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Abstract: Process reuse is one of the important research areas that address efficiency issues in
business process modeling. Similar to software reuse, business processes should be
able to be componentized and specialized in order to enable flexible process
expansion and customization. Current activity/control-flow centric workflow modeling
approaches face difficulty in supporting highly flexible process reuse, limited by their
procedural nature. In comparison, the emerging artifact-centric workflow modeling
approach well fits into these reuse requirements. Beyond the classic class level reuse
in existing object-oriented approaches, process reuse faces the challenge of handling
synchronization dependencies among artifact lifecycles as parts of a business process.
In this article, we propose a theoretical framework for business process specialization
that comprises an artifact-centric business process model, a set of methods to design
and construct a specialized business process model from a base model, and a set of
behavioral consistency criteria to help check the consistency between the two process
models.
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Note that in the following discussions, the reviewers’ comments are formatted in italics,
while our responses appear in normal fonts.

Reviewer #1

Comment 1:One major weakness of this paper is the missing related work on data-
driven, object-aware, and artifact-centric processes. [Künzle 2011], [Ksenia 2006],
[Michael 2002], [Jochen 2007], [Lohmann 2013], [Fahland 2011]
Response: We thank the reviewer for indicating some missing related work. We added
discussions of all the missing related work in the revised version as follows. [Künzle
2011], [Ksenia 2007 (MODELS 2006)], [Jochen 2007], [Lohmann 2013], and [Fahland
2011] are all added and discussed in the second to last paragraph of Section 6.1, while
[Michael 2002] is added and discussed in the second paragraph of Section 4.2 and the
third paragraph of Section 6.1, respectively.

Comment 2:As claimed in this paper, the major contribution of this paper is a
theoretical study on the necessary and sufficient behavioral-preserving consistency
conditions for specializing artifact lifecycles and their synchronization dependencies.
However, this paper hadn't remarkable improvement compared with the work in
[Yongchareon 2012]. Many concepts (such as ACP model, artifact refinement, artifact
extension, and artifact reduction) are coincident both in these papers.
Response: We thank the reviewer for raising this issue. Actually, many of the notions
used in our previous work [2012] are reused as a basis for our extension done in this
work. In this extended paper, apart from some of newly added lemmas and theorems
with proofs as the outcomes of our further study, we also extended our published
paper in several aspects including (1) improvement to the specialization methods
discussed in Sections 4.1 and 4.2, (2) improvement to the existing B-consistency
notion, i.e., Definition 4.2 vs. Definition 9 in [2012], (3) improvement to the fragmental
analysis method via the introduction of SL-fragments and S-region notions to help
verify B-consistency, (4) a new propagation method for artifact reduction, and (5) a new
tool prototype (Artifact-M). To make these extension points clear, we added this
discussion in the last paragraph of Section 6.1 of the revised version.

Comment 3:in Definition 3.4, the description " pre_s(r, Ci) returns a set of states S…" is
incorrect in some degree. Since Ci represents single artifact, thus pre_s(r, Ci) indicates
a state rather than a set of states.
Response: We thank the reviewer for indicating this error. We corrected both the pre_s
and post_s functions to return a single state and all the formulas that refer to these
functions in the revised version.

Comment 4:Would you please give a clear definition of the term "composite task"
appeared in Example 3.1? How to guarantee the state change of the relevant artifacts
for the composite task (dispatchGoods(po,so), issueInvoice(po,iv))?
Response: We thank the reviewer for this advice. We changed the wording from
“composite task” to “a concurrent invocation of two tasks” in the revised version. We
use a post-condition in a business rule to imply that if the rule is successfully fire, then
the state change of the affected artifacts must satisfy the post-condition defined. We
added this explanation under Definition 3.4.

Comment 5:How to explain the term "artifact rules" in Figure 4.1?
Response: We thank the reviewer for indicating this. Actually, it is a typo and we
corrected it to “business rules” in the revised version.

Comment 6:Some grammatical errors in this paper should be avoidable.
Response: We thank the reviewer for this feedback. In the revised version, we tried to
fix all the English problems. We also consider hiring a professional proofreader prior to
publishing.

Comment 7:All third level titles in Section 6 should be changed as second level titles.
For example, "6.1.1.
Response: We thank the reviewer for pointing out this error. We fixed them in the
revised version. For example 6.1.1 is changed to 6.1 now.
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Reviewer #3

Comment 1:First, the paper lacks a clear discussion about the scope of the approach
and assumptions made. In terms of object-oriented computing, what types of relations
between the artifacts are considered in the proposed approach? For example, in OO,
there are (exclusive and inclusive) containment relations, association relations
between objects. In terms of business process models, what control dependencies
between tasks are considered? In the paper, task dependencies are captured by
business rules for individual artifacts and synchronisation across different artifacts, in
an abstract way. It is not clear how certain control dependencies, such as event-based
choice, milestone, multiinstance initiation and synchronisation etc (refer to the set of 20
classic workflow control-flow patterns for these control dependencies), are captured. It
is worth noting that the reason of raising these questions here is not to ask the authors
to consider all the OO relations and control-flow patterns, but to make it very clear
upfront, what are considered (and can be supported) within the scope of the approach.
Response: We thank the reviewer for this comment. In contrast to the process-
based/control-flow perspective, control-flows are not explicitly captured in the artifact
model which is based on the use of business rules (ECA). The scope of the control
dependencies can be derived from how the rules are defined. In summary, when
compared to the activity-centric approach, our model supports the following control-
flow patterns defined in [van der Aalst et al., 2003]: Sequence, Parallel Split,
Synchronization, Exclusive Choice, Simple Merge, Multi-choice, Synchronizing Merge,
Multi-Merge, and Discriminator. For example, our rules support choices through the
use of the instate predicate of the event part (pre-condition in Definition 3.4) and a
parallel split through the definition of a rule in the action part, e.g., rule r3 in Table 3.1.
The relation between artifacts is scoped via the use of sync rule definition (Definition
3.5) to define synchronization dependency between them. We have added this
discussion in the last paragraph of Section 3.1 in our revised version. In addition, our
specialization relation is based a super and sub-type relationship defined in Definition
4.1, that maps the subtype to its supertype based on our three specialization methods:
artifact refinement, artifact extension and artifact reduction, which are discussed in
Sections 4.1 and 4.2.

Comment 2:Second, the notions of 'business rules' and 'synchronisation' require much
precise and elaborated definitions. They are essential constructs to link / integrate
individual artifacts into the context of a business process. IMHO, process-oriented or
artifact-oriented approaches model business processes from different angle, while the
behaviour/semantics (or the richness of control dependencies) of a business process
should remain the same regardless of how it being modelled. Hence, in arifactoriented
modelling, the control dependencies between tasks are captured by the business rules
and the 'synchronisation' between the rules. According to Definition 3.5, the
synchronisation is captured by 'a sync rule' which is simply a common business rule
shared between different artifacts. Later when behavioural properties are proposed,
e.g. in Sections 3.2 and 4.2, it is not clearly how sync rules play a role.
Response: We thank and agree with the reviewer for this comment. The Sync rules
play the role in lifecycle composition which composes all the artifact lifecycles (taking
into account their synchronizations) into a single composite lifecycle, aka. a
synchronized product, which is semantically analogous to a process. Under the
Definition 3.9 of our revised version, we added three inference rules used for lifecycle
composition and an example of how sync rules play their role in a composition. The
composition mechanism later is used for our fragmental consistency checking for each
of our three methods of sync specialization discussed in Section 4.2.3.

Comment 3:Third, the approach is defined in a very object-oriented manner, and is
heavy with abstract/formal definitions. It would be much better if most of the concepts
are given an example of how they manifest in the context of business processes. The
example presented in Section 2 and Section 5 can be used to illustrate the notions
defined in section 4. Also, in the current form of the paper, the definitions are hard to
read. I understand that the authors use set notations in their definition, and IMHO, it is
strange to see something like r.\lamda, Cx.S, which are usually used in object-oriented
programming.
Response: We thank the reviewer for this feedback. Following the advice, we
added/revised some explanation and illustrated examples for complex definitions
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presented in Section 4 of the revised version. We hope our explanation along with
examples help readers better understand the definitions. Also, we use a dot notation
between a tuple and its element to refer to the element of that tuple. For example, we
can write C.S for a set of states S of an artifact class C (i.e., C.S = S of C.  Note that C
is a tuple. We added an explanation about using it under Definition 3.1 and we hope
this is acceptable.
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Process reuse is one of the important research areas that address efficiency issues in business process modeling. Similar to 

software reuse, business processes should be able to be componentized and specialized in order to enable flexible process 

expansion and customization. Current activity/control-flow centric workflow modeling approaches face difficulty in supporting 

highly flexible process reuse, limited by their procedural nature. In comparison, the emerging artifact-centric workflow modeling 

approach well fits into these reuse requirements. Beyond the classic class level reuse in existing object-oriented approaches, 

process reuse faces the challenge of handling synchronization dependencies among artifact lifecycles as parts of a business 

process. In this article, we propose a theoretical framework for business process specialization that comprises an artifact-centric 

business process model, a set of methods to design and construct a specialized business process model from a base model, and a 

set of behavioral consistency criteria to help check the consistency between the two process models. 

Categories and Subject Descriptors: H.1.0 [Models and Principles]: General; D.2.1 [Software Engineering]: 

Requirements/Specifications—Methodologies (e.g. object-oriented, structured) 

General Terms: Design 

Additional Key Words and Phrases: Artifact-centric process modeling; Business process modeling; Business process reuse; process 

specialization; Behavioral consistency 

1. INTRODUCTION 

With business processes becoming more complex and dynamic, process model reuse is highly required to 

improve the efficiency of business process modeling. In this respect, organizations demand a more 

effective and systematic approach to reusing their already designed process models. As found in object-

oriented software reuse, several benefits have been shown in practice to incrementally improve and 

support highly complex but loosely coupled software components. A reuse mechanism is seen to be very 

attractive and important as it provides several economic benefits, such as cost/time-savings, qualitative 

improvements, and economies of scale. Similarly, business process reuse should aim to support a 

flexible extension and adaptation of existing process models. 

A notion of artifact-centric (operational) business process modeling has been proposed to shift the 

way we design and model a process from the activity-oriented perspective of a process to understanding 

key business-relevant entities and how they evolve through the operations of the process [Nigam and 

Caswell, 2003]. The approach is beneficial in enabling a natural modularity and componentization of 

business operations and varying levels of abstraction [Cohn and Hull, 2009] as it provides an intuitively 

natural, robust, and flexible structure for understanding and specifying business processes and 

operations in four explicit, inter-related but separable dimensions in the specification of business 

processes – which are business artifacts, artifact lifecycles, services (a.k.a. tasks), and associations 

(between artifacts and services) [Hull, 2008]. Associations are generally implemented by means of 

business rules. The approach has been adopted and proved practically successful in industries including 

insurance (e.g., [Chao et al., 2009]), insurance (e.g., [Kumaran et al., 2008]), and healthcare (e.g., 

[Künzle and Reichert, 2011; Chiao et al., 2013]). 

The artifact-centric approach naturally lends itself well to both the object-oriented and service-

oriented design principles, as it focuses on the design of both business artifacts involved in a process 

and business tasks/services performing operations on such artifacts. Built based on an object-oriented 

structure, artifact-centric process models can achieve a higher level of adaptability, reusability, and 

extensibility [Yongchareon et al., 2012]. We observed that the existing object specialization approach to 

software (reuse) design can provide a fundamental basis for our study. Although the object 

specialization/generalization has been well studied in the object-oriented analysis and design in the last 

decade (e.g., in [van Der Aalst and Basten, 2001, 2002; Wyner and Lee, 2002; Schrefl and Stumptner, 

2002]), the specialization/generalization of process models especially where the objects (artifacts) of the 

process are primarily concerned has never been studied. Dependencies between artifacts become a 

major concern as they may cause the behavior of a specialized process to be inconsistent with (and 

Manuscript (inclusive Title Page) Click here to access/download;Manuscript (inclusive Title
Page);ACP Specialization.docx
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unobservable from) the behavior of its base process. It raises a non-trivial issue when an artifact and its 

dependency can be added, modified, or removed in the specialized process. In other words, it is possible 

that one can define a specialized process by modifying or adding synchronizations between existing 

objects or inserting/removing an object into/from the specialized process. These specialization operations 

must be guaranteed not violating the behavioral consistency between the base process and its 

specialization. Especially, the interaction (or synchronization) dependencies between artifacts in a 

process to be reused need to be considered to ensure that the process can be consistently observed from 

its base process, therefore, allowing processes to be represented and monitored from different levels of 

granularity and therefore comparing them across the specializations can be achieved more effectively 

and naturally [Hull, 2008].  

In this article, we propose a systematic framework for specializing Artifact-Centric Process (ACP) 

models, which comprises several dependent artifact classes. The framework includes three construction 

methods for process specialization: artifact refinement, artifact extension, and artifact reduction. We 

study the dynamic behavior of artifacts and their synchronization dependency in a process and 

formulate a set of behavioral consistency rules and a fragmental behavior analysis to help validate the 

consistency between two processes. With our specialization approach, process modelers can reuse an 

already defined ACP model at both artifact level and process level. A specialized process model can be 

consistently observed at the different level of specialization hierarchy, thus, allowing both artifact and 

process instances of the specialized process to be aggregated and reported at a more generic level. More 

importantly, with our approach, we can ensure compliance in specialized processes to company-wide 

rules and legal requirements and at the same time improved reusability as well as ensuring the correct 

adaptations of processes. Note that the work reported in this paper has extended the work in 

[Yongchareon et al., 2012] in several aspects, e.g. an extended framework with new and improved 

specialization methods and notions, comprehensive discussion and formal analysis, a number of new 

necessary and sufficient lemmas and theorems along with detailed proofs as theoretical outcomes of our 

study. 

We organize the rest of this paper as follows. Section 2 introduces our research motivation along 

with an example and problem statements. Section 3 discusses ACP models. Section 4 discusses our 

approach to process specialization and the behavioral consistency between two process models. Section 

5 illustrates a case study on the specializations of a purchasing process. Section 6 discusses related 

work, and the summary of this article is presented in Section 7. 

2. MOTIVATION AND PROBLEM STATEMENTS 

Here, we introduce a purchasing business process (between a buyer and a supplier) and explain how it 

is modelled using the artifact-centric approach, as shown in Figure 2.1. We first start our discussion by 

identifying business artifacts that are involved in the business process and describing how they can be 

modeled. We can see that the purchasing process consists of three core business artifacts, which are 

Invoice, Shipping Order, and Purchase Order. The interrelations between artifacts can be drawn using 

dashed lines as synchronization dependencies of such artifacts. 

 
Purchase Order (PO)

deliveringclosed

confirmed

Shipping Order (SO)

In transitarrived
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Figure 2.1: An overall view of artifact-centric purchasing processes 
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Now, let us briefly describe this process in more detail. At the start, a purchaser creates a 

purchasing order consisting of a list of goods. Immediately after created, the purchase order is waiting 

for the approval. Once approved, the seller confirms and sends the order to a selected supplier. When 

After the purchase order is received, the supplier starts supplying the goods required for the order. The 

supplier cancels the order if the goods are out of stock. Otherwise, the order is filled with goods and a 

shipping order is created for delivery. When the goods are in transit, the supplier issues an invoice, and 

then sends it to the buyer and waits for the payment. The supplier closes the order once the payment 

has been cleared by the buyer. 

For example, we consider the case of a retailer and a supplier that agree to have online purchasing 

process separate with offline purchasing process based on the reuse of existing generic purchasing 

process. The supplier and the retailer require some systematic approach that can help them design and 

model business processes to satisfy such requirements. With the artifact-centric business process 

modeling, we borrow existing object-oriented specialization methods and apply them to the 

specialization of a process. We can consider a process model as a class container that consists of 

interrelated artifact classes. Figure 2.2 illustrates our case of having a Generic purchasing process 

model and two specialized models, which are Online purchasing process and Offline purchasing process. 

The former only provides services to retail Internet customers, while the latter is defined for retailers 

and wholesalers. In Figure 2.2, a round-shape rectangle represents an artifact class used in a process 

model (drawn by an aggregation relationship). A specialization relationship between ACP models 

indicates that one ACP model is a specialized model of one another (base model). The analogous 

meaning of the specialization relationship is also applied for artifact classes.  
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Order
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Online 
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Figure 2.2: Generic purchasing process with two specializations. 

The generalization and specialization of ACP models allow different abstraction levels of both 

process-related and artifact-related management and reports. For instance in Figure 2.2, regional sale 

managers may want to monitor high-level aggregated information of how many orders now are shipped 

but their invoices have not yet been cleared, while online sales executives may want to only manage 

their web orders sold through the website. In order to achieve higher-level abstraction, instances of Web 

PO and instances of Offline PO must be aggregable (or comparable) and representable as instances of 

Purchase Order, i.e., the behaviors of Web PO and Offline PO are consistently observable at the 

Purchase Order’s view. Analogously, from the process-oriented perspective, the instances of both Offline 

purchasing process and Online purchasing process must be consistently observable in the Generic 

purchasing process. We can see some significant advantages of using an artifact-centric modeling 

approach to model business process from the above benefits as also perceived in the object-oriented 

design. The reuse can be achieved at both business artifact level and process level; thus, increase the 

level of modeling efficiency and adaptability. Apart from that, in traditional activity-centric process 

modeling approach, ways to manage and monitor business data yet remain difficult and inefficient. 

Technically, this is because the data in the activity-centric processes is not concerned as the first-class 

citizen of the model; thus, additional mechanisms to capture such data or model transformations are 

required. 

Dependencies between artifacts become a major concern since they can lead the behavior of a 

specialized process inconsistent with the behavior of its base process. Especially, it raises a non-trivial 

issue when an artifact and its dependency can be added, removed, or modified in the specialized 

process. Consider artifact classes defined in a specialized ACP model. One can think that for every 

artifact class, each artifact should inherit its base class of the base ACP model, e.g., the Online 

purchasing process has each of its artifact models derives from its base artifact. For example, Web PO is 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



considered a specialization of Purchase Order. We can also notice that the synchronization between Web 

PO and the other artifact(s) is modified as part of the specialization. In addition, it is possible that a 

newly defined artifact class can be added to the specialized process, e.g. in Figure 2.2, the Quote artifact 

is added to the Offline purchasing process. Obviously, extending the Quote artifact to the process needs 

extra synchronization with some other artifact(s), e.g., Offline PO.  

Technically, the specialization of an ACP model brings in the following key questions. 

—What is an approach to allowing process modelers to systematically define and specialize the process 

model? 

—How to preserve the behavioral consistency between a base process and its specialized process? 

To address the above questions, we propose a theoretical framework for specializing an ACP model, 

as overviewed in Figure 2.3. The framework consists of three core components: (1) an ACP model, (2) a 

set of methods to define and construct a specialization of process models, and (3) a set of behavior 

consistency rules and a validation mechanism. 

 

Specialized business 

process model Õ’

Base business 

process model Õ
specializes

Behavior of Õ Behavior of Õ’consistent with

Behavior-consistent 

process specialization

 
Figure 2.3: Overview of our framework 

3. ARTIFACT-CENTRIC PROCESS (ACP) MODEL 

In this section, we introduce definitions and syntax for modeling an artifact-centric process and its 

related properties. 

3.1 ACP Model 

We formally introduce an ACP model for capturing specification of a business process based on the 

model presented in our previous work [Yongchareon et al., 2012, 2015]. The ACP model has the 

following core parts including artifact classes, artifact schema, tasks, and business rules.  

Definition 3.1: (Artifact class). We denote 𝐶 for an artifact class and it is a tuple (𝑆, 𝑠𝑖𝑛𝑖𝑡 , 𝑆𝑓) where 

𝑆 =  {𝑠1, 𝑠2, … , 𝑠𝑦}, 𝑠𝑖 ∈ 𝑆(1 ≤ 𝑖 ≤ 𝑦) is a state, 𝑠𝑖𝑛𝑖𝑡 denotes an initial state, and 𝑆𝑓 ⊂  𝑆 is a finite set of 

final states.  

For the rest of the paper, we use a dot notation (.) between a tuple and its element to refer to the 

element of that tuple. For example, from Definition 3.1, we can write 𝐶. 𝑆 for a set of states 𝑆 of an 

artifact class 𝐶. 

Definition 3.2: (Artifact schema). We denote 𝑍 =  {𝐶1, 𝐶2, . . . , 𝐶𝑥} as an artifact schema, where 𝐶𝑖 ∈
𝑍(1 ≤ 𝑖 ≤ 𝑥) is an artifact class.  

Definition 3.3: (Task). We denote 𝑉 =  {𝑣1, 𝑣2, . . . , 𝑣𝑥} as a set of business tasks (or services). 

Definition 3.4: (Business Rule). We define business rules to regulate the execution of a task(s). A 

task(s) is executed under a business rule if the pre-conditions of the rule is satisfied. In addition, the 

post-conditions of a business rule are also defined to restrict the conditional effect after the rule is 

invoked. A business rule 𝑟 is triple (𝜆, 𝛽, 𝑣) where, 

—𝜆 and 𝛽 are finite sets of pre-conditions and post-conditions. Both condition sets are defined in a 

conjunctive normal form (CNF) using an instate predicate, which can be written as 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶, 𝑠) if 

state 𝑠 ∈ 𝐶. 𝑆  of an artifact class 𝐶 is active.  

—𝑣 ∈ 𝑉 is a set of tasks that are fired upon the satisfaction of the rule. 
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We use a post-condition in a business rule to imply that if the rule is successfully fire, then the state 

change of the affected artifacts must satisfy the post-condition defined and to guarantee the existence of 

artifact’s state changes, the following statement must hold. For some states 𝑠𝑖 , 𝑠𝑗 ∈ 𝐶. 𝑆, if there exists 

𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶, 𝑠𝑖) in a pre-condition of a business rule, then there exists 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶, 𝑠𝑗) in the post-conditions 

of the rule.  

Table 3.1 shows key business rules with necessary conditions for the purchasing process introduced 

in our motivating example.  
Table 3.1: Example of business rules 

𝒓𝟏  : A buyer confirms a PO 

𝜆 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑝𝑜, 𝑎𝑝𝑝𝑟𝑜𝑣𝑖𝑛𝑔)  

𝑣 𝑐𝑜𝑛𝑓𝑖𝑟𝑚(𝑝𝑜)  
𝛽 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑝𝑜, 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑) 

𝒓𝟐  : A supplier accepts a PO and starts supplying the goods ordered in the PO 

𝜆 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑝𝑜, 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑) 

𝑣 𝑠𝑢𝑝𝑝𝑙𝑦(𝑝𝑜) 
𝛽 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑝𝑜, 𝑠𝑢𝑝𝑝𝑙𝑦𝑖𝑛𝑔) 

𝒓𝟑 : A supplier dispatches goods and simultaneously creates a SO and IV for the PO 

𝜆 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑝𝑜, 𝑓𝑖𝑙𝑙𝑒𝑑)  𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑖𝑣, 𝑖𝑛𝑖𝑡)   𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑠𝑜, 𝑖𝑛𝑖𝑡) 

𝑣 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑜𝑜𝑑𝑠(𝑝𝑜, 𝑠𝑜)  𝑖𝑠𝑠𝑢𝑒𝐼𝑛𝑣𝑜𝑖𝑒(𝑝𝑜, 𝑖𝑣) 
𝛽 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑝𝑜, 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑛𝑔)   𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑖𝑣, 𝑖𝑠𝑠𝑢𝑒𝑑)  𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑠𝑜, 𝑖𝑛_𝑡𝑟𝑎𝑛𝑠𝑖𝑡)  

𝒓𝟒  : A supplier receives a payment for the IV and closes the PO 

𝜆 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑝𝑜, 𝑏𝑖𝑙𝑙𝑖𝑛𝑔)  𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑖𝑣. 𝑢𝑛𝑝𝑎𝑖𝑑) 

𝑣 𝑐𝑙𝑜𝑠𝑒𝑂𝑟𝑑𝑒𝑟(𝑝𝑜, 𝑖𝑣)  
𝛽 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑖𝑣. 𝑐𝑙𝑒𝑎𝑟𝑒𝑑) 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝑝𝑜, 𝑐𝑙𝑜𝑠𝑒𝑑) 

To help define the behavior of an artifact, we define the following functions. 

—𝑝𝑟𝑒_𝑠(𝑟, 𝐶𝑖) returns a state 𝑠 if there exists 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶𝑖 , 𝑠) in a precondition 𝜆 of 𝑟. 

—𝑝𝑜𝑠𝑡_𝑠(𝑟, 𝐶𝑖) returns a state 𝑠 if there exists 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶𝑖 , 𝑠) in a post-condition 𝛽 of 𝑟. 

We also define a sync rule to capture simultaneous state changes of artifacts via a single rule. 

Definition 3.5: (Sync rule). We call sync rule 𝑟 if for some artifacts 𝐶𝑥 and 𝐶𝑦, if there exists 

𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶𝑥 , 𝑠𝑖) and 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶𝑦 , 𝑠𝑚) in a precondition 𝜆 of 𝑟 and 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶𝑥 , 𝑠𝑗) and 𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶𝑦 , 𝑠𝑛) in a 

postcondition 𝛽 of 𝑟, where 𝑠𝑖 , 𝑠𝑗 ∈ 𝐶𝑥. 𝑆 and 𝑠𝑚 , 𝑠𝑛 ∈ 𝐶𝑦. 𝑆. 

Example 3.1. In Table 3.1, a business rule 𝑟4 is a sync rule that is used to change the state of the PO 

artifact (𝑏𝑖𝑙𝑙𝑖𝑛𝑔 → 𝑐𝑙𝑜𝑠𝑒𝑑) and the state of IV artifact (𝑢𝑛𝑝𝑎𝑖𝑑 → 𝑐𝑙𝑒𝑎𝑟𝑒𝑑) simutanously. Similarly, a sync 

rule 𝑟3 is used for the synchronization of the three artifacts PO, SO, and IV (notice a concurrent 

invocation of two tasks upon two different artifacts in 𝑟3). 

Definition 3.6: (ACP model). We can define Π = (𝑍, 𝑉, 𝑅) for an ACP model that consists of an artifact 

schema 𝑍, tasks 𝑉 and business rules 𝑅. 

It is worthwhile to reiterate that, in contrast to the process-based/control-flow perspective, control-

flows are not explicitly captured in the artifact model which is based on the use of business rules (ECA). 

The scope of the control dependencies can be derived from how the rules are defined. In summary, when 

compared to the activity-centric approach, our model supports the following control-flow patterns 

defined in [van der Aalst et al., 2003]: Sequence, Parallel Split, Synchronization, Exclusive Choice, 

Simple Merge, Multi-choice, Synchronizing Merge, Multi-Merge, and Discriminator. For example, our 

rules support choices through the use of an instate predicate of the event part (pre-condition) and a 

parallel split through the definition of a rule in the action part, e.g., in Example 3.2. The relation 

between artifacts is defined via the use of sync rules to define synchronization dependency between 

them.  
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3.2 Behavioral properties 

This section discusses the artifact’s behavior, i.e. its lifecycle evolution from the initial to the final 

states. Formally, we use the notion of Labeled Transition System to model an artifact’s lifecycle as well 

as a synchronized product of all the artifact lifecycles defined in an ACP model to represent the 

behavior of the entire process. 

Definition 3.7: (Lifecycle of artifact, 
∗
⇒). Given 𝐶𝑖 = (𝑆𝑖 , 𝑠𝑖

𝑖𝑛𝑖𝑡 , 𝑆𝑖
𝑓) be an artifact class in Π, we denote 

ℒ𝐶𝑖 for a (artifact) lifecycleof 𝐶𝑖, which can be defined as a tuple (𝑆, 𝑠𝑖𝑛𝑖𝑡 , ⇒) where,  

—set of states  𝑆 =  𝑆𝑖, an initial state 𝑠𝑖𝑛𝑖𝑡 = 𝑠𝑖
𝑖𝑛𝑖𝑡, 

—⇒ ⊆  𝑆 ×  𝑅𝑖  ×  𝐺𝑖  ×  𝑆 is a set of state transitions, where, 

—𝑅𝑖 ⊆  Π. 𝑅 are business rules that trigger state changes of an artifact 𝐶𝑖 such that 

∀𝑟 ∈ 𝛱. 𝑅, ∃𝑠𝑥 , 𝑠𝑦 ∈, 𝐶𝑖 . 𝑆, 𝑠𝑥 = 𝑝𝑟𝑒𝑠(𝑟,𝐶𝑖) ∧ 𝑠𝑦 =  𝑝𝑜𝑠𝑡_𝑠(𝑟, 𝐶𝑖) →  𝑟 ∈ 𝑅𝑖 , 

—𝐺𝑖 are guards that contain state pre-conditions from every business rule in 𝑅𝑖, of which refers to 

some state of the other artifact, i.e., 

𝐺𝑖 = ⋃ {𝑖𝑛𝑠𝑡𝑎𝑡𝑒(𝐶𝑗 , 𝑠)|∃𝑟 ∈ 𝑅𝑖 , ∃𝐶𝑗 ∈ 𝛱. 𝑍, 𝑠 =  𝑝𝑟𝑒_𝑠(𝑟, 𝐶𝑗) ∧ 𝐶𝑗 ≠ 𝐶𝑖} 
|𝛱.𝑍|
𝑗=1 , 

We also denote 
∗
⇒ for a reflexive transitive closure of ⇒ and we write 𝑠𝑖

∗
⇒ 𝑠𝑗 if a state 𝑠𝑗 is reachable 

from a state 𝑠𝑖. Next, we define a lifecycle occurrence as a sequence of states and corresponding 

transitions. 

Definition 3.8: (Lifecycle occurrence or L-occurrence). Let Π and ℒ = (𝑆, 𝑠𝑖𝑛𝑖𝑡 , ⇒) be an ACP model and 

a lifecycle (of either an artifact class or Π), respective, we can define a particular sequence of states, 

regarding a sequence of firing transitions in ℒ, as an L-occurrence of ℒ. An L-occurrence in ℒ from a 

state 𝑠𝑥 to a state 𝑠𝑦 is denoted as 𝜎ℒ: 𝑠𝑥→𝑠𝑦 = (𝑠𝑥 , . . . , 𝑠𝑦) where 𝑠𝑥 , 𝑠𝑦 ∈ 𝑆 such that, 

 ∀𝑠 ∈ 𝜎ℒ: 𝑠𝑥→𝑠𝑦 , 𝑠𝑥
∗
⇒ 𝑠 ⋀ 𝑠

∗
⇒𝑠𝑦 .  

We write a transition 𝑠𝑠
𝑟[𝑔]
⇒  𝑠𝑡  to refer to the change of state from a source state 𝑠𝑠 to a target state 𝑠𝑡 

if 𝑟 is fired and 𝑔 holds true. We may write 𝑠𝑠 ⇒ 𝑠𝑡 without its superscription in a clear context. 

Next, we define an ACP lifecycle to describe the behavior of an ACP that comprises a set of 

synchronized lifecycles of artifacts defined in the ACP model. Technically, the lifecycle of a whole ACP 

process can be obtained by composing every artifact lifecycle defined for the process. The lifecycle of an 

ACP model can be constructed using a lifecycle composition technique proposed in [Yongchareon et al., 

2012]. The composed lifecycle of ACP model is used for the verification of the model. 

Definition 3.9: (Lifecycle composition and ⨂). Given ℒ𝑖 = (𝑆𝑖 ,  𝑠𝑖
𝑖𝑛𝑖𝑡 , ⇒𝑖) and ℒ𝑗 = (𝑆𝑗 ,  𝑠𝑗

𝑖𝑛𝑖𝑡 , ⇒𝑗) be two 

lifecycles, we denote  ℒ𝑐 = ℒ𝑖⨂ℒ𝑗 = (𝑆𝑐 ,  𝑠𝑐
𝑖𝑛𝑖𝑡 , ⇒𝑐) for the 𝑙𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 of ℒ𝑖  and ℒ𝑗 where, 

—𝑆𝑐 ⊆ ℒ𝑖 . S ⋃ ℒ𝑗 . S  are states, 

—𝑠𝑐
𝑖𝑛𝑖𝑡 = (ℒ𝑖 . 𝑠

𝑖𝑛𝑖𝑡 , ℒ𝑗 . 𝑠
𝑖𝑛𝑖𝑡) is an initial state, 

—⇒𝑐⊆ 𝑆𝑐  ×  Π. 𝑅 ×  𝐺𝑐  ×  𝑆𝑐 are transitions in the composed lifecycle. 

 

We can formulate ⇒𝑐  of the composed lifecycle ℒ𝑐 by applying the three inference rules defined below.  
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Let 𝑔[𝑠ℒ𝑖
𝑥 /𝑠𝑡𝑎𝑡𝑒(ℒ𝑖 , 𝑠𝑥)] denote that a state 𝑠ℒ𝑖

𝑥  in a guard 𝑔 is substituted (denoted by symbol /) by 

𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒 (of state predicate) depending on whether the local state of ℒ𝑖 is 𝑠𝑥. We can formulate a 

transition relation ⇒𝑐 of a composed lifecycle ℒ𝑐, by using the following three inference rules. 

(𝑠ℒ𝑖
𝑥 ,𝑟,𝑔1,𝑠ℒ𝑖

𝑦
)∈⇒𝑖 

((𝑠ℒ𝑖
𝑥 ,𝑠ℒ𝑗

𝑥 ),𝑟,𝑔𝑐,(𝑠ℒ𝑖

𝑦
,𝑠ℒ𝑗
𝑥 ))∈⇒𝑐,  𝑔𝑐 =𝑔1[𝑠ℒ𝑗

𝑥 /𝑠𝑡𝑎𝑡𝑒(ℒ𝑗, 𝑠𝑥)]

                                           (3.1) 

(𝑠ℒ𝑗
𝑥 ,𝑟,𝑔2,𝑠ℒ𝑗

𝑦
)∈⇒𝑗

((𝑠ℒ𝑖
𝑥 ,𝑠ℒ𝑗

𝑥 ),𝑟,𝑔𝑐,(𝑠ℒ𝑖
𝑥 ,𝑠ℒ𝑗

𝑦
))∈⇒𝑐,  𝑔𝑐 =𝑔2[𝑠ℒ𝑖

𝑥 /𝑠𝑡𝑎𝑡𝑒(ℒ𝑖, 𝑠𝑥)]

                                            (3.2) 

(𝑠ℒ𝑖
𝑥 ,𝑟,𝑔1,𝑠ℒ𝑖

𝑦
)∈⇒𝑖  ∧  (𝑠ℒ𝑗

𝑥 ,𝑟,𝑔2,𝑠ℒ𝑗
𝑦
)∈⇒𝑗  

((𝑠ℒ𝑖
𝑥 ,𝑠ℒ𝑗

𝑥 ),𝑟,𝑔𝑐,(𝑠ℒ𝑖

𝑦
,𝑠ℒ𝑗

𝑦
))∈⇒𝑐,   𝑔𝑐 =𝑔1[𝑠ℒ𝑗

𝑥 /𝑠𝑡𝑎𝑡𝑒(ℒ𝑗, 𝑠𝑥)] ∧ 𝑔2[𝑠ℒ𝑖
𝑥 /𝑠𝑡𝑎𝑡𝑒(ℒ𝑖, 𝑠𝑥)]

              (3.3) 

Rule (3.1) and Rule (3.2) are applied when a business rule 𝑟 is fired on only individual lifecycles ℒ𝑖 
and ℒ𝑗, respectively. Rule (3.3) is applied when a sync rule 𝑟 is fired on both lifecycles ℒ𝑖 and ℒ𝑗. As the 

three inference rules apply the substitution of state conditions of two lifecycles in the composition, a 

reference to an external lifecycle is not to be replaced. 

Figure 3.1 illustrates an example of lifecycle composition of two lifecycles. In this figure, we can see 

that 𝑟3 is a sync rule used to synchronize an artifact 𝐶1 with artifacts 𝐶2 and 𝐶3. Similarly, a sync rule 𝑟4 
is used to synchronize artifacts 𝐶2 and 𝐶4. 

 

LC =L(C1) ÄL(C2)L(C2)L(C1)

s1 s2 s3 s4

s1, s3 s2, s3 s2, s4
r1 [C2.s3]

r3 [C2.s4 C3.s5]

r2 [C1.s2]

r4 [C4.s6] r1 r2

r3 [C3.s5  -C4.s6]init init
init, init

s1, s4

r4 [-C3.s5  C4.s6]

r3 [C3.s5  C4.s6]
r4 [C4.s6]

 

Figure 3.1 An example of lifecycle composition (taken from [Yongchareon et al, 2012]) 

Definition 3.10: (ACP Lifecycle). We denote ℒΠ for an ACP lifecycle of an ACP model Π and ℒΠ can be 

constructed based on applying lifecycle composition on every artifact of Π.  

We also define a soundness property for a desirable behavior of a lifecycle of an artifact or ACP. 

Definition 3.11: (Sound lifecycle). A lifecycle ℒ =  (𝑆, 𝑠𝑖𝑛𝑖𝑡 , ⇒) of an ACP Model Π = (𝑍, 𝑉, 𝑅) is sound if: 

—every 𝑟 ∈ Π. 𝑅 fires one and only one transition, 

—every non-final state 𝑠 is reachable from sinit and 𝑠 eventually reaches any final state, i.e., 

 ∀𝑠 ∈ 𝑆\𝑆𝑓 , ∃𝑠𝑓 ∈ 𝑆
𝑓 , 𝑠𝑖𝑛𝑖𝑡

∗
⇒ 𝑠 ∧  𝑠

∗
⇒𝑠𝑓 , 

—every final state 𝑠𝑓 is reachable from the initial state, i.e., 

∀𝑠𝑓 ∈ 𝑆
𝑓 , 𝑠𝑖𝑛𝑖𝑡

∗
⇒ 𝑠𝑓 , 

4. PROCESS SPECIALIZATION 

In this section, we present our process specialization approach. The discussion about specialization 

methods for artifact-centric processes is presented in Section 4.1 and then behavioral-consistent 

specialization is discussed in Section 4.2. 
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Figure 4.1 illustrates an example of hierarchies of ACP specializations built up by applying different 

ways of process specialization methods. We define two layers for the specialization. The first layer 

represents a set of artifact classes serving as base artifacts disregarding any specific process-related 

context. The second layer represents the hierarchy of specializations where each specialization is for a 

specific process context. In the second layer, the relationships of all inheritances of a generic process 

model form a hierarchical tree structure having the generic model as the root of the hierarchy. The root 

level represents a generic ACP model. Each generic model can be created by considering a set of generic 

artifact classes and a set of generic business rules used for coordinating the interaction between those 

artifacts for achieving the goals of a specific process. The lower levels present specialized ACP models 

where each of which inherits its corresponding base model. In the hierarchy, we call subtype for a 

specialized process model (or a specialized artifact class) of a process model (or an artifact class) it 

inherits, which is called super-type. Note that we exclude multiple inheritances (i.e., one model 

specializes two or more models) from our study as we believe that the concept is unnecessarily complex 

for modeling business processes. 
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Figure 4.1: ACP specializations with four different specialization methods 

4.1 Process specialization methods 

Here, we classify ACP specializations into two categories based on the existence of an artifact class in 

the inherited process model and in its base model: full specialization and partial specialization.  

—Full specialization describes the situation where for every artifact class in a specialized model, each 

class is a refined subtype of its super-type in the base model.  

—Partial specialization means that there exists an artifact class in a specialized model but not in the 

base model, or vice versa. 

Example 4.1. In Figure 4.1, specialization (1) is a full specialization since each artifact in a 

specialized process Π1
′  inherits its supertype in a generic process Π1. Specializations (2), (3), and (4) are 

partial specializations. Specialization (2) constructs a specialized process Π1
′  from its super process Π1

′  by 

inheriting artifacts 𝐶1−1
′′  and 𝐶2−1

′′  from artifacts 𝐶1−1
′  and 𝐶2−1

′ , respectively, but not an artifact 𝐶3−1
′ . 
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Specialization (3) shows an extension of an artifact by adding a new artifact 𝐶4−2
′  to a specialized process 

Π2
′ , Lastly, specialization (4) shows a substitution (i.e., reduction then extension) of an artifact 𝐶2−2

′  by 

an artifact 𝐶1−2
′′  in a specialized process Π2

′′. Revisiting our example in Figure 2.2, the Online purchasing 

process is a full specialization of the Generic purchasing process, while the Offline purchasing process is 

a partial specialization. 

Based on the above categories, we propose the following three construction methods for ACP model 

specialization. 

—Artifact refinement. Inheriting an artifact class from a base model by refining a base business rule(s) 

and its base state(s). The pre-conditions and the post-conditions of the modified rule may contain a 

newly defined state(s) in the subtype derived from the state of its super-type. The refinement can 

also be performed on a sync rule. 

—Artifact extension. Including an additional artifact in the specialized model (which it does not 

previously exist in the base model). Introducing a new artifact to a model requires not only a new 

rule(s) but also a sync rule for synchronizing the new artifact with the other artifact(s) in the model. 

—Artifact reduction. In contrast to artifact extension, process modelers can remove an artifact found in 

the base model if it is no longer required in the specialized model. 

One can observe that whenever an artifact is added into or removed from a specialized process, the 

behavior of the process should be changed. Even for a fully specialized process that has each artifact 

inheriting its super-type in the base process, the behavior of the former may be inconsistent with the 

behavior of the latter as some of the specialized artifacts may have their behavior changed (or refined). 

The behavior of one artifact and the change of the state dependency between artifacts can affect the 

overall behavioral consistency of the process. Specifically, we need to observe the behavior of the 

specialized process and its base process and study conditions that make the behavior of the specialized 

process constructed by any of the above three methods consistent with its base process.  

4.2 Behavioral-consistent specialization 

In this section, we discuss how to specialize an ACP model while preserving the behavioral consistency 

of its base ACP model. Then, we introduce an ACP specialization function that maps a specialized model 

to its base model. Lastly, we discuss how each of the specialization methods (refinement, extension, and 

reduction) can be achieved with the guarantee of behavioral consistency. 

In traditional object-oriented design approaches, the notion of behavior consistency can be divided 

into an observation consistency and invocation consistency. The observation consistency is used to 

guarantee that if a feature added in a subtype is ignored or a feature refined at the subtype are 

considered unrefined, any processing state of the subtype can be observed from the view of the super-

type. On the other hand, the invocation consistency means that an instance of the subtype can be used 

in the same way as an instance of the super-type [Schrefl and Stumptner, 2002]. In our research, we 

restrict our study on observation consistency as our research focuses on the monitoring and reporting 

aspects of business processes. The observation consistency, on the one hand, can be used to guarantee 

that a current processing state of an artifact(s) or process always appear at a higher abstraction level. 

On the other hand, it can be used to ensure that an artifact or rule extended or modified in the 

specialized model does not interfere with the other artifact(s) or rule(s) derived from its super-type. 

Technically, handling synchronization dependencies between artifacts to ensure observation consistency 

is not trivial in process specialization.  

Definition 4.1: (ACP Specialization). Let Π =  (𝑍, 𝑉, 𝑅) and Π′ = (𝑍′, 𝑉′, 𝑅′) be an ACP model and the 

specialization of an ACP model, respectively, we define ACP specialization function 𝑝𝑠Π′ → Π ∶  𝑍
′ ∪ 𝑉′  ∪

 𝑅′  →   𝑍 ∪  𝑉 ∪  𝑅 ∪  {𝜀} as a total function used to map each of the elements in Π′ onto either each of 

the elements in Π or a null element 𝜀. It is noted that we allow the use of 𝑝𝑠 for mapping 𝐶′. 𝑆 onto 𝐶. 𝑆 

where 𝐶′ ∈ 𝑍′ and 𝐶 ∈ 𝑍.  

The refinement, extension, and reduction of artifact can be expressed by the ACP specialization 

function 𝑝𝑠 as follows. 
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—Artifact refinement. Let an artifact 𝐶′ ∈ 𝑍′ be a refinement of an artifact 𝐶 ∈ 𝑍, a set of business rules 

𝑅𝑥
′ ⊆ 𝑅′ be a refinement of a business rule 𝑟 ∈ 𝑅, a set of tasks 𝑉𝑦

′ ⊆ 𝑉′ be a refinement of a tasks 𝑣 ∈

𝑉, and a set of states 𝑆𝑧
′ ⊆ 𝐶′. 𝑆 be a refinement of a state 𝑠 ∈ 𝐶. 𝑆. The statements below must be 

satisfied for 𝑝𝑠: 

(a) 𝑝𝑠(𝐶′) = 𝐶, 

(b) ∀𝑟𝑖
′ ∈ 𝑅𝑥

′, 𝑝𝑠(𝑟𝑖
′) = 𝑟, 

(c) ∀𝑣𝑗
′ ∈ 𝑉𝑦

′, ∃𝑟𝑖
′ ∈ 𝑅𝑥

′, 𝑝𝑠(𝑣𝑗
′) = 𝑣 ∧ 𝑣𝑗

′ ∈ 𝑟𝑖
′. 𝑉, 

(d) ∀𝑠𝑘
′ ∈ 𝑆𝑧

′, ∃𝑟𝑖
′ ∈ 𝑅𝑥

′, 𝑝𝑠(𝑠𝑘
′) = 𝑠 ∧  𝑠𝑘

′ ∈ 𝑝𝑟𝑒_𝑠(𝑟𝑖
′, 𝐶′) ∪  𝑝𝑜𝑠𝑡_𝑠(𝑟𝑖

′, 𝐶′) 

—Artifact extension. Let an artifact 𝐶′ ∈ 𝑍′, a set of business rules 𝑅𝑥
′ ⊆ 𝑅′\ 𝑅, and a set of tasks 𝑉𝑦

′ ⊆

𝑉′\ 𝑉 be extended into Π′. The following statements must be satisfied for 𝑝𝑠: 

(a) 𝑝𝑠(𝐶′)  =  𝜀, 

(b) ∀𝑟𝑖
′ ∈ 𝑅𝑥

′, 𝑝𝑠(𝑟𝑖
′) = 𝜀, 

(c) ∀𝑣𝑗
′ ∈ 𝑉𝑦

′, ∃𝑟𝑖
′ ∈ 𝑅𝑥

′, 𝑝𝑠(𝑣𝑗
′) = 𝜀. 

—Artifact reduction. Let an artifact 𝐶 be removed from 𝑍 in Z′. The following statements must be 

satisfied for 𝑝𝑠: 

(a) ∄𝐶′ ∈ 𝑍′  → 𝑝𝑠(𝐶′)  =  𝐶, 

(b) ∀𝑟𝑖 ∈ 𝑅, ∃𝑠 ∈ 𝑝𝑟𝑒_𝑠(𝑟𝑖 , 𝐶) ∪  𝑝𝑜𝑠𝑡_𝑠(𝑟𝑖 , 𝐶)}, ∄𝑟𝑖
′ ∈ 𝑅′   → 𝑝𝑠(𝑟𝑖

′) = 𝑟𝑖, 

(c) ∀𝑣𝐽 ∈ {𝑟. 𝑣 | ∃𝑟 ∈ 𝑅, 𝑠 ∈ 𝑝𝑟𝑒_𝑠(𝑟, 𝐶) ∪  𝑝𝑜𝑠𝑡_𝑠(𝑟, 𝐶)}, ∄𝑣𝑗
′ ∈ 𝑉′  → 𝑝𝑠(𝑣𝑗

′) = 𝑣𝑗. 

It is noted that if an artifact, a task, or a business rule remains unmodified in the specialized model, 

then 𝑝𝑠(𝑥)  =  𝑥. 

We can consider the specialization of an ACP model as the product of individual artifact lifecycle 

specialization and synchronization specialization. Next, in Section 4.2.1, we discuss the specialization of 

isolated (non-synchronized) lifecycles. Then, Section 4.2.3 discusses how the inter-behavior of 

interacting artifacts (via sync rules) is taken into account for the ACP specialization. 

4.2.1 Behavioral consistency  

We use the notion of behavioral consistency, called B-consistency between two artifact-centric process 

models, that has been proposed in [Yongchareon et al., 2012] to check whether an ACP model (or an 

artifact) that derives from its base ACP model (or a base artifact) is consistently observable. The B-

consistency is based on a weak bi-simulation equivalence relation [Bloom, 1995] for creating a behavior-

consistent specialized process. By replacing a lifecycle fragment to be abstracted with a silent (𝜏) action, 

a weak bi-simulation can be applied to the abstract lifecycle and its original lifecycle.  

Definition 4.2: (B-consistent, ≃). Let ℒ𝑦 = (𝑆𝑦 , 𝑠𝑦
𝑖𝑛𝑖𝑡 , ⇒𝑦) and ℒ𝑥 = (𝑆𝑥 , 𝑠𝑥

𝑖𝑛𝑖𝑡 , ⇒𝑥) be two lifecycles such 

that ℒ𝑦 derives from ℒ𝑥 where 𝑆𝑥∩𝑦 = 𝑆𝑥 ∩ 𝑆𝑦 is a set of states found from both ℒ𝑥 and ℒ𝑦. We say that ℒ𝑦 

and ℒ𝑥 are B-consistent (denoted as ℒ𝑦 ≃ ℒ𝑥) if the following conditions hold: 

—∀𝑠𝑖 , 𝑠𝑗 ∈ 𝑆𝑥 , ∃𝑠𝑖 , 𝑠𝑗 ∈ 𝑆𝑦 , ∃(𝑠𝑖 , 𝑟, 𝑔, 𝑠𝑗) ∈⇒𝑥 

          → ∀𝑠𝑘 ∈ 𝑆𝑦\𝑆𝑥∩𝑦, 𝑠𝑖
∗
⇒𝑦 𝑠𝑘  ∧  𝑠𝑘

∗
⇒𝑦 𝑠𝑗        (4.1) 

—∀𝑠𝑖 , 𝑠𝑗 ∈ 𝑆𝑥 , ∃𝑠𝑖 , 𝑠𝑗 ∈ 𝑆𝑦 , ∄(𝑠𝑖 , 𝑟, 𝑔, 𝑠𝑗) ∈⇒𝑥 

          → ∀𝑠𝑘 ∈ 𝑆𝑦\𝑆𝑥∩𝑦, ¬(𝑠𝑖
∗
⇒𝑦 𝑠𝑘  ∧  𝑠𝑘

∗
⇒𝑦 𝑠𝑗)         (4.2) 

—∀𝑠𝑖 , 𝑠𝑗 , 𝑠𝑚 ∈ 𝑆𝑥 , ∃𝑠𝑗 ∉ 𝑆𝑦 , ∃(𝑠𝑖 , 𝑟𝑖 , 𝑔𝑖 , 𝑠𝑗) ∈⇒𝑥 

          → ∃(𝑠𝑗 , 𝑟𝑗 , 𝑔𝑗 , 𝑠𝑚,) ∈⇒𝑥, ∃𝑠𝑘 ∈ 𝑆𝑦\𝑆𝑥∩𝑦, 𝑠𝑖
∗
⇒𝑦 𝑠𝑘  ∧  𝑠𝑘

∗
⇒𝑦 𝑠𝑚   (4.3) 

Conditions 4.1 and 4.2 are used to restrict each transition in ℒ𝑥 to be derived by a sub-lifecycle in ℒ𝑦. 

Condition 4.3 is used to constrain the substitution of a state of ℒ𝑥 with a sub-lifecycle in ℒ𝑦. Note that 

we generalize the definition of B-consistency for checking any type of lifecycle constructs. In a clear 
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context, we may write Π′ ≃ Π to mean that the lifecycle of an ACP model Π′ and that of an ACP model Π 

are B-consistent. 

4.2.2 Lifecycle specialization 

Based on ACP specialization with our focus only on the behavioral perspective, we define lifecycle 

specialization to map a lifecycle of a subtype to its super-type. Note that we generalize its definition for 

both an artifact class and a process model. 

Definition 4.3: (Lifecycle specialization). Given a specialized ACP model Π′ constructed based on an 

ACP model Π via a ACP specialization function 𝑝𝑠Π′ → Π, a lifecycle ℒ = (𝑆, 𝑠𝑖𝑛𝑖𝑡 , ⇒), and a lifecycle ℒ′ =

(𝑆′, 𝑠𝑖𝑛𝑖𝑡
′
, ⇒′), a lifecycle specialization relationship between ℒ and ℒ′ can be defined using a lifecycle 

specialization mapping (total) function 𝑙𝑠  ℒ′ → ℒ ∶  𝑆
′ ∪ 𝑠𝑖𝑛𝑖𝑡

′
∪ ⇒′  →   𝑆 ∪  𝑠𝑖𝑛𝑖𝑡  ∪ ⇒ ∪ {𝜀}, where 𝜀 is an 

empty element.  

The following B-consistent lifecycle specialization can then be defined based on the lifecycle 

specialization and B-consistency. 

Definition 4.4: (B-consistent specialization, ≃𝑙𝑠). Given ACP models Π′ and Π, let an artifact lifecycle 

ℒ′ = (𝑆′, 𝑠𝑖𝑛𝑖𝑡 , ⇒′) in a Π′ be a specialized lifecycle that inherits an artifact lifecycle ℒ = (𝑆, 𝑠𝑖𝑛𝑖𝑡 , ⇒) in Π 

via the use of a lifecycle specialization 𝑙𝑠  ℒ′ →ℒ. ℒ
′ is a B-consistent specialization of ℒ, denoted as ℒ′ ≃𝑙𝑠 ℒ, 

if ℒ′ ≃ ℒ. Correspondingly, 𝑙𝑠ℒ′ →ℒ  can be said B-consistent. 

Next, we define lifecycle specialization based on a fragment of a lifecycle, namely L-fragment, and 

discuss how an L-fragment can be used to construct a B-consistent specialized lifecycle, as shown in 

Theorem 4.1. 

Definition 4.5: (L-fragment and AL-fragment). An L-fragment ℓ = (𝑆,⇒,⇒𝑖𝑛, ⇒𝑜𝑢𝑡) of lifecycle ℒ can 

be defined as a sub-lifecycle of ℒ where, 

—𝑆 ⊆ ℒ. 𝑆 \ {𝑠𝑖𝑛𝑖𝑡} ∪ 𝑆𝑓 is a finite set of states where 𝑆𝑓 are final states in ℒ, 

—⇒⊆ 𝑆 × 𝑅ℒ  ×  𝐺ℒ  ×  𝑆 ⊆  ℒ.⇒ are transitions in ℓ where 𝑅ℒ are business rules and 𝐺ℒ are guards in ℒ, 

—⇒𝑖𝑛= ℒ.⇒  ∩  ((ℒ. 𝑆\𝑆)  ×  𝑅ℒ  ×  𝐺ℒ  ×  𝑆)) is a finite set of transitions that enter to ℓ, 

—⇒𝑜𝑢𝑡= ℒ.⇒ ∩ (𝑆 ×  𝑅ℒ  ×  𝐺ℒ  ×  (ℒ. 𝑆\𝑆)) is a finite set of transitions that exit from ℓ. 

An AL-fragment can be defined as a special case of an L-fragment where it holds the atomicity 

property namely SESE which is used for the analysis of program control-flow graphs in the compiler 

theory [Johnson et al., 1994] and the structure analysis of business process models [Vanhatalo et al., 

2007]. 

Definition 4.6: (Refine, Refined L-fragment). Given a lifecycle specialization 𝑙𝑠ℒ′ → ℒ, we can define 

𝑙𝑓(ℒ′ → ℒ ) = {ℓ1, ℓ2, … , ℓ𝑦} as a set of refined L-fragments for refining ℒ, where ℓ𝑖(1 ≤ 𝑖 ≤ 𝑦) is an L-

fragment in ℒ′ such that all the states and transitions of ℓ𝑖 do not exist in ℒ. 

Next, we formulate a theorem to help guarantee B-consistency of a specialized process model when 

an L-fragment is used to refines a transition or a state of the base process model.  

THEOREM 4.1 (B-CONSISTENT REFINED L-FRAGMENT). Given a specialized artifact lifecycle ℒ′ based on 

an artifact lifecycle ℒ and refined L-fragments 𝑙𝑓(ℒ′ → ℒ), we have ℒ′ ≃𝑙𝑠 ℒ if, for every refined L-

fragment ℓ𝑖 ∈ 𝑙𝑓(ℒ
′ → ℒ ), 

— ℓ𝑖 is considered as an AL-fragment if  ℓ𝑖 refines a transition 𝑠𝑥 ⇒𝑡 𝑠𝑦 ∈ ℒ.⇒ or,  

— if  ℓ𝑖 refines a state 𝑠 ∈ ℒ. 𝑆, then for every incoming state 𝑠𝑥 ∈ ℒ. 𝑆 that is fired to 𝑠 and every 

outgoing 𝑠𝑦 ∈ ℒ. 𝑆 that is fired from 𝑠, 𝑠𝑦 is reachable from 𝑠𝑥 via some L-occurrences of ℓ𝑖. 

The proof of THEOREM 4.1 can be found in the appendix. 

The first statement of THEOREM 4.1 is for a case where an L-fragment refines a transition of a 

lifecycle in the base ACP model, the L-fragment must be atomic in order to preserve B-consistency. A 
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transition is naturally atomic by its definition thus the refined fragment is confined to be atomic. On 

the other hand, the second statement is used for a case where an L-fragment refines a state of a 

lifecycle in the base ACP model. With the state refinement, it is more complicated as a state may have 

multiple entry and exit states/transitions associated with it. Therefore, the condition is put in place to 

ensure that after the refinement, all the exit states associated with exit transitions are reachable from 

the entry states. 

Next, we show in THEOREM 4.2 that the B-consistent refinement guarantees the soundness of the 

specialized lifecycle.  

THEOREM 4.2: (SOUND AND B-CONSISTENT REFINEMENT). Given an ACP specialization 𝑝𝑠Π′ → Π based on 

an artifact refinement and a set of refined L-fragments 𝑙𝑓(ℒ′ → ℒ ) (ℒ′ can be the lifecycle of any 

specialized artifact in Π′. 𝑍). Π′ is a sound B-consistent specialization of Π if every  ℓ𝑖 ∈ 𝑙𝑓(ℒ
′ → ℒ ) holds 

all the conditions in THEOREM 4.1 and ℓ𝑖 is sound. 

The proof of THEOREM 4.2 can be found in the appendix. 

The major component of the THEOREM 4.2 is based on the soundness (of each of the fragments) that is 

used to refine a state or a transition of an artifact in the base process model. If all the fragments are 

sound, then the refinement is sound and so is the specialized process model.  

Next, we define a behavior-consistent specialized artifact and a behavior-consistent specialized 

process based on the notion of B-consistent (lifecycle) specialization.  

Definition 4.7: (Behavior-consistent specialized artifact and process). Given an ACP specialization 

𝑝𝑠Π′ → Π, Π′ is a behavior-consistent specialization of Π if 𝑙𝑠ℒ′Π → ℒΠ is B-consistent. Similarly, given a 

specialized artifact 𝐶′ ∈ Π′. 𝑍 based on 𝑝𝑠Π′ → Π, 𝐶′ is a behavior-consistent specialization of 𝐶 if 𝑙𝑠ℒ′𝐶 → ℒ𝐶 is 

B-consistent.  

4.2.3 Sync specialization 

Next, we discuss how changes of artifact synchronization impact the behavior of a specialized process. 

We can group the methods of specialization of synchronizations (so-called sync specialization) into the 

following three primitive operations as follows. 

—Sync refinement refers to a method for decomposing a sync rule in a base model into a set of refined 

sync rules in a specialized model. 

—Sync extension refers to a method to add the synchronization between a new artifact and an existing 

artifact with the introduction of a set of exnteded sync rules. 

—Sync reduction refers to a method for removing synchronization between existing artifacts from a 

specialized process model. 

Table 4.1 shows the overall relations between the three construction methods of ACP specialization 

introduced in Section 4.1 and the three primitive sync specialization operations. Note that the artifact 

extension generally requires both sync extension and sync refinement operations. The details of each 

operation are discussed later in this section. 

 
Table 4.1: Relations between ACP specialization methods and Sync specialization  

 Sync 

extension 

Sync 

refinement 

Sync 

reduction 

Artifact refinement    

Artifact extension    

Artifact reduction    

Next, we discuss synchronization dependencies and the consistency criteria used for behavioral-

consistent process specialization. In an essence, the behavior consistency should be preserved between 
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the composed lifecycle of specialized artifacts in a specialized model and their composition in the process 

model it derives from. We formally define synchronization specialization between lifecycles and then we 

discuss how the synchronization introduced can be consistently handled w.r.t each of the three sync 

specialization operations introduced—refinement, extension, and reduction. 

Definition 4.8: (Sync specialization). Given ℒ′𝑋 and ℒ′𝑌 be artifact lifecycles in an ACP model Π′ that 

are behavior-consistent specializations of artifact lifecycles ℒ𝑋 and ℒ𝑌 in an ACP model Π. We denote 

𝑠𝑠(ℒ′𝑋,  ℒ′Y) → (ℒX, ℒY) ∶  𝜑(ℒ
′
𝑋, ℒ

′
Y)  →  𝜑(ℒX, ℒY)  ∪  {𝜀} for a sync specialization (total) function that projects a 

sync rule of both ℒ′𝑋 and ℒ′Y onto its corresponding sync rule of ℒ𝑋 and ℒY or an empty element 𝜀, where  

𝜑(ℓ𝑥, ℓ𝑦)  =  {𝑟 ∈ 𝛱. 𝑅 | ∃(𝑠𝑖 , 𝑟, 𝑔, 𝑠𝑗) ∈  ℓ𝑥. ⇒ ∧  ∃(𝑠𝑚 , 𝑟, 𝑔, 𝑠𝑛) ∈  ℓ𝑦 . ⇒} are sync rules for ℓx and ℓy. 

A sync rule is considered unchanged if, for every sync rule 𝑟 ∈ 𝜑(ℒ′𝑋, ℒ
′
Y), 𝑟 ∈

𝜑(ℒX, ℒY), 𝑠𝑠(ℒ′X,  ℒ′Y) → (ℒX, ℒY) . 

4.2.4 Synchronized Fragments 

In this section, we define a synchronized region to model synchronization dependencies between 

lifecycles using the S-region and SL-fragment notions proposed in [Yongchareon et al., 2015]. An S-

region is used to represent a set of synchronized L-fragments and the atomicity property of an S-region 

can be verified via checking the composability and boundedness of the SL-fragments contained in the S-

region. This can be done adapting the proposed fragmental composition technique initially proposed in 

[Yongchareon et al., 2015]. Technically, we need to determine if SL-fragments of an S-region can form 

an atomic S-region, called AS-region. 

Definition 4.9: (SL-fragment and S-region). Let Π be an ACP model, we can define a S-region 𝜔 =
 (𝛤, 𝑅𝑠𝑦𝑛𝑐) in Π where,  

—𝛤 = {ℓ𝐶1 , ℓ𝐶2 , … , ℓ𝐶𝑥} are L-fragments in synchronization, where ℓ𝐶𝑖 ∈ 𝛤(1 ≤ 𝑖 ≤ 𝑥) is an SL-fragment of 

ℒ𝐶𝑖  (𝐶𝑖 ∈ Π. 𝑍), 

—𝑅𝑠𝑦𝑛𝑐 ⊆ Π. 𝑅 are sync rules exclusively defined for the synchronization of transitions of some L-

fragments in 𝛤. 

 For example, In Figure 4.2 (a), An S-region 𝜔𝑎 has an SL-fragment 𝑙1 synchronized with an SL-

fragment 𝑙2 via two sync rules 𝑟1 and 𝑟2. In Figure 4.2 (b), An S-region 𝜔𝑏 consists of SL-fragments 𝑙3 
and 𝑙4, and sync rules 𝑅𝑠𝑦𝑛𝑐 = {𝑟1, 𝑟2, 𝑟3}. Note that a sync rule 𝑟4 is not in 𝜔𝑏 since it is not part of 𝑙3 and 

𝑙4. 
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Figure 4.2. An example of S-regions and SL-fragments. 

LEMMA 4.1 (ATOMIC COMPOSITION OF SL-FRAGMENTS). Given an ACP model Π, let an S-region 𝜔 =
 (𝛤, 𝑅𝑠𝑦𝑛𝑐) and 𝑍𝛤 ⊆ Π. 𝑍 be artifacts such that there exists an L-fragment for each of 𝑍𝛤 in 𝛤. The 

composed lifecycle of all the SL-fragments in 𝛤 is AL-fragment and sound if, for each ℓ𝐶𝑖 ∈ 𝛤, the 

following statements hold: 

(1) ℓ𝐶𝑖 is an AL-fragment, 

(2) ∀ℒ𝐶𝑗(𝐶𝑗 ∈ Π. Z\𝑍
𝛤), 𝜑(ℓ𝐶𝑖 , ℒ𝐶𝑗) = ∅, 

(3) ∀ℓCx , ℓCy ∈ 𝛤, ∀𝑟 ∈ 𝜑 (ℒ𝐶𝑥 , ℒ𝐶𝑦) , ∃𝑠 ∈ ℒ𝐶𝑖 . 𝑆, ∃𝑠𝑠 ∈ ℓ
𝐶𝑖 . 𝑆, 𝑠𝑠

𝑟
⇒ 𝑠 ∈ ℒ𝐶𝑖 . ⇒ → 𝑠𝑠

𝑟
⇒ 𝑠 ∈ ℓ𝐶𝑖 . ⇒ ∧  𝑟 ∈ 𝑅𝑠𝑦𝑛𝑐, 
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(4)∀ℓCx , ℓCy ∈ 𝛤, ∀𝑟 ∈ 𝜑 (ℒ𝐶𝑥 , ℒ𝐶𝑦) , ∃𝑠 ∈ ℒ𝐶𝑖 . 𝑆, ∃𝑠𝑡 ∈ ℓ
𝐶𝑖 . 𝑆, 𝑠

𝑟
⇒ 𝑠𝑡 ∈ ℒ𝐶𝑖 . ⇒ → 𝑠

𝑟
⇒ 𝑠𝑡 ∈ ℓ

𝐶𝑖 . ⇒ ∧  𝑟 ∈ 𝑅𝑠𝑦𝑛𝑐. 

The proof of LEMMA 4.1 can be found in the appendix. 

Note that Conditions (2), (3), and (4) in LEMMA 4.1 limit any two to-be-composed SL-fragments in 𝛤  

to contain all the transitions and the necessary sync rules required for synchronization. 

Definition 4.10: (ASL-fragment and AS-region). Given an S-region 𝜔 =  (𝛤, 𝑅𝑠𝑦𝑛𝑐), if 𝜔 holds Lemma 

4.1, then 𝜔 is called an atomic S-region (AS-region) and each L-fragment in 𝛤 is called an ASL-

fragment. 

4.2.5 Sync extension 

For a sync extension operation, if a new (synchronized) artifact is added (or extended) into a specialized 

process model, the consistency must be ensured not undermined by the behavior of the added artifact. 

We discuss how we can check the composability of the extended artifact and an L-fragment the artifact 

synchronizes with. We show that LEMMA 4.2 can be used to preserve B-consistency of a specialized 

model with the added artifact and its base process model.  

Next, we define an ex-lifecycle for an artifact that can be entirely synchronized within an L-fragment 

of an existing artifact. A lifecycle ℒ𝐶𝑗 is fully-embedded in a lifecycle ℒ𝐶𝑖 if all the scope of the 

synchronization between some L-fragment ℓ𝐶𝑖 ≺ ℒ𝐶𝑖 and ℒ𝐶𝑗 are within the boundary of ℓ𝐶𝑖. 

Definition 4.11: (Ex-lifecycle, ⊐). Given ℒ′𝑋 be a lifecycle in an ACP model Π′ that specializes a 

lifecycle ℒ𝑋 in an ACP model Π such that Π′ ≃ Π, a lifecycle ℒ′𝑌 of an extended artifact 𝑌′ in Π′ 
synchronizes ℒ′𝑋 with a set of lifecycle specializations {𝑙𝑠ℒ′𝑋 → ℒ𝑋, 𝑙𝑠ℒ′Y → ε}, and a sync specialization 

𝑠𝑠(ℒ′𝑋, ℒ′Y) ⟶ (ℒX, ℒY) such that 𝑝𝑠(𝑌′) =  𝜀 ∧  𝜑(ℒ′X, ℒ
′
Y) ≠ ∅ and for every sync rule 𝑟′ ∈ 𝜑(ℒ′𝑋, ℒ

′
Y), 𝑠𝑠(𝑟

′) =

𝜀, we have ℒ′𝑌 as an ex-lifecycle of ℒ′𝑋  if ℒ′𝑌 has its entire lifecycle synchronized with some transitions 

in a refined L-fragment ℓ𝑖 where ℓ𝑖 ∈ 𝑙𝑓(ℒ
′
𝑋 → ℒX), also denoted as ℓ𝑖 ⊐ ℒ

′
𝑌, i.e., 

—for every entry transition and exit transition ⇒𝑡 in ℒ′𝑌, ⇒𝑡 synchronizes with some transition in ℓ𝑖; 
and, 

—there does not exist sync rule 𝑟𝑧
′ ∈ 𝜑(ℒ′𝑋, ℒ

′
Y) such that 𝑟𝑧

′ synchronizes any transition that exists in 

ℒ′𝑌 with any transition that does not exist in ℓ𝑖. 

The ex-lifecycle notion can be used to ensure that every L-occurrence of an extended artifact can 

reach the final state within some refined (and synchronized) L-fragment. In addition, we observe that: if 

an extended artifact terminates after all existing artifact(s) have terminated, then the composed 

lifecycle (of these all artifacts) contains some L-occurrences that lead to open-ended termination 

inconsistency (when comparing to the composition of existing artifacts). It is undesirable that such a 

case occurs in a specialized process since the specialized process cannot terminate itself at the same 

state as its base process does. Therefore, we do not consider this case in our study when checking its 

behavior consistency and we assume that all extended artifacts must terminate before all existing 

artifacts terminate. Figure 4.3 shows an example of the case where the open-ended termination 

inconsistency occurs in the process (b) that specializes its base process (a). 
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Figure 4.3: Open-ended termination inconsistency. 

LEMMA 4.2. Let ℓ ∈ 𝑙𝑓(ℒ′𝑋 → ℒY) be a refined L-fragment that synchronizes with an extended 

lifecycle ℒ′𝑌. We have that ℒ′𝑌⨂ℓ is B-consistent with ℓ if ℓ ⊐ ℒ′Y if ℓ is an AL-fragment. 

The proof of LEMMA 4.2 can be found in the appendix. 
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From Lemma 4.2, if ℓ ⊐ ℒ′𝑌 and ℓ is an ASL-fragment, then ℒ′𝑌 is also considered as an ASL-

fragment, and therefore we can build an AS-region for ℒ′𝑌 and ℓ. If an AS-region can be built containing 

a refined L-fragment of an artifact and a lifecycle of a different artifact, then we have the whole lifecycle 

fully embedded in the refined L-fragment. Therefore, we can ensure that the B-consistency between the 

refined L-fragment and the embedded lifecycle as the AS-region guarantees the atomicity of the 

composition of such two, i.e. if an AS-region cannot be formed then the B-consistency is violated. 

4.2.6 Sync refinement 

4.2.6.1 Refinement of synchronization between two existing artifacts 

There are two specialization patterns of the synchronization between two existing artifacts. First is the 

case where one artifact is refined while the other one is unchanged, and the second case is when both 

artifacts are refined.  
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Figure 4.4: Sync refinements of existing artifacts. 

Example 4.2. Figure 4.4 (b) illustrates an example of the sync refinement of a single artifact. We can 

see that a sync rule 𝑟1 in Figure 4.4 (a) is refined to 𝑟′1−1 and 𝑟′1−2 with a refined SL-fragment in an 

artifact 𝐶′1 containing states 𝑠𝑚 and 𝑠𝑛. While Figure 4.4 (c) and (d) demonstrate the sync refinement 

work for artifacts 𝐶′1 and 𝐶′2. 

Next show how we apply the AS-region notion to help verify the B-consistency condition. 

Definition 4.12: (Refined S-region). Let ℒ′𝑋 and ℒ′𝑌 be specialized artifact lifecycles in an ACP model 

Π′ and ℒ′𝑋 and ℒ′𝑌 be B-consistent with artifact lifecycles ℒ𝑋 and ℒ𝑌 in an ACP model Π, respectively, 

with lifecycle specializations {𝑙𝑠ℒ′𝑋 → ℒX, 𝑙𝑠ℒ′𝑌 → ℒY} and a sync specialization 𝑠𝑠(ℒ′𝑋, ℒ′Y)→ (ℒX, ℒY), such that 

for every sync rule 𝑟′ ∈ 𝜑(ℒ′𝑋, ℒ
′
Y), 𝑠𝑠(𝑟

′)  ≠ 𝜀. Let a sync rule 𝑟 ∈ 𝜑(ℒ𝑋, ℒY) be used to synchronize a 

transition ⇒𝑖 in ℒ𝑋 with a transition ⇒𝑗 in ℒ𝑌. A refined S-region can be defined as follows. 

—If an L-fragment ℓ𝑚 ∈ 𝑙𝑓(ℒ
′
𝑌 → ℒY) refining ⇒𝑗 is synchronized with a transition ⇒𝑡∈ ℒ

′
𝑋. ⇒, then we 

define a refined S-region 𝜔 = ({ℓ𝑚 , ℓ𝑛} , 𝜑(ℓ𝑚, ℓ𝑛)) where an (unrefined) L-fragment ℓ𝑛 contains a single 

transition ⇒𝑡 and its source state and target state, such that for every sync rule 𝑟′ ∈
𝜑(ℓ𝑚, ℓ𝑛), 𝑠𝑠(𝑟

′) =  𝑟. 

—If an L-fragment ℓ𝑚 ∈  𝑙𝑓(ℒ
′
𝑌 → ℒY) refining ⇒𝑗 is synchronized with an L-fragment ℓ𝑛 ∈  𝑙𝑓(ℒ

′
X → ℒY) 

refining ⇒𝑖, then we define a refined S-region 𝜔 = ({ℓ𝑚, ℓ𝑛} , 𝜑(ℓ𝑚, ℓ𝑛)) such that for every sync rule 

𝑟′ ∈ 𝜑(ℓ𝑚, ℓ𝑛), 𝑠𝑠(𝑟
′) =  𝑟. 

Example 4.3. In Figure 4.4 (b), an S-region 𝜔𝑎 is defined as a refined S-region of its base process 

model in Figure 4.4 (a) based on the first statement of Definition 4.12. The refined S-region consists of 

the shaded L-fragment of 𝐶′1, the L-fragment that is expanded from a transition (𝑠3 ⇒ 𝑠4) of 𝐶′2, and a set 

of refined sync rules {𝑟′1−1, 𝑟
′
1−2}. In Figure 4.4 (c) and (d), both refined S-region 𝜔𝑏 and 𝜔𝑐 are defined 

based on the second statement of Definition 4.12. 

LEMMA 4.3. Given two specialized artifact lifecycles ℒ′𝑋 and ℒ′𝑌 that are B-consistent with artifact 

lifecycles ℒ𝑋 and ℒ𝑌, a refined S-region 𝜔 = ({ℓ𝑚, ℓ𝑛}, 𝜑(ℓ𝑚, ℓ𝑛)) where ℓ𝑚 refines a transition ⇒𝑖 in ℒ𝑋 

and ℓ𝑛 refines a transition ⇒𝑗 in ℒ𝑌, if ℓ𝑚 and ℓ𝑛 are ASL-fragments, then ℓ𝑚⨂ℓ𝑛 is B-consistent with 

⇒𝑖 ⨂ ⇒𝑗. 
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The proof of LEMMA 4.3 can be found in the appendix. 

4.2.6.2 Refinement of synchronization between one existing artifact and one extended artifact 

We can apply the notion of ex-lifecycle from the sync extension method to the refinement of 

synchronization between an existing artifact and an extended artifact as follows. 

LEMMA 4.4. Given ℒ′𝑋 and ℒ′𝑌 be artifact lifecycles that are B-consistent with artifact lifecycles ℒ𝑋 

and ℒ𝑌, 𝜔 = ({ℓ𝑚, ℓ𝑛}, 𝜑(ℓ𝑚, ℓ𝑛)) be a refined S-region where ASL-fragment ℓ𝑚 refines a transition ⇒𝑖 of 

ℒ𝑋 and ASL-fragments ℓ𝑛 refines a transition ⇒𝑗 of ℒ𝑌, and ℒ′𝑍 be an extended lifecycle that 

synchronizes with 𝜔, we can say that ℓ𝑚⨂ ℓ𝑛⨂ ℒ′𝑍 is B-consistent with ⇒𝑖 ⨂ ⇒𝑗 if, 

ℓ𝑚 ⊐ ℒ
′
𝑍  ∧  ℓ𝑛 ⊐ ℒ

′
𝑍 .  

The proof of LEMMA 4.4 can be found in the appendix. 

4.2.6.3 Refinement of synchronization between one existing artifact and a set of extended artifacts 

We reuse the sync extension method and the notion of ex-lifecycle for the synchronization of multiple 

extended artifacts. Suppose that we have an existing artifact 𝐶3 and extended artifacts 𝐶1 and 𝐶2. If 𝐶1 
has it lifecycle completely synchronized and encapsulated within the lifecycle of 𝐶2 and 𝐶2 ⊐ 𝐶3, then we 

can transitively consider 𝐶1 as an ex-lifecycle of 𝐶3. Next, we define a transitive ex-lifecycle to capture the 

transitivity of ex-lifecycles. 

Definition 4.13: (Transitive ex-lifecycle, ⊐+). Give ℒ′𝑋 be a specialized artifact lifecycle that is B-

consistent with an artifact lifecycle ℒ𝑋, ℒ′𝑌 and ℒ′𝑍 be lifecycles of two extended artifacts 𝑌′ and 𝑍′, 
respectively with a set of lifecycle specializations {𝑙𝑠ℒ′𝑋 → ℒX , 𝑙𝑠ℒ′Y → ε, 𝑙𝑠ℒ′Z → ε} and a set of sync 

specializations {𝑠𝑠(ℒ′𝑋, ℒ′Y) ⟶ (ℒX, ℒY), 𝑠𝑠(ℒ′Y, ℒ′Z) ⟶(ℒY, ℒZ)}, ℒ
′
𝑍 is a transitive ex-lifecycle of ℒ′𝑋 if ℒ′𝑍 is an ex-

lifecycle of ℒ′𝑌 and ℒ′𝑌 is an ex-lifecycle of ℒ′𝑋 such that 

—𝑝𝑠 (𝑌′) =  𝜀 ∧  𝜑(ℒ′𝑋, ℒ
′
Y) ≠ ∅  and 𝑝𝑠 (𝑍′) =  𝜀 ∧  𝜑(ℒ′𝑌, ℒ

′
Z) ≠ ∅, 

—∀𝑟′ ∈ 𝜑(ℒ′𝑋, ℒ
′
Y) ∪ 𝜑(ℒ

′
Y, ℒ

′
Z), 𝑠𝑠(𝑟

′) = 𝜀. 

Correspondingly, we have that a refined L-fragment ℓ𝑖 ⊐
+ ℒ′𝑍 where ℓ𝑖 ∈ 𝑙𝑓(ℒ

′
𝑋 → ℒX) if ℓ𝑖 ⊐ ℒ

′
𝑌 and ℒ′Z 

⊐ ℒ′Y. 

Next, Lemma 4.5 shows how Lemma 4.4 can be extended to consider the transitivity of ex-lifecycles 

for the B-consistency checking. 

LEMMA 4.5. Let two artifact lifecycles ℒ′𝑋 and ℒ′𝑌 be B-consistent with artifact lifecycles ℒ𝑋 and ℒ𝑌, 

and let a refined S-region 𝜔 = ({ℓ𝑚, ℓ𝑛}, 𝜑(ℓ𝑚 , ℓ𝑛)) where ASL-fragments ℓ𝑚 refines a transition ⇒𝑖 in ℒ𝑋 

and ASL-fragments ℓ𝑛 refines a transition ⇒𝑗 in ℒ𝑌. Given ℒ′𝑋 be an extended lifecycle that 

synchronizes with ℓ𝑚 or ℓ𝑛 in 𝜔 and 𝑍𝑒𝑥 be a set of extended lifecycles that synchronize with ℒ′𝑋, the 

lifecycle composition of ℓ𝑚, ℓ𝑛, ℒ′𝑋 and every artifact in 𝑍𝑒𝑥 is B-consistent with ⇒𝑖 ⨂ ⇒𝑗 if, 

∀ℒ′𝐶𝑖{𝐶
′
𝑖 ∈ 𝑍

𝑒𝑥}, ℓ𝑚 ⊐
+ ℒ′𝐶𝑖 ∧ ℓ𝑛 ⊐

+ ℒ′𝐶𝑖 . 

The proof of LEMMA 4.5 can be found in the appendix. 

4.2.7 Sync reduction 

Based on the artifact reduction method we can remove an artifact in a process that specializes its base 

process. By doing this, all synchronizations between such removed artifact and all other related 

artifacts that synchronize with it should also be removed. The effect of the deletion of one artifact 

should propagate to the removal of a part of a lifecycle of another artifact(s) that the deleted artifact is 
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synchronized with. The deleted artifact must be guaranteed not violating B-consistency. Here, we 

discuss how ASL-fragments and AS-regions can be reused to define a reducible lifecycle of an artifact. 

Definition 4.14: (Reducible L-fragment). Given ℒ′𝑋 be an artifact lifecycle in an ACP model Π′ that 

specializes an artifact lifecycle ℒ𝑋 in a base ACP model Π  and ℒ′𝑋 is B-consistent with ℒ𝑋, assume an 

artifact lifecycle ℒ𝑌 of 𝑌 ∈ Π. 𝑍 that is synchronized with ℒ𝑋 in Π be removed from Π′ with a set of 

lifecycle specializations {𝑙𝑠ℒ′𝑋 → ℒX , 𝑙𝑠ℒ′Y → ℒY} and a sync specialization 𝑠𝑠(ℒ′𝑋, ℒ′Y) ⟶ (ℒX, ℒY) such that ∄𝐶′ ∈

Π′. 𝑍 → 𝑝𝑠(𝐶′)  =  𝑌. If an L-fragment ℓ in ℒ𝑋 and s ℒ𝑌 are ASL-fragments and ℓ is an AS-region, then ℓ 
can be considered a reducible L-fragment of ℒ𝑋 for ℒ𝑌. 
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Figure 4.5: Examples of reduced lifecycles based on sync reduction. 

Example 4.4. In Figure 4.5 (a), an artifact 𝐴2 is to be removed in a specialized process model. We can 

see that the L-fragment ℓ1 of an artifact 𝐶1 synchronizes with an artifact 𝐶2 and both ℓ1 and 𝐶2 are ASL-

fragments from which an AS-region can be constructed. Therefore, we have ℓ1 as a reducible L-fragment 

of 𝐶1 for 𝐶2. Similarly, in Figure 4.5 (b), an L-fragment ℓ2 of 𝐶1 and an L-fragment ℓ3 of 𝐶2 are 

synchronized with 𝐶3. So, we can construct one AS-region consisting of ℓ2 and 𝐶3 as well as another one 

AS-region consisting of ℓ3 and 𝐶3. As such, we have ℓ2 and ℓ3 as reducible L-fragments of 𝐶1 and 𝐶2, 
respectively, for 𝐶3. 

Definition 4.15: (Reduced transition). Given ℒ𝑌 be an artifact lifecycle that is removed from an ACP 

model Π′ and 𝐿𝑒𝑥 be a set of artifact lifecycles that synchronize with ℒ𝑌, if, for every artifact lifecycle ℒ𝐶𝑖 

in 𝐿𝑒𝑥, there exists a reducible L-fragment ℓ𝐶𝑖 of ℒ𝐶𝑖 for ℒ𝑌, then ℓ𝐶𝑖 can be reduced to a reduced transition 

𝑠𝑖 ⇒ℓ𝐶𝑖 𝑠𝑗, where 𝑠𝑖 is the state entering to ℓ𝐶𝑖 and 𝑠𝑗 is the exit state of ℓ𝐶𝑖. 

Example 4.5. Based on Example 4.4, in Figure 4.5 (a), an ASL-fragment ℓ1 of 𝐶1 can be reduced to a 

reduced transition 𝑠1 ⇒ℓ1 𝑠3 in 𝐶′1. Similarly, in Figure 4.5 (b), ASL-fragments ℓ2 of 𝐶1 and ℓ3 of 𝐶2 can 

be reduced to reduced transitions 𝑠1 ⇒ℓ2 𝑠4 in 𝐶′1 and 𝑠1 ⇒ℓ3 𝑠3 in 𝐶′2, respectively. 

Importantly, once an artifact is removed and an effected lifecycle is reduced, all sync rules associated 

with that lifecycle should also be either reduced or removed. 

Definition 4.16: (Reduced sync rule). Based on Definition 4.15, given a set of reducible L-fragments 

𝐿𝑟𝑒 for a removed artifact ℒ𝑌, for every reducible L-fragment ℓ𝑚 in 𝐿𝑟𝑒, for every sync rule 𝑟 ∈ 𝜑(ℓ𝑚, ℒ𝑌), 
𝑟 can be: 

—removed if ℓ𝑚 is synchronized with only ℒ𝑌 and ℓ𝑚 is not synchronized with another L-fragment in 

𝐿𝑟𝑒; or, 

—reduced into a reduced sync rule 𝑟ℓ where 𝑟ℓ is used to synchronize a transition ⇒ℓ𝑚 with a transition 

⇒ℓ𝑛  if there exists ℓ𝑛 in  𝐿𝑟𝑒 such that ℓ𝑚 is synchronized with ℓ𝑛. 

Example 4.6. In Figure 4.5 (a), an artifact 𝐶2 is removed in a specialized process model. The result of 

removal propagates to the reduction of an L-fragment containing state 𝑠2 with its entering and exiting 

transitions that are synchronized with 𝐶2. We can see that the L-fragment can be reduced to a single 

transition (𝑠1 ⇒ℓ1 𝑠3) in 𝐶′1. All the sync rules that are used by 𝐶1 and 𝐶2 can also be removed based on 

the first condition of Definition 4.16.  

Example 4.7. In Figure 4.5 (b), an artifact 𝐶3 is removed in a specialized process model leaving only 

artifacts 𝐶′1 and 𝐶′2 where the affected ASL-fragments of both artifacts are reduced into reduced 
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transitions. All synchronizations among 𝐶1, 𝐶2, and 𝐶3 are also reduced to a reduced sync rule 𝑟′𝑥 based 

on the second condition of Definition 4.16. The reduced sync rule is then used to synchronize between a 

reduced transition resulting from the reduction of an L-fragment in 𝐶′1 and a reduced transition 

resulting from the reduction of an L-fragment in 𝐶′2. 

Next, we consider a possible propagation of a result from the removal of an artifact. If an artifact is 

removed, then the sync reduction should be applied to all related lifecycles that the artifact is 

synchronized with, including a synchronization that does not directly occur from the removed artifact. 

Definition 4.17: (Propagated sync reduction). Based on Definition 4.15, given a set of reducible L-

fragments 𝐿𝑟𝑒 for a removed artifact ℒ𝑌, for every reducible L-fragment ℓ𝑚 in 𝐿𝑟𝑒, if there exists an L-

fragment ℓ𝑛 in ℒ𝑋 of an artifact 𝑋 in a base ACP model such that ℓ𝑛 is an ASL-fragment, then ℓ𝑛 is a 

reducible L-fragment of ℒ𝑋 for ℒ𝑌. We say that the effect of the removal of ℒ𝑌 propagates to the 

reduction of ℓ𝑛 via ℓ𝑚. 
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Figure 4.6: Example of propagated sync reduction. 

Example 4.8. In Figure 4.6, an artifact 𝐶3 is removed in the specialized process model. We can see 

that both L-fragments ℓ1 of an artifact 𝐶1 and ℓ2 of an artifact 𝐶2 are reducible L-fragments, and ℓ1 has 

its sub L-fragment (containing state s4) synchronized with an L-fragment ℓ3 of 𝐶4. The sub L-fragment 

in 𝐶1 and ℓ3 can be considered as ASL-fragments and can be formed as an AS-region. The removal of an 

artifact 𝐶3 not only causes the reduction of ℓ2 but its effect also propagates to cause the reduction of ℓ3. 
Therefore, we have ℓ3 reduced into a reduced transition 𝑠1 ⇒ℓ3 𝑠3 in 𝐶′4 and all sync rules defined in ℓ3 

reduced to a reduced sync rule 𝑟′𝑦 for the synchronization between 𝐶′1 and 𝐶′4. 

LEMMA 4.6. Let an artifact lifecycle ℒ𝑌 that is synchronized with artifact lifecycle ℒ𝑋 be removed. Let 

𝐿𝑟𝑒 be the set of all possible reducible L-fragments for ℒ𝑌 and 𝑇𝑟𝑒 be a set of reduced transitions, then 

the lifecycle composition of all transitions in 𝑇𝑟𝑒 is B-consistent with the lifecycle composition of all L-

fragments in 𝐿𝑟𝑒 and ℒ𝑌. 

The proof of LEMMA 4.6 can be found in the appendix. 

4.2.8 Sync specialization consistency 

This section discusses a complete sync consistency (S-consistency) property of ACP model by taking the 

sync specialization into account. 

Definition 4.18: (S-consistent). Given Π′ be an ACP model that specializes an ACP model Π with 

𝑝𝑠Π′ → Π and 𝑠𝑠(ℒ′𝑋, ℒ′Y) ⟶(ℒX , ℒY), 𝑠𝑠(ℒ′𝑋, ℒ′Y) ⟶(ℒX, ℒY) is said to be S-consistent if, 

—LEMMA 4.2 holds for the sync extension based on Definition 4.11, 

—LEMMA 4.3 and LEMMA 4.5 hold for the sync refinement based on Definition 4.12 and Definition 4.13, 

respectively, 

—LEMMA 4.6 holds for the sync reduction based on Definition 4.14. 

Next, we take both the lifecycle specialization and the sync specialization into account to verify 

whether a specialized ACP model is B-consistent with its base ACP model. 

THEOREM 4.3. Given Π′ be an ACP model that specializes an ACP model Π with 𝑝𝑠Π′ → Π, Π′ is a 

behavior-consistent specialization of Π if,  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



—∀𝐶′𝑖 ∈ Π
′. 𝑍, 𝑝𝑠(𝐶′𝑖) =  𝐶𝑖 ∈ Π. Z, 𝑙𝑠ℒ′𝐶𝑖  → ℒ𝐶𝑖

 is B-consistent, 

—∀𝐶′𝑥 ∈ Π
′. 𝑍,∀𝐶′𝑦 ∈ Π

′. 𝑍, 𝑠𝑠(ℒ′𝐶𝑥 , ℒ
′
𝐶𝑦) → (ℒ𝐶𝑥 , ℒ𝐶𝑦)

 is S-consistent. 

The proof of THEOREM 4.3 can be found in the appendix. 

5. EXAMPLE REVISITED 

In this section, we illustrate how our business process specialization approach can be applied to the 

reuse of purchasing processes defined by buyers and sellers (or suppliers). We use our motivating 

business process introduced in Section 2 as a generic process to start with. Now, in the response to the 

high growth of sales and the organizational changes of both companies, both parties set new 

requirements for the purchasing processes while keeping their original processes for the purpose of 

historical analysis and reporting. Based on the new requirements, both the buyers and the supplier 

must design a new purchasing process based on the extension of their existing process. Here, we 

describe the requirements in detail. First, the buyers want to have their purchasing quotes approved 

before submitting a purchase order to the supplier; therefore, an additional quote artifact is needed to 

incorporate into the processes. Second, the supplier needs a picking list document to support its internal 

inventory operations and a shipping list for the delivery. In addition, the supplier also allows partial 

payments for wholesale buyers. Finally, they all agreed with their new process model (namely, Offline 

ordering process) that is a specialization of the generic purchasing process, as illustrated in Figure 5.1. 

Gray-shaded artifacts and states (with corresponding business rules) are used for the refinement and 

extension on the generic purchasing process as needed by the requirements. 
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stocking

l2
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Figure 5.1: Offline ordering process. 

In Figure 5.1, we can see that Offline Purchase Order and Offline Invoice specialize Purchase Order 

and Invoice, respectively, in the generic purchasing process (cf. Figure 2.1). The specialization of these 

two artifacts is achieved by applying the artifact refinement method (represented using atomic L-

fragments ℓ1 and ℓ2 on Offline Purchase Order and refined L-fragment ℓ3 on Offline Invoice). We can 

see that Shipping List, Picking List, and Quote are introduced and extended to the offline purchasing 

process in which they can be achieved using the artifact extension method. The Picking List and Quote 

artifacts synchronize with Offline Purchase Order within AL-fragments ℓ1 and ℓ2, respectively. We 

apply sync extension to Shipping List and Offline Purchase Order, which are ex-lifecycles of Offline 

Purchase Order. We can see that Shipping Order specializes its base class without any lifecycle 

refinement; however, it defers its initial synchronization with Offline Purchase Order (from after the 

confirmed state to after the filled state). This is also like the case of the synchronization on Invoice 
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(with a refined L-fragment). In this example, every lifecycle specialization is B-consistent, and every 

sync specialization is S-consistent. If we compose all artifacts in the offline purchasing process and 

compare with the lifecycle composition of every artifact in the generic purchasing process, then we will 

have the lifecycle of the offline purchasing process covering the lifecycle of the generic purchasing 

process. Thus, the B-consistency is preserved between the lifecycle of the former and the lifecycle of the 

latter, i.e., the former is a behavior-consistent specialization of the latter. 

We have implemented a tool, namely Artifact-M, for automatic B-consistent checking of specialized 

process models based on a given base process model. The Artifact-M system requires two inputs files: 

Artifact-centric process LTS definition file and Process view definition file. The process view definition 

includes a set of specialized process models to be validated. Artifact-M and the process example used in 

this manuscript are publicly available for download at 

https://sites.google.com/site/maxsirayongchareon/artifact-m/acp-i. Process modelers can use this tool to 

help create specialized ACP process models from a base process model and check if the specialized 

models are consistent with the base model. 

6. RELATED WORK 

In the context of business processes, there are various methods in process modeling and design that 

focus on reuse, e.g., workflow inheritance, reuse of reference models, design by selection and patterns. 

Although our work in this article is based on the inheritance (or specialization) concept, we 

acknowledge other related work that aims at supporting the reuse of business processes. Section 6.1, 

6.2, and 6.3, discuss existing works based on workflow inheritance, configurable process models, and 

design by selection and patterns, respectively. 

6.1 Inheritance of workflows 

Business process design and modeling in today face some problems dealing with changes and process 

expansions to capture new business requirements in a systematic and rigid manner. Inheritance is 

considered as one of the key reuse mechanisms in an object-oriented design approach that allows for the 

definition of a subclass inherits the features of a specific superclass. A precise definition of inheritance 

(or specialization) promises to be as useful in process modeling likewise in object modeling as it can help 

organizations to better understand, maintain, and reuse process models [Wyner and Lee, 2002]. 

Particularly, inheritance concepts are useful to check whether a new workflow process inherits some 

desirable properties of an existing workflow process [van Der Aalst and Basten, 2002].  

Initially, van Der Aalst and Basten [1997] introduced four notions of lifecycle inheritance based on 

Petri nets [Reisig, 1985] with the use of branching bi-simulation [van Glabbeek and Weijland, 1996] as 

an equivalence notion. Their inheritances are projection inheritance, protocol inheritance, 

protocol/projection inheritance, and lifecycle inheritance. Projection inheritance is defined based on 

abstraction. The behavior regarding tasks that exist in both workflow nets is an observable behavior. 

Added tasks in the inherited workflow can be executed but are not observable, while protocol 

inheritance is defined based on encapsulation. Life-cycle inheritance is either a protocol and/or 

projection inheritance. 

Similarly, the behavior-consistent inheritance criteria for object life cycles have been studied by 

Schrefl and Stumptner [2002] based on the three operations similar to our three proposed specialization 

methods. They proposed a set of rules for validating behavioral consistency between the lifecycles of two 

objects. Their work is based on the idea of inheritance proposed by [Basten and van der Aalst, 2001]. 

Both Harel and Kupferman [2002] and [Van Der Aalst and Basten, 2002] similarly studied the nature 

of object-oriented system design and a notion of behavioral inheritance for classes should be considered 

to preserve trace inclusion or simulation.  

Furthermore, van Der Aalst and Basten [2001, 2002] proposed to use their inheritance notions to 

address problems to support not only the reuse (customization) of workflow process but also the 

management of changes. They proposed inheritance-preserving transformation rules (transfer rules) to 

tackle four problems of workflow processes: dynamic changes, management information, inter-

organizational interface agreements, and customizing business processes. 

Here, we focus on the customization of workflow process and management information. 
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—Management information. Caused by the change of process, multiple variants of the same process can 

be expected. The number of variants is limited in evolutional changes. However, ad-hoc changes may 

cause the number of variants up to the order of magnitude of the number of cases. In [van Der Aalst 

and Basten, 2002], an aggregated view of the work in progress can be achieved based on transfer 

rules to support the management of a workflow process. 

—Customizing business processes. Given two business processes, what is the difference between those 

processes and how much does it cost to customize a process such that it coincides with the other. This 

requires a delta analysis by deciding where both processes agree on, i.e., to determine the Great 

Common Devisor (GCD), which can be tackled by the lifecycle inheritance notion. If a set of workflow 

processes is related under inheritance relationships, it is not difficult to find the GCD given that the 

inheritance relation defines a partial order (i.e., inheritance relation is reflexive, anti-symmetric, and 

transitive [Basten and van Der Aalst, 2001]). 

Wyner and Lee, [2002, 2003] argued that even though object-oriented analysis and design 

methodologies take full advantage of object specialization hierarchy, a hierarchy of process 

specialization is not supported in major process representations, such as state diagrams, data flow 

diagrams, and UML representations. It is an implicit assumption that a process can be specialized by 

treating it as just another object. They proposed an approach in the form of a set of transformations to 

transform a process description into a specialization, which is represented by a state diagram and a 

data flow diagram. Their approach can be used as a method for categorizing and analyzing processes. 

Their process specialization definition for a state diagram is compatible with the traditional notion of 

specialization previously discussed. However, as they considered an entire process as a separate object, 

therefore dependencies among objects associated with the process are not taken into account when 

defining specialization. 

Weidlich et al. [2010] studied process model compatibility based on behavior inheritance and 

projection. Later, they proposed a concept of behavioral profile for capturing behavioral constraints of a 

process model [Weidlich et al. [2011]. Their notion is opposed to the trace equivalence concept and 

consistency measures but can be effectively used to quantify the differences between two process 

models.  

The existing work discussed above have mainly focused on a single (object) lifecycle inheritance 

otherwise have treated a process as a single object. Based on those works, it is easy to see that the study 

of a specialization methodology in a conventional object-oriented design approach can be reused and 

extended to support the artifact-centric process model. From characteristics of artifact-centric business 

processes, process specialization should not only be used for specializing a single artifact but 

synchronization dependencies between artifacts. Object lifecycles and interactions have been studied in 

various research domains including adaptation and changes of a process [Muller et al., 2008], design 

compliance [Küster et al., 2007; Ryndina et al., 2007; Künzle and Reichert, 2011; Lohmann, 2011], 

scenario-based specification [Uchitel et al., 2003], conformance checking [Fahland et al., 2011], and 

service contract for inter-organizational workflows [Van Der Aalst et al., 2010].  

Fahland et al., [2011] proposed conformance checking to compare the behavior described by a process 

model to process executions in an actual information system. Their method is based on behavioral 

conformance and interaction conformance via the use of proclet systems to describe artifacts and their 

interactions and checking how good a given proclet system describes all events recorded in the 

database. [Künzle and Reichert, 2011] proposed a PHILharmonicFlows framework to support object-

aware process management including important aspects in process modeling, execution and monitoring. 

Apart from considering objects, relations, and attributes, they also studied object behavior as well as 

object interactions to support modeling of processes a different level of granularity. Ryndina et al., 

[2007] and Küster et al., [2007] proposed a similar approach to establishing consistency of a business 

process model and an object life cycle and the approach is based on consistency notions (life cycle 

compliance and coverage) related to the concepts of equivalence and refinement of formal process 

specifications. Lohmann, N. [2013] presented an approach to automatically construct business process 

models that are compliant by design. The approach is based on compliance rules which express 

constraints on activity execution, data, and location information and by composing the rules to an 

artifact-centric model, checking for compliant behavior can be reduced to instead that for the 
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reachability of final states. All the above work laid a theoretical ground for the development of our B-

consistency notion and consistency checking presented in our work. Based on this foundation, our work 

extends the existing notions with our proposed fragmental consistency checking technique to support 

artifact inheritance methods which include refinement, extension and reduction and how the 

consistency notion can be adopted and applied.  

In our previous work [Yongchareon et al., 2012], we have preliminarily studied how artifact-centric 

business processes can be specialized. The previous study includes understanding synchronization 

dependency between artifacts and how their behavioral consistency can be maintained. In this paper, 

we extend our previous work in several aspects including: (1) improvement to the specialization 

methods discussed in Sections 4.1 and 4.2, (2) improvement to the previous B-consistency notion, (3) 

improvement to the fragmental analysis method via the introduction of the SL-fragments and S-region 

notions to help verify overall B-consistency based on a region without validating the entire model, (4) a 

new propagation method for artifact reduction, and (5) a new tool prototype (Artifact-M). We also 

provide all necessary and sufficient lemmas and theorems to support the study along with proofs as 

outcomes of the new study. 

6.2 Configurable process models  

It is well perceived that business process modeling is labor-intensive and highly detailed as to support 

the development of workflow systems. To cope with this issue, consortia and vendors have defined 

reference process models to avoid having to repeatedly create process models from scratch. Reference 

models are generalized to capture recurrent business operations in a given domain allowing them to be 

individualized to fit the specific requirements of different organizations, thus, promoting the reuse of 

proven practices (e.g. Supply Chain Operations Reference Model (SCOR) [Stephens, 2001], IT 

Infrastructure Library (ITIL) [Taylor and Probst, 2003], SAP Reference Model [Curran and Keller, 

1997]). This type of models is known as a configurable model. Several works have been proposed to 

provide a configuration of models in different extended modeling languages (e.g., C-EPCs [Rosemann 

and van der Aalst, 2007], C-iEPCs [La Rosa et al., 2011], C-WF-nets [van der Aalst et al., 2010], C-SAP 

and C-BPEL [Gottschalk et al., 2008], and C-YAWL [Gottschalk et al., 2008]). 

van der Aalst et al., [2008] proposed a framework for configuring reference process models (based on 

WF-nets) in a correctness-preserving manner. The framework includes a technique to derive 

propositional logic constraints and guarantee the syntactic correctness of the derived model. The 

framework permits the correctness checking at any intermediate step of the configuration. A set of 

constraints is evaluated at the time a value is assigned to a variation point. The configuration step is 

applied if the constraints are satisfied; otherwise, a reduced propositional logic formula is computed to 

help identify additional variation points required to be configured simultaneously as to preserve the 

semantic correctness. A workflow that is derived based on a configuration step from a sound workflow is 

always sound. Later, they showed in [van der Aalst et al., 2010] that the state-space explosion problem 

can be avoided from their behavioral correctness checking of process configurations. 

Most recently, van der Aalst et al., [2012] proposed a novel approach for verifying configurable 

process models. The approach is inspired by the Operating Guidelines (OGs) used for partner synthesis 

[Massuthe and Schmidt, 2005; Lohmann et al., 2007] by viewing the configuration process as an 

external service and computing a characterization of all such services which meet particular 

requirements via the notion of configuration guideline. This work was motivated from the problem that 

the verification of the models can be difficult because the number of possible configurations, which can 

be achieved by restriction (i.e., hiding and blocking on tasks), grows exponentially from the number of 

configurable elements. In addition, concurrency and branching structures may cause configuration 

decisions to interfere with each other, and therefore, introduce deadlocks, livelocks, and other 

anomalies. The result showed that all configurations posing no behavioral problems can be 

characterized at design time instead of repeatedly checking every single step of configuration. Their 

approach is highly generic and imposes no constraints on the configurable process models, and all 

computations are done at design time and not at configuration time. The approach is implemented in a 

YAWL Editor [YAWL Foundation, 2012] featured with Wendy tool [Lohmann, N., Weinberg, 2010] to 

ensure correctness while configuring C-YAWL models. 
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We observed that with the artifact-centric approach, it is natural to construct a repository of artifact 

classes and the process models likewise in an object-oriented software design approach. With this 

nature together with the specialization mechanism (of artifacts and a process), the artifacts and their 

involved process can be reused in a more flexible, componentized way. 

6.3 Design by selection and patterns  

Similar idea to the reuse of reference process model, the design by patterns or selection takes a use of 

existing models in process model repositories with the help from pre-defined patterns or queries to 

retrieve existing models, and then customize or generate new models based on the existing models. 

Zdun et al. [2007] proposed a pattern language for process-oriented integration of services to 

describe the practices with a modeling concept based on a catalog of 13 pattern primitives defined based 

on Unified Modeling Language version 2 (UML2) profile [OMG, 2004] for activity diagrams and Object 

Constraint Language (OCL) [OMG, 2003], each of primitives is precisely specified modeling element 

that represents a pattern. A model-driven tool has been developed to support the generation and 

validation of models in other languages, e.g., BPEL. 

Awad et al. [2011] observed that the information process model repositories are not fully exploited 

during process modeling, thus reducing the efficiency and quality of process design. As such, they 

proposed a design by selection approach for business process design that uses process repositories and 

facilitates reuse of BPMN process model components, which can be static or flexible. Static components 

represent the specific aspects of the process model, while flexible components can be customized and 

reused in an efficient manner. Their approach was built on top of the Oryx [Decker et al., 2008], which 

is an open process modeling platform and repository, and the BPMN-Q query language [Award, 2007; 

Sakr and Awad, 2010] to retrieve process components from the repository. 

Process model similarity search is used to support the process models retrieval from repositories of 

business process models. It focuses on finding the similarity between two process models based on their 

either structural aspect or/and behavioral aspects. 

van Dongen et al., [2008] proposed to use causal footprints as an abstract representation of the 

behavior model derived from an EPC-based process model. Based on the causal footprint of two models, 

they used a vector space model [Salton et al., 1975] from information retrieval area for the calculation of 

their similarity, and validated their approach by using SAP Reference Model with an implementation in 

the ProM framework [Process Mining Group, 2012]. 

Dijkman et al., [2011] presented three similarity metrics that are used to answer queries on process 

repositories dealing with the problem of retrieving process models in the repositories that resemble a 

given process model or a fragment of a model. 

(1) Node matching similarity to compare element labels and attributes attached to model elements 

between two models 

(2) Structural similarity to compare element labels and the topology between two models 

(3) Behavioral similarity to compare element labels and causal relations captured in the models 

All of the above approaches provide means to support the reuse of existing models stored in process 

model repositories in more semantic manner. As their models are constructed based on the activity and 

control flows, the retrieval mechanisms of a whole process model or a fragment of model do not take the 

data aspects (from input/output of tasks) into account, e.g., the data dependencies between two models 

or fragments are not considered. In the artifact-centric approach, the repositories should store a 

collection of artifact classes and a process definition, which defines how they are used for particular 

business processes. A traditional object-oriented reuse mechanism can be applied for artifact classes; 

however, the reuse of process definition that describes which artifact class is used in a business process 

and the relationships and dependencies among them needs further investigation. 

From a perspective of artifact-centric modeling, Calvanese et al. [2009] studied challenges around 

the comparison of artifact-centric processes using the notion of dominance. The notion is applied to 

check whether the executions of one process emulate another comparing process. Nevertheless, this 

study mainly considered comparing snapshots of the process execution but changes of internal lifecycles 
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(e.g., extension, refinement, and reduction of artifacts) of the behavior of artifact lifecycles and their 

dependencies are not considered. 

7. CONCLUSIONS AND FUTURE WORK 

In this article, we presented how our process specialization approach can help process modelers to 

construct and reuse existing business processes. Stemming from object-oriented design and modeling 

principle, our approach is deemed to provide a higher degree of adaptability and modularity than 

traditional activity-centric business process modeling approaches. As discussed, the object 

specialization considers the reuse of individual object class in software development, while our approach 

introduces the process-centric reuse to business process management. We attempt to mingle the 

existing software design principle with the design of business processes in a more coherent way. This 

should at least expand the area of research on how software engineering concepts can be realized and 

applied to business process management. Particularly, we studied the synchronization between 

lifecycles and demonstrated how the behavior consistency of two processes can be guaranteed. 

By applying our behavior-consistent restriction to the specialization mechanism, our approach not 

only improves the modeling and design efficiency of business processes but also allows for efficient 

runtime management capabilities. We are capable of aggregate lifecycles of artifacts and processes and 

view them at a more abstract level. This feature facilitates the consistent monitoring and reporting of 

business data and processes. The major contribution of our work is a theoretical study on the necessary 

and sufficient behavioral-preserving consistency conditions for specializing artifact lifecycles and their 

synchronization dependencies. In the future, we plan to extend and customize our framework to address 

different requirements from real-world industrial case studies and then evaluate how well the fully- 

fledged framework can be applied in practice. 

 

APPENDIX 

In this appendix, we provide detailed proofs of our Lemmas and Theorems. 

PROOF OF LEMMA 4.1. We can prove the lemma by construction using the conditions of an AL-

fragment (in Definition 4.5), the three inference rules for lifecycle composition (in Definition 3.9), and 

the soundness condition (in Definition 3.11) to show that if all the conditions of the lemma hold, the 

composition of all SL-fragments is atomic and sound. We prove the necessity of each of the four 

conditions as follows. 

—For the first condition. We have if ℓ𝐶𝑖 ∈ 𝛤 is not an AL-fragment, then the resulted fragment from the 

composition of ℓ𝐶𝑖 and any other fragment is not an AL-fragment. This is because, based on the three 

inference rules for the lifecycle composition defined in Definition 3.9, if ℓ𝐶𝑖 has either multiple entry or 

exit transitions or both, the composition yields multiple transitions for the synchronized product as 

well. The first condition holds the soundness condition since the AL-fragment is always sound and no 

synchronization is stated in this condition.  

The second, third, and fourth conditions of Lemma 4.1 are used to restrict two SL-fragments (to be 

composed for S-region) to have all sync rules and transitions that are necessary for synchronizing L-

fragments in 𝛤. We can prove that the three conditions are necessary as follows. 

—For the second condition. Consider a transition with a sync rule. Based on the inference rule 3.3 for 

the synchronization composition defined in Definition 3.9, every sync rule that is used to synchronize 

between two lifecycles, those transitions, and states related to the sync rule will be included in the 

synchronized product. So, if a sync rule is used to synchronize ℓ𝐶𝑖 with any L-fragment that is not in 𝛤, then 

a transition and its related states of such L-fragment will be included in the composition result. This 

clearly means that there will exist a transition from/to a state that does not belong to any L-fragment in 

𝛤; therefore, the result fragment does not satisfy the condition of AL-fragment. 

—For the third and fourth conditions. The third condition is used to restrict all the entry transitions of 

one fragment to be synchronized with all the entry transitions of another fragment to be composed. 

Similarly, the third condition is for the exit transitions. Consider an entry or exit transition with a sync 
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rule. Assume two synchronized L-fragments with multiple entry transitions and there exists an entry 

transition in one fragment that does not synchronize with any entry transition of another fragment. 

Based on the inference rule 3.3 in Definition 3.9, the composed entry transition in the synchronized 

product derived from that transition will never fire since no sync rule is induced on it; therefore, the 

goal-reachability of the composed fragment is violated. The same problem also occurs in the case of 

having an exit transition of one fragment without a sync rule on the exit transition of another fragment 

to be composed. Therefore, the soundness cannot be guaranteed without these two conditions. 

This completes the proof of LEMMA 4.1.      

PROOF OF LEMMA 4.2. We can prove it by construction using the ex-lifecycle condition (in Definition 

4.11), the B-consistency condition (in Definition 4.2), the condition for atomic composition of SL-

fragments (in LEMMA 4.1), and the condition of B-consistent refined L-fragment (in THEOREM 4.1) to 

show that if the conditions of LEMMA 4.2 hold, ℓ is B-consistent with ℒ′𝑌⨂ℓ. Revisiting the four 

conditions in LEMMA 4.1, the composition of two SL-fragments is considered as a composite AL-fragment 

in the synchronized product if the SL-fragments are AL-fragment and the sync rules of entry/exit 

transitions of one fragment completely synchronize the entry/exit transitions of another fragment. Here 

in LEMMA 4.2, the AL-fragment condition conforms to the first condition of Lemma 4.1 and the ex-

lifecycle condition (in Definition 4.11) conforms to the second, third, and fourth conditions of the LEMMA 

4.1. Followed from THEOREM 4.1, the composed lifecycle can be considered as a refined, composite AL-

fragment (composed of ℒ′𝐶𝑦 and ℓ) in ℓ; therefore, the composed lifecycle is B-consistent with ℓ.  

PROOF OF LEMMA 4.3. Similar to the proof of LEMMA 4.2, we can prove it by construction using 

Definition 4.12, the B-consistency condition (in Definition 4.2), the condition for the atomic composition 

of SL-fragments (in LEMMA 4.1), and the condition of B-consistent refined L-fragment (in THEOREM 4.1). 

This proof can be achieved based on the proof of LEMMA 4.1. If the composition of two synchronized 

fragments in the refined S-region is atomic, then based on THEOREM 4.1 (by considering refined S-region 

as a refined L-fragment), the B-consistency is preserved.   

PROOF OF LEMMA 4.4. The proof can be derived from LEMMA 4.2 and LEMMA 4.3 as the refinement of 

an existing artifact satisfies the condition of LEMMA 4.3 and the artifact extension satisfies the condition 

of LEMMA 4.2.    

PROOF OF LEMMA 4.5. The proof can be derived from LEMMA 4.4 and Definition 4.13 by taking into 

account the transitivity property of sync rules and the lifecycle composition (in Definition 3.9).  

PROOF OF LEMMA 4.6. We can prove it by construction using Definition 4.14, Definition 4.15, 

Definition 4.16, the B-consistency condition (in Definition 4.2), and the condition for the atomic 

composition of SL-fragments (in LEMMA 4.1) to show that if the conditions of LEMMA 4.6 holds, the 

lifecycle composition of every transition in 𝑇𝑟𝑒 is B-consistent with the lifecycle composition of every L-

fragment in 𝐿𝑟𝑒 and ℒ𝑌. For every reducible L-fragments in 𝐿𝑟𝑒, it is reduced into a transition. Based on 

Definition 4.14, Definition 4.15, and LEMMA 4.1, the composition of reducible L-fragments (with 

corresponding reduced sync rules) can be considered as a composite AL-fragment; therefore, can be 

reduced without violating the B-consistency condition.  

PROOF OF THEOREM 4.1. The theorem can be proved by checking: for each statement of the theorem, a 

refined L-fragment (in Definition 4.5) does not violate the B-consistency condition (in Definition 4.2).  

—Consider the first statement of the theorem. An AL-fragment that refines a base lifecycle always 

preserves the B-consistency condition as the AL-fragment is atomic and it has a single-entry state 

and a single exit state. An entire lifecycle of the L-fragment can be completely reduced (or abstracted) 

in a single transition if such L-fragment is atomic, i.e., being an AL-fragment. We can see that the 

condition of AL-fragment (in Definition 4.5) naturally conforms to Conditions 4.1 and 4.2 of the B-

consistency (Definition 4.2) 

—Consider the second statement of the theorem. We can see that the condition of this statement 

restricts a refined L-fragment to be completely encapsulated within a single state. For every L-

occurrence of the L-fragment, it must be originated from a transition fired from an outside state (not 
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in the L-fragment) and must reach to a transition fired to another outside state. We can see that the 

condition for substituting a state with a refined L-fragment conforms to Condition 4.3 of the B-

consistency (Definition 4.2). 

This completes the proof of THEOREM 4.1      

PROOF OF THEOREM 4.2. The theorem can be proved by construction using the three inference rules 

for lifecycle composition (in Definition 3.9), the soundness condition (in Definition 3.11), and the B-

consistency condition (in Definition 4.2). As refined L-fragments do no introduce any synchronization 

dependencies to specialized artifacts, then the proof follows that the composed lifecycle is always sound. 

As the conditions of THEOREM 4.1 restrict a specialized artifact preserves the B-consistency when 

applying refined L-fragments, the lifecycle composition of every specialized artifact is B-consistent.  

PROOF OF THEOREM 4.3. We can prove the theorem as follows.  

—For the if condition, we must prove that if the two statements are satisfied, then Π′ is B-consistent 

with Π. For the first condition, we prove that each specialized artifact needs to be B-consistent with 

its base artifact. Based on Definition 4.4, this statement follows from THEOREM 4.2. For the second 

condition, we prove that why each sync specialization needs to be S-consistent. Based on Definition 

4.18, this statement follows from LEMMA 4.2, LEMMA 4.3, LEMMA 4.5, and LEMMA 4.6. As each of 

Lemmas has the condition to preserve the B-consistency for each method of sync specialization 

(extension, refinement, and reduction), therefore, the second statement holds.  

This completes the proof of the if direction. 

—For the only if condition, we must prove that the two statements satisfy if Π′ is a behavior-consistent 

specialization of Π. This can be proved based on the definition of ACP Specialization (in Definition 

4.1) and the definition of lifecycle specialization B-consistency (in Definition 4.4), and S-consistency 

(Definition 4.18). In ACP Specialization, we define the three specialization methods: artifact 

extension, refinement, and reduction. First, the lifecycle B-consistency of each specialized artifact 

must hold as it follows from THEOREM 4.2. Then, consider the three S-consistency conditions based on 

artifact all these specialization methods.  

 —For artifact extension. A newly added artifact is not needed to be B-consistent. Either LEMMA 4.2 

(sync extension) or LEMMA 4.5 (sync refinement of existing and extended artifacts), or the 

combination of them is required. 

 —For artifact refinement. If there is no synchronization considered, the B-consistency for artifact 

refinement follows from THEOREM 4.2. With synchronization, THEOREM 4.2 and LEMMA 4.3 (sync 

refinement) are required. 

 —For artifact reduction. A removed artifact is not needed to be B-consistent. But the existing artifact 

with reduced lifecycle must be B-consistent and it follows from THEOREM 4.2 and LEMMA 4.6 (sync 

reduction). 

This completes the proof of the only if direction.  

Therefore, the proof of THEOREM 4.3 is complete.     
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