh086
http://www.cs.huji.ac.il/~feit/wlmod/
http://www.cs.huji.ac.il/~feit/wlmod/
https://cloud.google.com/pricing/compute-engine
https://cloud.google.com/pricing/compute-engine
http://doi.acm.org/10.1145/2063384.2063449
http://doi.acm.org/10.1145/2063384.2063449

Efficiency of Several VM Provisioning Strategies 27

[23] Michon, E., Gossa, J., Genaud, S.: Free elasticity and free CPU power for scientific work-
loads on IaaS Clouds. In: 18th IEEE International Conference on Parallel and Distributed
Systems. IEEE, Singapour, Singapore (2012). URL http://hal.inria.fr/hal-00733155

[24] Mohammadi Fard, H., Prodan, R., Fahringer, T.: A truthful dynamic workflow scheduling
mechanism for commercial multi-cloud environments. Parallel and Distributed Systems,
IEEE Transactions on PP(99), 1 (2012). DOI 10.1109/TPDS.2012.257

[25] Pandey, S., Wu, L., Guru, S., Buyya, R.: A particle swarm optimization-based heuristic
for scheduling workflow applications in cloud computing environments. In: Advanced In-
formation Networking and Applications (AINA), 2010 24th IEEE International Conference
on, pp. 400 –407 (2010). DOI 10.1109/AINA.2010.31

[26] Radulescu, A., van Gemund, A.: A low-cost approach towards mixed task and data parallel
scheduling. In: Parallel Processing, International Conference on, 2001., pp. 69 –76 (2001).
DOI 10.1109/ICPP.2001.952048

[27] Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with
budget constraints. In: in Integrated Research in Grid Computing, S. Gorlatch and M.
Danelutto, Eds.: CoreGrid series. Springer-Verlag (2007)

[28] Tobita, T., Kasahara, H.: A standard task graph set for fair evaluation of multiprocessor
scheduling algorithms. Journal of Scheduling 5(5), 379–394 (2002). DOI 10.1002/jos.116.
URL http://dx.doi.org/10.1002/jos.116

[29] Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud brokering
mechanisms for optimized placement of virtual machines across multiple providers. Future
Gener. Comput. Syst. 28(2), 358–367 (2012). DOI 10.1016/j.future.2011.07.003. URL
http://dx.doi.org/10.1016/j.future.2011.07.003

[30] Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning and allo-
cation policies for infrastructure-as-a-service clouds. In: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), CCGRID ’12, pp. 612–619. IEEE Computer Society, Washington, DC, USA (2012).
DOI 10.1109/CCGrid.2012.46. URL http://dx.doi.org/10.1109/CCGrid.2012.46

[31] Wu, Z., Liu, X., Ni, Z., Yuan, D., Yang, Y.: A market-oriented hierarchical scheduling
strategy in cloud workflow systems. The Journal of Supercomputing 63, 256–293 (2013).
URL http://dx.doi.org/10.1007/s11227-011-0578-4

[32] Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine instances
in clouds. Journal of Parallel and Distributed Computing 73(4), 495 – 508 (2013). DOI 10.
1016/j.jpdc.2012.12.006. URL http://www.sciencedirect.com/science/article/pii/

S0743731512002870

[33] Zhao, H., Sakellariou, R.: An experimental investigation into the rank function of the het-
erogeneous earliest finish time scheduling algorithm. In: H. Kosch, L. BÃ¶szÃ¶rmÃ©nyi,
H. Hellwagner (eds.) Euro-Par 2003 Parallel Processing, Lecture Notes in Computer
Science, vol. 2790, pp. 189–194. Springer Berlin Heidelberg (2003). DOI 10.1007/
978-3-540-45209-6_28. URL http://dx.doi.org/10.1007/978-3-540-45209-6_28

Appendix: Theoretical Proofs

Proposition 1:

Proof. We assume three tasks and test the cases where they are either parallel or sequential
tasks independently:

Parallel tasks: let there cost2 be the cost of another method such that cost2 < costs. From
Relation 3 we have that cost2 <

⌈
e1+e2+e3

BT U

⌉
. For cost2 we have that either all three tasks

are scheduled on different VMs or two are put on a single one and the third on a second
one. For the former case we get cost2 =

⌈
e1+e2

BT U

⌉
+

⌈
e3

BT U

⌉
. For the latter we have cost2 =

⌈
e1

BT U

⌉
+

⌈
e2

BT U

⌉
+

⌈
e3

BT U

⌉
. In both case given that ⌈

∑
·⌉ ≤

∑
⌈·⌉ we obtain a contradiction.

Sequential tasks: the proof is similar to that for parallel tasks.

Proposition 2:

RR n° 8449

http://hal.inria.fr/hal-00733155
http://dx.doi.org/10.1002/jos.116
http://dx.doi.org/10.1016/j.future.2011.07.003
http://dx.doi.org/10.1109/CCGrid.2012.46
http://dx.doi.org/10.1007/s11227-011-0578-4
http://www.sciencedirect.com/science/article/pii/S0743731512002870
http://www.sciencedirect.com/science/article/pii/S0743731512002870
http://dx.doi.org/10.1007/978-3-540-45209-6_28

28 Marc E. Frincu , Stéphane Genaud , Julien Gossa

Proof. Straightforward. As it allocates one VM for each task we end up with as many VMs as
tasks irrespective on the VM instance type.

Remark 1:

Proof. Parallel tasks: the makespan for OneVMperTask is max ei (cf. Relation 2). We assume
three parallel tasks. They can be placed in the following configurations: each on its VM, two
tasks on one VM and the other on another, or all three tasks on a single VM. Given their
parallelism case we obtain that the makespan is equal to: max ei for the first; max(ei + ej , ek)
(where {i, j, k} represents a permutation of {1, 2, 3}) for the second; and

∑
ei for the third. It

is easily proven that max ei is less or equal with any of the three cases.
Sequential tasks: in this case a task has to finish before its successor can start the makespan

for a task n can be recursively written as
∑n−1

i=1 +en which leads to the same formula as for
OneVMperTask:

∑
ei.

Remark 2:

Proof. Similar with the proof for sequential tasks for Remark 1.

Proposition 3:

Proof. The equalities are straighforward given the definitions of each method. All method will
schedule each task on an independent VM. Totprove that costp ≥ costs we use Relations 1 and
3 and the property of the ceil function: ⌈

∑
·⌉ ≤

∑
⌈·⌉.

Proposition 4:

Proof. Sketch: the proof is similar to the one for Proposition 3. Since there is no task paral-
lelism methods like AllParExceed, StartParExceed schedule all the tasks on a single VM. This
is the same as for OneTaskforAll. On the other side OneVMperTask, AllParNotExceed and
StartParNotExceed rent more VMs due to their policies. Hence the first rents one VM for
each task giving a cost cf. Rel. 1. While it is possible for the other two to provide the same
cost if the sum of any two consecutive tasks is greater than a BTU in general it is possible to
schedule at least two tasks on the same VM. This reduces the cost for these by one BTU as
compared to OneVMperTask, but still keeps it above the one offered by OneVMforAll which
is the optimal. The only exception takes place when

∑
ei ≤ BTU in which case all methods

except OneVMperTask give the same costs.

Proposition 5:

Proof. Sketch: The first two equalities are trivial. As all methods take full advantage of paral-
lelism there is no deterioration in makespan and thus all give the same results as OneVMperTask.
The StartParNotExceed produces a makespan at least equal to that of AllParNotExceed since it
schedules sequentially parallel tasks if their number exceeds that of the initial tasks. The only
scenario in which they would provide the same result is a scenario in which the sum of any two
tasks is always greater than a BTU, hence forcing StartParNotExceed to allocate a new VM for
each task. StartParExceed is even worse as the number of parallel running VMs depends on
the number of initial tasks. If the maximum number of parallel tasks in the workflow does not
exceed this value than the results are identical to those provided by StartParNotExceed and
AllParNotExceed. In the worst case it will schedule all tasks on a single VM which is identical
to the OneVMforAll method.

Proposition 6:

Proof. Sequential tasks are chain workflows in which each task depends only on at most one
predecessor. For this reason the makespan is always equal with

∑
ei. Since this particular

workflow does not exhibit any parallelism in it all provisioning methods built to take it into
consideration do not offer any makespan optimization. Given Fig. 3 we easily notice that all
of them become equivalent to OneVMforAll with the makespan given by Rel. 4.

Proposition 7:

Inria

Efficiency of Several VM Provisioning Strategies 29

Proof. We prove each inequality individually.
Considering the first inequality, for costAllP arNotExceed we only need to investigate the case

in which a new task i needs to be placed on a VM already running another task. We get two
scenarios: one in which task i will not exceed the remaining BTU on a selected VM and can
thus be scheduled on it; and another one in which it exceeds the remaining time and requires a
new VM. For the first scenario we have that costAllP arNotExceed = ⌈costcurrent⌉+⌈ ei

BT U
⌉ which

is identical to costp = ⌈costcurrent⌉ + ⌈ ei

BT U
⌉. For the second we obtain costAllP arNotExceed =

⌈costcurrent + ei

BT U
⌉. Since for this case costp = ⌈costcurrent⌉ + ⌈ ei

BT U
⌉ and we know that

⌈
∑

·⌉ ≤
∑

⌈·⌉ the inequality follows immediately.
To prove costAllP arNotExceed ≥ costAllP arExceed we consider a case in which a new task i

exceeds the remaining BTU time and so needs to be scheduled on a new VM –when considering
AllParNotExceed. In this case we obtain costAllP arNotExceed = ⌈costcurrent⌉ + ⌈ ei

BT U
⌉ ≥

costAllP arExceed.
To prove costAllP arExceed ≥ costStartP arExceed we consider a single initial task and two new

parallel tasks i and j following it. We get costAllP arExceed = ⌈costcurrent + ei⌉ + ⌈ej⌉ and
costStartP arExceed = ⌈costcurrent + ei + ej⌉. The inequality follows immediately.

The proof that costStartP arExceed ≥ costs is straightforward. Considering two initial tasks
i1, i2 and three new tasks j, k, l depending on them, we obtain costStartP arExceed = ⌈costi1 +
ej + ek⌉ + ⌈costi2 + el⌉ which is greater or equal to costs = ⌈costi1 + costi2 + ej + ek + el⌉.

Finally the proof that costp ≥ costStartP arNotExceed ≥ costStartP arExceed is similar to that
for costp ≥ costAllP arNotExceed ≥ costAllP arExceed.

Proposition 8:

Proof. Immediately considering one initial task and two tasks depending on it with
∑

ei < BTU
and

∑
ei > BTU .

Proposition 9:

Proof. The case
∑

ei ≤ BTU follows directly by applying Relations 6 and 8. We obtain:
γk

︸︷︷︸

costk
s

< γk+1
︸︷︷︸

cost
k+1
s

≤ nγk
︸︷︷︸

costk
p

< nγk+1
︸ ︷︷ ︸

cost
k+1
p

.

For the general case we know by Rels. 5 and 7 that inf costk
s = inf costk

p and

sup costk
s < sup costk

p . The proof follows a straightforward approach by comparing the ra-

tio of each relevant combination of sup and inf values. This ratio can be written as a product
f · g where g changes depending on the ratio.

We first assume f < 1:

inf costk+1
s

inf costk
s

< 1 = f

∑
ei

∑
ei

. The proof follows immediately since f < 1.

The rest of the relations depend on the value of the BTU:

sup costk+1
p

sup costk
p

≥ 1 = f

∑
ei+nαk+1BT U

∑
ei+nαkBT U

. We obtain that BTU ≤
(f−1)

∑
ei

n(αk−fαk+1) . As BTU > 0

the ratio must also be positive meaning that αk −fαk+1 < 0 which is always true since 1 < γk+1

γk
.

sup costk+1
s

sup costk
p

≥ 1 = f

∑
ei+αk+1BT U

∑
ei+nαkBT U

. The proof is similar to the previous case except that

we get an additional condition: n < γk+1

γk
for BTU ≤

(f−1)
∑

ei

nαk−fαk+1
.

sup costk+1
p

inf costk
s

≤ 1 = f

∑
ei+nαk+1BT U

∑
ei

. The proof is similar to the previous case but BTU ≤

(1−f)
∑

ei

nfαk+1
.

We now assume f > 1:

inf costk+1
s

inf costk
s

> 1 = f

∑
ei

∑
ei

.

sup costk+1
s

sup costk
s

> 1 = f

∑
ei+αk+1BT U

∑
ei+αkBT U

. Since αk+1 ≥ αk we obtain our inequality.

RR n° 8449

30 Marc E. Frincu , Stéphane Genaud , Julien Gossa

sup costk+1
p

sup costk
p

> 1 = f

∑
ei+nαk+1BT U

∑
ei+nαkBT U

. Since αk+1 ≥ αk we obtain our inequality.

sup costk+1
s

sup costk
p

≥ 1 = f

∑
ei+αk+1BT U

∑
ei+nαkBT U

. The inequality holds only if BTU ≤
(f−1)

∑
ei

nαk−fαk+1
.

inf costk+1
p

sup costk
p

≥ 1 = f

∑
ei

∑
ei+nαk+1BT U

. The proof is similar to the previous case but BTU ≤

(f−1)
∑

ei

nαk
.

We now assume f = 1:

inf costk
p

inf costk+1
p

= 1 and
inf costk

s

inf costk+1
s

= 1 . Immediately from Rels. 5 and 7.

Proposition 10:

Proof. Follows immediately from Relations. 6 and 8.

Proposition 11:

Proof. Inequalities makespank
p ≤ makespank

s and makespank−1
p ≤ makespank−1

s are trivial
from Relations 6 and 8.

To prove makespank
s ≤ makespank−1

p we must have
αk−1

∑
ei

αk max ei
≤ 1. This happens iff

αk

αk−1
≥

∑
ei

max ei
.

Proposition 13:

Proof. Similar to that of Proposition 9.

Proposition 14:

Proof. Follows immediately from Relations 6 and 8 and τk
i > 0.

Proposition 15:

Proof. Follows immediately from Relations 6 and 8 and τk
i > 0.

Inria

RESEARCH CENTRE

NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Related Work on Cloud Scheduling
	VM Provisioning
	Task ordering
	Theoretical Considerations Regarding Cost and Makespan
	Single instance type
	Multiple instance types

	Special Considerations for Single-Threaded Tasks

	Experiments
	Real Workflows
	Synthetic Workflows

	Conclusions

