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Abstract In microgrids, the integration of distributed energy resources (DERs) in the
residential sector can improve power reliability, and potentially reduce power demands
and carbon emissions. Improving the utilization of renewable energy in households
is a critical challenge for DERs. In this regard, renewable power sharing is one of
the possible solutions to tackle this problem. Even though this solution has attracted
significant attention recently, most of the proposed power sharing frameworks focus
more on centralized schemes. In contrast, in this paper, the performance of a proposed
distributed power sharing framework is investigated. The problem is formulated as
a repeated game between households in a microgrid. In this game, each household
decides to cooperate and borrow/lend some amount of renewable power from/to a
neighboring household, or to defect and purchase the entire demands from the main
grid based on a payoff function. The Nash equilibrium of this game is characterized
and the effect of the strategies taken by the households on the system is analyzed. We
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conduct an extensive evaluationusing real demanddata from12households of different
sizes and power consumption profiles in Stockholm. Numerical results indicate that
cooperation is beneficial from both an economical and environmental perspective and
that households can achieve cost savings up to 20 %.

Keywords Microgrids · Game theory · Demand side management · Distributed
energy resources · Electricity cost minimization problem · Carbon emission reduction
strategies

Mathematics Subject Classification 91A20Multistage and repeated games · 91A10
Noncooperative games · 91A80 Applications of game theory · 68W15 Distributed
algorithms · 68M14 Distributed systems

1 Introduction

Increased energy demand, the devastating risks of climate change, and ambitious
emissions reduction targets have lead to significant changes in the approach of how
to produce, distribute, and consume electricity [1,2]. However, the increased energy
demand, along with the decreasing fossil energy sources, is usually accompanied by
a significant increase in the electricity prices. In 2013, for instance, the average EU
residential prices were 0.20 euro/kWh, a 43 % increase from the average 2006 price
of 0.14 euro/kWh [3].

Smart grids symbolize the transition from conventional electricity grids, where
electricity flows one-way from generators to consumers, to interconnected and flexi-
ble grids that ensure a bidirectional flow of electricity and information between power
plants and appliances, and all points in between. Smart grids are intelligently integrated
operational and technological systems for optimizing power generation, distribution,
and consumption across a city, and may be considered as a key component of sus-
tainable smart cities, opening up for a broad spectra of new technologies and business
models to increase energy efficiency and reduce climate impact [4,5].

Demand-side management (DSM), a key integral part of the concept of smart grids,
refers tomanagement strategies that aim to increase the involvement of end-consumers
in the planning and implementation of innovative energy efficiency measures and
solutions [6].

Further developing the architecture of smart grids, integration of distributed energy
resources (DERs) solutions can bring further reduction in power demands. Many
households and residential buildings are beginning to adopt small-scale on-site renew-
able energy production sources, such as solar panels. However, as renewable energy
is intermittent due to its nature, they keep connected to the main grid to secure their
power demand during times of the day when renewable energy generation is impos-
sible due to external whether conditions [7]. Connecting a group of households with
DERs forms what is called a “microgrid” [7] which possibly has the capability to con-
trol energy transfer between households and to help in improving energy efficiency. On
the other hand, households may have different power demand profiles due to various
factors such as occupants social grade and employment status, as well as the number
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and age of occupants. Besides, the time when renewable energy is harvested and the
time of households’ power consumption do not necessarily overlap. As an effect, a
mismatch occurs between the local generation of renewable energy and local power
consumption in some households, which reduces the utilization of local DERs.

Using energy storage [7] and injecting the surplus renewable energy into the grid [8]
are among the possible solutions that increase the benefit of adopting on-site renew-
ables. However, equipping each household with an on-site energy storage unit may
be economically unaffordable due to the high cost of batteries which are required to
buffer sufficient renewable energy for an average household daily power consumption
[9], such as the recently announced Tesla Powerwall battery [10]. Besides, batteries
with long cycle life have a big physical size that makes them difficult to be located
inside households (e.g., Vanadium Redox-flow batteries [11,12]). In addition, rein-
jecting power from unpredictable DERs, such as solar energy, into the main grid at a
large scale (i.e., exceeding a certain limit) may cause grid instabilities. For instance,
there are strict laws in the US that limit the total number of participating households
that can inject renewable energy into the grid [8].

Considering the fact that households’ electricity consumption patterns do not nec-
essarily overlap, an alternative possible solution to maximize the potential of DERs is
to allow households to share their renewable energy among each other in a coopera-
tive fashion. Recently, power sharing mechanisms in smart grids and microgrids have
received significant attention [13–16]. The authors in [13] introduce a centralized and
shared energy storage system for microdgrids that allows households to improve the
utilization of their local DER. In [14], another shared energy storage framework is
proposed for the cost savings trade-off problem among multiple users in a demand
response system using a Markovian model. The work presented in [15] uses a greedy
matching algorithm to determine which households should share energy in order to
reduce energy losses. The authors assume that all households are always willing to
share energy with each other. A peer-to-peer energy sharing framework between mul-
tiple neighboring microgrids in a distribution network is proposed in [16].

While interesting, most of this existing body of literature [13–15] has primar-
ily focused on centralized power sharing architectures. Moreover, the environmental
potential, such as CO2 emissions reduction, has not been paid attention. However, it is
interesting to define a distributed approach that can give households full control and
ability to adapt to the changes within the system, and investigate the benefit of power
sharing in this case.

In this paper, we assess the economical and environmental potential of a proposed
distributed power sharing framework for microgrids, where households can cooperate
to reduce their demands from the main grid by exchanging some amount of renewable
energy among each other. The interaction between rational households is modeled via
a repeated power sharing game. Game theory has been used recently in a remarkable
amount of research in this area since it provides efficient analytical tools to model
interactions among entities with conflicting interests in a distributed manner [17].
In contrast to one-shot games, players in repeated games interact with each other
for multiple rounds, and in each round they play the same game. In such situations,
players have the opportunity to adapt to their opponents’ behavior (i.e., learn) and try
to become more successful, which is very useful in the proposed distributed power
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sharing framework. To the best of our knowledge, this work is among the first attempts
that investigates the usability of game theory formulations to design a decentralized
power sharing framework between households in microgrids.

The discussions and analysis in this paper extend the preliminary results in our
earlier conference paper [18] in various directions. First of all, the game-theoretic
model in this paper is more elaborate and the analysis includes new discussions on
strategy-proof properties. Secondly, the focus of this paper is not limited to cost min-
imization analysis only, but we also present the environmental potential, expressed
as CO2 emissions reduction per kWh of electricity demands, of using the proposed
framework. Finally, the simulation results presented in this paper are extended and
based on real hourly pricing tariffs and real solar power and demand measurement
data for households of different sizes and consumption profiles.

The paper is structured as follows. The system model is illustrated in Sect. 2. The
proposed repeated game model is described and analyzed in Sect. 3. In Sect. 4, the
distributed power sharing algorithm is presented. Numerical results are discussed in
Sect. 5. Finally, we conclude the paper and give pointers for possible future directions
in Sect. 6.

2 System model

In this study we consider a generic microgrid which consists of a set of households
N = {1, . . . , N }, where N = |N |, with a small-scale on-site DER (e.g., a solar PV
panel). Households are connected to each other and to the main grid via AC power
lines. Further, it is assumed that households’ power demands may be variable both in
quantity and time and that they can approximately predetermine their future demands.
Time is divided in periods (e.g., days) and each time period is divided in slots (e.g.,
hours), which represent the time instants at which a certain event or an interaction may
occur in the system (i.e., borrowing/lending a certain amount of power).

In fact, households’ electricity consumption patterns do not necessarily overlapwith
each other which can be exploited to reduce the need of purchasing electricity from
the main grid. This can be achieved by allowing households to share their renewable
energy in a cooperative fashion. At a certain time slot each household can be a power
supplier and share some amount of its harvested renewable power, and/or a demander
which may request some amount of renewable power from another household.

Further, the applied model assumes that each household is equipped with a smart
energy meter, which monitors and controls energy harvesting and power consump-
tion intelligently. Smart meters are also responsible of data communications between
households themselves and between households and the main grid. They exchange
information about households’ demands, available renewable energy, and pricing tar-
iffs at each time slot. The proposed system architecture is illustrated in Fig. 1.

Let H = {1, . . . , H} denote the set of time slots. A power action of a household
i ∈ N depends on a time slot h ∈ H. At every time slot h, each household i has two
values: (1) an amount of renewable power Shi , generated by its on-site solar panel,
and (2) an amount of power demand Dh

i , where Shi , Dh
i ∈ R. From these values a

household can determine at every h if an additional power demand is needed or if it
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Fig. 1 The proposed microgrid architecture

has a surplus amount of renewable power. We assume that households satisfy their
demandsfirst from their ownDER.After that, if an amount of renewable power remains
or if an additional demand is still needed, they can cooperate and borrow/lend each
other. This is achieved by subtracting the renewable power value from the demand
value as follows:

Ph
i = Dh

i − Shi (1)

After a series of time slots, each household i will have a power vector Pi that indicates
the additional demands as well as the surplus renewable power at each time slot h.
This power vector is defined as Pi = [P1

i , P2
i , . . . , PH

i ], where Ph
i ∈ R.

Negative values of Pi indicate the required additional demands at the corresponding
time slots, while positive ones represent the surplus renewable power that could be
shared with other households. Then, each household will have two vectors that can
exchange with other households: (1) D̂i = [D̂1

i , D̂
2
i , . . . , D̂

H
i ] which contains the

additional demands at each time slot h ∈ H, and (2) Ŝi = [Ŝ1i , Ŝ2i , . . . , ŜH
i ] which

contains the surplus renewable power at each time slot h ∈ H, where Ŝhi , D̂h
i ∈ R. Each

time slot can represent different timing horizons (e.g., an hour), where the relationship
between Pi vector and Ŝi and D̂i vectors can be described as follows:

Pi = D̂i + Ŝi (2)

3 Repeated power sharing game

3.1 Game formulation

The power exchange among households in the microgrid community is formulated
using a discounted repeated game, proposed by [19]. Consider a finite normal form
stage game denoted by tuple G = (N , {Si }i∈N , {ui }i∈N ), where N is the set of
players in the game composed of all households in a microgrid community, Si is the
strategy space available for player i ∈ N , and ui is the utility function for player i .
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Households are playing the same stage game G repeatedly over time. In each stage,
each household has the following available actions:

– Cooperate (C): Household i cooperates and shares an amount of its renewable
power with another household in the microgrid in order to increase its payoff.

– Defect (D): Household i stops playing and sharing its renewable power with its
opponent if the opponent defects or if a certain benefit is not achieved.

The utility function ui is the function used to calculate the payoff of household
i from playing the game, capturing the monetary benefit earned by sharing energy
with other players. The household’s power cost for additional demands, that has to be
purchased from the grid and its residual renewable energy can be used to determine
the benefit (i.e., cost savings and accompanied emissions reduction) earned by sharing
power, and it is considered to be the main factors of the utility function in this game.
The utility function of household i is defined as:

ui (si , s−i ) =
∑

h∈H
chi D̂

h
i − αh

i Ŝ
h
i (3)

where chi is the cost of purchasing 1 kWh from the grid at time slot h ∈ H. In case
of cooperation, where a household receives a certain amount of renewable power
from neighboring households, its additional demand’s cost is reduced (i.e., an implicit
benefit is achieved).

∑
h∈H αh

i Ŝ
h
i denotes the residual renewable energy cost at the

end of each stage for household i , where αh
i is a weighting coefficient measured in

cents/kW. This cost could be used as a metric in a monetary unit to express the value
of residual renewable energy in household i at each time slot h.

The payoff vector is defined as r = (r1, . . . , rN ), where N = |N |, which repre-
sents the utility that the households receive in the game. Each player has a discount
factor 0 < βi < 1 and it is assumed that this discount factor is the same for all
households. T = {1, . . . , T } denotes the finite history of length T = |T | that the
repeated game is being played. The stage game is the game played at each time
period t ∈ T . The payoff of player i from playing a sequence of actions in his-
tory of length t (i.e., s1, . . . , st , . . . ) is given by the following discounted reward
formula:

ri =
∑

t∈T
β t
i ui (s

t ) (4)

There are two equivalent interpretations of the discount factor. One interpretation is
that household i cares more about its power cost reduction in the near future than in
the long term. The other interpretation is that the household cares about the future just
as much as the present, but with probability (1 − β) the game may end in any given
round.

3.2 Equilibrium strategy design

In the proposed repeated power sharing game households are assumed to have patience
and a long-term relationship to each other, which makes their strategic behavior differ-
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ent from that of a one-shot game. That means that they have a long-term plan to reduce
their cost. Repeated play allows each player’s move to be contingent on the opponent’s
prior move, and thus each household must consider the reactions of its opponent in
making a decision. The fact that the game is repeated allows the players to agree on a
certain sequence of actions and punish the players that deviate. The agreement among
households is a set of rules to cooperate and lend/borrow each other some amount of
renewable power. If two households cooperate, their long term benefit of cooperation
may outweigh the short-run temptation to defect. Thus, it can lead to a lower cost for
all households in a long-term. Themost dramatic expression of this phenomenon is the
celebrated “Folk Theorem” [19,20]. The Folk Theorem (Theorem 1) asserts that any
feasible individually rational payoff can arise as a Nash equilibrium of the repeated
games, if players are sufficiently patient.

Theorem 1 (Folk Theorem) Consider a finite normal form game G, let s =
(s1, . . . , sN ) be a Nash equilibrium of the stage game G, and let s′ = (s′

1, . . . , s
′
N ) be

a feasible alternative strategy of G such that: ui (s′) > ui (s),∀i ∈ N . There exists
some discount factor β sufficiently close to 1, such that βi ≥ β,∀i ∈ N . Then there
exists a subgame perfect equilibrium (SPE) of the infinitely repeated game G(β) that
has s′ played in every period on the equilibrium path.

According to Folk theorem, a household can play s′ as long as its opponent has
played s′ in the past as well. If a household does not consider future and wants to
maximize its utility at the current time slot by deviating and switching to a strategy
s′′
i , its opponent switches in the next time period, for a specified number of periods,
to a strategy that minimizes the opponent’s maximum payoff (i.e., to the strategy s).
There are some famous punishment strategies in this case. One example is the strategy
“Tit-for-tat” [21] in which players start out cooperating. If the households’ opponent
defected, the household defects in the next round. Then it goes back to cooperation.
In contrast, in the “Grim Trigger” strategy [20] players start out cooperating. If the
opponent ever defects, the households defects forever. However, it is proved [19,20]
that deviation is not beneficial if every player has a high enough discount factor βi
given by:

βi ≥ M

M + m
(5)

where M is the maximum gain from deviation and is calculated as follows:

M = max
i,s′′i

ui (s
′′
i , s′−i ) − ui (s

′) (6)

and m is the minimum per-period loss from future punishment:

m = min
i

ui (s
′) − ui (s). (7)
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4 Distributed algorithm

In Sect. 3, it is shown that a household would be willing to cooperate and borrow/lend
some amount of power from/to another household in the microgrid. In particular, we
proved via Folk Theorem that a SPE exists and can be sustained if households are
sufficiently patient (i.e., the discount factor β is sufficiently close to 1). In this section,
an algorithm is provided (Algorithm 1) to be implemented in smart meters, in order
to run the game and find the best matching pair, from a pool of households, to play
the stage game with. The proposed algorithm gives flexibility to any household to
change its matching pair after a certain history according to some metrics (e.g., if a
household’ opponent defected or if the cost saving is less than a certain threshold).
The strength of this algorithm can be summarized in three main points; (1) it is fully
distributed, (2) it can be applied in any microgrid scenario regardless of the size
and power consumption pattern of participating households, and (3) it allows a fair
matching between households.

Assume a set of householdsN . Each household sets a list of preferences for house-
holds of which it prefers to play the game with. This is done based on the Eculidean

distance between the household’s average additional demand vector D̂i and the aver-

age surplus renewable power vector Ŝ j of each household in the past history (e.g.,
last week). The Eculidean distance (di, j ) between household i and household j is
calculated as follows:

di, j =
√√√√

∑

h∈H
|D̂h

i − Ŝ
h

j |2 (8)

After that, each household defines a list of preferable households sorted in a descending

order. The greater the distance between D̂i and Ŝ j is, the better is thematching between
i and j . These lists are used as an input in Algorithm 2 to find the best matching pairs
based on Gale–Shapley algorithm [22] (i.e., also known as stable marriage algorithm).
Theoutput ofAlgorithm2will be used inAlgorithm1 to run the repeatedgamebetween
the selected pairs for a certain number of time periods T . In the repeated game, the
selected pairs will play cooperate (C) in each stage of the game. After T time periods,
each household i will calculate its discounted payoff (ri (s′)) and compare it with the
payoff in the case of not cooperating and purchasing the entire additional demands
from the grid (ri (s)). If a cost saving is not achieved [i.e., ri (s) < ri (s′)] or if it is less
than a certain threshold (ri (s′) < ε), household i will stop cooperating with its current
pair and will enter Algorithm 2 to find another matching pair to play the game with in
the following time periods. Households whose pairs defected and broke the relation
will also enter Algorithm 2. The rest of households will keep playing and cooperating
with the same pair in the next stage game.

5 Simulation results

In this section, the simulation results are presented and the performance of the proposed
distributed algorithm is evaluated. In the considered microgrid system there are N =
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Algorithm 1 A distributed algorithm executed by N households.

1: For each household i calculate D̂i and Ŝi in the past week
2: Calculate the Eculidean distance matrix d between the N households
3: Sort each row in d in a descending order
4: Run Gale–Shapley algorithm (Algorithm 2) to find the best matching households based on d.
5: Run the game between the selected pairs and repeat it for a certain number of time periods T (e.g., one

week), and allow the selected pairs to play cooperate (C) in each stage
6: Calculate the payoff ri (s

′) after T
7: if (ri (s) < ri (s

′)) or (ri (s
′) < threshold) then

8: Defect and leave the stage game
9: else
10: Keep cooperating with the same pair in the following time periods
11: The defecting households and their corresponding pairs go to step 1

Algorithm 2 Gale-Shapley (stable marriage) algorithm.
1: Set all households to be free
2: while i is free and prefers to play the game with j do
3: j= first household on i’s list to whom i has not yet proposed
4: if j is free then
5: (i,j) becomes a pair
6: else
7: some pair (k, j) already exists
8: if j prefers i to k then
9: k becomes free
10: (i,j) becomes a pair
11: else
12: (k,j) remains a pair
13: Return the vector of pairs which are going to play the game and cooperate during the next week

Table 1 The selected classes of
households and their
corresponding average annual
consumption

Class Household
area (m2)

Average annual
demand (kW)

Number of households
in the microgrid

Class A 81 3076 3

Class B 68.5 2384 3

Class C 47.5 2066 3

Class D 67 1714 3

12 households that run the algorithm and play the repeated game. A time period
represents one day and is divided to H = 12 time slots (i.e., 2-h time slots). For the
electricity hourly pricing tariffs, we use the electricitymarket spot price for Stockholm,
Sweden, where data is retrieved fromNord Pool Spot [23]. Simulations are done based
on real demand data for residential households of different sizes and consumption
patterns in a neighborhood in Stockholm, for the year of 2013. The considered classes
of households are listed in Table 1.

It is assumed that the N = 12 households have a solar PV system, as an on-site
DER, with the same capacity, material and installation settings, and that they generate
a similar amount of renewable power with little variance (i.e., all households are in
the same area). Real hourly AC solar power measurements for 1 year is used, which is
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Table 2 Solar PV system and
performance data

Parameter Value

DC system size (kW) 1

Location Stockholm, Sweden

Module type: Standard

Array type fixed (roof mount)

Array tilt (deg) 20

Array azimuth (deg) 180

System losses 14

Invert efficiency 96

DC to AC size ratio 1.1
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 0%

 5%

10%

15%

20%

25%

Month

C
os

t s
av

in
gs

 

 

Household 1, Class A
Household 2, Class B
Household 3, Class C
Household 4, Class D
Household 5, Class A
Household 6, Class B
Household 7, Class C
Household 8, Class D
Household 9, Class A
Household 10, Class B
Household 11, Class C
Household 12, Class D

Fig. 2 Average weekly cost savings for each household in every month

outputted from a 1 KW solar PV system applied in Stockholm with the characteristics
listed in Table 2. The renewable power of each household i at each time slot h and each
time period t is selected from a normal distribution with the mean value of the solar
AC power output and the standard deviation of 0.05 kW. In Stockholm, the beginning
of solar panel energy harvesting, the energy peak and the end of harvesting differs a
lot from season to season. Thus, the harvested energy varies in different months as
well as in different days according to weather conditions.

In order to evaluate the benefit of the proposed framework, the distributed power
sharing algorithm is applied on the N = 12 households for 1 year. As mentioned in
Sect. 4, Algorithm 1 is run at the end of every certain and periodic amount of time
periods (e.g., 1 week or 1 month). In Fig. 2, the economical impact of the proposed
distributed framework on each household participating in the power sharing game is
illustrated. It is represented by the average weekly cost saving in every month. In this
experiment, we assume that households do not consider the value of their residual
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renewable energy in the utility function (i.e., αh = 0). It is also assumed that all
households are rational and willing to cooperate. The case in which households have
an intention to cheat is out of the scope of this paper. When initializing the simulations
(i.e., the first week of the year only), random pairs of households are set. After that,
households are allowed, by Algorithm 1, to make a decision to continue playing the
game with the same pair or to defect and look for another matching pair for the
following history of time periods. In the simulation, households are allowed to do that
at the end of every week. The decision is based on the achieved cost saving xi , which
is calculated as follows:

xi = ri (s) − ri (s′)
ri (s)

(9)

where s and s′ denote to the strategies of playing Defect (D) and Cooperate (C) in the
recent history of time periods T (i.e., last week), respectively. In Fig. 2, households
are allowed to defect if no cost saving has been achieved. A grim trigger strategy
is proposed to determine the SPE, and the discount factor is set to be very close
to one (β = 0.95). After that, the average weekly cost savings is calculated. As
shown in Fig. 2, due to the variability in power demands and power consumption
patterns of households, a household can reduce the cost of its additional demand up to
20 %, in some annual periods, by borrowing/lending an amount of renewable power
from/to another household in the neighborhood everyday instead of always purchasing
the whole additional demands from the grid. It is worth noting that the cost saving
is achieved by sharing the surplus renewable power only. Households satisfy their
demands from their renewable available power first and after that if an amount of
renewable power remains, which may be lost if households do not consume it, they
share it with a neighboring household.

An alternative method is to allow households to defect if the cost saving xi achieved
is less than a certain threshold ε. Figure 3 illustrates how thenumber of defecting house-
holds changes, as the game evolves temporally, for different cost saving thresholds ε.
Every game iteration represents a time period (i.e., 1 week) during which the repeated
game between each pair of households has been daily played. It is shown that when
ε = 10 % the number of defecting households is relatively high. For ε = 0, house-
holds are allowed to defect when no cost savings has been achieved. Upon defecting,
each household will run Algorithm 2 and look for another matching pair to exchange
power with during the next week. It can bee also noticed in Fig. 3 that the num-
ber of defecting households in the three different scenarios is tightly correlated with
the time period of the year. For instance, between April and August (i.e., iterations
15–32), the number of defecting households is comparatively less than other annual
periods, since the cost savings in those periods are higher. This is because the renew-
able energy generation profile is typically much higher in those annual periods in
Stockholm.

In Fig. 4, the fairness in the distribution of cost savings achieved between house-
holds in every month is compared in two scenarios. In the first scenario (Scenario I),
households are allowed to run Algorithm 1 and make the decision whether to continue
playing the game with the same pair or not at the end of every week. In the second sce-
nario (Scenario II), the decision to defect or not is taken at the end of every month. The
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Fig. 4 The fairness in cost savings achieved by all households in the two scenarios. Scenario I: households
are allowed to make the decision whether to continue playing the game with the same pair at the end of
every week. Scenario II: at the end of every month

Jain fairness index is used as a measurement factor. Jain fairness index is calculated
as follows:

J (x1, x2, . . . , xN ) =
(∑N

i=1 xi
)2

N
∑N

i=1 x
2
i

(10)

where x1, x2, . . . , xN are the average weekly cost savings of the N household at the
end of every month. It can be observed in Fig. 4 that in Scenario I if the decision,
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Fig. 5 Histogram of the individual hourly demands of all households in 1 year before and after the proposed
distributed power sharing framework

based on the discounted payoff, is made at the end of every week, the fairness in cost
savings achieved by all households is relatively higher in most of the annual periods.

Figure 5 shows the histograms of the individual hourly power demands during one
year before and after applying the distributed power sharing framework, respectively.
It is shown that the individual demands which are higher than 0.25 kW are likely
to be greater before adopting the power sharing framework than after. On the other
hand, the individual demands which are lower than 0.25 kW are increased after power
sharing. This is because a portion of high demands has been satisfied and/or reduced
after playing the power sharing game.

In Fig. 6, the monthly environmental impact of the proposed distributed framework
is illustrated. The environmental impact is expressed as CO2 emissions per kWh
of electricity demands reduced by the N =12 households playing the power sharing
game in the microgrid. The emission factor for Sweden grid electricity is 0.02468
kgCO2 per kWh generated [24]. As shown in the figure, by using the proposed power
sharing framework, households can increase the utilization of renewable power and
save the emissions that would be produced if they bought their entire demands from the
grid.

6 Conclusions

In this paper, a distributed power sharing framework formicrogrids based on a repeated
game approach is proposed, where households take advantage of the variability in their
power demands and consumption patterns to improve the utilization of their locally
harvested renewable energy through a borrow/lend scheme.
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Fig. 6 The CO2 emissions per kWh of electricity demands reduced by the N=12 households in the
microgrid in every month

The economical and environmental potentials of the proposed framework are
assessed based on real demand data and renewable energy generation profiles, as
well as real hourly electricity pricing tariffs in Sweden. Simulation results show that
households are able to reduce their demand costs by up to 20% in some annual periods
if they share their renewable power and play in a cooperative manner without owning
an on-site storage unit. It is also shown that the proposed framework can benefit in
reducing CO2 emissions per kWh of electricity demands.

The study provides valuable insights on how a distributed power sharing framework
behave in a microgrid with small number of households and in a place with extreme
weather conditions. Besides, it opens the door to some interesting extensions and future
research, including a comparison with other centralized frameworks and solutions that
improve the utilization of renewable energy. It is also of our interest to investigate the
economical and environmental potentials of this framework in areas located at different
geographic coordinates and with different weather conditions. In addition, the model
allows for extensions to consider that the matching household is able to provide a
continuous supply of renewable power for a certain request before sharing it. Finally,
selfish behavior and manipulation are also among the interesting problems related to
distributed frameworks.
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