Universiteit
Antwerpen

This item is the archived peer-reviewed author-version of:

Testing loT systems using a hybrid simulation based testing approach

Reference:
Bosmans Stig, Mercelis Siegfried, Denil Joachim, Hellinckx Peter.- Testing loT systems using a hybrid simulation based testing approach

Computing: archives for informatics and numerical computation - ISSN 0010-485X - 101:7(2019), p. 857-872
Full text (Publisher's DOI): https://doi.org/10.1007/S00607-018-0650-5
To cite this reference: https://hdl.handle.net/10067/1543180151162165141

uantwerpen.be

- \\-——-;L:E

Institutional repository IRUA


http://anet.uantwerpen.be/irua

Noname manuscript No.
(will be inserted by the editor)

Testing IoT systems using a hybrid simulation based
testing approach

Stig Bosmans - Siegfried Mercelis -
Joachim Denil - Peter Hellinckx

Received: date / Accepted: date

Abstract This paper presents an extensive overview of the challenges that
arise when testing large IoT applications at the system level. In order do that
we start from analyzing behavior of local entities such as IoT devices or peo-
ple interacting with the IoT system. The interactions of these local entities
eventually leads to an emergent behavior. Both the emergent behavior and
the local behavior need to be taken into account when testing IoT systems.
Therefore, we present a novel hybrid simulation based testing approach that is
able to effectively facilitate interactions of these local entities. Furthermore, we
introduce various solutions to the challenges that arise when implementing this
hybrid methodology. These challenges are mainly related to the IoT develop-
ment pipeline, synchronization between real-life and simulation environment
and the scalability constraints of modern simulation techniques.
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1 Introduction

Internet of things is getting more mature. IoT related projects and method-
ologies have been described extensively in literature in the past few years.
Complex IoT systems are rolled out in urban environments. All with the aim
to improve public or private services such as Industry 4.0. The promise of IoT
and the impact it will have on societies can not be underestimated.

In this paper we look at the challenges posed by testing large scale Internet of
Things environments. The implicit heterogeneity of large scale IoT systems,
which typically consist of many thousands of interacting actuators, sensors
and people make this an incredibly challenging task. We notice that testing of
Internet of Things systems at the system level has been largely ignored in state
of the art. Based on the experience obtained by the development of a novel
participatory sensing framework we provide an overview of the challenges that
arise when testing large IoT systems at the system level.

A very important aspect when testing Internet of Things systems at the sys-
tem level is to include the behavior exhibited by local entities (LE’s). In order
to orchestrate such LE behavior, the LE will need to be able to interact in real-
time with the environment and with other entities. This eventually leads to a
global, emergent behavior. Emergent behavior is the overall, global behavior
posed by a system. It inherently depends on the behavior and interactions of
LE’s with each other and with the environment. Mataric et al. define emergent
behavior as a collection of actions and patterns that result from local interac-
tions between elements and their environment, which have not been explicitly
programmed. When tested and calibrated correctly this emergent behavior
can lead to various global optimizations at the system level. However, a large
amount of real-time interacting LE’s, posing realistic behavior will be required
to properly test this.

We propose a hybrid simulation based testing technique to do this. On one end
we rely on simulation of the behavior of LE’s which has as an advantage that
it is highly scalable, reusable and cost efficient. On the other end we leverage
real-life test environments with actual LE’s interacting with the system which
has as an advantage that more realistic behavior can be included during test-
ing. The hybrid simulation based testing technique we propose, combines the
advantages of these two by enabling them to interact with the IoT system and
with each other.

Finally, we notice that state-of-the-art simulation techniques are limited in the
scaling capabilities required to orchestrate the real-time interaction of many
thousands of LE’s. Which is a requirement in order to rely on the hybrid testing
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methodology that we propose. Therefore, we discuss various techniques that
could improve the scalability constraints of modern simulation techniques.

The contribution of this paper is an extensive overview of the challenges that
arise when testing large IoT applications at the system level. We present a
novel hybrid simulation based testing approach, and introduce various solu-
tions tot the challenges that arise when implementing this hybrid method-
ology. These challenges are mainly related to the IoT development pipeline,
synchronization between real-life and simulation environment and the scalabil-
ity constraints of modern simulation techniques. Furthermore, we map these
solutions and challenges to a participatory sensing use case.

In the next section, we present the participatory sensing use case that serves
as a running example throughout the paper. In section 3, an overview of classic
ToT testing techniques is provided and the importance of local and emergent
behavior is clarified. In section 4, we present various techniques that can be
used to simulate behavior of local entities. Section 5 introduces the hybrid
simulation based testing methodology and proposes various solutions to imple-
menting this methodology. Finally, section 6 takes a deeper look at scalability
constraints that arise when implementing large real-time IoT simulations.

2 Participatory sensing use case

To better explain the concepts presented in this paper we will use a running
example throughout the remainder of this paper. The running example is based
on the SeRGlo project, which is short for mobile sensing services for developing
geospatial IoT application. It is a participatory sensing project that is currently
being developed with multiple academic and industrial partners as a proof of
concept. The goal of the project is to collect qualitative data from citizens or
workers, such as mail(wo)men, by targeted distribution of small sensing tasks.
SeRGlo is different compared to other participatory sensing frameworks in
that they focus on the collection of qualitative data instead of quantitative
data. An example of such data is the user’s perception of safety in a particular
neighborhood. A sensing task is typically received on the smartphone of the
user and contains a small questionnaire or single question such as ”How clean
is the street?” or ”What is the quality of the street bench in front of you?”.
SeRGlo will also take the spatio-temporal aspects of a user into account when
sending tasks. This means that the system only sends tasks related to a certain
place or area when a user is actually nearby.

It should be clear that testing this type of system poses significant chal-
lenges. This is mainly due to the fact that the functional aspects of the IoT
system can only be tested with actual participants. In current state of the art,
there isn’t a clear approach to handle such test cases.
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3 IoT testing

IoT applications are inherently heterogeneous systems. They consist of many
different sensors, actuators, communication protocols and operating systems.
This makes the testing of these systems a challenging task. In this section, we
provide an overview of classical testing techniques used in IoT projects and
identify the gaps that remain in current testing practices.

3.1 Classic testing of IoT

Given, that there is a strong cohesion between hardware and software in IoT
projects, the testing approach used in state of the art Internet of Things
projects are often based on best practices used in classic software or hard-
ware development.

Software testing Software testing is mainly used for the validation of both
functional and non-functional aspects of IoT middleware software or more low-
level code such as the software logic deployed on IoT sensors and actuators
[3]. Two major types of testing are described:

1) White box testing: the tests have full transparency to the inner structure
of the software. Unit tests are often considered a white box testing approach.
Within the context of IoT testing, this method is used to test the functionality
of low-level pieces of code, such as single methods and classes.

2) Black box testing: With this testing method the software system is
considered a full black box [2]. These tests have no knowledge of the internal
structure of the system. Black box tests are concerned with more high-level
aspects of the software, typically on the system-level. E.g. in SeRGIo we could
apply a black box system level test to verify whether a user correctly receives
a sensing task on his smartphone when he is located in a certain area that is
below the data relevance threshold. In practice, these type of tests are difficult
to run, especially when developing IoT applications. Because, as mentioned
before, IoT systems typically contain many different sensors, actuators and
software parts interacting with each other.

Within the context of this paper we only focus on the black box testing
method.

Prototype setups Prototype testing is used to test the functionality of hard-
ware components in a lab-based environment. These tests are often limited to
single devices. Given the diversity of IoT systems and environments it is best
to rely on more large scale test setups when testing entire systems. Various
initiatives are described in literature to facilitate such large scale test beds.
One example is the imec City of Things testbed in Antwerp [17]. Another ex-
ample of such a testbed is the Smart Santander project

[25]. It is a city-wide, real IoT testbed. It offers many thousands of IoT devices
readily deployed in an actual environment. Most of the testbeds described in
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literature are ideal to test non-functional requirements of an IoT system, such
as testing the interoperability between various devices and their communica-
tion protocols or operating systems.

Stmulation based testing Instead of writing custom test cases, simulation mod-
els are used to interact with the system. Although real testing is often desirable,
simulation testing is a more flexible and cost-efficient approach. It allows for
a more controlled and reusable environment that can be tweaked much easier.
Within the IoT domain simulation testing is most often used to test technical
aspects of the system such as network related features, power consumption
etc. The most well-known examples of such simulators are NS-3 [6] and Om-
net++ [28]. Various IoT operating systems such as Contiki and TinyOs also
offer their dedicated simulator, Cooja [11] and Tossim

[18] respectively. Some simulators are focused on testing more high-level IoT
setups such as the iFogSim

[15] which is used to test IoT edge or fog architectures. Finally, D’Angelo et.
al. demonstrate the use of the Gaia/Artis specifically to run large-scale IoT
simulations

[10]. Also here, the focus is mainly on testing technical aspects such as power
consumption and network utilization.

The problem however with the testing approaches described in this section
is that they typically do not take the impact of behavior into account when
testing IoT systems and are often focused on testing only non-functional re-
quirements. Many of the classic testing practices isolate certain parts of the
system and test it in isolation. We want to test the behavior of the system at
the system level. Therefore, we look at the IoT system as a black box.

3.2 Role of behavior in IoT systems

To better understand the importance and the role of behavior in IoT systems
it is important to clearly define different types of behavior. We differentiate
between local behavior at the local or entity level and emergent behavior which
arises at the global level of the IoT system.

Local entity behavior This type of behavior is exhibited by the local entity
(LE) level of an IoT system. With the term local entities we refer to local actors
that operate autonomously and have some type of behavior. This behavior
can be very different ranging from a simple actuator that responds to certain
inputs, a sensor forwarding inputs towards devices whose behavior is powered
by an AI. But also human actors can be seen as local entities. Actually, any
connected entity that is able to communicate with other entities in the IoT
system can be seen as a local entity. In the Sergio use case, mail(wo)men and
citizens are also LE’s. We refer to these entities as LE’s in the remainder of
this paper. The local behavior exhibited by these LE’s has an impact on the



6 Stig Bosmans et al.

overall behavior of the system. Therefore this behavior is an important part
of the system and needs to be taken into consideration when evaluating the
system.

Emergent behavior A special type of behavior in IoT that is gaining attention
in the IoT community is emergent behavior. Emergent behavior is the overall,
global behavior posed by a system. They inherently depend on the behavior
and interactions of LE’s with each other and with the environment. Mataric
et al. define emergent behavior as a collection of actions and patterns that
result from local interactions between elements and their environment, which
have not been explicitly programmed [20]. It is loosely based on the emergent
behavior that is observed in bird flocks where birds apply three local rules
which result in emergent flocking behavior (e.g. remain x distance to neighbor
birds). Roca et al. argues that this emergent behavior will lead to improved
scalability, interoperability and cost efficiency of ultra-large-scale IoT systems
as opposed to traditional approaches that strongly rely on extensive program-
ming of explicit behaviors [23]. Emergent behavior typically originate from
autonomous entities, with adaptive or evolving behavior, that are interacting
with each other and with the environment. This type of behavior particularly
benefits the IoT areas which require the interaction of an enormous amount of
devices where relying solely on a centralized architecture is insufficient. Exam-
ples are such as smart power grids, autonomous car flocking and smart traffic
lights.

In the context of this paper we are interested in testing functional aspects of
TIoT applications at the system level. Furthermore, we want to evaluate how
we can include behavior when testing functional requirements of an IoT sys-
tem. We believe that the dynamic impact of local entity behavior can not
be neglected in IoT systems. As in many cases, there is a strong connection
between human actors and the IoT system as a whole. The state-of-the-art
(SoA) literature lacks a clear methods to validate, verify this behavior and its
relationship to the IoT system as a whole. In the next sections, we present
various techniques and list open challenges that arise when testing behavior
in IoT systems. Furthermore, when testing emergent behavior in IoT systems,
real-time interactions between LE’s and the environment (e.g. a IoT middle-
ware system) are required. Solutions to facilitate this are largely ignored in
SoA literature. Later in this paper, we look at how we can leverage large-scale
simulation techniques to do this.

4 Simulating behavior in IoT system testing

Many IoT services such as participatory sensing, adaptive traffic navigation
and more, inherently rely on human behavior. Furthermore, some of them
even depend on the behavior posed by people interacting with each other and
with various IoT devices in order to provide qualitative services. As pointed
out by D. Nunes in the context of cyber physical systems (CPS), most CPS
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are however human-centric applications where humans are an essential part of
the system and unfortunately, most of these systems still consider the human
as an external and unpredictable element [22]. The same argument holds for
Internet of Things systems and behavior posed by other local entities (LE)
such as smart actuators and sensors.

For example, in the participatory sensing use case, human actors are re-
spomnsible for collecting sensing tasks. These actors behave according to certain
semi-predictable spatio-temporal patterns, e.g. a mail(wo)men walks the same
route each day and an average citizen goes to work and returns back home at
roughly the same time using the same route. Furthermore, the actors also add
an element of stochasticity to the system. For example, not every Sergio user
will always be able or willing to respond to sensing tasks.

One can not rely directly on human actors and readily deployed IoT LE’s
to evaluate the behavior of the system prior to when the system is fully opera-
tional. Therefore, simulation can be seen as an effective alternative to real LE’s
during the test phase. Opposed to solely simulating technical, non-functional
aspects of IoT systems as described in the previous section, we propose the
simulation of LE behavior in order to evaluate the functional requirements of
IoT systems. These simulated entities (SE’s) should be able to interact in real-
time with the IoT system middleware, as if they were actual real-life entities.
The following techniques can be used to model human behavior:

Ezxplicit modeling The behavior of human actors or smart devices can be ex-
plicitly modeled. A technique often used for modeling the Internet of Things is
agent based modeling (ABM). With ABM each IoT device or actor is consid-
ered an agent that is autonomous, dynamic and has the ability to interact with
other agents or with the environment. These properties make ABM also ideal
for modeling the behavior of humans actors [12]. Within the Sergio project we
implemented an ABM approach to simulate citizens that navigate through the
city. These citizen agents are able to walk a predefined route and broadcast
their location to the middleware system. Furthermore, the agents were able to
respond to task sensing requests based on a predefined probability estimate.
This technique allows for an easy, cost-effective and reusable testing strategy
compared to the classic testing approaches described in the previous sections.
However, the level of detail in the modeled behavior is limited. It is therefore
very likely that not all variations of behavior are included in the models which
could lead to imperfections or errors in the demonstrated behavior.

Data replay Many 10T projects leverage existing datasets to replay behavior.
For example, the participatory sensing system presented by M. Marjanovi et.
al. uses a public dataset that contains discrete, timestamped GPS locations of
65 users [19]. For each user the data will be replayed at a predefined interval.
The IoT middleware under test will perceive the incoming GPS logs as real-
time behavior posed by an actual user. The same strategy could be used to
test the Sergio project, to model the navigation behavior of citizens through
the city. However, this would require the collection of qualitative data, which
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is not always available depending on the type of data and the required quality.
Furthermore, explicit modeling of behavior is still needed in many cases in or-
der to respond to stochastic events. For example, with Sergio when a sensing
task request is sent to a user, the system needs to have a response within a
limited timeframe. Since the exact time of the creation of these events is not
predictable upfront, we can not rely on replaying data event responses and
thus, some logic is required to handle, process and respond to the event

Both explicit modeling and data replay can be effective strategies to model
human behavior. They definitely can be used to include LE behavior in the
ToT testing strategy. Compared to relying on a group of actual human testers,
the simulation strategy is more scalable, more cost-effective and reusable. But,
they require additional efforts and don’t guarantee that the simulated behavior
is realistic.

5 Hybrid testing

Using simulation can be an effective testing strategy. However, it is difficult
to fully rely on it during the entire development process. As pointed out by
D.A. Crisan et. al. the data generated by classic simulation methods, as pre-
sented in the previous section, cannot model precisely the traffic bursts and
noise of real-world activities of people [8]. Real-world testing is still preferred
as it will better represent the broad variations of human behavior. Therefore,
we present a hybrid testing methodology. The methodology combines both
the advantages of simulation, which is a cost-effective, scalable and reusable
technique, with the advantages of real-life testing.

The concept of hybrid simulation has been described in related literature.
Mainly, within the domain of structural construction simulation

[21]. Tt allows experiments to be conducted in which structural components
with complex responses can be modeled experimentally and more well-known
components can be represented within an analytical model. The motivation
for using hybrid testing in the Internet of Things domain is similar. Combin-
ing complex behavior, represented by real-life testing with more homogeneous
behavior represented by simulation. In more related work, Arora et. al. present
a hybrid approach for their Kainsei, wireless sensing simulator [1]. However,
in their work they consider the real world and the simulated world as two
separate environments where no real-time interactions are required. Instead,
data gathered in the real world need to be transferred manually to the simu-
lated environment. In the following sections we present three novel solutions
or methods that should be taken into account when implementing a hybrid
testing approach.
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5.1 Hybrid testing pipeline

The core of our methodology is based on a dynamic mix of both simulation
and real-life testing as can be seen in Fig 1 below. In the early stages of devel-
opment, functional testing of the IoT project will rely mainly on simulation
and only for a small part on real-life testing. The amount of simulation will
decrease when moving to later stages in the development pipeline. In the ex-

loT Testing
Pipeline
Experimental Simulation Real-life
Testing
POC Simulation Real-life
Testing
: ; Real-life
A .
Q Simulation Testing
Real-life Real-life
Testing

N

Fig. 1 IoT testing pipeline

perimental phase it makes sense to almost fully rely on simulation. At that
point, fast development progress is key. Later phases move closer to deploy-
ment and correspondingly more accurate behavior is required. In the SeRGlo
project, for example, a lot of focus during the early development stages was
on building a stable simulator. Once the simulator was completed, we had a
testbed environment that allowed us to easily experiment with various task
distribution algorithms without worrying about the effort and cost that would
occur when deploying a testbed in real-life. In later phases we focused on fi-
nalizing the most promising algorithms and gradually testing these in real-life
environments.
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5.2 Uniform communication interface

An important aspect of our hybrid testing methodology is that IoT middle
ware system under test or other IoT entities are not aware whether the entity,
which is generating specific behavior, is simulated or actually operating in real-
life. The underlying method should be fully transparent as illustrated in Fig
2. The simulated environment should be able to interact with the middleware
and with other entities in real-time. This has as a consequence that a clear

Real Virtual
Environment Environment

Real-time interactions

Middleware

Fig. 2 Uniform interfaces

separation of concerns is required and that the communication interfaces are
clearly defined and documented. The Sergio project relies on a variety of inter-
face techniques such as REST and AMQP. In the context of IoT also COAP
[26] and MQTT [16] can be used as more resource-efficient alternatives.

5.3 Synchronization challenges

By implementing a hybrid testing approach, there will be a mix of data gener-
ated by either simulated entities (SE) or real local entities (LE). It is important
that there are no unnecessary inconsistencies between the data generated by
the various sources. For example, in the Sergio use case it is possible that a SE
responds to a sensing task request with a message that marks a specific area as
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”dirty” while a real LE’s would mark it as ”very clean”. As a result there will
be a strong variation between the observed data points. This is specifically, a
problem when testing emergent behavior. Let us for example assume that the
Sergio project would adapt its behavior when a large variation in data points
is detected in a certain area. Such variations could indicate that there is a
lot of uncertainty about this area and additional sensing points are required
to increase certainty. When more sensing points are added in the area, the
load on the servers or edge devices located near the area will increase as a
consequence. This in turn, could lead to a reconfiguration of reserved compute
resources which is actually unnecessary and is only triggered as a consequence
of the lack of synchronization between simulated and real LE’s.

Clearly, a proper synchronization mechanism is required when implementing
a hybrid testing approach. We present two techniques below. Synchronization
can be implemented over multiple dimensions. We limit ourselves to synchro-
nizing over the time and space dimension. In the context of IoT projects these
are the most relevant dimensions. Within the space dimension we are con-
cerned to maintain consistency between data sensed at a specific location.
Within the time dimension we are concerned to maintain consistency between
data sensed at a specific time. Preferably, both dimensions are take into ac-
count.

Proxy based synchronization: One of the requirements for implementing hy-
brid synchronization is that the IoT middleware is unaware whether the LE
that is transmitting messages is real or simulated. Therefore, the synchroniza-
tion mechanism cannot be implemented as part of the middleware. Instead,
we propose a proxy synchronization mechanism as illustrated in Fig 3 below.

The proxy intercepts all messages send to the middleware. Messages orig-
inating from the real environment are directly forwarded to the middleware
and also used to train a prediction algorithm which tries to match the space
and time dimensions to the data values. Messages originating from the virtual
environment will only contain a space and a time value. The proxy uses these
values to estimate a data value that matches the data coming from the real
environment. When no messages are received from the real environment, the
prediction will be random. When time passes, and more and more messages are
processed from the real environment, the predictions made by the proxy will
better match the actual data distribution. An example can be seen in image
4 below where a Self Organizing Map (SOM) prediction technique is used to
match the actual data distribution /citevan2012self. After training the SOM
neurons are able to better match the actual temperature distribution. The
illustration only shows the time dimension, also the space dimension should
be used in practice but is now left out for visualization purposes. Suppose
that a virtual LE sends a message at 12 am. The SOM will try to match this
time value to the closest neurons, in this case the SOM will output a value
somewhere near ten degrees Celsius and send it to the middleware. SOMs are
a possible techniques, that is quite easy to implement, it allows for online
learning and can quickly provide good results. But of course other prediction
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Real Virtual
Environment Environment
A
(space, time, data) (space, time)

\J
Synchronization Proxy [*
with
SOM prediction

(space, time,
predicted data)

Middleware

Fig. 3 Synchronization proxy

techniques can be used as well. In some specific cases it might even be useful
to feed the sensor data originating from the virtual environment back to the
real world that could impact the behavior and actuators of this real-life LE’s.

Reducing synchronization requirement by space isolation: Another technique
is to isolate certain geographical areas. These areas can then be limited to
only serve real LE’s or only simulated LE’s. An example is illustrated in Fig
5 below. As a result, this reduces the need for an additional synchronization
mechanism between real and simulated environment, like the one presented in
the previous section. There will however, remain a mismatch in data variability
at the border between areas (illustrated by a red line in the image below).

5.4 Evaluation of Hybrid Testing
To further motivate the advantages of implementing a hybrid testing approach

we present our practical experiences gained from implementing a hybrid test-
ing method in the SeRGlo project. During the early stages of middleware
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Fig. 4 Proxy prediction using a self organizing map

development we tested our sensing task distribution algorithm primarily in a
simulation environment. One of the evaluation metrics was to verify the effort
required by humans actors to perform a given sensing task. Based on that
we could then calibrate the optimal refresh rate of sending out sensing tasks
to obtain an optimal spread of data coverage in the city. It is hard, almost
impossible to estimate this only on assumptions of human behavior modeled
in a simulation environment. This is because we can’t estimate upfront how
much time a task would take and if people would either accept or reject the
tasks. Instead we moved a stage further and tested the algorithm in a real
environment using a basic smartphone application that was able to interact
with the middleware under test and receive sensing tasks. An example of this
task was "What is the cleanliness of the street at location X (which was in a
max range of 400 meters)?”. Testing this in real-life with actual human partic-
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Simulation based N Real Testbed

Fig. 5 Space isolation

ipators proved to be very valuable. It allowed us to better estimate how people
would behave and as a consequence we were able to more accurately calibrate
the sensing task distribution algorithm.

6 Towards large-scale real-time simulation

When testing large IoT systems the amount of LE’s that need to be simulated
will be very high. This is especially the case when simulating emergent behav-
ior where a large amount of interacting entities are required. Most state of the
art simulators are based on a monolith architecture which does not take advan-
tage of parallelization or multi-server distribution that will be required to run
many thousands of virtual LE’s in parallel. An exception is the Gaia/Artis IoT
simulator which implements the Parallel and Distributed Simulation (PADS)
paradigm in order to run large scale Internet of Things environments. The
parallel and distributed simulation (PADS) methodology [14] is IEEE stan-
dardized. It has proven to be an effective approach for running such a simula-
tion over multiple nodes. With PADS a simulation is partitioned and executed
among multiple distributed devices or Physical Execution Units (PEU’s), this
leads to a significant increase in scaling capabilities. Each PEU has a collec-
tion of logical processes (LP). An LP is a logical part of the simulation and
contains various simulation entities (SE). A simulation entity represents an
individual local entity. However, the PADS paradigm is not particularly opti-
mized to support real-time interaction between simulation entities and real life
prototypes, which is a necessity when implementing a hybrid simulation. In the
remainder of this section, we present two optimization techniques that could
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further improve the scalability capabilities of the PADS paradigm. Note that
the findings of this work are based on recent work, described in more detail
in a recently published paper that focuses on how to optimize the scalability
constraints of state-of-the-art simulators [5].

6.1 Improving scalability through simulation model abstraction

In many cases the computational complexity of simulation models is much
higher than needed. We propose to use model abstraction techniques [13] [7],
which allows us to make a proper trade-off between accuracy and computa-
tional complexity. These abstraction techniques are then applied to one or
more modeling formalisms. We differentiate between two model abstraction
techniques that can be implemented.

Entity aggregation: The idea of entity aggregation is to combine local en-
tities into a single high-level entity while maintaining the globally exhibited
behavior. Rodriguez et. al. demonstrates that Neural Networks can be used to
achieve this [24]. For example, instead of simulating multiple IoT sensors that
measure temperature in the same geographical area, it might be better to re-
place all of them be a single SE as there won’t be much difference between the
observed temperature and it will definitely not impact the emergent behavior
of the system.

State abstraction: This technique allows the abstraction of a single LE. The
behavior of these individual LE’s can be based on very complex models. We
can use state abstraction to replace these very complex models with simpler
approximations. An example technique described in literature is metamodel-
ing. It allows to automatically learn the behavior of an LE and replace it with
a surrogate model. Caughlin et. al. defines a metamodel as a projection of
the original, high-fidelity model onto a subspace defined by new constraints or
regions of interest [7]. Preferably, the created metamodel is more abstract and
a less computationally complex version of the original model. Various machine
learning techniques can be used to train such a metamodel.

6.2 Improving simulation resource partitioning

When applying the PADS methodology a major amount of performance loss
is due to communication between simulated entities. This is especially the
case when simulation entities (SE) need to interact with each other over the
network when they're located on different PEU’s. This computational cost
of remote communication is much higher than the local communication cost
between SE’s located in the same PEU [4]. In this section we present two
techniques that could reduce this remote communicational cost by trying to
optimally distribute SE’s:
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Model partitioning using heuristics Most state of the art techniques that try
to reduce remote communication cost of simulation entities rely on the im-
plementation of heuristics to analyze the communication patterns of SE’s and
mark specific SE’s as possible migration candidates. A consequence of this
approach is that these algorithms lack a complete view on the global simula-
tion state. Instead, they rely on limited data directly available on the PEU’S.
D’Angelo proposes a sliding window approach in his work [9]. During a spe-
cific period, defined by the windows size, the ratio between remote interactions
versus local interactions is evaluated for each SE. When the ratio exceeds a
threshold value, the SE can be migrated to the LP it interacted with the most.
This migration however occurs only when certain time has passed since the
last migration of this specific SE.

Model partitioning using domain knowledge The heuristics approach is how-
ever limited by the fact that it does not take domain knowledge into account.
This might lead to undesired side effects. For example, migrations might oc-
cur that need to be undone in a later phase. It could also result in a higher
computational cost than the obtained gain which was only temporal. The
heuristics presented above do try to prevent oscillating migrations by intro-
ducing a threshold that prevents immediate undoing a migration. However,
another solution would be to inject domain knowledge that could prevent
these unwanted migrations to occur in the first place. Furthermore, it could
perform more optimal migrations that could not have been achieved by solely
analyzing local communication patterns of individual SEs. Van Tendeloo and
Vangheluwe demonstrate in their work that significant performance improve-
ments can be obtained by injecting domain knowledge in their Python based
distributed DEVS simulator PythonPDEVS [27]. They present the concept of
activity prediction, which allows simulation entities to leak hints to the sim-
ulator kernel about their current and future activity and how they should be
distributed. As a result, these hints can be used to decide when a SE migration
should take place. This leads to an improved distribution of computational load
across PEU’s. A disadvantage is however that a level of transparency between
the simulation modeling layer and the simulation core is lost. As a result, a
trade-off needs to be made between a clean separation of concerns and overall
simulation performance.

7 Conclusion

We presented in this work a novel hybrid simulation based testing technique.
This technique allows IoT systems to be tested by orchestrating a real-time
interaction between real-life and virtual local IoT entities (LE). The local be-
havior exhibited by these LE’s eventually leads to a global emergent behavior.
We identified a number of challenges that arise when implementing this hy-
brid simulation based technique. We presented an AI powered proxy based
solution that could function as a synchronization mechanism. Furthermore,
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we presented two possible techniques to solve the scalability constraints of
state-of-the-art simulation techniques. One based on model abstraction and
another based on the optimal resource distribution of simulation entities.
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