
ar
X

iv
:1

41
0.

50
00

v2
 [

cs
.L

O
]

 1
7

Fe
b

20
15

On the complexity of Linearizability

Jad Hamza

LIAFA, Université Paris Diderot

Abstract. It was shown in Alur et al. [1] that the problem of verify-
ing finite concurrent systems through Linearizability is in EXPSPACE.
However, there was still a complexity gap between the easy to obtain
PSPACE lower bound and the EXPSPACE upper bound. We show in this
paper that Linearizability is EXPSPACE-complete.

1 Introduction

Linearizability [8] is the standard consistency criterion for concurrent data-
structures. Filipovic et al. [5] proved that checking that a library L is linearizable
with respect to a specification S is equivalent to observational refinement. For-
mally, as long as linearizability holds, any multi-threaded program using the
specification S as a library can safely replace it by L, without adding any un-
wanted behaviors.

Many practical tools [3, 12, 4, 13, 11] for checking linearizability or detecting
linearizability violations exist, and here is short summary of the work done on
the complexity.

Checking that a single execution is linearizable is already an NP-complete
problem[7]. Moreover, Alur et al. [1] showed that the problem of checking Lin-
earizability for a finite concurrent libraries used by a finite number of threads is
in EXPSPACE when the specification is a regular language. The best known lower
bound is PSPACE-hardness, obtained from a simple reduction of the reachability
problem for finite concurrent programs [1], leaving a large complexity gap.

This result was refined in Bouajjani et al. [2] where it was shown that a
simpler variant of Linearizability – called Static Linearizability, or Linearizabil-
ity with fixed linearization points – is PSPACE-complete for the same class of
libraries.

Furthermore, Linearizability is undecidable when the number of threads is
unbounded [2]. Tools used for detecting linearizability violations often start by
underapproximating the set of executions by bounding the number of threads.
It is thus necessary to develop a better understanding of Linearizability for a
bounded number of threads.

We prove that Linearizability is EXPSPACE-complete, showing that there
is an inherent difficulty to the problem. We introduce for this a new problem
on regular languages, called Letter Insertion. This problem can be reduced in
polynomial time to Linearizability.

We then show that Letter Insertion is EXPSPACE-hard, closing the com-
plexity gap for Linearizability. Our proof is similar to the proofs of EXPSPACE-

http://arxiv.org/abs/1410.5000v2

hardness for the problems of inclusion of extended regular expressions with in-
tersection operator, or interleaving operator, given in Hunt [9], Fürer [6] and
Mayer and Stockmeyer [10]. They all use a similar encoding of runs of Turing
machines as words, and using the problem at hand, Letter Insertion in this case,
to recognize erroneous runs.

To summarize, our two contributions are:

– finding the Letter Insertion problem, a problem equivalent to Linearizability,
but which has a very simple formulation in terms of regular automata,

– using this problem to show EXPSPACE-hardess of Linearizability.

We recall in Section 2 the definition of Linearizability, and we introduce the
Letter Insertion problem. We show in Section 3 that Letter Insertion can be
reduced in polynomial time to Linearizability. And finally, we show in Section 4,
that Letter Insertion is EXPSPACE-hard, which is the most technical part of the
paper. When combined, Sections 3 and 4 show that Linearizability is EXPSPACE-
hard.

2 Definitions

2.1 Libraries

In the usual sense, a library is a collection of methods that can be called by other
programs. We start by giving our formalism for methods, and define libraries as
sets of methods.

In order to simplify the presentation, and since they do not affect our EXPSPACE-
hardness reduction, we will use a number of restrictions on the methods. First,
we will define the methods without return values and parameters. Second, each
instruction of a method can either read or write to the shared memory, but we
don’t formalize atomic compare and set operations. Finally, we limit ourselves
to a unique shared variable.

Let D be a finite set used as the domain for the shared variable and let d0 ∈ D

be a special value considered as initial.
A method is a tuple (Q, δ, q0, qf) where

– Q is the set of states,
– δ ⊆ Q× {read,write} × D×Q

– q0 ∈ Q is the initial state (in which the method is called)
– qf ∈ Q is the final state (in which the method can return)

One point which might be considered unsual in our formalism is that a read

instruction guesses the value that it is going to read. In usual programming
languages, this can be understood as first reading a variable, and then having
an assume statement to constrain the value of the read variable. This formal-
ism choice is a presentation choice, and has no effect on the complexity of the
problem.

2

As hinted previously, a library Lib = {M1, . . . ,Mm} is a set of methods. For
every j ∈ {1, . . . ,m}, let (Qj , δj , q

j
0, q

j
f) be the tuple corresponding to Mj. We

define Q to be the (disjoint) union of all Qj .
Let k be an integer representing the number of threads using Lib. Threads

run concurrently and call the methods of Lib arbitrarily. The system composed
of k threads calling arbitrarily the methods of Lib is called Libk.

Formally, a configuration of Libk is a pair γ = (d, µ) where d ∈ D is the
current value of the shared variable and µ is a map from {1, . . . , k} to Q⊎ {⊥},
specifying, for each thread i, the state in which the method called by thread i

is. The symbol ⊥ is used for threads which are idle (not calling any method at
the moment).

A step from a configuration γ = (d, µ) to γ′ = (d′, µ′) can be:

– thread i calling method j, denoted by γ
call(i,Mj)
−−−−−−−→ γ′, with µ(i) = ⊥, µ′ =

µ[i← q
j
0], and d′ = d,

– thread i returning from method j, denoted by γ
ret(i)
−−−→ γ′, with µ(i) = q

j
f ,

µ′ = µ[i← ⊥], and d′ = d,
– thread i doing a read in method j, denoted by γ −→ γ′ (no label) with

µ(i) = q ∈Mj, µ
′ = µ[i← q′], (q, read, d, q′) ∈ δj , and d′ = d,

– thread i doing a write in method j, denoted by γ −→ γ′ (no label) with
µ(i) = q ∈Mj, µ

′ = µ[i← q′], (q,write, d′, q′) ∈ δj .

An execution of Libk is a sequence of steps γ0 −→ γ1 . . . −→ γl where γ0 =
(d0, µ0), with µ0(i) = ⊥ for all i, is the initial configuration.

The trace h of an execution is the sequence of labels (call’s and return’s) of
its steps. The set of traces of Libk is denoted by Traces(Libk). Note that in a
trace, a call event may be without a corresponding return event (if the method
has not returned yet). In which case, the call event is said to be open. A trace
with no open calls in called complete.

Given a complete trace h, we define for each pair of matching call and return
events a method event. We say that a method event e1 happens before another
method event e2 if the return event of e1 is before the call event of e2 in h; this
defines a happen-before relation on the method events. The label of a method
event is the method name corresponding to its call event.

2.2 Linearizability

Let h be a trace of Traces(Libk) for some library Lib and integer k. A complete
trace h′ is said to be a completion of h if we can remove some (possibly zero)
open calls from h, as well as close some others open calls (possibly zero) by
adding return events at the end of h in order to obtain h′.

A specification for a library Lib = {M1, . . . ,Mm} is a language of finite words
S over the alphabet {M1, . . . ,Mm}.

Definition 1 (Linearizability). A complete trace h is said to be linearizable
with respect to a specification S if there exists a total order on the method events,

3

respecting the happen-before order, such that the corresponding sequence of labels
is a word in S. A trace h is said to be linearizable with respect to S if it has a
completion which is linearizable (with respect to S).

Problem 1 (Linearizability). Input: A library Lib = {M1, . . . ,Mm}, a non-deterministic
finite automaton (NFA) S representing the specification, and an integer k given
in unary.

Question: Are all the traces of Traces(Libk) linearizable w.r.t. S?

Note: the size of the input is the size of all the automata appearing in the
input (number of states + number of transitions + size of the alphabet) to which
we add k.

We give in Figs 1, 2, and 3 some examples to illustrate Linearizability. To
represente executions, we draw a method event as an interval, where the left end
of the interval corresponds to the call event of the method event, and the right
end corresponds to the return event. This way, when two method events overlap,
they can be ordered arbitrarily, but when a method event e1 is completely before
a method event e2, e1 has to be ordered before e2.

Above an interval, we write the name of the method corresponding to the
method event, and below, we write the (unique) name of the method event.

For all the examples, we consider the regular language S = (MAMB)
∗ as a

specification. Fig 1 represents an execution which is linearizable, since its method
events can be ordered as the sequence e1e2e3e4, whose corresponding sequence
of labels is MAMBMAMB. Fig 2 represents an execution which is linearizable,
since its method events can be ordered as the sequence e1e2e3e4e5e6, whose
corresponding sequence of labels is MAMBMAMBMAMB. Fig 3 represents an
execution which is similar to Fig 1 but is not linearizable.

MA

e1

MB

e2

MA

e3

MB

e4

Fig. 1. A linearizable execution, which can be ordered as e1e2e3e4

2.3 Letter Insertion

We were able to define a new problem, Letter Insertion, which: 1) can be reduced
to Linearizability, 2) is very easy to state (compared to Linearizability), 3) is still
complex enough to capture the difficult part of Linearizability as we’ll show it
is EXPSPACE-hard.

4

MA

e1

MB

e2

MA

e3

MB

e4

MA

e5

MB

e6

Fig. 2. A linearizable execution, which can be ordered as e1e2e3e4e5e6

MA

e1

MB

e2

MA

e3

MB

e4

Fig. 3. A non-linearizable execution

Problem 2 (Letter Insertion). Input: A set of insertable letters A = {a1, . . . , al}.
An NFA N over an alphabet Γ ⊎ A.

Question: For all words w ∈ Γ ∗, does there exist a decomposition w =
w0 · · ·wl, and a permutation p of {1, . . . , l}, such that w0ap[1]w1 . . . ap[l]wl is
accepted by N?

Said differently, for any word of Γ ∗, can we insert the letters {a1, . . . , al}
(each of them exactly once, in any order, anywhere in the word) to obtain a
word accepted by N?

Note: the size of the input is the size of N, to which we add l.

3 Reduction from Letter Insertion to Linearizability

In this section, we show that Letter Insertion can be reduced in polynomial time
to Linearizability. When we later show that Letter Insertion is EXPSPACE-hard,
we will get that Linearizability is EXPSPACE-hard as well.

Intuitively, the letters A = {a1, . . . , al} of Letter Insertion represent methods
which are all overlapping with every other method, and the word w represents
methods which are in sequence. Letter Insertion asks whether we can insert the
letters in w in order to obtain a sequence of N while linearizability asks whether
there is a way to order all the letters, while preserving the order of w, to obtain
a sequence of N , which is equivalent.

Lemma 1. Letter Insertion can be reduced in polynomial time to Linearizability.

Proof. Let A = {a1, . . . , al} and N an NFA over some alphabet A ⊎ Γ .

5

Define k, the number of threads, to be l + 2.
We will define a library Lib composed of

– methods M1, . . . ,Ml, one for each letter of A
– methods Mγ , one for each letter of Γ
– a method MTick.

and a specification SN , such that (A,N) is a valid instance of Letter Insertion
if and only if Libk is linearizable with respect to SN .

For the domain of the shared variable, we only need three values: D =
{Begin,Run,End} with Begin being the initial value.

The methods Mγ are all identical. They just read the value Run from the
shared variable (see Fig 4).

q0 q1
read(Run)

Fig. 4. Description of Mγ , γ ∈ Γ

The methods M1, . . . ,Ml all read Begin, and then read End (see Fig 5).

q0 q1 q2
read(Begin) read(End)

Fig. 5. Description of M1, . . . ,Ml

The method MTick writes Run, and then End (see Fig 6).

q0 q1 q2
write(Run) write(End)

Fig. 6. Description of MTick

The specification SN is defined as the set of words w over the alphabet
{M1, . . . ,Ml} ∪ {MTick} ∪ {Mγ|γ ∈ Γ} such that one the following condition
holds:

– w contains 0 letter MTick, or more than 1, or
– for a letter Mi, i ∈ {1, . . . , l}, w contains 0 such letter, or more than 1, or

6

– when projecting over the letters Mγ , γ ∈ Γ and Mi, i ∈ {1, . . . , l}, w is in
NM , where NM is N where each letter γ is replaced by the letter Mγ , and
where each letter ai is replaced by the letter Mi.

Since N is an NFA, SN is also an NFA. Moreover, its size is polynomial is
the size of N . We can now show the following equivalence:

1. there exists a word w in Γ ∗, such that there is no way to insert the letters
from A in order to obtain a word accepted by N

2. there exists an execution of Lib with k threads which is not linearizable
w.r.t. SN

(1) =⇒ (2). Let w ∈ Γ ∗ such that there is no way to insert the letters
A in order to obtain a word accepted by N . We construct an execution of Lib
following Fig 7, which is indeed a valid execution.

M1

read(Begin) read(End)

M2

read(Begin) read(End)

...

Ml

read(Begin) read(End)

MTick

write(Run) write(End)

Mγ1

read(Run)
· · ·

Mγm

read(Run)

Fig. 7. Non-linearizable execution corresponding to a word γ1 . . . γm in which we
cannot insert the letters from A = {a1, . . . , al} to make it accepted by N . The points
represent steps in the automata.

This execution is not linearizable since

– it has exactly one MTick method, and
– for each i ∈ {1, . . . , l}, it has exactly one Mi method, and
– no linearization of this execution can be in NM , since there is no way to

insert the letters A into w to be accepted by N .

Note: The value of the shared variable is initialized to Begin, allowing the
methods Mi (i ∈ {1, . . . , l}) to make their first transition. MTick then sets the
value to Run, thus allowing the methods Mγ , γ ∈ Γ to execute. Finally, MTick

sets the value to End, allowing the methods Mγ , γ ∈ Γ to make their second
transition and return. This tight interaction will enable us to show in the second
part of the proof that all non-linearizable executions of this library have this
very particular form.

7

(2) =⇒ (1). Let r be an execution which is not linearizable w.r.t. SN . We
first show that this execution should roughly be of the form shown in Fig 7.
First, since it is not linearizable w.r.t. SN , it must have at least one completed
MTick method event. It it only had open MTick events (or no MTick events at
all), it could be linearized by dropping all the open calls to MTick. Moreover, it
cannot have more than MTick method event (completed or open), as it could also
linearized, since SN accepts all words with more than one MTick letter.

We can show similarly that for each i ∈ {1, . . . , l}, it has exactly one Mi

method which is completed (and none open).
Moreover, the methods Mi (i ∈ {1, . . . , l} can only start when the value of

the shared variable is Begin, and they can only return after reading the value
End. Since this value can only be changed (once) by the single MTick method
of our executions, this ensures that the methods Mi (i ∈ {1, . . . , l}) (and MTick

itself) all overlap with one another, and with every other completed method.
This implies that the completed methods Mγ , γ ∈ Γ can only appear in a

single thread t (since M1, . . . ,Ml,MTick already occupy l + 1 threads amongst
the l + 2 available). Thus, we define w ∈ Γ ∗ to be the word corresponding to
the completed methods Mγ , γ ∈ Γ of the execution in the order in which they
appear in thread t.

Since r is not linearizable, we cannot insert Mi (i ∈ {1, . . . , l}) into the
completed methods of thread t order to be accepted by SN . In particular, this
implies that there is no way to insert the letters A in w in order to be accepted
by N .

4 Letter Insertion is EXPSPACE-hard

We now reduce, in polynomial time, arbitrary exponentially bounded Turing
machines, to the Letter Insertion problem, which shows it is EXPSPACE-hard.
We first give a few notations.

A deterministic Turing machine M is a tuple (Q, δ, q0, qf) where:

– Q is the set of states,
– δ : (Q × {0, 1})→ (Q × {0, 1} × {←,→}) is the transition function
– q0, qf are the initial and final states, respectively.

A computation ofM is said to be accepting if it ends in qf .
For the rest of the paper, we fix a Turing machine M and a polynomial P

such that all runs ofM starting with an input of size n use at most 2P (n) cells,
and such that the following problem is EXPSPACE-complete.

Problem 3 (Reachability). Input: A finite word t.
Question: Is the computation of M starting in state q0, with the tape ini-

tialized with t, accepting?

Lemma 2 (Letter Insertion). Letter Insertion is EXPSPACE-hard.

8

Note: the sublemmas 3,4,5,6,7 are all part of the proof of Lemma 2.

Proof. We reduce in polynomial time the Reachability problem for EXPSPACE

Turing machines to the negation of Letter Insertion. This still shows that Letter
Insertion is EXPSPACE-hard, as the EXPSPACE complexity class is closed under
complement.

Let t be a word of size n. Our goal is to define a set of letters A and an NFA
N over an alphabet Γ ⊎A, such that the following two statements are equivalent:

– the run ofM starting in state q0 with the tape initialized with t is accepting
(which, by definition of M, uses at most 2P (n) cells),

– there exists a word w in Γ ∗, such that there is no way to insert (see Prob-
lem 2) the letters A in order to obtain a word accepted by N .

More specifically, we will encode runs of our Turing machine as words, and
the automaton N , with the additional set of insertable letters A, will be used in
order to detect words which:

– don’t represent well-formed sequence of configurations (defined below),
– or represent a sequence of configurations where the initial configuration is

not initialized with t and state q0, or where the final configuration isn’t in
state qf ,

– or contain an error in the computation, according to the transition rules of
M.

A configuration of M is an ordered sequence (c0, . . . , (q, ci), . . . , c2P (n)
−1)

representing that the content of the tape is c0, . . . , c2P(n)
−1 ∈ {0, 1}, the current

control state is q ∈ Q, and the head is on cell i.
We denote by i the binary representation of 0 ≤ i < 2P (n) using P (n) digits.

Given a configuration, we represent cell i by: “i : ci;” if the head ofM is not on
cell i, and by “i : qci;” if the head is on cell i and the current state of M is q.
The configuration given above is represented by the word:

$0 : c0;1 : c1; . . . i : qci; . . .2
P(n) − 1 : c2P(n)

−1; ←֓

.
Words which are of this form for some c0, . . . , c2P (n)

−1 ∈ {0, 1}, q ∈ Q, are
called well-formed configurations. A sequence of configurations is then encoded
as ⊲cfg1 . . . cfgk� where each cfgi is a well-formed configuration. A word of this
form is called a well-formed sequence of configurations. We now fix Γ to be
{0, 1, ⊲,�, $, ←֓ , ; , :}.

Lemma 3. There exists an NFA NnotWF of size polynomial in n, which recog-
nizes words which are not well-formed configurations.

Proof. A word is not a well-formed configuration if and only if one of the fol-
lowing holds:

– it is not of the form $((0 + 1)P (n) : (Q + ǫ)(0 + 1);)∗ ←֓ , or

9

– it has no symbol from Q, or more than one, or
– it doesn’t start with $0 :, or
– it doesn’t end with 2P(n) − 1 : (Q+ ǫ)(0 + 1); ←֓ , or
– it contains a pattern i : (Q+ ǫ)(0 + 1); j : where j 6= i+ 1.

For all violations, we can make an NFA of size polynomial in n recognizing
them, and then take their union. The most difficult one is the last, for which
there are detailed constructions in Fürer [6] and Mayer and Stockmeyer [10].

We here give a sketch of the construction. Remember that i and j are binary
representation using P (n) bits. We want an automaton recognizing the fact that
j 6= i + 1. The automaton guesses the least significant bit b (P (n) possible
choices) which makes the equality i + 1 = j fails, as well as the presence or not
of a carry (for the addition i + 1) at that position. We denote by i[b] the bit b

of i and likewise for j. Then, the automaton checks that: 1) there is indeed a
violation at that position (for instance: no carry, i[b] = 0 and j[b] = 1) and 2)
there is carry if and only if all bits less significant that b are set to 1 is i.

Lemma 4. There exists an NFA NNotSeqCfg of size polynomial in n, which rec-
ognizes words which:

– are not a well-formed sequence of configurations, or where
– the first configuration is not in state q0, or
– the first configuration is not initialized with t, or
– the last configuration is not in state qf .

Proof. Non-deterministic union between NnotWF and simple automata recogniz-
ing the last three conditions.

The problem is now in making an NFA which detects violations in the com-
putation with respect to the transition rules ofM. Indeed, in our encoding, the
length of one configuration is about 2P (n), and thus, violations of the transition
rules from one configuration to the next are going to be separated by about 2P (n)

characters in the word. We conclude that we cannot make directly an automaton
of polynomial size which recognize such violations.

This is where we use the set of insertable letters A. We are going to define and
use it here, in order to detect words which encode a sequence of configurations
where there is a computation error, according to the transition rules ofM.

The set A, containing 2P (n) new letters, is defined as A = {p1, . . . , pP (n),m1, , . . . ,mP (n)}.
We want to construct an NFA NNotDelta, such that, for a word w which is a

well-formed sequence of configurations, these statements are equivalent:

– w has a computation error according to the transition rules δ of M
– we can insert the letters A in w to obtain a word accepted by NNotDelta.

The idea is to use the letters A in order to identify two places in the word
corresponding to the same cell ofM, but at two successive configurations of the
run.

10

As an example, say we want to detect a violation of the transition δ(q, 0) =
(q′, 1,→), that is, which reads a 0, writes a 1, moves the head to the right, and
changes the state from q to q′.

Assume that w contains a sub-word of the following form:

i : q0; . . . $. . . i : 1; i+ 1 : q′′ci+1;

where q′′ is different than q′

The single $ symbol on the middle of the sub-word ensures that we are check-
ing violations in successive configurations. Here, with the current state being q,
the head read 0 on cell i, wrote 1 successfully, and moved to the right. But the
state changed to q′′ instead of q′. Since we assumed thatM is deterministic, this
is indeed a violation of the transition rules.

We now have all the ingredients in order to construct NNotDelta. It will be
built as a non-deterministic choice (or union) of Nt for all possible transitions
t ∈ δ (with δ seen as a relation).

As an example, we show how to construct the automaton N
(1)
((q,0),(q′,1,→)),

part of NNotDelta, and recognizing violations of δ(q, 0) = (q′, 1,→), where the
head was indeed moved to right, but the state was changed to some state q′′

instead of q′, like above. Other violations may be recognized similarly.

N
(1)
((q,0),(q′,1,→)) starts by finding a sub-word of the form (the + denotes the

disjunction or union of regular expressions, and ∗ denotes the Kleene star, 0 or
more repetitions):

(m10 + p11) . . . (mP (n)0 + pP (n)1) : q0; (1)

meaning the state is q and the head points to a cell containing 0. After that, it
reads arbitrarily many symbols, but exactly one $ symbol, which ensures that
the next letters it reads are from the next configuration. Finally, it looks for a
sub-word of the form

(p10 +m11) . . . (pP (n)0 +mP (n)1) : (0 + 1); (0 + 1)∗ : q;′′ (2)

for some q′′ 6= q′.
We can now show the following.

Lemma 5. For a well-formed sequence of configurations w, these two state-
ments are equivalent:

1. there is a way to insert the letters A into w to be accepted by N
(1)
((q,0),(q′,1,→))

2. in the sequence of configurations encoded by w, there is a configuration where
the state was q and the head was pointing to a cell containing 0, and in the
next configuration, the head was moved to the right, but the state was not
changed to q′ (computation error).

Proof. (⇐). We insert the letters A in front of the binary representation of the
cell number where the violation occurs. The violation involves two configurations:

11

in the first, we insert m’s in front of 0’s, and p’s in front of 1’s, and in the second,
it’s the other way around.

This way, we inserted all the letters of A (exactly) once into w, and N
(1)
((q,0),(q′,1,→))

is now able to recognize the patterns (1) and (2) described above.
(⇒). For the other direction, let w be a well-formed sequence of configurations

such that there exists a way to insert the letters A into w, in order to obtain a

word wA accepted by N
(1)
((q,0),(q′,1,→)).

Since each letter of A can be inserted only once, the sub-word matched by

(m10 + p11) . . . (mP (n)0+ pP (n)1) in pattern (1) in N
(1)
((q,0),(q′,1,→)) has to be the

same as the one matched by (p10 + m11) . . . (pP (n)0 + mP (n)1) in pattern (2),
up to exchanging m’s and p′’s.

Moreover, having exactly one $ symbol in between the two patterns ensures
that they correspond to the same cell, but in two successive configurations.

Finally, the facts that q′′ is different that q′ and that M is deterministic
ensures that the sequence of configurations represented by w indeed contains a
computation error according to the rule δ(q, 0) = (q′, 1,→).

We thus get the following lemma for the automaton NNotDelta.

Lemma 6. For a word w which is well-formed sequence of configurations, these
statements are equivalent:

– we can insert the letters A in w to obtain a word accepted by NNotDelta,
– w has a computation error according to the transition rules δ of M.

Proof. Construct all the Nt for t ∈ δ (with δ considered as a relation). Construct
similarly an automaton recognizing the violation where a cell changes while the
head was not here. Take the union of all these automata, the proof then follows
from Lemma 5.

By taking the union N = NNotSeqCfg ∪ NNotDelta, we finally get the intended
result, which ends the reduction.

Lemma 7. The following two statements are equivalent.

– the run ofM starting in state q0 with the tape initialized with t is accepting,
– there exists a word w in Γ ∗, such that there is no way to insert the letters

A in order to obtain a word accepted by N .

Proof. (⇒) Let w be the well-formed sequence of configurations representing the
sequence of configurations of the accepting run in M, with the tape initialized
with t. Then by Lemma 4 and Lemma 6, there is no way to insert the letters A

in order to obtain a word accepted by NNotSeqCfg or NNotDelta.
(⇐) Let w ∈ Γ ∗ be a word such that there is no way to insert the letters A in

order to obtain a word accepted by N . First, since w is not accepted by NNotSeqCfg,
it represents a well-formed sequence of configurations, starting in state q0 with
the tape initialized with t and ending in state qf (Lemma 4). Moreover, since
there is no way to insert the letters to obtain a word from NNotDelta, w has no
computation error according to the transition rules δ of M (Lemma 6).

12

This ends the proof of Lemma 2.

Since Letter Insertion is EXPSPACE-hard and, Letter Insertion reduces to
Linearizability, we get the main result of the paper.

Theorem 1 (Linearizability). Linearizability is EXPSPACE-complete.

Proof. It was previously shown that Linearizability is in EXPSPACE [1]. EXPSPACE-
hardness follows from Lemmas 1 and 2

5 Conclusion

We define a new problem, Letter Insertion, simpler than Linearizability, but still
hard enough to capture the main difficulties of Linearizability. We showed that
the Letter Insertion problem is EXPSPACE-hard, and could thus deduce that the
Linearizability problem is EXPSPACE-hard.

Our result applies even with all the following restrictions: the number of
threads is given in unary, there is a unique shared variable whose domain size is
3, the library has a constant number of automata “shapes” (3 in our reduction)
using less than 3 states, the methods of the library are deterministic, the methods
of the library have no loop, and the instructions within the methods can only
read or write, but never do both atomically.

For future work, we plan to show that restricting ourselves to deterministic
specifications (using a DFA instead of an NFA in the input of the problem)
does not reduce the complexity. Furthermore, it would be interesting to find
a large class of specifications including the most common ones (stack, queue,
. . .) for which our lower-bound does not apply and where we could reduce the
complexity.

13

Bibliography

[1] Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness condi-
tions for concurrent objects. Inf. Comput. 160(1-2), 167–188 (2000)

[2] Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent pro-
grams against sequential specifications. In: ESOP ’13. LNCS, vol. 7792, pp.
290–309. Springer (2013)

[3] Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: A com-
plete and automatic linearizability checker. In: Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. pp. 330–340. PLDI ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1806596.1806634

[4] Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Taşıran, S.: Simplifying lin-
earizability proofs with reduction and abstraction. In: TACAS ’10: Proc.
16th Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems. LNCS, vol. 6015, pp. 296–311. Springer (2010)

[5] Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for con-
current objects. Theor. Comput. Sci. 411(51-52), 4379–4398 (2010)

[6] Fürer, M.: The complexity of the inequivalence problem for regular expres-
sions with intersection. In: Proceedings of the 7th Colloquium on Automata,
Languages and Programming. pp. 234–245. Springer-Verlag, London, UK,
UK (1980), http://dl.acm.org/citation.cfm?id=646234.682559

[7] Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput.
26(4), 1208–1244 (1997)

[8] Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

[9] Hunt, H.: The Equivalence Problem for Regular Expressions with Intersec-
tion is Not Polynomial in Tape. Department of Computer Science: Tech-
nical report, Cornell University, Department of Computer Science (1973),
http://books.google.fr/books?id=52j6HAAACAAJ

[10] Mayer, A.J., Stockmeyer, L.J.: The complexity of word problems -
this time with interleaving. Inf. Comput. 115(2), 293–311 (Dec 1994),
http://dx.doi.org/10.1006/inco.1994.1098

[11] Rajamani, S.K., Walker, D. (eds.): Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015. ACM (2015),
http://dl.acm.org/citation.cfm?id=2676726

[12] Vafeiadis, V.: Automatically proving linearizability. In: CAV ’10. LNCS,
vol. 6174, pp. 450–464 (2010)

[13] Vechev, M.T., Yahav, E., Yorsh, G.: Experience with model checking lin-
earizability. In: SPIN ’09: Proc. 16th Intl. SPIN Workshop on Model Check-
ing Software. LNCS, vol. 5578, pp. 261–278. Springer (2009)

http://doi.acm.org/10.1145/1806596.1806634
http://dl.acm.org/citation.cfm?id=646234.682559
http://books.google.fr/books?id=52j6HAAACAAJ
http://dx.doi.org/10.1006/inco.1994.1098
http://dl.acm.org/citation.cfm?id=2676726

	On the complexity of Linearizability

